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Abstract. A circular polygon of a general form with a �nite number

of vertices and arbitrary angles at these vertices is given. A single-valued

analytic function mapping conformally a half-plane onto the given circular

polygon is constructed in a general form. The function is proved to be

a general solution of the Schwarz equation. First we construct functional

series uniformly and rapidly convergent near all singular points and then

fundamental local matrices which are connected by analytic continuation.

The constructed analytic function satis�es nonlinear boundary conditions.

In a general form, we compose and investigate all higher transcendental

equations connecting geometric characteristics of circular polygons with un-

known parameters of the Schwarz equation. Possible intervals of variation

of unknown accessory parameters are established.
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reziume. mocemulia zogadi saxis Criuli mravalkuTxedi Cveroe-

bis sasruli raodenobiT da am CveroebTan nebismieri kuTxeebiT. agebu-

lia zogadi saxis calsaxa analizuri Punqcia romelic naxevrsibrtKes

mocemul Criul mravalkuTxedSi gadasaxavs. damtkicebulia, rom es

Punqcia Svarcis gantolebis zogadi amonaxsnia. hven Jer vagebT Pun-

qcionalur mCkrivebs, romlebic Tanabrad da sCraPad krebadia Koveli

gansakuTrebuli Certilis midamoSi, Semdeg ki Pundamentur lokalur

matricebs, romlebic analizuri gagrZelebiT arian urTirTdakavSire-

buli. agebuli analizuri Punqcia akmaKoPilebs araCrPiv sasazGvro

pirobebs. zogadi PormiT hven vadgenT da vikvlevT maGali rigis Kvela

transcendentur gantolebas, romlebic akavSireben Criuli mravalku-

Txedebis geometriul maxasiaTeblebs Svarcis gantolebis ucnob parame-

trebTan. dadgenilia ucnobi aqcesoruli parametrebis cvlilebis Sesa-

Zlo intervalebi.
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1. Introduction

Let on a complex plane w a simply connected domain S(w) be given

with the boundary l consisting of a �nite number m+ 1 of circular arcs or

linear segments; note that the latter are regarded as degenerated circular

arcs. The vertices of circular polygons are denoted by b

1

; b

2

; : : : ; b

m+1

, while

the sizes of inward with respect to the domain S(w) angles are denoted by

��

1

; ��

2

; : : : ; ��

m+1

. The domain S(w) may be assumed to be bounded.

This always can be achieved by a suitable linear-fractional mapping.

Without restriction of generality, one can by means of a linear-fractional

transformation combine one of the sides of circular polygons, say the side

(b

m

; b

m+1

), with the a segment of abscissa axis, the origin coinciding with

the vertex b

m

. For �

m

6= n, n = 0; 1; 2, and the side (b

m�1

; b

m

) will likewise

become a segment of a straight line forming with the abscissa axis the angle

��

m

. This remark will be used in the sequel.

Find and investigate the function w(�) which conformally maps the half-

plane =(�) > 0 (or =(�) < 0) of the plane � = t+ i� onto the domain S(w).

Using the theorem on the correspondence of boundaries of the domains

=(�) > 0 and S(w), we denote by a

k

, k = 1; 2; : : : ;m + 1, the points of

the real axis of the plane � = t + i� (in this case �1 < a

1

< a

2

< � � � <

a

m

< +1) to which on the plane w there correspond the vertices of circular

polygons b

k

, k = 1; 2; : : : ;m;m + 1. Suppose that the point a

m+1

= 1 is

mapped into the point w = b

m+1

. On every interval of the t-axis, the

unknown function w = w(�) takes between neighboring points a

k

; a

k+1

the

values which lie on the corresponding circular arc [5,6].

A not complete bibliography dealing with those problems can be found

in [1{27].

The function w = w(�) is the solution of the Schwarz equation [5{7, 9{11]

w

000

(�)=w

0

(�)� 1; 5[w

00

(�)=w

0

(�)]

2

= R(�); (1.1)

R(�) =

m

X

k=1

[0; 5(1� �

2

k

)=(� � a

k

)

2

+ c

k

=(� � a

k

)]; (1.2)

where c

k

, k = 1; 2; : : : ;m are unknown real accessory parameters which for

the time being satisfy the conditions

m

X

k=1

c

k

= 0;

m

X

k=1

[a

k

c

k

+ 0; 5(1� �

2

k

)] = 0; 5(1� �

2

m+1

): (1.3)

By b

k

, b

0

k

, k = 1; 2; : : : ;m + 1 we denote the complex coordinates of the

vertices of a circular polygon at which two neighboring circumferences may

intersect; but if the neighboring circumferences are tangent at the vertex

w = b

k

, then b

k

= b

0

k

.
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The function w = w(�) on the boundary l of S(w) must satisfy the

nonlinear boundary condition [19, 20]

iA(t)w(t)w(t) +B(t)w(t) �B(t)w(t) + iD(t) = 0; �1 < t < +1; (1.4)

B(t)B(t)�A(t)D(t) = 1; (1.5)

where A(t), B(t), B(t), D(t) are given piecewise constant functions; A(t),

D(t) are real, while B(t) and B(t), w(t) and w(t) are mutually complex

conjugate.

It should be noted that (1.4) is the equation of the contour of the circular

polygon.

It is known that every function w(�) conformally mapping =(�) > 0 onto

a circular polygon satis�es (1.1), and vice versa, every solution of (1.1) con-

formally maps the domain =(�) > 0 on some circular polygon [10, p. 137].

Moreover, due to the boundary correspondence under conformal mapping,

every solution of (1.1), w = w(�), will satisfy the boundary condition (1.4).

Note hereat that when passing in (1.4) to complex conjugate values, the

equation (1.4) remains unchanged.

If w = w

1

(�) is a particular solution of (1.1), then the general solution of

(1.1) is given by

w(�) = [pw

1

(�) + q]=[rw

1

(�) + S]; ps� rq = 1; (1.6)

where p; q; r; s are arbitrary, in general complex, parameters of integration

of the equation (1.1) which are connected by the condition ps� rq = 1.

Equation (1.1) is invariant with respect to a linear-fractional transfor-

mation of the independent variable � and the dependent one w; given �,

the coe�cients of the linear-fractional transformation are real, but given w,

they are complex. Therefore we can �x arbitrarily three of the parameters

a

k

, k = 1; 2; : : : ;m;m + 1 one of which, a

m+1

= 1, is already �xed. It

remains to �x the rest two parameters by taking, e.g., a

1

= �m, a

m

= m.

After this it becomes evident that the equation (1.1) depends on 2(m�2)

unknown parameters a

k

, c

k

, k = 1; 2; : : : ;m and the number of singular

points � = a

k

equals m+ 1.

The contour of the circular polygon l consists of arcs of m + 1 circum-

ferences. For their de�nition, we need 3(m+ 1) real parameters. As it will

be seen, there are exactly 3(m+1) parameters at our disposal. Indeed, the

equation (1.1) depends both on 2(m � 2) unknown parameters a

k

, c

k

and

on m+1 known parameters �

k

, k = 1; 2; : : : ;m+1. In de�ning the general

solution of (1.1), there appear six more additional parameters of integration

(see (1.6)). Thus we have 2(m� 2) +m+1+ 6 = 3(m+ 1) parameters [7].

If we assume that w

0

= 1=u

2

(�), then the solution of (1.1) is reduced to

that of the Fuchs class di�erential equation [5{13]

u

00

(�) + 0; 5R(�)u(�) = 0: (1.7)



133

If we �nd linear independent partial v

1

(�), v

2

(�) solutions of (1.7), then

the general solution of (1.1) can be obtained by the formula (1.6) assuming

w

1

(�) = v

1

(�)=v

2

(�).

Below we will consider the Fuchs class equation of the kind

v

00

(�) + p(�)v

0

(�) + q(�)v(�) = 0; (1.8)

where

p(�) =

m

X

k=1

�

k

=(� � a

k

); q(�) =

m

X

k=1

[�

k

=(� � a

k

)

2

+ c

k

=(� � a

k

)]; (1.9)

�

k

, �

k

are given constants and c

k

are unknown p

0

(s) accessory parameters.

Substituting

v(�) = u(s) exp

�

�

1

2

s

Z

0

p(�)ds

�

; (1.10)

the equation (1.8) is reduced to the equation (1.7), where

0; 5R(�) = q(�)� 0; 5(p

0

(s))

2

� 0; 25(p(�))

2

: (1.11)

One frequently uses equations of the type (1.8) in which p(�) and q(�)

are of the form [4, 15]

p(�) =

m

X

k=1

(1� �

k

)=(� � a

k

);

q(s) = �

0

�

00

m�2

Y

k=1

(� � �

k

)=

m

Y

k=1

(� � a

k

);

(1.12)

where

m

X

k=1

�

k

+ �

0

+ �

00

= m� 1; �

0

� �

00

= �

m+1

; (1.13)

and �

1

; �

2

; : : : ; �

m�2

are accessory parameters.

If we consider a circular polygon with equal angles ��

j

= �, j = 1; 2; : : : ,

m + 1 then �

0

= 0, and hence in this case it is necessary to consider the

limits lim(�

0

�

00

�

k

), k = 1; 2; : : : ;m� 2 as �

0

! 0. Therefore it is better to

write q(�) in the form [7]

q(�) =

�

�

0

�

00

�

m�2

+ �

1

�

m�3

+ �

2

�

m�4

+ � � �+ �

m�3

� + �

m�2

�

m

Q

k=1

(� � a

k

)

; (1.14)

where �

k

, k = 1; 2; : : : ;m� 2 are unknown accessory parameters.
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The Fuchs class equations are solved by means of the power series, there-

fore we represent (1.14) as a sum of partial fractions,

q(�) =

m

X

j=1

c

j

=(� � a

j

); (1.15)

where

m

X

j=1

c

j

= 0;

m

X

j=1

c

j

a

j

= �

0

�

00

; (1.16)

c

k

=

�

�

0

�

00

a

m�2

k

+ �

1

a

m�3

k

+ � � �+ �

m�3

a

k

+ �

m�2

�

m

Q

j=1;j 6=k

(a

k

� a

j

)

; (1.17)

The equation (1.1) as well as the method of constructing w(�) for m = 2

have been obtained by H. A. Schwarz in 1873.

Equation (1.8) for m = 3 has been considered by K. Heun in 1889 and

by Ch. Snow in 1952. But they have failed in connecting the constructed

local solutions [3]. G.N. Goluzin [6] constructed w(�) for equilateral and

equiangular circular polygons. V. Koppenfels and F. Stallmann constructed

w(�) for some particular cases of circular polygons with the angles multiple

of

�

2

[10]. Approximate methods for �nding the parameters a

k

; c

k

can be

seen in [2].

P. Ya. Polubarinova-Kochina has obtained important results in con-

structing w(�) and in its application to the problems of the �ltration theory

when a �nite number of new singular points, the so-called removable points,

are added to the points � = a

k

.

General analytic solution of the equation (1.1) for any circular polygons

with a �nite number of vertices b

k

k = 1; 2; : : : ;m + 1 is given in [19{

26]. In the same works, one can see the systems of equations for �nding the

parameters a

j

, c

j

, p, q, r, s, j = 1; 2; : : : ;m. The method making it possible

to construct explicitly the solution of (1.1) for circular polygons with angles

multiple of �=2 is described in [22].

Below we present our new not published yet results as well as the ones

published earlier [19{26].

2. Application of Matrix Calculus to Determination of the

Fundamental System of Solutions

Denote linearly independent local solutions of (1.8) near singular points

� = a

k

, k = 1; 2; : : : ;m+ 1, by v

kj

(�), k = 1; 2; j = 1, : : : ;m+ 1, while the

solutions containing integration constants p, q, r, s satisfying ps� rq = 1

u

1j

(�) = pv

1j

(�) + qv

2j

(�); u

2j

(�) = rv

1j

(�) + sv

2j

(�): (2.1)

The ratios u

1j

=u

2j

are local solutions of (1:1) (see (1.6))
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Linear independent local solutions of (1.8) are proved to be suitable only

near the points � = a

k

, k = 1; 2; : : : ;m+ 1.

The equation (1.8) can be written in the form of the system

�

0

(�) = �(�)P(�); (2.2)

where

�(�) =

�

u

1j

(�); u

0

1j

(�)

u

2j

(�); u

0

2j

(�)

�

;P(�) =

�

0; �q(�)

1; �p(�)

�

; (2.3)

�

0

(�) =

d

d�

�(�); u

0

kj

(�) =

d

d�

u

kj

(�): (2.4)

and u

1

(�), u

2

(�) are linear independent solutions of (1.8).

Note that since the coe�cients of (1.1) and (1.8) are real, it becomes

obvious that if w(�) and u

kj

(�), k = 1; 2, are solutions of (1.1) and (1.8),

respectively then w(�) and u

kj

(�) are also the solutions of (1.1) and (1.8)

respectively.

In [26] we proved the basic

Theorem 2.1. If w(�) = u

1

(�)=u

2

(�), where u

1

(�) and u

2

(�) are linearly

independent solutions of (1:8), then the linear boundary condition (1:4) is

equivalent to the conditions [19; 20]

u

1

(t) = �[B(t)u

1

(t)� iD(t)u

2

(t)]; �1 < t < +1; (2.5)

u

2

(t) = �[iA(t)u

1

(t) +B(t)u

2

(t)]; �1 < t < +1; (2.6)

where � = �(t) takes on the intervals a

j

; a

j+1

constant values equal to +1

or �1; u

k

(�), u

k

(�) are complex conjugate.

Proof. Assume � = �(t). We rewrite (2.5) and (2.6) as

u

1

(t) = �(t)u

�

1

(t); u

2

(t) = �(t)u

�

2

(t); �1 < t < +1; (2.7)

where

u

�

1

(t) = B(t)u

1

(t)� iD(t)u

2

(t); (2.8)

u

�

2

(t) = iA(t)u

1

(t) +B(t)u

2

(t); (2.9)

are linearly independent solutions of (1.8).

Substituting (2.7) in (1.8), we obtain

�

00

(t)u

�

1

(t) + �

0

(t)[2(u

�

1

(t))

0

+ p(t)u

�

1

(t)] = 0; �1 < t < +1; (2.10)

�

00

(t)u

�

2

(t) + �

0

(t)[2(u

�

2

(t))

0

+ p(t)u

�

2

(t)] = 0; �1 < t < +1; (2.11)

Multiplying (2.10) by u

�

2

(t) and (2.11) by u

�

1

(t) and then subtracting the

�rst equality from the second one, we get

2�

0

(t)

�

[u

�

1

(t)]

0

u

�

2

(t)� [u

�

2

(t)]

0

u

�

1

(t)

�

= 0; (2.12)
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The braces in (2.12) involve the Wronskian w[u

�

1

(t); u

�

2

(t)] 6= 0 for all �,

with the exception of � = a

k

, k = 1; 2; : : : ;m. Hence (2.12) implies

�(t) = const; t 2 (a

j

; a

j+1

); j = 1; 2; : : : ;m: (2.13)

From its side, (2.13) implies

�

0

(t) = 0; t 2 (a

j

; a

j+1

); j = 1; 2; : : : ;m: (2.14)

If we calculate the Wronskian for (2.7) and take into account (2.14), then

we obtain �

2

= 1, and hence � = �1. �

In x9, we will show which of the intervals (a

j

; a

j+1

), j = 1; 2; : : : ;m

requires � = 1 and which one � = �1.

As for the matrix �(�) which is de�ned by the (2.3), we can write the

conditions (2.5) and (2.6) as:

�(t) = 6(t)�(t); �1 < t < +1; (2.15)

where

G(t) =

�

B(t); �iD(t)

iA(t); B(t)

�

;�1 < t < +1; (2.16)

is a given piecewise constant matrix, by (1.5) detG(t) = 1, and G(t)G(t) =

E, where E is the unit matrix and �(t) is a matrix complex conjugate to

the matrix �(t) .

For the intervals of the axis � = t, the matrix G(t) can be de�ned as

G(t) = G

j

=

�

B

j

�iD

j

iA

j

B

j

�

; a

j

< t < a

j+1

; j = 1; 2; : : : ;m+ 1; (2.17)

where a

j+1

= a

m+2

= a

1

when j = m+ 1.

As it has been said above, without restriction of generality we may assume

that G

m

= E. Due to this fact, we can extend the matrix �(�) analytically

through the interval (a

m

; a

m+1

) to the lower half-plane, or vice versa.

The matrix �(�) de�ned by (2.3) is a solution of (2.2). Since det�(�) 6= 0

for all � with the exception of the points � = a

k

, k = 1; 2; : : : ;m + 1, we

see that �(�) is likewise a fundamental matrix [8]. It is also known that if

the matrix �(�) is a solution of (2.2), then the matrix C � �(�) is likewise a

solution of (2.2), where C is a nonsingular constant matrix.

Below we will construct locally linearly independent solutions of (1.8),

V

kj

(�), '

kj

(�) respectively for the points � = a

j

, j = 1; 2; : : : ;m;m + 1,

� = e

j

= (a

j

+ a

j+1

)=2, j = 1; 2; : : : ;m � 1, where k = 1; 2, and then by

means of these solutions we will construct for (2.2) the corresponding locally

fundamental matrices:

�

j

(�) =

�

V

1j

(�) V

0

1j

(�)

V

2j

(�) V

0

2j

(�)

�

;

j = 1; 2; 3; : : : ;m;m+ 1;

H

j

(�) =

�

'

1j

(�) '

0

1j

(�)

'

2j

(�) '

0

2j

(�)

�

;

j = 1; 2; 3; : : : ;m� 1:

(2.18)
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3. Local Solutions Near Singular Points, When the

Difference of Characteristic Numbers is not an Integer

Equation (1.8) near � = a

j

can be rewritten as

(� � a

j

)

2

V

00

(�) + (� � a

j

)p

j

(�)V

0

(�) + q

j

(�)V (�) = 0; (3.1)

where

p

j

(�) =

1

X

k=0

p

kj

(� � a

j

)

k

; q

j

(�) =

1

X

k=0

q

kj

(� � a

j

)

k

: (3.2)

For the point � = a

m+1

= 1, by means of the transformation � = 1=x

we can write the equation (1.8) as follows [1, 7, 13]:

x

2

V

00

(x) + x[2�

1

X

k=0

p

1

k

x

k

]V

0

(x) + [

1

X

k=0

q

1

k

x

k

]V (x) = 0; (3.3)

where

p(1=x) = x

1

X

k=0

p

1

k

x

k

; q(1=x)x

2

1

X

k=0

q

1

k

x

k

: (3.4)

A solution of (3.1) respectively for the points � = a

i

, � = 1, j =

1; 2; : : : ;m, is sought in the form [1, 7, 8, 12, 13]

V

j

(�) = (� � a

j

)

�

j

e

V

j

(�);

e

V

j

(�) =

1

X

n=0



nj

(� � a

j

)

n

; (3.5)

V

1

(�) = �

��

1

e

V

1

(�);

e

V

1

(�) =

1

X

n=0



n1

(�)

�n

: (3.6)

Theorem 3.1. If near the point t = a

j

the equation (3:1) has a solution

of the type (3:5), then after its substitution in (3:1) the following equality

should identically be ful�lled:

(� � a

i

)

�

j

�

1

X

k=0

M

kj

(� � a

j

)

k

�

= 0: (3.7)

From this equality we obtain an in�nite recursion system of equations for



138

determination of 

nj

, n = 1; 2; : : : .

M

0j

(�

j

) = 

0j

f

0j

(�

j

); f

0j

(�

j

) = �

j

(�

j

� 1) + �

j

p

0j

+ q

0j

= 0; (3.8)

M

1j

(�

j

) = 

1j

(�

j

) � f

0j

(�

j

+ 1) + 

0j

f

1j

(�

j

) = 0; (3.9)

M

2j

(�

i

) = 

2j

(�

j

)f

0j

(�

j

+ 2) +



1j

(�

j

)f

1j

(�

j

+ 1) + 

0j

f

2j

(�

j

) = 0; (3.10)

:::::::::::::::::::::::::::::::::::::::::::::::::::::::

M

nj

(�

j

) = 

nj

(�

j

)f

0j

(�

j

+ n) + 

(n�1)j

(�

i

)f

1j

(�

j

+ n� 1) + � � �+

+

[n�(k�2)]j

(�

j

)f

(k�2)j

(�

j

+ n� k + 2) + � � �+

+

1j

(�

j

)f

(n�1)j

(�

j

+ 1) + 

0j

f

nj

(�

j

) = 0; (3.11)

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::

f

kj

(�

j

) = �

j

p

kj

+ q

kj

(3.12)

Theorem 3.2. If for the point � = a

j

the determining equation (3:8) has

the roots �

1j

, �

2j

(�

1j

> �

2j

) such that �

1j

� �

2j

6= n, n = 0; 1; 2, then

for equation (3:1) we construct by formulas (3:9){(3:11) two local linearly

independent solutions of the type

V

kj

(�) = (� � a

j

)

�

kj



0j

e

V

kj

(�);

e

V

kj

(�) = 1 +

1

X

n=1



k

nj

(� � a

j

)

n

; k = 1; 2: (3.13)

In complete analogy with the above theorem, we can formulate and prove

the theorem for the point � = a

m+1

=1 [1, 7{13].

The convergence radius of the series

e

V

kj

(�) is bounded by the distance

from the point � = a

j

to the nearest of the points � = a

j�1

, � = a

j+1

[1,

7,8].

The coe�cient 

0j

6= 0 will be de�ned below.

4. Construction of the Second Solution by Means of the

Frobenius Method, When the Difference of Characteristic

Numbers is Equal to an Integer

As it is known, when �

1j

� �

2j

= n, n = 0; 1; 2, using the formulas

(3.9){(3.11), one can construct at the point � = a

j

only one solution V

1j

(�)

corresponding to the root �

j

= �

1j

.

In such cases, there exist two methods for construction of the second

solution V

2j

(�): the Frobenius method and the method of lowering the

order of the equation (1.8).

By the Frobenius method, V

2j

(�) is sought as follows [8].

Consider the case where �

1j

��

2j

= 0. In this case, for the point � = a

j

we seek for the second solution of (3.1). First we di�erentiate (3.5) with
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respect to �

j

and then calculate the limit �

j

! �

2j

and obtain V

2j

(�). Thus

we have

V

2j

(�) = V

1j

(�) ln(� � a

j

) + (� � a

j

)

�

2j



0j

�

�

1

X

n=0

n

d

d�

j



2

nj

(�

j

)

o

�

j

=�

2j

� (� � a

j

)

n

: (4.1)

Consequently, the following theorem is valid.

Theorem 4.1. If for the point � = a

j

the determining equation (3:8) has

the roots such that �

1j

� �

2j

= 0 (at the point w = b

j

, the two neighboring

arcs are tangent, �

j

= 0 ), then for the point � = a

j

there exists the second

solution V

2j

(�) of the form (4:1).

If for the point � = a

j

the roots of (3.8) satisfy the condition �

1j

��

2j

= s,

s 2 f1; 2g, then the second linearly independent solution of (3.1) is sought

in the form [8]

V

j

(�; �) = 

0j

(� � a

j

)�

j

h

�

j

� �

2j

+

1

X

n=1



nj

(�

j

)(� � a

j

)

n

i

: (4.2)

Substituting (4.2) in (3.1), we obtain for determination of 

2

n

(�

j

), n =

1; 2; : : : , a recursion system of equations. This system can also be ob-

tained from (3.8){(3.11), if instead of 

2

0j

(�

j

��

2j

) we substitute 

2

nj

(�

j

),

n = 1; 2; : : : . From this system we determine 

2

nj

(�

j

), n = 1; 2; : : : , and

substitute them in (4.2). Then we di�erentiate (4.2) with respect to �

j

and

�nally calculate the limits as �

j

! �

2j

. As a result, we get the solution

V

2j

(�),

V

2j

(�) = lim

�

j

��

2j



0j

�

(� � a

j

)

�

j

�

�

j

� �

2j

+

1

X

n=1



nj

(�

j

)(� � a

j

)

n

�

�

� ln(� � a

j

) + (� � a

j

)

�

j

h

1 +

1

X

n=1

d

d�

j

[

2

nj

(�

j

)](� � a

j

)

n

i

�

(4.3)

Reasoning as above, we have proved the following

Theorem 4.2. If for the point � = a

j

the equation (3:8) has the roots such

that �

1j

� �

2j

= s s = f1; 2g (two neighboring circular arcs are tangent

and �

j

= 1 and �

j

= 2 ), respectively then for the point � = a

j

the second

linearly independent solution of (3:1) is of the form (4:3).
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5. Conditions for the Absence of the Logarithmic Term in the

Solution V

2j

(�)

The boundary l of the domain s(w) may contain circular or rectilinear

cuts of s(w). For the cut end w = b

j

, equation (3.8) possesses the roots such

that �

1j

� �

2j

= 2. For the points � = a

j

, P. Ya. Polubarinova{Kochina

has proved that solutions V

2j

(�) contain no logarithmic terms. Moreover,

for these points she has obtained the equation connecting the parameters

a

j

, c

j

, � of some circular polygons.

Below, using the method di�erent from that used in [15], we derive for

the end of the cut of the angle 2� an equation connecting parameters a

j

, c

j

,

�

j

for any circular polygons and then prove that the second solution V

2j

(�)

constructed for this end should not contain a logarithmic term.

Denoting the �rst summand in formula (4.3) by V

1

2j

(�), we have

V

1

2j

(�) = 

0j

(� � a

j

)

�

j

�

�

h

�

j

� �

2j

+

1

X

k=1



2

nj

(�

j

)(� � a

j

)

n

i

ln(� � a

j

): (5.1)

For determination of the coe�cients 

2

nj

(�

j

), we need the formulas (3.9){

(3.12) in which we replace 

0j

by 

0j

(�

j

��

2j

). Having de�ned 

nj



nj

(�

j

)

�

j

and passing to limit in 

2

nj

(�

j

) as �

j

! �

2j

, we obtain from (5.1) the

equality

v

1�

2j

(�) = lim

�

j

!�

2j

V

1

2j

(�) = 

2

2j

(�

2j

) � V

1j

(�) ln(� � a

j

); (5.2)

where v

1j

(�) is the solution of (3.1) for �

j

= �

1j

.

Now we prove

Theorem 5.1. A necessary and su�cient condition for the absence of a

logarithmic term in the solution v

2j(�)

constructed for the cut end is of the

form



2

2j

(�

2j

) =



0j

2

�

�f�f

1j

(�

2j

) � f

1j

(�

2j

+ 1)=f

0j

(�

2j+1

) + f

2j

(�

2j

)g = 0; (5.3)

where f

kj

(�), k = 0; 1; 2, are de�ned by (3:8) and (3:12).

Proof. Let us prove the su�ciency of (5.3). From (5.2) it is obvious that

if (5.3) holds, then v

1�

2j

(�) = 0 which proves the su�ciency of the condition

(5.3).

Let us prove now the necessity of the condition (5.3). As far as the

equation (3.1) for the cut end � = a

j

must have two locally independent

solutions containing no logarithmic terms, we take this fact into account and

construct the solution v

2j

(�) by using the formulas (3.9){(3.11) for, only the

solutions of (3.1) constructed by (3.9){(3.12) contain no logarithmic terms.
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Really, all 

2

nj

, n = 1; 3; 4; : : : , with the exception of 

2

2j

(�

2j

), are de�ned

from the system (3.9){(3.11). For de�nition of 

2

2j

we have equation (3.10)

in which the �rst term 

2

2j

(�

j

)f

0j

(�

j

+2) = 0 for �

j

= �

2j

. Hence the sum

of the last two summands in (3.10) must vanish,



2

1j

(�

2j

)f

1j

(�

2j

+ 1) + 

0j

f

2j

(�

2j

) = 0; (5.4)

moreover, the equation (5.4) coincides with (5.3) if we substitute in it



2

1j

(�

2j

) de�ned by (3.9).

From (5.4), we have

q

2j

+ q

2

1j

+ q

1j

p

1j

= 0; (5.5)

where q

2j

, q

1j

, p

1j

are de�ned from the corresponding coe�cients of (3.2).

Finally, de�ne 

2

2j

(�

2j

) uniquely. To this end, from (3.10) we de�ne



2j

(�

j

) for �

j

6= �

2j

. We have



2j

(�

j

) = �



1j

(�

j

)f

1j

(�

j

+ 1) + 

0j

f

2j

(�

j

)

f

0j

(�

j

+ 2)

(5.6)

�

For �

j

= �

2j

, the numerator and the denominator in (5.6) vanish. Thus

we have indeterminacy 0=0. If we develop it by means of the de L'Hospital

rule, we will arrive at



2�

2j

(�

2j

) = �0; 5

0j

[p

1j

(p

1j

+ 2q

1j

) + p

2j

]: (5.7)

Thus, by formulas (3.9){(3.11), we de�ne v

2j

(�) uniquely and complete

the proof of the necessity of the condition (5.3).

For the cut end � = a

j

, one can construct v

2j

(�) by means of the Frobe-

nius method under the condition (5.3). Indeed, if the condition (5.3) is

ful�lled, then the �rst summand in (4.3) vanishes, while the second one

takes the form

V

2j

(�) = (� � a

j

)

�

2j



0j

�

1 +

1

X

n=1



2�

nj

(� � a

j

)

n

�

; (5.8)

where all the coe�cients 

2�

nj

, n = 1; 2; : : : , are de�ned by

lim

�

j

!�

2j

d

d�

j

[

nj

(�

j

)] = 

2�

nj

n = 1; 2; 3; : : : : (5.9)

Among them 

2�

2j

is de�ned by



2�

2j

= �0; 5[p

1j

(p

1j

+ 2q

1j

) + p

2j

]; (5.10)

which coincides with (5.7) since 

0j

in (5.8) is a factor standing out of

brackets.
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6. Searching for the Second Solution v

2j

(�) by the Method of

Lowering the Order of (1.8) when �

1j

� �

2j

= s, s = 0; 1; 2.

There naturally arises the question whether there is a more simple way

of constructing v

2j

(�) than that indicated by Frobenius. They may say

that there is a second method, that is the method of lowering the order of

equation (1.8) [7, 9, 10, 11, 12].

Using this method, one can get the well-known Liouville formula which

in turn results in the following expression for v

2j

(�):

v

2j

(�) = A

0j

v

1j

(�) ln(� � a

j

) + v

2

2j

(�); (6.1)

where v

1j

(�) is the solution corresponding to the root �

1j

, A

0j

is an un-

known constant, and v

2

2j

(�) for the case �

1j

� �

2j

= 0 takes the form

v

2

2j

(�) = (� � a

j

)

�

2j



0j

1

X

n=1

h

nj

(t� a

j

)

n

; h

1j

= 1: (6.2)

For the cases �

1j

��

2j

= s, s = 1; 2, the solution v

2

2j

(�) is de�ned as follows:

v

2

2j

(�) = (� � a

j

)

�

2j



0j

1

X

n=0

h

nj

(� � a

j

)

n

; h

0j

= 1; (6.3)

where the coe�cients h

nj

n = 1; 2; : : : , can be de�ned theoretically by the

Liouville formula. Practically they cannot be de�ned in such a way.

Some well-known authors [9, 10, 12] recommend to substitute (6.1) in

(3.1) and to obtain the recursion formulas which no longer has those defects

we spoke about. Unfortunately, these statements are not true for �

1j

��

2j

=

s, s = 1; 2. Such an approach leaves again the coe�cients h

1j

, h

2j

for

f

0j

(�

2j

+ s), where f

0j

(�

2j

+ s) = 0, s = 1; 2, unde�ned.

Indeed, the substitution of (6.1) in (3.1) results in

(� � a

j

)

�

1j

��

2j

A

j

�

2ev

0

1j

(�) + ev

1j

(�)(p

1j

(�)� 1)

	

+

+

�

(ev

2

2j

(�))

00

+ p

1j

(�)(ev

2

2j

(�))

0

+ q

1j

(�)ev

2

2j

(�)

	

= 0; (6.4)

where

v

1j

(�) = 

0j

(� � a

j

)

�

1j

ev

1j

(�); ev

1j

(�) = 1 +

1

X

n=1



1

nj

(� � a

j

)

n

; (6.5)

v

0

1j

(�) = 

0j

(� � a

j

)

�

1j

�1

ev

1

1j

(�)

ev

1

1j

(�) = �

1j

+

1

X

n=1



1

nj

(�

1j

+ n)(� � a

j

)

n

: (6.6)

Formulas for ev

2

2j

(�), (ev

2

2j

(�))

0

, (ev

2

2j

(�))

00

are de�ned similarly.
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After the substitution of ev

kj

(�), k = 1; 2, in (6.4), we obtain

1

X

k=0

Q

kj

(� � a

j

)

n

= 0; (6.7)

The equation (6.7) implies

Q

kj

= A

0j

l

(k�s)j

+M

kj

= 0: (6.8)

For k = 0, we have

Q

0j

= A

0j

l

(0�s)j

+M

0j

= 0; s = 0; 1; 2; (6.9)

moreover,

l

(k�s)j

= 0; k � s < 0:

The coe�cients M

kj

, k = 0; 1; 2; : : : , can be de�ned by the formulas

(3.8){(3.11), while coe�cients l

(k�s)j

are de�ned by

l

0j

= 2�

1j

+ p

0j

� 1 = �

1j

� �

2j

; (6.10)

l

1j

= 

1

1j

[2(�

1j

+ 1) + p

0j

� 1] + p

1j

; (6.11)

l

2j

= 

1

2j

[2(�

1j

+ 2) + �

1j

(p

0j

� 1)] + 

1

1j

p

1j

+ p

2j

; (6.12)

::::::::::::::::::::::::::::::::::::::::

l

nj

= 

1

nj

[2(�

1j

+ n) + �

1j

(p

0j

� 1)] + 

1

(n�1)j

�

2j

p

nj

+ � � �+

+

1

2j

�

1j

p

(n�2)j

+ 

1

1j

�

1j

p

(n�1)j

+ p

nj

; (6.13)

::::::::::::::::::::::::::::::::::::::::

According to (6.8), in order to de�ne the parameter A

0j

for the cases

s = 1 and s = 2, respectively, we have the following equations:

A

0j

+ h

1j

f

0j

(�

2j

+ 1) + f

1j

(�

2j

) = 0 (6.14)

2A

0j

+ h

2j

f

0j

(�

2j

+ 1) + h

1j

� f

1j

(�

2j

+ 1) + f

2j

(�

2j

) = 0: (6.15)

From (6.14) and (6.15) we can see that the recursion formulas (6.8) do

not permit one to de�ne v

2j

(�) in the cases �

1j

� �

2j

= s, s = 1; 2. Hence

it remains to use the Frobenius method. But one can act di�erently: �rst

calculate the coe�cients h

sj

, s = 1; 2, by the Frobenius method and then

the rest coe�cients h

nj

, n � 3, by the formula (6.8). The parameter A

0j

can be de�ned as:

A

0j

= �f

1j

(�

1j

); s = 1: (6.16)

A

0j

= �h

1j

f

0j

(�

2j

+ 1)� f

2j

(�

2j

); s = 2: (6.17)

If we use the above-indicated method, then in the solution v

1j

(�) instead

of 

0j

we have to take 

0j

A

0j

and instead of v

2j

(�) (formula (6.1)) the

formula

v

2j

(�) = v

1j

(�) ln(� � a

j

) + 

0j

v

2

2j

(�): (6.18)
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7. Local Matrices

For multi-valued functions exp[�

kj

ln(� � a

j

)] encountered in local solu-

tions, we select single-valued branches such as

exp[�

kj

ln(t� a

j

)] > 0; t > a

j

;

exp[�

kj

ln(t� a

j

)]

�

= exp[�i��

kj

] exp[�

kj

ln(a

j

� t)]; t < a

j

;

exp[��

k1

ln(�t)]

�

�

> 0; �1 < t < a

1

;

�

exp[��

k1

ln t]

�

�

= exp[�i�(��

k1

)] exp[��

k1

ln t]: a

m

< t < +1:

Besides the matrix (2.18), we introduce the matrices

�

�

j

(t) =

 

v

�

1j

(t); v

0

�

1j

(t)

v

�

2j

(t); v

0

�

2j

(t)

!

; a

j�1

< t < a

j

; (7.1)

where

v

�

kj

(t) = (a

j

� t)

�

kj



0j

ev

kj

(t); (7.2)

v

0

�

kj

(t) = �(a

j

� t)

�

kj



0j

ev

1�

(t) (7.3)

v

0

kj

(t) = d[u

kj

(t)]=dt;

ev

1�

kj

(t) = �

kj

+

1

X

n=1



k

nj

(�

kj

+ n)(t� a

j

)

n

;

Between the matrices �

j

(t) and �

�

j

(t), there is a (relation)

�

�

j

(t) = #

�

j

�

�

j

(t); a

j�1

< t < a

j

; (7.4)

�

�

1

(t) = #

�

1

�

�

1

(t); a

m

< t <1 (7.5)

Matrices #

�

j

for �

1j

� �

2j

6= s, s = 0; 1; 2, are de�ned by

#

�

j

=

�

exp(�i��

1j

) 0

0 exp(�i��

2j

)

�

: (7.6)

For �

1j

� �

2j

= s, s = 0; 1; 2, they are de�ned by the equality

#

�

j

= e

�i��

2j

�

1 0

��i 1

�

: (7.7)

Matrices #

�

j

for the cut end w = b

j

are de�ned as follows: if the use is

made of the equation (1.7), then the characteristic numbers can be de�ned

as �

1j

= 3=2 and �

2j

= �1=2. To this case there correspond matrices

#

�

j

= �iE; however if we use the equation (1.8), then characteristic numbers

are de�ned as �

1j

= 2, �

2j

= 0 with the corresponding matrices #

�

j

= E.
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The elements of the matrix �

�

j

(t) involving logarithmic terms are de�ned

by the formulas

v

�

2j

(t) = 

0j

�

(a

j

� t)

�

2j

�

(t� a

j

)

s

ev

1j

(t) ln(t� a

j

) + ev

2

2j

(t)

�	

; (7.8)

v

0

�

2j

(t) = �

0j

(a

j

� t)

�

2j

�1

�

�

��

(a

j

� t)

s

e

i�s

ev

1

1j

(t) ln(a

j

� t) + ev

1j

(t)

�

+ ev

2

2j

(t)

	

; (7.9)

In the local solutions v

kj

(�) and '

kj

(�), there respectively appear con-

stants 

0j

and '

0j

de�ned with the help of the Liouville formula



0j

=

�

m

Y

k=1;k 6=j

ja

j

� a

k

j

�

k

	

1=2

; (7.10)

'

0j

=

�

m

Y

k=1

je

j

� a

k

j

�

k

	

1=2

(7.11)

8. Construction of the Fundamental Matrix

Construct the matrix

�(�) =

�

u

1

(�) u

0

1

(�)

u

2

(�) u

0

2

(�)

�

; (8.1)

where u

1

(�) and u

2

(�) are linearly independent solutions of (1.8); moreover,

u

0

1

(�) = du

1

(�)=d� and u

0

2

(�) = du

2

(�)=d�.

Domain of convergence of the matrices �

j

(t), H

j

(t) always has a general

part in which we can write the equalities

�

�

j

(t) = T

�

H

j

(t); H

j

(t) = T

0j

�

j�1

(t); a

j�1

< t < a

j

; (8.2)

�

�

1

(t) = T

�1

�

1

(t); �1 < t < a

1

;

�

�

1

(t) = T

1

�

m

(t); a

m

< t < +1; (8.3)

where T

�

j

, T

0j

, T

�1

, T

1

are the real constant matrices de�ned by equalities

(8.2) and (8.3); in this case, we have to �x t in the domain where the two

local matrices converge.

De�ne the matrix (8.1) along the axis t of the plane �:

�

�

(t) = T�

�

m

(t); �

+

m

(t) = �

�

m

(t); a

m

< t < +1 (8.4)

�

�

(t) = T#

�

m

#

�

m

(t); a

m�1

< t < a

m

; (8.5)

�

�

(t) = T#

�

m

T

m

�

m�1

(t); T

m

= T

�

m

� T

0m

; a

m�1

< t < a

m

; (8.6)

�

�

(t) = T#

�

m

T

m

#

�

m�1

�

�

m�1

(t); a

m�2

< t < a

m�1

; (8.7)

::::::::::::::::::::::::::::::

�

�

(t) = T#

�

m

T

m

: : : T

1

#

�

1

�

�

1

(t); �1 < t < a

1

; (8.8)

�

�

(t) = T#

�

m

T

m

: : : #

�

1

T

�1

�

1

(t); �1 < t < a

1

; (8.9)

�

�

(t) = T#

�

m

T

m

: : : #

�

1

T

1

#

�

1

(t); a

m

< t <1: (8.10)
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The upper signs (�) in the matrices (8.4){(8.10) denote the limiting

values of the matrix �(�) from the upper and lower half-planes, respectively.

The matrix T is de�ned by the equality

T =

�

p q

r s

�

: (8.11)

Obviously, the matrices (8.4){(8.10) are solutions of (2.2).

9. Solution of the Boundary Value Problem

Theorem 9.1. The solution of the equation (2:2) satisfying the boundary

condition (2:15) is given by formulas (8:4){(8:10).

Proof. We begin with the interval (a

m

;+1). We have

T�

+

m

(t) = G

m

T�

�

m

(t); �

+

m

(t) = �

�

m

(t);

G

m

= E; T = T ; a

m

< t < +1;

(9.1)

For the interval (a

m�1

; a

m

), there takes place the equality

T#

+

m

�

�

m

(t) = G

m�1

T#

�

m

�

�

m

(t); a

m�1

< t < a

m

; (9.2)

The equalities (9.1) and (9.2) result in the matrix equation

(#

+

m

)

2

= TG

�1

m

G

m�1

T (9.3)

It is seen from (9.3) that the matrices (#

+

m

)

2

and G

�1

m

G

m�1

are similar.

In a fashion analogous to the matrix equation (9.3), we �nd the corre-

sponding matrix equations for the remaining points � = a

j

, j = 1; 2; : : : ;m,

m+ 1. We have

T#

+

m

T

m

#

+

m�1

= G

m�2

T#

�

m

T

m

#

�

m�1

; (9.4)

T#

+

m

T

m

#

+

m�1

T

m�1

#

+

m�2

= G

m�3

T#

�

m

T

m

#

�

m�1

T

m�1

�

�

m�2

; (9.5)

:::::::::::::::::::::::::::::::::::::::::::::::::::::

T#

+

m

T

m

#

+

m�1

T

m�1

#

+

m�2

T

m�2

: : : T

1

#

+

1

=

= G

m+1

T#

�

m

T

m

#

�

m�1

T

m�1

�

�

m�2

T

m�2

: : : T

1

#

�

1

; (9.6)

T#

+

m

T

m

#

+

m�1

T

m�1

: : : T

�1

#

+

1

=

= G

m

T#

�

m

T

m

#

�

m�1

T

m�1

: : : T

�1

#

�

1

: (9.7)

These equations can be written in terms of the equation (9.3), for exam-

ple, the equation (9.4) can be written in the form

(#

+

m�1

)

2

= T

�1

m

(#

�

m

)

�1

T

�1

G

�1

m�1

G

m�2

T#

�

m

T

m

:
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As is said above, the matrices G

k

can be de�ned �rst to within the factor

� = �1, and then exactly. To de�ne G

k

exactly, we proceed from equation

(3.8). Having de�ned �

kj

, it is necessary to construct the equation

det(G

�1

j

G

j�1

� �E) = 0: (9.8)

Denote the roots of (9.8) by �

kj

and consider the equality

�

kj

= (2�i)

�1

ln�

kj

(9.9)

The right-hand side of (9.9) is de�ned to within an integer summand. A

suitable choice of � = �1 makes it always possible to ful�ll the equation

(9.9) and to de�ne the matrices G

j

, j = 1; 2; : : : ;m;m + 1, exactly. But

this operation should be done successively beginning, for example, with the

matrix G

m�1

.

It should be noted at this point that two neighboring circular arcs forming

a cut with the end w = b

j

(in particular, segments of straight lines) belong

to the same circumference. This implies that G(t) = G

j

for � > a

j

and

G(t) = �G

j

for � < a

j

, where � = �1. If the use is made of the equation

(1.7), then the equation (3.8) has the roots 3=2 and �1=2, but if we use the

equation (1.8), then the equation (3.8) has the roots 2 and 0. In the �rst

case � = �1, while in the second one � = 1.

We rewrite the matrix equation (9.3) as follows:

T#

+

m

= G

m�1

T#

�

m

(9.10)

From (9.10), we have

p exp(i��

1m

) = B

m�1

p exp(�i��

1m

)� iD

m�1

r exp(�i��

1m

); (9.11)

r exp(i��

1m

) = iA

m�1

p exp(�i��

1m

) +B

m�1

r exp(�i��

1m

); (9.12)

q exp(i��

2m

) = B

m�1

q exp(�i��

2m

)� iD

m�1

s exp(�i��

2m

); (9.13)

s exp(i��

2m

) = iA

m�1

q exp(�i��

2m

) +B

m�1

s exp(�i��

2m

): (9.14)

If we divide the corresponding parts of (9.11) and (9.12), (9.13) and

(9.14), then we can see that the ratios p=r and q=s on the interval (a

m�1

; a

m

)

satisfy the boundary condition (1.4):

p

r

=

B

m�1

p=r � iD

m�1

iA

m�1

p=r +B

m�1

;

q

s

=

B

m�1

q=s� iD

m�1

iA

m�1

q=s+B

m�1

: (9.15)

The same boundary condition is satis�ed by the coordinates of the points

w = b

m

, w = b

0

m

. Hence,

p=r = b

m

; q=s = b

0

m

: (9.16)

On the plane w the origin of coordinates coincides with the point b

m

,

therefore b

m

= 0, b

0

m

=1, and hence

p = 0; s = 0: (9.17)
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If the determining equation (3.8) has for the point � = a

m

the roots such

that �

1j

� �

2j

6= n, n = 0; 1; 2, then we can de�ne the matrix G

m�1

:

G

m�1

=

�

B

m�1

0

0 B

m�1

�

(9.18)

Consider the matrix equation (9.4):

T

�m

#

+

m�1

= G

m�2

T

�m

#

�

m�1

; T

�m

= T#

+

m

T

m

: (9.19)

Reasoning as above, from (9.19) we have the following system of equa-

tions:

p

�m

=r

�m

= b

m�1

; q

�m

=s

�m

= b

0

m�1

; (9.20)

where p

�m

, q

�m

, r

�m

, s

�m

are the elements of the matrix T

�m

.

The equalities (9.20) can be rewritten as

p

�

p

m

+ q

�

r

m

r

�

p

m

+ s

�

r

m

= b

m�1

;

p

�

p

m

+ q

�

s

m

r

�

q

m

+ s

�

s

m

= b

0

m�1

; (9.21)

where p

�

, q

�

, r

�

, s

�

are the elements of the matrix T

�

= T#

+

m

.

Taking (9.16) into account, we can rewrite (9.21) as:

r

�

p

m

b

m

+ s

�

r

m

b

0

m

r

�

p

m

+ s

�

r

m

= b

m�1

;

r

�

q

m

b

m

+ s

�

s

m

b

0

m

r

�

q

m

+ s

�

s

m

= b

0

m�1

: (9.22)

We rewrite (9.22) as

r

�

p

m

(b

m

� b

m�1

) + s

�

r

m

(b

0

m

� b

m�1

) = 0; (9.23)

r

�

q

m

(b

m

� b

0

m�1

) + s

�

s

m

(b

0

m

� b

0

m�1

) = 0: (9.24)

The condition of compatibility of the system of equations (9.23) and

(9.24) with respect to r

�

and s

�

has the form

p

m

s

m

r

m

q

m

=

b

0

m

� b

m�1

b

m

� b

m�1

�

b

m

� b

0

m�1

b

0

m

� b

0

m�1

: (9.25)

Exactly in the same way as above, from the matrix equation (9.5) we

obtain a system of equations:

p

�(m�1)

p

m�1

+ q

�(m�1)

r

m�1

r

�(m�1)

p

m�1

+ s

�(m�1)

r

m�1

= b

m�2

;

p

�(m�1)

q

m�1

+ q

�(m�1)

s

m�1

r

�(m�1)

q

m�1

+ s

�(m�1)

s

m�1

= b

0

m�2

(9.26)

Taking into consideration (9.20), after certain transformations we rewrite

(9.26) as:

r

�(m�1)

p

m�1

(b

m�1

� b

m�2

) + s

�(m�1)

r

m�1

(b

0

m�1

� b

m�2

) = 0; (9.27)

r

�(m�1)

q

m�1

(b

m�1

� b

0

m�2

) + s

�(m�1)

s

m�1

(b

0

m�1

� b

0

m�2

) = 0: (9.28)
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The condition of compatibility of the system of equations (9.27) and

(9.28) with respect to r

�(m�1)

and s

�(m�1)

is of the form

p

m�1

s

m�1

r

m�1

q

m�1

=

b

0

m�1

� b

m�2

b

m�1

� b

m�2

�

b

m�1

� b

0

m�2

b

0

m�1

� b

0

m�2

: (9.29)

Reasoning analogously we can successively consider all matrix equations

(9.6) and (9.7).

The equations (9.25) and (9.29) represent invariant cross-ratios of four

points belonging to the same circumference at which the latter intersects

two neighboring circumferences.

From the matrix equations (9.3){(9.7), we get all needed equations with

respect to a

k

, c

k

as well as to the integration parameters p, q, r, s. For every

point � = a

j

, the obtained system of two equations is homogeneous with

respect to the elements of the matrix T

k

. Its compatibility conditions, for

example, for the points � = a

m

and � = a

m�1

, are of the form (9.25)

and (9.29). These equations have been obtained under the assumption

�

1j

� �

2j

6= n, n = 0; 1; 2.

Consider the case where �

1j

� �

2j

= n, n = 0; 1; 2.

Using the representation (8.4){(8.10) for the interval (a

j�1

; a

j

), the un-

known matrices �

+

(t), �

�

(t) must satisfy the boundary condition

�

p

�j

q

�j

r

�j

s

�j

�

e

i��

2j

�

1 0

�i 1

�

=

=

�

B

j�1

�iD

j�1

iA

j�1

B

j�1

��

p

�j

q

�j

r

�j

s

�j

�

e

�i��

2j

�

1 0

��i 1

�

; (9.30)

where p

�j

, q

�j

, r

�j

, s

�j

are de�ned by (8.4){(8.10).

Reasoning in the same way as in deducing (9.11){(9.14), we can see that

the ratios

p

�j

+ �iq

�j

r

�j

+ �is

�j

;

q

�j

s

�j

(9.31)

satisfy the boundary condition (2.15). The same condition will likewise be

satis�ed by the coordinates of the point w = b

j

as well as by those of the

points b

j�1

or b

0

j�1

. Thus we obtain the following system of equations:

p

�j

+ �iq

�j

r

�j

+ �is

�j

= b

j

;

q

�j

s

�j

= b

�

j

; (9.32)

where b

�

j

are equal either to b

j�1

or b

�

j�1

.

The system (9.32) is also homogeneous with respect to the elements of

the corresponding matrices T

j

whose compatibility conditions by this time

does not provide the relations similar to (9.25){(9.29).

As is said above, matrix equations similar to (9.3){(9.7) can be obtained

for all points, with the exception of the points � = a

k

. To these points there

correspond the ends of the cuts w = b

j

for which �

j

= 2. For such points we
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have conditions of the absence of logarithmic terms in the solutions v

2j

(�),

for example, the equation (5.5); the second equation will be given below.

From the matrix representations of �

+

(t) we �rst de�ne u

+

1

(t), u

+

2

(t) and

then compose the relation w

+

(t) = u

+

1

(t)=u

+

2

(t).

Suppose that the function w

+

(t) on the interval (a

k

; a

k+1

) is de�ned by

w

+

(t) = [A

�

j

v

+

1j

(t) +B

�

j

v

+

2j

(t)]=[c

�

j

v

1j

(t) +D

�

j

v

+

2j

(t)]; (9.33)

Using the formula (9.33) and calculating the limit as � ! a

j

, we get the

equation

b

j

= B

�

j

=D

�

j

: (9.34)

The corresponding equations for other points � = a

k

can be obtained

analogously.

Finally, for every point t = a

j

we obtain two real homogeneous equations

with respect to p

j

, q

j

, r

j

, s

j

, for instance, the equations (9.11){(9.14). From

the conditions of compatibility of homogeneous equations for �

j

6= 0; 1; 2,

we obtain invariant cross-ratios for four points of one and the same circle,

for example, equations (9.25){(9.29). In the case �

j

= 0; 1; 2, the condition

of compatibility of two equations provides certain condition rather than a

cross-ratio.

Thus we can take from each system one equation and the compatibility

condition, i.e, two equations for each point � = a

j

. The number of equations

equals 2(m + 1), and the number of unknown parameters a

k

, c

k

, p, q, r,

s (ps � rq = 1) will be 2m � 1. Consequently, the number of equations is

greater by three than the number of unknown parameters. This is connected

with the fact that the bypass of all singular points a

k

, k = 1; 2; : : : ;m,

is equivalent to going around the point � = 1. This yields one matrix

equation. Therefore these three equations are consequences of the remaining

ones. This means that if we �nd all a

k

, c

k

and p, q, r, s and substitute them

in the remaining system of equations, then they will identically be equal

to zero. The appearance of three superuous equations can be explained

exactly in the same way as in the case of linear polygons. �

Having found the system of equations for de�nition of a

k

, c

k

, p, q, r, s, we

have to de�ne the intervals of variation of the parameters c

k

, k = 1; 2; : : : ;m,

then to solve the system with respect to a

k

, c

k

, k = 1; 2; : : : ;m, and �nally

to specify p, q, r, s. Recall that p

j

, q

j

, r

j

, s

j

, j = 1; 2; : : : ;m + 1, depend

implicitly on the parameters a

k

, c

k

, k = 1; 2; : : : ;m.

Theorem 9.2. If the contoure of the domain s(w) of a circular polygon

contains a cut with the end w = b

j

�

1j

� �

2j

= 2 for which, the then the

second linearly independent solution (3:1) for the point � = a

j

v

2j

(�) does

not contain the logarithmic term.
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Proof. Suppose the contrary. Let v

2j(�)

contain a logarithmic term. For the

point � = a

j

, we construct �rst a local fundamental matrix �

j

(�) and then

the matrices �

+

(t) = B

0j

�

+

j

(t), �

�

(t) = B

0j

�

j

(t), where B

0j

, B

0j

are the

constants of the matrix constructed by (8.4){(8.10). The matrices �

+

(t),

�

�

(t) must satisfy the boundary conditions

B

0j

�

+

j

(t) = G

j

B

0j

�

�

j

(t); �

+

j

(t) = �

�

j

(t); t > a

j

; (9.35)

B

0j

#

+

j

(t) = G

j

B

0j

#

�

j

�

�

j

(t); t < a

j

: (9.36)

The equalities (9.35) and (9.36) imply that either

either and #

+

j

= �#

j

� = 1 or � = �1: (9.37)

When �

1j

= 3=2, �

2j

= �1=2, and � = �1 the equality (2.37) yields

i

�

1 0

�i 1

�

= i

�

1 0

��i 1

�

: (9.38)

It follows from (9.38) that � = 0, which is not true. In the case �

1j

= 2,

�

2j

= 0 and � = 1, the equality (9.37) implies

�

1 0

�i 1

�

=

�

1 0

��i 1

�

: (9.39)

It again follows from (9.39) that � = 0, which is not true. Hence our

supposition is invalid and the theorem is complete. �

Theorem 9.2 has been proved in somewhat di�erent way by P.Ya. Polu-

barinova-Kochina.

10. Representation of the Solutions v

kj

(�), j = 1; 2; : : : ;m+ 1, by

Means of Functional Series

It is known that the series v

kj

(�), k = 1; 2, j = 1; 2; : : : ;m;m+1 converge

near the points � = a

j

, j = 1; 2; : : : ;m+1, while the series '

kj

(�) converge

near the points � = e

j

= (a

j

+ a

j+1

)=2. The radii of convergence of these

series are bounded by the distance from the given point t = a

j

(or from the

point � = e

j

) to the nearest points � = a

j�1

, � = a

j+1

.

The constructed series v

kj

(�), '

kj

(�) converge slowly thereby making

numerical calculations more complicated. As n increases, the coe�cients



k

nj

sometimes increasen strongly, although their factory (� � a

j

)

n

, on the

contrary, strongly decrease as n increases. Electronic computers are unable

to multiply 

k

nj

by (t� a

j

)

n

despite the fact that these series converge. To

remove this de�ciency we suggest to represent these series as rapidly and

uniformly convergent functional series.
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Theorem 10.1. If one considers the Fuchs class equation (1:8), with p(�),

q(�) de�ned by (1:9) (or by (1:12)), and represent it near the points � = a

j

and � = 1 in terms of the series (3:2) and (3:4), respectively, then the

local solutions v

kj

(�), j = 1; 2; : : : ;m+1, can be represented as rapidly and

uniformly convergent functional series, the formulas (3:9){(3:11) remaining

valid.

Proof. Consider the structure of the recursion formulas (3.9){(3.11). The

sum of the �rst subscripts for the expression 

(k�n)j

� f

nj

(�

j

+ k � n) is

always equal to k, that is, to the exponent (t � a

j

)

k

. Consider instead of

the series (3.5) the functional series

v

j

(t) = (t� a

j

)

�

j

ev

j

(t� a

j

); ev

j

(t� a

j

) =

1

X

n=0



nj

(t� a

j

); (10.1)

where, owing to (3.9){(3.11), 

nj

is de�ned in terms of 

1j

; 

2j

; : : : ; 

(n�1)j

,

and the latters in terms of f

kj

(�

j

), where

f

kj

(t� a

j

; �

j

) = �

j

p

kj

(t� a

j

) + q

kj

(t� a

j

); (10.2)

p

nj

(t� a

j

) =

m

X

k=1;k=j

(�1)

n�1

(1� �

k

)

�

t� a

j

a

j

� a

k

�

n

;

p

0j

= 1� �

j

; (10.3)

q

nj

(t� a

j

) =

m

X

k=1;k 6=j

(�1)

n�2

�

�f�

k

(n� 1) + c

k

(a

j

� a

k

)g

�

t� a

j

a

j

� a

k

�

n

(10.4)

n = 2; 3; : : : ;

q

0j

= �

j

; q

1j

= c

j

(10.5)

�

�

�

t� a

j

a

j

� a

k

�

�

�

< 1 k 6= j; (10.6)

jt� a

j

j < M

in

fja

j

� a

j�1

j; ja

j

� a

j+1

jg: (10.7)

It is seen from (10.6) that the functional series (10.1) converges uniformly

near the point � = a

j

and rapidly in comparison with the series (3.5).

The functional series for the point � = a

m+1

= 1 can be constructed

analogously.

In all the above formulas instead of the solution v

kj

(�) we will represent

the functional series (10.1).

Obviously, the functional series for regular points t = e

j

, e

j

= (a

j

+

a

j+1

)=2, j = 1; 2; : : : ;m� 1, converge likewise uniformly and rapidly. �
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11. Determination of Intervals of Variation of Accessory

Parameters

We have proved in [26] that v

kj

(�), k = 1; 2, j = 1; 2; : : : ;m + 1, are

entire functions of the accessory parameters, c

k

, k = 1; 2; : : : ;m and in [23]

we determined possible intervals of variation of these parameters.

Consider two cases: 1. A circular polygon with the angles �

j

= 1, j =

1; 2; : : : ;m + 1, is given. We pass to that consisting of one circle. In this

case, equation (1.1) takes the form

w(�) = (A� +B)=(C� +D); (11.1)

where A, B, C, D are unknown integration constants of (1.1).

Substitution of (11.1) in (1.1) results in the identity

R(�) =

m

X

k=1

C

k

� � a

j

= 0: (11.2)

From (11.2) it follows that

C

k

= 0; k = 1; 2; : : : ;m:

2. On the plane w, a linear polygon is given. The accessory parameters

vanish for this case and the solution of (1.1) is given by the Christofel{

Schwarz's formula

w(�) =M

�

Z

0

m

Y

j=1

(� � a

j

)

�

j

�1

d� +N: (11.3)

Substituting (11.3) in (1.1), we get

C

�

j

= �(�

j

� 1)

X

m

X

k=1;k 6=j

(�

k

� 1)=(a

j

� a

k

) (11.4)

It follows from this reasoning that

either c

�

j

� c

j

� 0 or c

�

j

� c

j

� 0: (11.5)

To the equation (1.8), there corresponds the following Schwarz's equa-

tion:

w

00

(�)

w

0

(�)

�

3

2

�

w

00

(�)

w

0

(�)

�

2

= 2q(�)� p

0

(�)� 0; 5[p(�)]

2

; (11.6)

where p(�) and q(�) are de�ned by (1.9) or (1.14).

For the equation (11.6) we consider the same two cases as above.

1. For this case, we have

�

00

= 0; c

k

= 0: (11.7)
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Thus we have obtained with respect to �

k

, k = 1; 2; : : : ;m � 3, the fol-

lowing homogeneous system:

�

1

a

m�2

k

+ � � �+ �

m�3

a

m�3

k

+ �

m�2

= 0; k = 1; 2; : : : ;m: (11.8)

The equation (11.8) implies

�

k

= 0; k = 1; 2; : : : ;m� 3: (11.9)

2. In this case, we arrive at

�

0

6= 0; �

00

6= 0; c

k

= 0: (11.10)

It follows from (11.10) that we get

�

0

�

00

a

m�2

k

+ �

1

a

m�3

k

+ � � �+ �

m�3

a

k

+ �

m�2

= 0 (11.11)

The system which this time is inhomogeneous with respect to �

k

, k =

1; 2; : : : ;m � 2 (11.11) is solved with respect to �

k

, k = 1; 2; : : : ;m � 3,

hence in this case too one can determine possible intervals of variation of

the accessory parameters.

12. Conclusion

Having known w(�) along the whole real axis t of the plane �, one can

�nd w = w(�) for all =(�) > 0 by the well-known formula [10, p. 152,

formula (12.5.10)]

w(�) =

1

�

1

Z

�1

w

+

(x)

�dx

(x � t)

2

+ �

2

: (12.1)

Along the whole real axis w = w

+

(t) is de�ned by (8.1):

w

+

(t) = u

+

1

(t)=u

+

2

(t); �1 < t < +1; (12.2)

where u

+

1

(t), and u

+

2

(t) as linearly independent solutions of (1.8), are de�ned

uniquely by (8.4){(8.10).

As is seen from the above-said, an algorithm for the construction of the

single-valued analytic functions w = w(�) is given in a general form. These

functions represent general solutions of (1.1) and map conformally the half-

plane � = t + i� onto circular polygons with �nite number of vertices and

any angles at those vertices. At those vertices the system of equations

is composed which connects geometrical characteristics of circular polygons

with unknown parameters of the Schwarz's equation. Rapidly and uniformly

convergent functional series are constructed.

Possible intervals of variation of the accessory parameters are de�ned.

Consequently, the solution of (1.1) and the construction of w = w(�) are

reduced, with regard for the boundary conditions (1.4), to the solution of

a system of higher transcendental equations with respect to the parameters

a

k

, c

k

, k = 1; 2; : : : ;m.
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