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In the space of variables x
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, x

2

, t we shall consider a second order degenerating

hyperbolic equation of the form
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where a

i

, i = 1; : : : ; 4, F are the given real functions and u is the desired real

function, 1 � m = const < 2.
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of equation (1) and by the two-dimensional surface S

0

: x

2

= 0, 0 < t < 1 on which

this equation has characteristic degeneration. It will be assumed below that in the

domain D the coe�cients a

i

, i = 1; : : : ; 4, of equation (1) are the bounded functions

from the class C

2

(D).

For equation (1) we shall consider a multidimensional version of the Goursat

problem formulated as follows: in the domain D �nd a solution u(x

1

; x

2

; t) of

equation (1) satisfying the boundary condition

u j
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= 0: (2)

In a similar manner we formulate the problem for the equation
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in the domain D using the boundary condition

v j

S

2

= 0; (4)

where L

�

is the formal conjugate operator of L.

Similar problems, in which, along with condition (2), it is required that the

condition u j

S

0

= 0 or

@u

@n

j

S

0

= 0 be ful�lled on the section S

0

of the boundary

@D of the domain D, are investigated in [1{6] for m = 0 when equation (1) is

not the degenerating one and has, in its principal part, a wave operator. As will

be shown below, by virtue of the degeneration character of equation (1), where

1 � m < 2, we can get rid of the ful�llment of any boundary condition on the

section S

0

of the boundary @D of the domain D, since problem (1), (2) will turn

out to be correctly formulated. In the case of a second order hyperbolic equation

with noncharacteristic degeneration of the form
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a multidimensional variant of the �rst Darboux problem is studied in [7]. Other

variants of the multidimensional Goursat and Darboux problems are treated in

[8{10].

Denote by E and E

�

the classes of functions from the Sobolev space W

2

2

(D)

satisfying the boundary condition (2) or (4), respectively. Let W

+

(W

�

+

) be the

Hilbert space with weight obtained by the closure of the space E(E

�
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Remark 1. Since m � 1, by virtue of the familiar embedding theorems for

Sobolev weighted spaces [11] the class of functions E

0

(E

�

0

) belonging to the space

C

1

(D), having the bounded carriers (i.e., diam suppu < +1), satisfying the

boundary condition (2) ((4)) and vanishing in some neighborhood (each function

has its own neighborhood) of the surface S

0

, is a dense subspace of the weighed

space W

+

(W

�

+

). Therefore, below it will be sometimes convenient for us to use,

instead of the spaces E and E

�

, the spaces E

0

and E

�

0

.

Denote by W

�
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�

�

) the space with negative norm constructed with respect to

L

2

(D) and W

+

(W

�

+

) [12].

Consider the condition
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on the lower coe�cient a

2

in equation (1).

The uniqueness theorem for solutions of problem (1), (2) belonging to the Sobolev

space W

2

2

(D) is provided by

Lemma 1. Let condition (5) be ful�lled. Then for any u 2 W

2

2

(D) satisfying the

condition
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there holds the following a priori estimate
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where the positive constant c does not depend on u; f = u j
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is the derivative with respect to the conormal

which is the internal di�erential operator on the characteristic surface S

1

.

Proof. Let n = (�

1
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2
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) be the unit vector of the external normal to @D, i.e.,

�
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= cos([n; x

1
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2

), �
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= cos(

c

n; t). By de�nition, the derivative with

respect to the conormal on the boundary @D of the domain D for the operator L

is calculated by the formula
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Applying integration by parts, we have for u 2 W
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(D) and � = const > 0:
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It is easy to verify that
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On multiplying both parts of equation (1) by 2e
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, where F = Lu, and inte-

grating the resulting expression with respect to the domain D we obtain by virtue

of (6) and (8){(10)
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In deriving inequality (11), we used the fact that
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The structure of the domain D allows one to easily verify the validity of the

inequality
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By inequality (5) we readily obtain
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By virtue of (12) and (13), inequality (11) implies for su�ciently large � that
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where the positive constants c

1

and c

2

do not depend on u and the constant c

1

can be chosen arbitrarily large depending on �. Therefore (14) obviously implies

estimate (7). �

Remark 2. Since for the operator L the derivative with respect to the conormal

@

@N

is the internal di�erential operator on the characteristic surfaces of equation

(1), by virtue of (2) and (4) we �nd for the functions u 2 E and v 2 E

�
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Lemma 2. Let condition (5) be ful�lled. Then for all u 2 E, v 2 E

�

we have the

inequalities
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Proof. By the de�nition of a negative norm for u 2 E and by equalities (2), (4),

(10), (15) we have
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In view of condition (5) and the Schwartz inequality we obtain
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From (18){(20) it follows that
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which proves inequality (16). Since the proof of inequality (17) is quite similar to

that of inequality (16), Lemma 2 is thereby completely proved. �
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Remark 3. By virtue of inequality (16) ((17)) the operator L : W
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[a

1

�

1

+ a

2

�

2

+ a

3

�

0

]uv ds+

Z

D

�

� u

t

v

t

+ u

x

1

v

x

1

+

+x

m

2

u

x

2

v

x

2

� u(a

1

v)

x

1

� u(a

2

v)

x

2

� u(a

3

v)

t

+ a

4

uv

�

dD =

=

Z

@D

[u

t

v�

0

� u

x

1

v�

1

� x

m

2

u

x

2

v�

2

]ds+

Z

@D

[a

1

�

1

+ a

2

�

2

+

+a

3

�

0

]uv ds�

Z

@D

[uv

t

�

0

� uv

x

1

�

1

� x

m

2

uv

x

2

�

2

]ds+

+

Z

D

�

uv

tt

� uv

x

1

x

1

� u(x

m

2

v

x

2

)

x

2

� u(a

1

v)

x

1

�

�u(a

2

v)

x

2

� u(a

3

v)

t

+ a

4

uv

�

dD =

Z

@D

h�

v

@u

@N

� u

@v

@N

�

+

+(a

1

�

1

+ a

2

�

2

+ a

3

�

0

)uv

i

ds+ (u; L

�

v)

L

2

(D)

: (22)

Since condition (5) implies a

2

�

�

S

0

= 0, by virtue of (2), (4), (10) and (15) we readily

obtain equality (21) from (22), which proves Lemma 3. �

Consider the conditions




�

�

S

1

� 0; (�
 +


t

)

�

�

D

� 0; (23)

where the second inequality is ful�lled for su�ciently large �, 
 = a

1x

1

+ a

2x

2

+

a

3t

� a

4

.

Lemma 4. Let conditions (5) and (23) be ful�lled. Then for any u 2W

+

we have

the inequality

ckuk

L

2

(D)

� kLuk

W

�

�

(24)

where the positive constant c does not depend on u.
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Proof. By Remarks 1 and 3 it is enough to show that inequality (24) is ful�lled

when u 2 E

0

. If u 2 E

0

and thus vanishes in some neighborhood of the surface S

0

,

then one can easily verify that the function

v(x

1

; x

2

; t) =

'

2

(x

1

;x

2

)

Z

t

e

���

u(x

1

; x

2

; �)d�; � = const > 0;

where t = '

2

(x

1

; x

2

) is an equation of the characteristic surface S

2

, belongs to the

space E

�

0

and the equalities

v

t

(x

1

; x

2

; t) = �e

��t

u(x

1

; x

2

; t); u(x

1

; x

2

; t) = �e

�t

v

t

(x

1

; x

2

; t): (25)

are ful�lled.

In view of (10), (15) and (25) we have

(Lu; v)

L

2

(D)

=

Z

@D

h

v

@u

@N

+ (a

1

�

1

+ a

2

�

2

+ a

3

�

0

)uv

i

ds+

+

Z

D

[�u

t

v

t

+ u

x

1

v

x

1

+ x

m

2

u

x

2

v

x

2

� ua

1x

1

v � ua

1

v

x

1

� ua

2x

2

v �

�ua

2

v

x

2

� ua

3t

v � ua

3

v

t

+ a

4

uv]dD =

Z

D

e

��t

u

t

u dD +

+

Z

D

e

�t

[�v

x

1

t

v

x

1

� x

m

2

v

x

2

t

v

x

2

+ a

1x

1

v

t

v + a

1

v

t

v

x

1

+ a

2x

2

v

t

v +

+a

2

v

t

v

x

2

+ a

3t

v

t

v + a

3

v

2

t

� a

4

v

t

v]dD: (26)

By (2) we obtain similarly to (8) and (9)

Z

D

e

��t

u

t

u dD =

1

2

Z

@D

e

��t

u

2

�

0

ds+

1

2

Z

D

e

��t

�u

2

dD =

=

1

2

Z

S

2

e

��t

u

2

�

0

ds+

1

2

Z

D

e

�t

�v

2

t

dD =

=

1

2

Z

S

2

e

�t

v

2

t

�

0

ds+

1

2

Z

D

e

�t

�v

2

t

dD; (27)

Z

D

e

�t

[�v

x

1

t

v

x

1

� x

m

2

v

x

2

t

v

x

2

]dD = �

1

2

Z

@D

e

�t

[v

2

x

1

+ x

m

2

v

2

x

2

]�

0

ds+

+

1

2

Z

D

e

�t

�[v

2

x

1

+ x

m

2

v

2

x

2

]dD: (28)

Since v

�

�

S

2

= 0, for some � we have v

t

= ��

0

, v

x

1

= ��

1

, v

x

2

= ��

2

on S

2

.

Therefore, recalling that the surface S

2

is characteristic, we obtain

(v

2

t

� v

2

x

1

� x

m

2

v

2

x

2

)

�

�

S

2

= �

2

(�

2

0

� �

2

1

� x

m

2

�

2

2

)

�

�

S

2

= 0: (29)
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By virtue of �

0

�

�

S

0

= 0, �

0

�

�

S

1

� 0, and equalities (4), (29) we �nd that

1

2

Z

S

2

e

�t

v

2

t

�

0

ds�

1

2

Z
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e

�t

[v
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m
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2

x
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=

1

2
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�
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m

2

v

2
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2
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0
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S
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+
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m
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x
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0
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1

2

Z

S

2

e
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2

t

� v

2

x

1

� x

m

2

v

2

x

2

]�

0

ds = 0: (30)

Taking into account (27), (28) and (30), we obtain from (26)

(Lu; v)

L

2

(D)

=

1

2

Z

S

2

e

�t

v

2

t

�

0

ds+

1

2

Z

D

e

�t
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2

t
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�

1

2
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e
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2
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1

2

Z

D

e
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2

x

1
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m

2

v

2

x

2

]dD +

+

Z

D

e
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�

a

1

v

t

v

x

1

+ a

2

v

t

v

x

2

+ a

3

v

2

t
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1

+ a
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2

+ a

3t

� a

4
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t
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�
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�

�

2

Z

D

e
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2

t

+ v

2

x

1
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m

2

v

2

x

2

]dD +

Z

D

e

�t
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1

v

t

v

x

1

+

+a

2

v

t

v

x

2

+ a

3

v

2

t

+ (a

1x

1

+ a

2x

2

+ a

3t

� a

4

)v

t

v]dD: (31)

Using �

0

�

�

S

1

� 0 and conditions (4), (10), (23) and performing integration by parts

we derive

Z

D

e

�t

(a

1x

1

+ a

2x

2

+ a

3t

� a

4

)v

t

v dD =

1

2

Z

@D

e

�t

(a

1x

1

+ a

2x

2

+

+a

3t

� a

4

)v

2

�

0

ds�

1

2

Z

D

e

�t

�

�(a

1x

1

+ a

2x

2

+ a

3t

� a

4

) +

+(a

1x

1

+ a

2x

2

+ a

3t

� a

4

)

t

�

v

2

dD � 0; (32)

where � is a su�ciently large positive number.

With (32) taken into account (31) implies

(Lu; v)

L

2

(D)

�

�

2

Z

D

e

�t

[v

2

t

+ v

2

x

1

+ x

m

2

v

2

x

2
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+
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D
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1
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+ a
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3
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t

]dD �

�
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e
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+ v

2
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+
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+x

m

2

v

2

x

2

]dD �

�

�

�

Z

D

e

�t

[a

1

v

t

v

x

1

+ a

2

v

t

v

x

2

+ a

3

v

2

t

]dD

�

�

�

: (33)

Assuming

� = max

�

sup

D

ja

1

j; sup

D

ja

3

j

�

by condition (5) we �nd that

�

�

�

Z

D

e
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1

v

t

v

x
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+ a

2
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t

v

x
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3
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t
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�

�

�

�

�
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�t

h

�

2
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2

x

1
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2

t

) +M

1

2
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m

2

v

2

x

2
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2

t
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2

t

i
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�

�

1

2
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3
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�

Z

D

e
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[v

2

t

+ v

2

x

1

+ x

m

2

v

2

x

2

]dD: (34)

By virtue of (34) and (25) inequality (33) implies

(Lu; v)

L

2

(D)

�

h

�
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2

M +
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�
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2
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i
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2

h

Z

D
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2

t

+ v

2
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m

2
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2

x

2
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1

2

=
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h
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i

1

2

h

Z

D
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2

t
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2

x

1
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m

2

v

2

x

2

]dD

i

1

2

�
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D
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L

2

(D)

h

Z

D
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2

t

+ v

2

x

1

+ x

m

2

v

2

x

2

]dD

i

1

2

; (35)

where � =

�

�

2

�

�

1

2

M+

3

2

�

��

> 0 for su�ciently large �, and inf

D

e

��t

= const >

0 by the structure of the domain D.

Since v

�

�

S

2

= 0, similarly to (12) one can easily show that the inequality

Z

D

v

2

dD � c

0

Z

D

v

2

t

dD

is valid for some c

0

= const > 0 not depending on v. Thus we conclude that, in

the space W

+

(W

�

+

), the norm

kuk

2

W

+

(W

�

+

)

=

Z

D

(u

2

t

+ u

2

x

1

+ x

m

2

u

2

x

2

+ u

2

)dD

is equivalent to the norm

kuk

2

=

Z

D

(u

2

t

+ u

2

x

1

+ x

m

2

u

2

x

2

)dD: (36)
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Therefore, retaining the previous notation kuk

W

+

(W

�

+

)

for norm (36), we obtain

from (35)

(Lu; v)

L

2

(D)

� � inf

D

e

��t

kuk

L

2

(D)

kvk

W

�

+

: (37)

If now we apply the generalized Schwartz inequality

(Lu; v) � kLuk

W

�

�

kvk

W

�

+

to the left-hand side of (37), then after reducing by kvk

W

�

+

, we obtain inequality (24)

where c = � inf

D

e

��t

= const > 0. Lemma 4 is thereby completely proved. �

Consider the conditions

a

4

�

�

S

2

� 0; (�a

4

� a

4t

)

�

�

D

� 0; (38)

where the second inequality holds for su�ciently large �.

Lemma 5. Let conditions (5) and (38) be ful�lled. Then for any v 2 W

�

+

the

inequality

ckvk

L

2

(D)

� kL

�

vk

W

�

(39)

holds for a constant c = const > 0 which does not depend on v 2W

�

+

.

Proof. Like in the case of Lemma 4, by Remarks 1 and 3 it is enough to show that

inequality (39) is valid for v 2 E

�

0

. Assume that v 2 E

�

0

and introduce into the

consideration the function

u(x

1

; x

2

; t) =

t

Z

'

1

(x

1

;x

2

)

e

��

v(x

1

; x

2

; �)d�; � = const > 0;

where t = '

1

(x

1

; x

2

) is an equation of the characteristic surface S

1

. It is easy

to verify that the function u(x

1

; x

2

; t) belongs to the class E

0

and the following

equalities are ful�lled:

u

t

(x

1

; x

2

; t) = e

�t

v(x

1

; x

2

; t); v(x

1

; x

2

; t) = e

��t

u

t

(x

1

; x

2

; t): (40)

From (10), (15) and (40) we have
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�
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�
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Z

D
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u
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m

2

u

x

2

t

u

x

2
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D
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1

u

x

1
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2

u

x

2

+ a

3

u

t

+ a

4

u]u
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dD: (41)



101

Similarly to (27){(30), we can prove the equalities

�

Z

D

e

�t

v

t
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1

2
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�t
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0
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2
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1

2
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D

e

��t

�u

2

t

dD; (42)
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u

2

x

2

]dD; (43)
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2

t

� u

2

x

1

� x

m

2

u

2

x

2

)

�

�

S

1

= 0; (44)

as well as the inequality
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ds = 0: (45)

In deriving (45), we used the fact that �

0

�

�

S

2

� 0.

By virtue of (42){(45) equality (41) implies
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�

v; u)

L

2

(D)

�

1

2

Z

D

e

��t

�[u

2

t

+ u

2

x

1

+ x

m

2

u

2

x

2

]dD +
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dD: (46)

Using the fact that �

0

�

�

S

2

� 0 and conditions (2), (10), (38) and performing

integration by parts, we obtain
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D

e

��t

a

4

uu

t

dD =

1

2

Z

@D

e

��t

a

4

u

2

�

0

ds+

+

1

2

Z

D

e

��t

(�a

4

� a

4t

)u

2

dD � 0: (47)
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By (47) we �nd from (46) that

(L

�

v; u)

L

2

(D)

�

1

2

Z

D

e

��t

�[u

2

t

+ u

2

x

1

+ x

m

2

u

2

x

2

]dD +

+

Z

D

e

��t

[a

1

u

x

1

+ a

2

u

x

2

+ a

3

u

t

]u

t

dD �

�

2

Z

D

e

��t

[u

2

t

+ u

2

x

1

+

+x

m

2

u

2

x

2

]dD �

�

�

�

Z

D

e

��t

[a

1

u

x

1

+ a

2

u

x

2

+ a

3

u

t

+ a

4

u]u

t

dD

�

�

�

:

Hence, like in deriving inequality (35), from (33) we obtain

(L

�

v; u)

L

2

(D)

�

h

�

2

�

�

1

2

M +

3

2

�

�i

inf

D

e

��t

kvk

L

2

(D)

kuk

W

+

: (48)

For su�ciently large � the latter inequality immediately implies (39). This proves

Lemma 5. �

De�nition 1. For F 2 L

2

(D) the function u will be called a strongly generalized

solution of problem (1), (2) from the class W

+

provided that u 2 W

+

and there

exists a sequence of functions u

n

2 E

0

such that u

n

! u in the space W

+

and

Lu

n

! F in the space W

�

�

, i.e.,

lim

n!1

ku

n

� uk

W

+

= 0; lim

n!1

kLu

n

� Fk

W

�

�

= 0:

De�nition 2. For F 2 W

�

�

the function u will be called a strongly generalized

solution of problem (1), (2) from the class L

2

provided that u 2 L

2

(D) and there

exists a sequence of functions u

n

2 E

0

such that u

n

! u in the space L

2

(D) and

Lu

n

! F , n!1, in the space W

�

�

, i.e.,

lim

n!1

ku

n

� uk

L

2

(D)

= 0: lim

n!1

kLu

n

� Fk

W

�

�

= 0:

By the results of [13] Lemmas 2{5 give rise to the following theorems.

Theorem 1. Let conditions (5), (23) and (38) be ful�lled. Then for any F 2W

�

�

there exists a unique strongly generalized solution u of problem (1), (2) from the

class L

2

, for which the estimate

kuk

L

2

(D)

� ckFk

W

�

�

(49)

where the positive constant c does not depend on F , is valid.

Theorem 2. Let conditions (5), (23) and (38) be ful�lled. Then for any F 2

L

2

(D) there exists a unique strongly generalized solution u of problem (1), (2) from

the class W

+

, for which estimate (49) holds.

Similar results hold for problem (3), (4) as well.
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