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Abstract. The �rst boundary value problem is studied for second order

general elliptic equations degenerating on the whole boundary. In accor-

dance with the type of degeneration, the cases are distinguished where the

whole boundary becomes free of boundary conditions. For a class of second

order degenerating elliptic equations, a new approach is proposed which

enables one to prove the correctness of the Dirichlet problem. For second

order general elliptic equations degenerating on a part of the boundary, con-

ditions are found guaranteeing the correctness of the problem with oblique

derivative. For the solution of this problem, an a priori estimate is obtained.

A boundary value problem of conjugation type is studied in weighted spaces

for a class of degenerating second order hyperbolic systems with discontinu-

ous coe�cients. The problems with oblique derivative are also investigated

for mixed type equations with a Lavrent'ev{Bitsadze operator as the prin-

cipal part.
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reziume. naSromSi meore rigis zogadi saxis mTels sazGvarze

gadagvarebadi eliPsuri tipis gantolebisaTvis SesCavlilia pirveli

sasazGvro amocana. imisda mixedviT, Tu ra tipis gadagvarebas aqvs ad-

gili, gamoKoPilia SemTxvevebi, rodesac aris mTeli sazGvari mTlianad

TavisuPldeba sasazGvro pirobisagan. meore rigis gadagvarebad eliP-

sur sistemaTa erTi klasisaTvis SemoTavazebulia axali midgoma, romelic

saSualebas iZleva davamtkicoT dirixles amocanis koreqtuloba. sazG-

vris naCilze gadagvarebadi meore rigis zogadi saxis eliPsuri ganto-

lebisaTvis moZebnilia pirobebi, romlebic uzrunvelKoPen daxrilCar-

moebuliani amocanis koreqtulobas. am amocanis amoxsnisaTvis miGebu-

lia aprioruli SePaseba. meore rigis CKvetilkoePicientebiani Hiper-

bolur sistemaTa erTi klasisaTvis SesCavlilia SeuGlebis tipis erTi

sasazGvro amocana Conian sivrceebSi, agreTve gamokvleulia daxrilCar-

moebuliani amocanebi Sereuli tipis gantolebisaTvis, romlis mTavar

naCils Carmoadgens lavrentiev-biCaZis operatori.



57

Introduction

In the theory of partial di�erential equations, under a degenerating equa-

tion is usually understood an equation which changes its type on the closure

of the range of independent variables. Degeneration character may be so

diverse that no successful classi�cation of the types of degeneration has been

described as yet.

Degenerating partial di�erential equations, in particular degenerating el-

liptic, hyperbolic and mixed type equations are encountered in solving many

important problems in the membrane theory of shells of alternating cunr-

vature, the theory of in�nitely small deformation of surfaces, in transonic

and supersonic gas mechanics, in the theory of magnetohydrodynamic ows

with passage over critical velocities, and in other divisions of mechanics.

Individual special classes of equations not coinciding with the well- stud-

ied equations of elliptic and hyperbolic type have been considered for a long

time, for example, in Picone's work [60] published about 80 years ago.

Tricomi's work [62], as well as further investigation of equations of mixed

type, evoked great interest in the study of elliptic and hyperbolic equations

which degenerate on the boundary of a domain.

Boundary value problems for mixed type equations lead to new mixed

boundary value problems for elliptic equations not satisfying the condition

of uniform ellipticity, in particular, to boundary value problems for elliptic

equations degenerating on a part of the boundary.

In a certain sense, Keldysh's fundamental work [40] has become a turning-

point in the theory of degenerating elliptic equations. Having considered a

speci�c second order equation in a hemisphere whose plane part of the

boundary is a characteristic manifold, M. V. Keldysh has shown that under

certain conditions imposed on the lower terms of the equation one should,

when searching for a smooth solution of the equation, remove boundary

conditions on the manifold of degeneration. Thus in his work M. V. Keldish

has clearly shown that the statement of the boundary value problems for

degenerating elliptic equations depends actually on the behavior of the lower

terms of the equation in the vicinity of a degenerating manifold. This work

has stimulated further investigation in the direction indicated by him.

In 1956, in his summarizing report at the 3rd All-Union Congress of

Mathematicians, A. V. Bitsadze [8] placed emphasis upon the importance

of the subsequent study of various new problems for degenerating elliptic

equations. In particular, it has been indicated that in the cases where the

Dirichlet problem is not always solvable, one can naturally replace the con-

dition of boundedness of a solution in the vicinity of the boundary of degen-

eration by a boundary condition which is satis�ed by some weight function.

Later on, these questions turned out to be topical for many specialists.

The next stage in the development of the theory of degenerating elliptic

equations starts from the works of G. Fichera [22] and O. A. Ole��nik [58]

who proved the existence and uniqueness of a generalized solution of the
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Dirichlet problem for second order equations with nonnegative characteristic

form. Noteworthy is also an approach to the investigation of boundary value

problems for degenerating elliptic equations on the basis of the theory of

embedding of weighted functional spaces, suggested by M. I. Vishik and

L. D. Kudryavtsev which was subsequently developed by their pupils and

followers.

As for the theory of initial, initial-boundary value and the Goursat and

Darboux problems for degenerating hyperbolic equations, it has a long-

standing history. These problems were investigated in the works by Dar-

boux [17], Tricomi [63, 64], Gellerstedt [25, 26], A. V. Bitsadze [9], A. M.

Nakhushev [53, 54], etc.

Passage to the second order hyperbolic systems leads us to additional

di�culties. A. V. Bitsadze [10] was the �rst who constructed examples of

second order hyperbolic systems for which the corresponding homogeneous

Goursat problem has in�nitely many independent solutions. Of particular

note in this direction are the works of S. S. Kharibegashvili [41, 42] in which

he investigates di�erent versions of the Goursat and Darboux problems for

second order degenerating hyperbolic systems.

First fundamental investigation in the theory of equations equations of

mixed type was carried on in the early 20s by Tricomi [65], and continued

in the 30s by Cibrario [15, 16], Gellerstedt [27] and Holmgren [35].

The next, not less signi�cant step in the development of the theory

of mixed type equations was made by M. A. Lavrent'ev and A. V. Bit-

sadze [47], A. V. Bitsadze [11], K. I. Babenko [5], F. I. Frankl [23, 24] and

others. In those works, besides a fundamental investigation of various es-

sential problems of this theory, much attention was given to the practical

importance of the problem of mixed type equations.

In the development of this theory, A.V. Bitsadze's investigations are of

special interest. He has formulated and studied a wide class of boundary

value problems both in two-dimensional and in spatial cases.

The present paper is devoted to the investigation of boundary value prob-

lems for degenerating elliptic and hyperbolic equations and systems, as well

as for equations of mixed type.

The �rst boundary value problem for a general second order elliptic equa-

tion degenerating on the entire boundary is studied in Chapter I. Depending

on the type of degeneration, we distinguish the cases where the boundary

of the domain is wholly free from boundary conditions. Next, for a class of

second order degenerating elliptic systems, we suggest a new approach en-

abling one to prove the unique solvability of the Dirichlet problem for these

systems. Finally, for the second order ellipitic equation of the general type

degenerating on a part of the boundary, conditions are found which guar-

antee the correctness of the problem with oblique derivative. An a priori

estimate of the solution of this problem is obtained.

In Chapter II, we deal with the boundary value problem of conjugation for

a class of second order degenerating hyperbolic systems with discontinuous
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coe�cients. Conditions ensuring the unique solvability of this problem in

the weight spaces determined by the character of degeneration of the system

are also obtained.

Finally, in Chapter III, we investigate the problems with oblique deriva-

tive for mixed equations with Lavrent'ev{Bitsadze's operator in the princi-

pal part.
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CHAPTER I

BOUNDARY VALUE PROBLEMS

FOR A SECOND ORDER LINEAR ELLIPTIC

EQUATION OF THE DEGENERATING

ON THE BOUNDARY OF A DOMAIN

1. On Solvability of the Dirichlet Problem for Second Order

Elliptic Equations with Degeneration on the Whole

Boundary

Let us consider an equation of the form

L(u) � Au

xx

+ 2Bu

xy

+ Cu

yy

+ au

x

+ bu

y

+ cu = f (1.1)

in a bounded simply connected domain D of the plane of the variables x; y,

where

A;B;C; a; b; c 2 H

�

(

�

D); 0 < � < 1; f 2 C(

�

D) \H

�

(D); c � 0: (1.2)

In what follows, the equation (1.1) is assumed to be elliptic in D and

degenerating on the boundary � = @D, i.e.,

(B

2

�AC)j

D

< 0 (1.3)

and

(B

2

�AC)j

@D

= 0: (1.4)

Obviously, due to the ellipticity of (1.1) in D, without loss of generality

one may assume that Aj

D

> 0.

Let @D be given in terms of the equation H(x; y) = 0, where

H j

D

> 0; H 2 C

2

(

�

D); H j

�

= 0; rH j

�

6= 0:

The Dirichlet problem. Find a regular in D solution u 2 C

2

(D) \ C(

�

D)

of the equation (1:1) by the boundary condition

uj

�

= '; ' 2 C(�): (1.5)

It should be noted that for some classes of degenerating elliptic equations,

these questions have been considered in the works by M. I. Aliev [3,4],

D. K. Gvazava [33,34], G. V. Jaiani [36{38], G. G.Devdariani [18, 19]. An

approach to the investigation of boundary value problems for degenerating

di�erential equations on the basis of the theory of embedding of weighted

functional spaces has been �rst realized in the works by M. I. Vishik [73,

74] and L. D. Kudryavtsev [44, 45]. The results of these papers were later

generalized and supplemented by S.M. Nikol'ski�� [57], L. N. Lizorkin and

N. V. Miroshin [48], V. T. Glushko [29{31], N. V. Miroshin [50], S. G.
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Mikhlin [51], V. V. Grushin [32], S. N. Kruzhkov [43], A. A. Vasharin and

P. I. Lizorkin [70] etc.

When investigating the Dirichlet problem, one should distinguish two

cases

(AH

2

x

+ 2BH

x

H

y

+ CH

2

y

)j

�

6= 0; (1.6)

and

(AH

2

x

+ 2BH

x

H

y

+ CH

2

y

)j

�

= 0: (1.7)

Remark. The equality (1.4) together with the condition (1.6) means that

the equation (1.1) degenerates on � = @D parabolically and at every point of

the boundary, the tangent direction does not coincide with the characteristic

one. The conditions (1.4) and (1.7) are equivalent to the fact that either the

order of the equation degenerates at some points of the boundary or there

takes place parabolic degeneration. In this case the characteristic direction

coincides with the tangent one.

Owing to the condition (1.2), the uniqueness of the solution of the Dirich-

let problem is obvious.

In order to prove the existence of the solution of the problem (1.1), (1.5),

let us consider two auxiliary problems: 1. L(u) = 0; uj

�

= '; 2: L(u) =

f; uj

�

= 0. Below, when considering Problem 2, we will assume that

c � �k; k = const > 0: (1.8)

To prove the existence of a solution of Problem 1 in the case (1.6), we

denote by D

h

the domain consisting of the points of the domainD satisfying

the conditionH(x; y) > h, where h is a su�ciently small positive number. It

is clear that for su�ciently small h, the domain D

h

is simply connected. Let

us take an arbitrary extension of the function ' to D of the class C

1

(D).

Under our assumptions imposed both on the coe�cients of the equation

(1.1) and on the domain D, for su�ciently small h there exists a regular

in D

h

solution u

h

2 C(

�

D

h

) \ C

2

(D

h

) coinciding on the boundary D

h

with

the function ', because of the extremum principle. Moreover, ju

h

(x; y)j �

M , (x; y) 2

�

D

h

, where M = max

�

D

j'j. Consider a sequence of domains

�

D

h

n

; n = 0; 1; : : : , where h

0

> h

1

> � � � > h

n

> � � � and lim

n!1

h

n

= 0.

Since

�

D

h

n

is a compactum and

�

D

h

n

� D

h

p

for p > n, we may by virtue

of the inequality ju

h

n

(x; y)j � M select from the sequence u

h

n

in D

h

0

a

uniformly converging subsequence u

0

h

0

; u

0

h

1

; : : : ; u

0

y

n

; : : : whose limit is also

a solution of the class C

2

(D

h

0

) of the equation (1.1) [46]. Similarly, we

may select from the sequence u

0

h

0

; u

0

h

1

; : : : ; u

0

h

n

; : : : a uniformly converging

on the compactum

�

D

h

1

subsequence u

1

h

0

; u

1

h

1

; : : : ; u

1

h

n

; : : : , etc. Evidently,

the diagonal subsequence u

0

h

0

; u

1

h

1

; : : : ; u

n

h

n

; : : : uniformly converges on every

compactum of the domain D, and its limit u(x; y) is a regular solution of

the class C

2

(D) of the equation (1.1).
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As it is known, when the condition (1.8) is ful�lled, then for the solution

of Problem 2, if it exists, the estimate [3]

max

�

D

juj � max

�

D

jf j

k

is valid, whence repeating the above arguments, we obtain a solution u(x; y)

of the class C

2

(D) of the equation (1.1) as the limit of the sequence u

0

h

0

,

u

1

h

1

, : : : , u

n

h

n

uniformly converging on every compactum of D. Clearly, the

sum of solutions of Problems 1 and 2 will be a solution of problem (1.1),

(1.5). Below we will restrict ourselves to the consideration of Problem 1.

As it is known [61], in order for the above constructed solution u(x; y)

of the equation (1.1) to satisfy the boundary condition (1.5), it su�ces to

construct at every point Q(x

0

; y

0

) of the boundary of D a so-called barrier,

i.e., a function v(x; y) satisfying the following conditions: a) it is continuous

in some neighborhood of the point !

Q

= fP 2

�

D : jP � Qj � "g; b) it

equals zero at the point Q; c) v(x; y) > 0 in !

Q

nQ; d) everywhere in this

neighborhood L(v) < 0.

As a barrier, we consider the function

v(x; y) = (x� x

0

)

2

+ (y � y

0

)

2

+H

�

(x; y); 0 < � = const < 1:

It is obvious that this function satis�es the conditions a), b) and c).

Let us check the condition d). In the case (1.6), substituting in (1.1) the

expression for v(x; y), we get

L(v) = �(� � 1)H

��1

(AH

2

x

+ 2BH

x

H

y

+ CH

2

y

) +

+�H

��1

(AH

xx

+ 2BH

xy

+ CH

yy

+ aH

x

+ bH

y

) + 2A+ 2C +

+2a(x� x

0

) + 2b(y � y

0

) + c((x � x

0

)

2

+ (y � y

0

)

2

) + cH

�

; (1.9)

whence it immediately follows that for su�ciently small H(x; y), the sign

of L(v) coincides with that of �(� � 1), and by virtue of 0 < � < 1, there

exists a neighborhood of the point Q such that L(v) < 0.

When considering the case (1.7), we assume that in some neighborhood

of the boundary � the representation

AH

2

x

+ 2BH

x

H

y

+ CH

2

y

= H

p

G (1.10)

holds, where p = const > 0, G is a positive, continuous and bounded in that

neighborhood function.

Taking into account the representation (1.10), the expression (1.9) takes

the form

L(v) = �(� � 1)H

�+p�2

G+ �H

��1

[L(H)� cH ]+

+2A+ 2C + 2a(x� x

0

) + 2b(y � y

0

) + c((x� x

0

)

2

+ (y � y

0

)

2

) + cH

�

:

For 0 < p < 1, the sign of L(v) coincides with that of �(� � 1)H

p+��2

, i.e.,

L(v) < 0. If p = 1 and (1� IG

�1

)j

�

> 0, where I = L(H)� cH , then the

sign of L(v) coincides with that of �[(� � 1)G+ I ]H

��1

, and if we assume
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that � < (1 � IG

�1

)j

�

, then we will have L(v) < 0. For 1 < p < 2 and

I j

�

� 0, we take � < 2� p. Then L(v) < 0. In the case p � 2 and I j

�

< 0,

the sign of L(v) coincides with that of �H

��1

I , i.e., L(v) < 0.

Thus the following theorems are valid (see [66, 67]).

Theorem 1.1. Let (1:6) be ful�lled and c < 0 on

�

D. Then there exists a

solution of the Dirichlet problem.

Theorem 1.2. Let (1:7) be ful�lled, c < 0 on

�

D and one of the following

conditions is ful�lled: 1) 0 < p < 1; 2) p = 1, (1 � IG

�1

)j

�

> 0, I =

L(H)� cH; 3) 1 < p < 2, I j

�

� 0; 4) p � 2, I j

�

< 0. Then there exists a

solution of the Dirichlet problem.

Below we assume that (1.7), (1.10) and

H

p�1

G� I � A

0

H; p � 1; A

0

= const > 0;

hold. It can be easily veri�ed that if the coe�cients of the equation (1.1) are

analytic, then the above inequality is ful�lled for su�ciently large A

0

> 0,

when (H

p�1

G� I)j

�

< 0.

The following lemma holds [66, 67].

Lemma 1.1. Let one of the following conditions be ful�lled: 1) p = 1,

IG

�1

j

�

� 1; 2) 1 < p < 2, I j

�

> 0; 3) p � 2, I j

�

� 0, and at every

point P

0

2

�

D either �(P

0

) = (Ag

2

x

+ 2Bg

x

g

y

+ Cg

2

y

)(P

0

) 6= 0, where g 2

C

2

(

�

D), g > 1, or �(P

0

) = 0 and c(P

0

) < 0. Then there exists a function

W (x; y) possessing the following properties: (a) W (P ) > 0, P 2

�

D; (b)

lim

�(P;@D)!0

W (P ) = +1; (c) L(W ) < 0; P 2 D.

Theorem 1.3. Under the conditions of Lemma 1:1, the homogeneous equa-

tion L(u) = 0 in the class of bounded functions has only the trivial solution.

Proof. For any positive ", everywhere on the boundary � = @D of D the

inequality "W � u

0

� 0 holds, where u

0

is any bounded solution and W

is a function satisfying the conditions of Lemma 1.1. On the other hand,

in the domain D the inequality L(W ) < 0 is ful�lled. Therefore, due to

the extremum principle, the inequality ju

0

j � "W holds everywhere in the

domain D. This implies that u(x; y) � 0 in D because " is taken to be

arbitrary. �

Corollary. Every non-trivial solution of the equation L(u) = 0 is un-

bounded.

Remark. If c � 0, then the assertion of Theorem 1:3 is invalid, since

u = const 6= 0 satis�es the equation L(u) = 0.

Theorem 1.4. Let c < 0 in

�

D and the conditions of Theorem 1:3 be ful-

�lled. Then the equation (1:1) is uniquely solvable in the class of bounded

functions.
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2. The Problem with Oblique Derivative for a Second Order

Elliptic Equation Degenerating on a Portion of the

Boundary of a Domain

Consider an equation of the form

L(u) � Au

xx

+ 2Bu

xy

+ Cu

yy

+ au

x

+ bu

y

+ cu = F (2.1)

in a bounded simply connected domain D of the plane of the variables

x; y, where A;B;C 2 C

2;�

(

�

D), a; b 2 C

1;�

(

�

D), c 2 C

0;�

(

�

D), F 2 C(D),

0 < � = const < 1,

c � c

0

= const < 0: (2.2)

Let @D = �

1

[�

2

[P

1

[P

2

, �

1

\�

2

= �, where �

1

and �

2

are open arcs

with the ends at the points P

1

and P

2

. Note that

�

�

1

and

�

�

2

belong to the

class C

2;�

.

Below the equation (2.1) is assumed to be elliptic in the domain D [ �

1

and degenerating on a part of the boundary

�

�

2

� @D, i.e.,

(B

2

�AC)j

D[�

1

< 0 (2.3)

and

(B

2

�AC)j

�

�

2

= 0: (2.4)

Evidently, because the equation (2.1) is elliptic in D, we may without

restriction of generality assume that Aj

D[�

1

> 0.

Let the equation �

i

be given in terms of H

i

(x; y) = 0, where H

i

j

D

> 0,

H

i

2 C

2

(

�

D), H

i

j

�

i

= 0, i = 1; 2, rH

1

j

�

�

1

6= 0, rH

2

j

�

�

2

6= 0.

Below we assume that the points P

1

and P

2

are not cusps for the curve

@D.

Problem with Oblique Derivative. Find a regular in the domain D so-

lution u 2 C(

�

D) \ C

1

(D [ �

1

) \ C

2

(D) of the equation (2.1) satisfying the

following boundary conditions:

�(u) �

�

@u

@l

+ du

�

j

�

1

= f

1

; (2.5)

uj

�

�

2

= f

2

: (2.6)

Here

@u

@l

is the derivative with respect to the direction l forming an acute

angle with the interior normal to the curve

�

�

1

; d; f 2 C(

�

�

1

) and f

2

2 C(

�

�

2

)

are given functions, and

d � 0: (2.7)

The components of the unit vector l are assumed to belong to the class

C(

�

�

1

).
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In investigating the problem (2.1), (2.5), (2.6), one should distinguish

two cases:

�

AH

2

2x

+ 2BH

2x

H

2y

+ CH

2

2y

�

j

�

�

2

6= 0; (2.8)

and

�

AH

2

2x

+ 2BH

2x

H

2y

+ CH

2

2y

�

j

�

�

2

= 0: (2.9)

Lemma 2.1. For a solution u of the class C(

�

D) \C

1

(D [ �

1

) \C

2

(D) of

the problem (2:1), (2:5), (2:6), the following a priori estimate is valid:

kuk

C(

�

D)

� C

�

�

k f

1

k

C(�

1

)

+ k f

2

k

C(

�

�

2

)

+ k F k

C(D)

�

; (2.10)

where C

�

is a positive constant independent of u.

Proof. Since the direction l forms an acute angle with the interior normal

to the curve

�

�

1

while the components of this vector are continuous on a

closed arc

�

�

1

, there exists �

0

such that

@H

1

@l

j

�

�

1

= (l � gradH

1

)

�

�

1

� �

0

= const > 0: (2.11)

Let

� = max

8

<

:

max

�

�

1

jf

1

j

jc

0

j�

0

C

1

+

sup

D

jF j

jc

0

j

;

max

�

�

1

jf

1

j

�

0

C

2

+max

�

�

2

jf

2

j

9

=

;

; (2.12)

where C

1

= max

�

D

jL(H

1

)j, C

2

= max

�

D

jH

1

j, and because of (2.2), min

�

D

jcj �

jc

0

j.

Consider the function ! = ���H

1

�u, where � = max

�

�

1

jf

1

j=�

0

. Then by

virtue of (2.7), (2.11), (2.12) and also the equality H

1

j

�

1

= 0, we have

�(!)j

�

1

= d�� ��(H

1

)j

�

1

� �(u)j

�

1

=

= d�� �(

@H

1

@l

+ dH

1

)j

�

1

� f

1

�

� d�� ��

0

� f

1

� 0: (2.13)

In the domain D

L(!) = �c� �L(H

1

)� L(u) = �c�

max

�

�

1

jf

1

j

�

0

L(H

1

)� F;

whence because of (2.12) the inequality

L(!) � 0 (2.14)

holds in D.
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It follows from (2.12) that

!j

�

�

2

= ��

�

max

�

�

1

jf

1

j �

H

1

�

0

+ u

�

j

�

�

2

� 0: (2.15)

Let us now show that in the domain

�

D the function ! � 0. Indeed,

by (2.2), (2.3), (2.14) and Hopf's extremum principle [11], the function !

would otherwise take at some point Q of the boundary of D its minimal

negative value.

Next, consider two cases: 1) Q 2 �

1

; and 2) Q 2 �

2

[ P

1

[ P

2

. In the

�rst case, according to Zaremba{Giraud's principle [11], at the point Q we

have

@!

@l

> 0. Therefore �(!) =

@!

@l

+ d! > 0 which because of (2.13) is

impossible. In the second case, we have !(Q) = min

�

D

! < 0 which contradicts

(2.15). Thus u � � in

�

D.

On the other hand, if u is a solution of the problem (2.1), (2.5), (2.6),

then �u will be a solution of the problem

L(�u) = �F;

�(�u)j

�

1

= �f

1

;

(�u)j

�

2

= �f

2

;

for which � is given by the same expression (2.12) as for the problem (2.1),

(2.5), (2.6). Therefore from the above reasoning we have either �u � � or

�� � u in

�

D. Thus we have obtained that in the domain

�

D

juj � �: (2.16)

By virtue of (2.12) from (2.16), there immediately follows the a priori esti-

mate (2.10) with a positive constant C

�

not depending on u. �

When considering the case (2.9), we will assume that along with the

condition (2.4) the following representation holds in �

2

:

AH

2

2x

+ 2BH

2x

H

2y

+ CH

2

2y

= H

p

2

G;

where p = const > 0, G is a positive, continuous and bounded in this

neighborhood function. Moreover, we suppose that one of the following

conditions is ful�lled: 1) 0 < p < 1; 2) p = 1, (1 � IG

�1

)j

�

�

2

> 0, I =

L(H

2

)� cH

2

; 3) 1 < p < 2, I j

�

�

2

� 0; 4) p � 2, I j

�

�

2

< 0;

Then we have

Theorem 2.1. Let at the points P

1

and P

2

the direction l 2 C

1;�

(

�

�

1

)

form with an interior normal to the curve

�

�

2

an obtuse angle. Then for any

F 2 C

0;�

(

�

D); f

1

2 C

1;�

(

�

�

1

) and f

2

2 C(

�

�

2

), there exists a unique solution

u(x; y) of the problem (2:1), (2:5), (2:6) of the class C

2;�

1

(

�

Dn

�

�

2

) \ C(

�

D),

0 < �

1

< �.
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Proof. The uniqueness of the solution of the problem (2.1), (2.5), (2.6) in a

more wide class of functions C(

�

D) \ C

1

(D [ �

1

) \ C

2

(D) follows from the

a priori estimate (2.10).

Let us prove the existence of the problem (2.1), (2.5), (2.6). To this

end, we construct domains D

h

� D (D

h

! D as h ! +0 and D

h

1

� D

h

,

�

�

1h

1

� �

1h

, �

2h

1

� D

h

, if h

1

> h) with smooth boundaries S

h

= �

1h

[

�

2h

[P

1h

[P

2h

of the class C

2;�

, where �

1h

and �

2h

are open arcs with the

ends P

1h

and P

2h

; moreover, P

1h

, P

2h

2 �

1

, �

1h

� �

1

, �

2h

� D.

As is known, since

�

�

i

2 C

2;�

, i = 1; 2, for an arbitrary function f

2

2

C(

�

�

2

) there exists its extension to

�

D (we denote it by f

2

) such that f

2

2

C

2;�

(

�

D

h

) for any h > 0. In particular, the solution of the Dirichlet problem

for the Laplace equation

�u = 0; uj

@D

=

e

f

2

;

may serve as an example of such an extension, where

e

f

2

j

�

�

2

= f

2

,

e

f

2

j

�

1

2

C

2;�

(�

1

),

e

f

2

j

�

�

1

2 C(

�

�

1

).

It is known [7] that in the domain D

h

there exists a solution of the

boundary value problem

L(u

h

) = F; (2.17)

�

@u

h

@l

+ du

h

�

�

1h

= f

1

; (2.18)

u

h

j

�

2h

= f

2

; (2.19)

which belongs to the class C

0;�

(

�

D

h

) \ C

2;�

(D

h

[ �

1h

[ �

2h

).

Using the Green function G

h

(x; y;x

0

; y

0

), for the solution u

h

of the prob-

lem (2.17), (2.18), (2.19) in D

h

, we can write the following representation

[7]

u

h

(x; y) =

Z

�

1h

G

h

f

1

ds+

Z

�

2h

@G

h

@�

f

2

ds+

+

Z

D

h

Z

G

h

(x; y;x

0

; y

0

)F (x

0

; y

0

)dx

0

dy

0

; (2.20)

where � is the unit vector of the conormal for the operator L.

By the representation (2.20) for the solution u

h

in D

h

1

with h

1

> h, we

have

u

h

(x; y) =

Z

�

1h

1

G

h

1

f

1

ds+

Z

�

2h

1

@G

h

1

@�

 

hh

1

ds+
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+

Z

D

h

1

Z

G

h

1

(x; y;x

0

; y

0

)F (x

0

; y

0

)dx

0

dy

0

; (2.21)

where

 

hh

1

= u

h

j

�

2h

1

: (2.22)

Obviously,

max

�

D

jf

2

j � C

3

max

�

�

2

jf

2

j (2.23)

for some C

3

= const > 0.

From the a priori estimate (2.10) and also by (2.23), for the solution u

h

of the problem (2.17), (2.18), (2.19) in

�

D

h

we have

ju

h

j � C

�

(kf

1

k

C(�

1h

)

+ kf

2

k

C(

�

�

2h

)

+ kFk

C(D

h

)

) �

� C

�

(kf

1

k

C(�

1

)

+ C

3

kf

2

k

C(

�

�

2

)

+ kFk

C(D)

) =M (2.24)

with the same constant C

�

as in (2.10) since max

�

D

h

jL(H

1

)j � max

�

D

jL(H

1

)j

and max

�

D

h

jH

1

j � max

�

D

jH

1

j.

Due to (2.22) and (2.24), we get

k 

hh

1

k

C(

�

�

2h

1

)

= ku

h

k

C(

�

�

2h

1

)

�

� C

�

(kf

1

k

C(

�

�

1

)

+ C

3

kf

2

k

C(

�

�

2

)

+ kFk

C(D)

): (2.25)

Let us consider the second integral operator in the right-hand side of

(2.21) which acts by the formula

T' =

Z

�

1h

1

@G

h

1

@�

'ds: (2.26)

According to the results of [7], the operator T is continuous and acts from

the space C(

�

�

2h

1

) into the space C

2;�

(

�

D

h

2

), where h

2

> h

1

,

kT'k

C

2;�

(

�

D

h

2

)

� C

4

k'k

C(

�

�

2h

1

)

; (2.27)

and C

4

is a positive constant not depending on '.

From (2.22), (2.25) and (2.27), it follows

kT 

hh

1

k

C

2;�

(

�

D

h

2

)

�

� C

4

C

�

(kf

1

k

C(

�

�

1

)

+ C

3

kf

2

k

C(

�

�

2

)

+ kFk

C(D)

) (2.28)

for h < h

1

. Since every bounded in C

2;�

(

�

D

h

2

) set S is precompact in

C

2;�

1

(

�

D

h

2

) for 0 < �

1

< � [28], by virtue of (2.28) it follows from the

representation (2.21) that one can select from the sequence fu

h

g

0<h<h

1

as

h! 0 a subsequence converging in the space C

2;�

1

(

�

D

h

2

), �

1

< �. Turning

now h

2

! 0 (h

2

> h

1

> h > 0), we select exactly as in x1 a subsequence

u

h

�

1

; u

h

�

2

; : : : ; u

h

�

n

; : : : converging to a solution u of the equation (2.1) from
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the space C

2;�

1

(

�

Dn

�

�

2

). It is evident that this solution satis�es the boundary

condition (2.5), and because of (2.24) it is bounded in D. It remains to

determine whether the function u(x; y) equals f

2

on �

2

[ P

1

[ P

2

.

This question, as is known [11], depends on the existence of a so-called

barrier function v(x; y) at every point of �

2

[ P

1

[ P

2

.

When considering the case (2.9), we will assume that in some neighbor-

hood of �

2

, the following representation holds:

AH

2

2x

+ 2BH

2x

H

2y

+ CH

2

2y

= H

p

2

G;

where p = const > 0, G > 0. Then, as is shown in x1, in the case (2.8) as

well as in the case (2.9), when one of the conditions 1) 0 < p < 1; 2) p = 1,

(1 � IG

�1

j

�

�

2

> 0, I = L(H

2

) � cH

2

; 3) 1 < p < 2, I j

�

�

2

� 0; 4) p � 2,

I j

�

�

2

< 0; is ful�lled, the function

v(x; y) = (x� x

0

)

2

+ (y � y

0

)

2

+H

�

2

; 0 < � < 1;

may be a barrier in some neighborhood P (x

0

; y

0

) 2

�

�

2

of the point �

p

. By

the de�nition, the barrier function v(x; y) possesses the following properties:

a) it is continuous in ��

P

; b) it equals zero at the point P ; c) v(x; y) > 0

in ��

P

nP ; d) it satis�es the condition L(v) < 0 everywhere in this neighbor-

hood.

The fact that at every point P 2 �

2

the solution u(x; y) takes in the

above considered cases the value f

2

can be proved in exactly the same way

as in the case of the Dirichlet problem in x1.

It remains to clarify whether the function u(x; y) admits the values f

2

at

the end points P

i

(x

i

; y

i

) (i = 1; 2) of the arc �

2

. �

Lemma 2.2. If at the point P

i

(i = 1; 2) the direction l makes with the

interior to the curve

�

�

2

normal an obtuse angle, i.e.,

(l � grad H

2

)(P

i

) < 0; (2.29)

then

lim

P!P

i

; P2��

P

i

\�

1

�(v

i

) = �1; (2.30)

where v

i

(x; y) = (x� x

i

)

2

+ (y � y

i

)

2

+H

�

2

, 0 < � < 1, l = (l

1

; l

2

).

Proof. We have

�(v

i

) = 2l

1

(x� x

i

) + 2l

2

(y � y

i

) + �H

��1

2

(l � grad H

2

) + dv

i

: (2.31)

Since for 0 < � < 1

lim

P!P

i

; P2��

P

i

\�

1

H

��1

2

= +1;

from (2.31) by virtue of (2.29) it follows (2.30). Thus the lemma is complete.
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Further, owing to the continuity of the function f

2

(P ), making the neigh-

borhood �

P

i

smaller, we will arrive for a given positive number " at the

inequality

f

2

(P

i

)� " � f

2

(P ) � f

2

(P

i

) + "; P 2 �

P

i

: (2.32)

Let us consider two functions:

 

i

(P ) = f

2

(P

i

) + "+ kv

1

(P );

'

i

(P ) = f

2

(P

i

)� "� k

1

v

i

(P );

(2.33)

where k

1

and k are arbitrary positive numbers.

Since lim

P!P

i

(L(v

i

))(P ) = �1, we have

(L( 

i

))(P ) < max

�

D

jF j; (L('

i

))(P ) > max

�

D

jF j; P 2 �

P

i

; (2.34)

if the neighborhood �

P

i

is small enough.

In the neighborhood �

P

i

, because of (2.32) and (2.33) we have

 

i

(P ) � f

2

(P ): (2.35)

Denote by !

h

� D the domain which is bounded by the curves 

1

=

��

P

i

\

�

�

2h

, 

2

= ��

P

i

\

�

�

1h

and 

3

= (@�

P

i

\

�

D

h

)n(

1

[ 

2

). Since v

i

2 C(�

3

)

and v

i

j

�

3

> 0, we have v

i

j

�

3

� �

0

= const > 0. Therefore the number k in

the �rst formula (2.33) may be chosen such that

 

i

j

�

3

> M; (2.36)

where M is taken from the estimate (2.24).

By (2.30), we have

�( 

i

� u

h

)j



2

< 0 (2.37)

if the domain �

P

i

is small enough.

It follows from (2.19) and (2.35) that

( 

i

� u

h

)j



1

� 0: (2.38)

Analogously, (2.24) and (2.36) imply that

( 

i

� u

h

)j

�

3

� 0: (2.39)

Next, from (2.34) we obtain that in !

h

L( 

i

� u

h

) < 0: (2.40)

Let us now show that ( 

i

� u

h

) � 0 in the domain �!

h

. Really, because

of (2.2), (2.40) and the Hopf extremum principle, the function ( 

i

� u

h

)

would otherwise take at some point Q of the boundary 

1

[

2

[

3

of !

h

its

minimal negative value. By (2.38) and (2.39), the point Q does not belong

to 

1

[�

3

. But according to Zaremba{Giraud's principle, this point because
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of (2.37) cannot likewise belong to 

2

. The obtained contradiction shows

that

u

h

(P ) �  

i

(P ); P 2 !

h

: (2.41)

Similarly, the number k

1

in the second formula (2.33) may be chosen in

such a way that the inequality

'

i

(P ) � u

h

(P ); P 2 !

h

(2.42)

would hold.

Now, on the basis of (2.41) and (2.42), we can conclude that in !

h

either

'

i

(P ) � u

h

(P ) �  

i

(P ); (i = 1; 2)

or

ju

h

(P )� f

2

(P

i

)j � "+ k

0

v

i

(P ); P 2 !

h

;

k

0

= max(k; k

1

):

Passing in this inequality to the limit as h! 0, we obtain

ju(P )� f

2

(P

i

)j � "+ k

0

v

i

(P ); P 2 �

P

i

:
(2.43)

According to the properties of the barrier v

i

, there exists � = �(") > 0

such that for kP � P

i

k < � and P 2 �

P

i

we have

k

0

v

i

(p) < "

which, because of (2.43), implies that

ju(P )� f

2

(P

i

)j < 2"

for kP � P

i

k < �, P 2 �

P

i

. �

In this direction, one should note the works of S. Zaremba [76], O. A.

Ole��nik [58, 59], A. D. Vedenskaya [71], and others.

3. The Dirichlet Problem for Second Order Degenerating

Elliptic Systems

Consider the systems of the form

L

1

(u) � y

m

u

xx

+ u

yy

+ au

x

+ bu

y

+ cu = 0; m > 0; (3.1)

and

L

2

(u) � u

xx

+ y

m

u

yy

+ au

x

+ bu

y

+ cu = 0; m > 0; (3.2)

in a simply connected domain D bounded by a segment AB of the x-axis

of the line of their degeneration and by a smooth arc � lying in the half

plane y > 0 and ending at the points A(0; 0) and B(1; 0). Here a and b are
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scalar functions of the class C

1

(

�

D), and c(x) is a given negatively de�nite

(n� n)-matrix of the class C

1

(

�

D), n > 1, that is,

(u; cu) � c

0

(u; u); c

0

= const < 0; (3.3)

u = (u

1

; u

2

; : : : ; u

n

) is an unknown n-dimensional vector and (:; :) is the

scalar product.

The vector u(x; y) of the class C

2;0

(D) satisfying the system (3.1) (or

(3.2)) in D is referred to as a regular solution of this system.

The Dirichlet Problem. Find in the domain D a regular solution of the

equation (3:1) (or (3:2)) which is continuous in a closed domain

�

D and

satis�es the boundary condition

uj

�

= f; � = @D; (3.4)

where f = (f

1

; f

2

; : : : ; f

n

) is a given, continuous on � vector function.

The following extremum principle holds [12]: when the condition (3.3) is

ful�lled, the norm

R(x; y) =

 

n

X

i=1

ju

i

(x; y)j

2

!

1

2

of a regular in D solution u = (u

1

; u

2

; : : : ; u

n

) of the system (3.1) (or (3.2))

cannot reach a nonzero relative maximum at any point P 2 D.

The uniqueness of the solution of the Dirichlet problem for the system

(3.1) (or (3.2)) follows from the above-quoted extremum principle.

To construct a solution of the Dirichlet problem for the system (3.1) (or

(3.2)), we take an arbitrary continuous extension of the function f to D and

construct an increasing, as h ! 0, sequence of domains D

h

� D with the

smooth boundaries. For all points of the domain D

h

and of its boundary,

we have y > 0. The boundary @D

h

of D

h

coincides with � for y > h, and

beyond some neighborhood of the points A and B runs along the straight

line y = h.

Let u

h

(x; y) be a solution of the Dirichlet problem for the system (3.1)

(or (3.2)) admitting the value f on the boundary of the domain D

h

. The

solution u

h

(x; y) in D

h

, as is known, does exist and is unique because the

system (3.1) (or (3.2)) in the domain

�

D

h

does not degenerate [12]. By virtue

of (3.3), in D

h

the inequality ku

h

k �M is valid, where M = max kf(x; y)k

in

�

D. Let us show that the set of functions fu

h

(x; y)g is compact in D.

Indeed, let h

0

be an arbitrarily �xed value of h. The set fu

h

(x; y)g for

h � h

0

will be uniformly bounded in D

h

0

,

ku

h

(x; y)k �M: (3.5)

Owing to the extremum principle formulated above for the system (3.1)

(or (3.2)), there exists in the domain D

h

0

a Green function G

h

0

(x; y; �; �) of
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the Dirichlet problem for the system (3.1) (or (3.2)) and there takes place

the following representation [11, 61]:

u

h

(x; y) =

Z

@D

h

0

u

h

(s)

@G

h

0

(x; y; �; �)

@�

ds (h < h

0

); (3.6)

where � is a conormal direction. It follows from (3.5) and (3.6) that the set

of functions fu

h

g is equicontinuous in D

h

0

. By Arzela's theorem [46], one

can select from this set a subsequence uniformly converging to a function

u(x; y) which because of (3.6) is a solution of the equation (3.1) (or (3.2))

in D.

To prove that the solution u equals f at every point Q(x

0

; 0) 2 AB, we

construct a so-called barrier function v(x; y) satisfying the following prop-

erties:

a) v(x; y) is continuous in some neighborhood �

x

0

of the point Q;

b) v(x; y) > 0 at all points of �

x

0

with the exclusion of Q where it

vanishes;

c) L

0

1

(v) � y

m

v

xx

+ v

yy

+ av

x

+ bv

y

< 0 everywhere in the neighborhood

�

x

0

.

Let us show that we can take as a barrier the function [11]

v(x; y) = (x� x

0

)

2

+ y

�

; 0 < � < 1: (3.7)

Indeed, the function v(x; y) obviously satis�es the conditions a) and b). Let

us check the condition c). Substituting the expression v(x; y) in L

0

1

(v), we

get

L

0

1

(v) = 2y

m

+ �(� � 1)y

��2

+ 2(x� x

0

)a+ �by

��1

;

whence because of 0 < � < 1 it immediately follows that there exists a

neighborhood �

x

0

of the point Q at which L

0

1

(v) < 0.

Given a positive number ", one can �nd, due to the continuity of the

function f , a semicircular neighborhood �

0

x

� �

x

0

of the point Q at which

the inequality

kf(P )� f(Q)k � "; P 2 �

0

x

0

; 0 < " < 1; (3.8)

holds.

Consider two functions:

v

1

(P ) = "+Kv(P ); K > 0; and u

�

h

(P ) = u

h

(P )� f(Q);

where P 2 �

0

x

0

. In the domain !

h

= �

0

x

0

\D

h

, where h is a su�ciently small

positive number, we have

sup

(x;y)2!

h

L

0

1

(v) � �

0

= const < 0; (3.9)

L

0

1

(u

�

h

) = L

0

1

(u

h

); (3.10)

ku

�

h

k

C(!

h

)

� 2M; M = max

�

D

kfk: (3.11)
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Assume g(P ) = (u

�

h

(P ); u

�

h

(P )) ; P 2 !

h

. By virtue of (3.3), (3.9){(3.11),

for su�ciently large K we have

L

0

1

(v � g) = L

0

1

(") +KL

0

1

(v)� L

0

1

(g) = KL

0

1

(v)�

�2y

m

[(u

�

hx

; u

�

hx

) + (u

�

h

; u

�

hxx

)]� 2[(u

�

hy

; u

�

hy

) + (u

�

h

; u

�

hyy

)]�

�2a(u

�

h

; u

�

hx

)� 2b(u

�

h

; u

�

hy

) = KL

0

1

(v)� 2[y

m

(u

�

hx

; u

�

hx

) +

+(u

�

hy

; u

�

hy

)]� 2(u

�

h

; y

m

u

�

hxx

+ u

�

hyy

+ au

�

hx

+ bu

�

hy

) �

� KL

0

1

(v)� 2(u

�

h

; L

0

1

(u

�

h

)) = KL

0

1

(v)� 2(u

h

(P )� f(Q); L

0

1

(u

h

)) =

= KL

0

1

(v)� 2(u

h

(P )� f(Q);�cu

h

) = KL

0

1

(v) + 2(u

h

; cu

h

)�

�2(f(Q); cu

h

) � K�

0

� 2(f(Q); cu

h

) �

� K�

0

+ 2kf(Q)kkckku

h

k � K�

0

+ 2M

2

kck < 0: (3.12)

Let us now clarify what sign has v

1

� g on the boundary of the domain

!

h

, @!

h

= 

h

[ 

1h

, where 

1h

= @!

h

\ @D

h

, 

h

= @!

h

n

1h

. We have

gj



1h

= (u

h

(P )� f(Q); u

h

(P )� f(Q))j



1h

=

= kf(P )� f(Q)k

2

< "

2

< ";

v

1

j



1h

= "+Kv(P )j



1h

� "+Kmin



1h

v(P );

gj



h

� 4M

2

:

9

>

>

>

>

=

>

>

>

>

;

(3.13)

By (3.13), for su�ciently large K we have

(v

1

� g)j



1h

= ("+Kv � g)j



1h

� "+K min

P2

1h

v � " = K min

P2

1h

v > 0;

(v

1

� g)j



h

= ("+Kv � g)j



h

� "+K min

P2

h

v � 4M

2

> 0:

According to the extremum principle [12], (3.12) and (3.13) result in

(v

1

� g)j

!

h

� 0;

whence g � v

1

over all domain !

h

, that is,

(u

h

(P )� f(Q); u

h

(P )� f(Q)) � "+Kv(P ): (3.14)

Passing in the inequality (3.14) to the limit as h! 0, we obtain

(u(P )� f(Q); u(P )� f(Q)) � "+Kv(P ); P 2 �

0

x

0

: (3.15)

Due to the property of the barrier v, there exists � = �(") > 0 such that

for kP �Qk < � and P 2 �

0

x

0

we have

Kv(P ) < ": (3.16)

The inequalities (3.15) and (3.16) imply

ku(P )� f(Q)k �

p

2"

for kP �Qk < �.

Thus the following theorem is valid.
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Theorem 3.1. The Dirichlet problem (3:1), (3:4) has always a unique so-

lution.

Problem E. Find a regular in the domain D solution of the system (3:2)

which remains bounded as y ! 0 and coincides with a prescribed continuous

function f only on the curve �.

Lemma 3.1. If there exists a positive in D[� function W (x; y) uniformly

tending to in�nity as y ! 0 and satisfying the inequality L

0

2

(W ) < 0, then

the solution of Problem E is unique.

Proof. Let u(x; y) be a solution of the system (3.2) equal to zero on �.

Consider the expression

L

0

2

("W � (u; u)) = "L

0

2

(W )� L

0

2

((u; u)):

Calculating L

0

2

((u; u)), because of (3.3) we arrive at

L

0

2

((u; u)) = 2[(u

x

; u

x

) + (u; u

xx

)] + 2y

m

[(u

y

; u

y

) + (u; u

yy

)] +

+2a(u; u

x

) + 2b(u; u

y

) = 2[(u

x

; u

x

) + y

m

(u

y

; u

y

)] +

+2[u; u

xx

+ y

m

u

yy

+ au

x

+ bu

y

) =

= 2[(u

x

; u

x

) + y

m

(u

y

; u

y

)] + 2(u;�cu) � 0: (3.17)

It follows from the conditions of the lemma and also from (3.17) that

L

0

2

("W � (u; u)) < 0: (3.18)

Owing to (3.18) and the extremum principle, the function "W � (u; u)

is unable to have in D a negative minimum and, since its values on the

boundary are positive, everywhere in D we have (u; u) � "W . This, due to

the fact that " > 0 is arbitrary, implies that kuk = 0. �

Lemma 3.2. Under the conditions of Lemma 3:1, for every continuous on

� data there exists a solution of Problem E.

The proof of this lemma is carried out exactly in the same way as that

of Theorem 3.1.

Theorem 3.2. If m and b(x; 0) satisfy one of the conditions

1) 0 < m < 1;

2) m = 1; b(x; 0) < 1;

3) 1 < m < 2; b(x; 0) � 0;

4) m � 2; b(x; 0) < 0;

then there exists a unique solution of the Dirichlet problem (3:2), (3:4).

Theorem 3.3. If m and b(x; 0) satisfy one of the conditions

1) m = 1; b(x; 0) � 1;

2) 1 < m < 2; b(x; 0) > 0;

3) m � 2; b(x; 0) � 0;

then there exists a unique solution of Problem E.
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To prove the theorems it should be noted that one has to take (3.7) for all

cases when we state the existence of the Dirichlet problem and, by Lemma

3.1, the function [61]

W (x; y) = � log y � (x � �)

2

+K; K > 0; (x � �) > 1;

for all cases when we state the uniqueness of the solution of Problem E.

The works carried out in this direction by A. V. Bitsadze [13], V. P.

Didenko [20, 21], E. A. Baderko [6] and others are noteworthy.
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CHAPTER II

BOUNDARY VALUE PROBLEM OF CONJUGATION

TYPE FOR DEGENERATING SECOND ORDER HYPERBOLIC

SYSTEMS WITH DISCONTINUOUS COEFFICIENTS

4. Statement of the Problem

In the plane of the variables x; y, let us consider a system of linear dif-

ferential equations

L(u) �

8

>

>

>

<

>

>

>

:

y

m

A

1

u

+

xx

+ 2y

m

2

B

1

u

+

xy

+ C

1

u

+

yy

+ a

1

u

+

x

+

+b

1

u

+

y

+ c

1

u

+

= F

1

; x > 0;

y

m

A

2

u

�

xx

+ 2y

m

2

B

2

u

�

xy

+ C

2

u

�

yy

+ a

2

u

�

x

+

+b

2

u

�

y

+ c

2

u

�

= F

2

; x < 0;

(4.1)

where A

i

, B

i

, C

i

, a

i

, b

i

, c

i

(i = 1; 2) are given real (n � n)-matrices, F

i

(i = 1; 2) is a given n-dimensional vector, and u

�

is an unknown one,

m = const > 0, n > 1.

In what follows, A

i

, B

i

, C

i

(i = 1; 2) are assumed to be constant matrices,

detC

i

6= 0 (i = 1; 2), and the polynomials P

1

(�) = det(A

1

+2B

1

�+C

1

�

2

),

P

2

(�) = det(A

2

+2B

2

�+C

2

�

2

) are assumed to have only simple real roots

�

�

1

; �

�

2

; : : : ; �

�

2n

and �

�

1

; �

�

2

; : : : ; �

�

2n

satisfying

�

�

1

< �

�

2

< � � � < �

�

n

< 0 < �

�

n+1

< �

�

n+2

< � � � < �

�

2n

;

�

�

1

< �

�

2

< � � � < �

�

n

< 0 < �

�

n+1

< �

�

n+2

< � � � < �

�

2n

:

(4.2)

In this case, the system (4.1) is strictly hyperbolic for y > 0 and parabol-

ically degenerates for y = 0. Under these conditions, the values y

m

2

�

�

1

; : : : ;

y

m

2

�

�

2n

and y

m

2

�

�

1

; : : : ; y

m

2

�

�

2n

are respectively the roots of the characteristic

polynomials

p

1

(y; �

�

) = det(y

m

A

1

+ 2y

m

2

B

1

�

�

+ C

1

�

�2

);

p

2

(y; �

�

) = det(y

m

A

2

+ 2y

m

2

B

2

�

�

+ C

2

�

�2

)

of the system (4.1), while the characteristics of the systems (4.1) passing

through the point P (x

0

; y

0

), y

0

> 0, satisfy the equations

x+

2�

�

i

m+ 2

y

m+2

2

= x

0

+

2�

�

i

m+ 2

y

m+2

2

0

; x

0

> 0; i = 1; 2; : : : ; 2n;

x+

2�

�

j

m+ 2

y

m+2

2

= x

0

+

2�

�

j

m+ 2

y

m+2

2

0

; x

0

< 0; j = 1; 2; : : : ; 2n:

Let D be a �nite domain lying in the upper half-plane y > 0 and bounded

by two characteristics of the system (4.1) going out of the origin O(0; 0)



1

: x+

2�

�

n

m+ 2

y

m+2

2

= 0; 

2

: x+

2�

�

n+1

m+ 2

y

m+2

2

= 0;
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and by two characteristics going out of the point O

1

(0; y

0

)



3

: x+

2�

�

2n

m+ 2

y

m+2

2

=

2�

�

2n

m+ 2

y

m+2

2

0

;



4

: x+

2�

�

1

m+ 2

y

m+2

2

=

2�

�

1

m+ 2

y

m+2

2

0

;

where y

0

> 0 is an arbitrary �xed number. Denote by P

1

and P

2

the points

of intersection of the characteristics 

1

and 

2

with 

3

and 

4

, respectively.

By D

+

� D we denote the domain bounded by the curves 

1

, 

3

and the

straight line x = 0, and by D

�

� D the domain bounded by curves 

2

, 

4

and the straight line x = 0.

Consider the characteristic problem formulated as follows: Find a regular

solution

u(x; y) =

(

u

+

(x; y); (x; y) 2 D

+

;

u

�

(x; y); (x; y) 2 D

�

of the system (4.1) satisfying both the boundary conditions

�

y

m

2

M

1

@u

+

@x

+N

1

@u

+

@y

+ S

1

u

+

�

�

�

�

�

OP

1

= f

1

; (4.3)

�

y

m

2

M

2

@u

�

@x

+N

2

@u

�

@y

+ S

2

u

�

�

�

�

�

�

OP

2

= f

2

; (4.4)

and the conditions of conjugation on OO

1

u

+

(0; y)� �

1

u

�

(0; y) = g

1

(y); 0 � y � y

0

; (4.5)

u

+

x

(0; y)� �

2

u

�

x

(0; y) = g

2

(y); 0 � y � y

0

; (4.6)

where M

i

, N

i

, S

i

, �

i

(i = 1; 2) are given real (n � n)-matrices; moreover

for the sake of simplicity, �

i

(i = 1; 2) are assumed to be constant matrices,

and f

i

, g

i

(i = 1; 2) are given real n-dimensional vectors.

Below we assume that a

1

; b

1

; c

1

; F

1

2 C

1

(D

+

), a

2

; b

2

; c

2

; F

2

2 C

1

(D

�

),

M

i

; N

i

; S

i

; f

i

2 C

1

(OP

i

) (i = 1; 2), g

i

2 C

1

(OO

1

) (i = 1; 2) and, moreover,
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in D

+

and D

�

sup

�

D

+

nO





y

1�

m

2

a

1





<1; sup

�

D

+

nO





y

1�

m

2

a

1x





<1;

sup

�

D

�

nO





y

1�

m

2

a

2





<1; sup

�

D

�

nO





y

1�

m

2

a

2x





<1;

sup

�

D

+

nO







y

�(�+

m

2

�1)

F

1







<1; sup

�

D

+

nO







y

�(��2)

F

1x







<1;

sup

�

D

�

nO







y

�(�+

m

2

�1)

F

2







<1; sup

�

D

�

nO







y

�(��2)

F

2x







<1;

f

i

(0) = g

i

(0) = 0 (i = 1; 2); � = const > 0;

sup

OP

i

nO







y

�(�+

m

2

)

f

i







<1; sup

OP

i

nO







y

�(�+

m

2

�1)

f

0

i







<1;

sup

OO

i

nO







y

�(�+

m

2

)

g

i







<1; sup

OO

i

nO







y

�(�+

m

2

�1)

g

0

i







<1; i = 1; 2:

(4.7)

Note also that the conditions

sup

�

D

�

nO







y

1�

m

2

i







<1; i = 1; 2;

imposed on the lowest coe�cients of the system (4.1) are the analogues of

the well-known Gellerstedt's condition for one equation.

The solution of the problem (4.1), (4.3){(4.6) will be sought in the class

(

u

�

2 C

2

(

�

D

�

) : u

�

(0; 0)=0; sup

�

D

+

nO





y

��

u

+

x





<1; sup

�

D

�

nO





y

��

u

�

x





<1;

sup

�

D

+

nO







y

�(�+

m

2

)

u

+

y







<1; sup

�

D

�

nO







y

�(�+

m

2

)

u

�

y







<1

)

: (4.8)

It should be noted that some variants of characteristic problems for sec-

ond order hyperbolic systems with parabolic degeneration have been studied

by S.S.Kharibegashvili [41, 42], while for systems of the form

K(y)u

xx

�Eu

yy

+ au

x

+ bu

y

+ cu = F

by M. Meredov [49]. For one second order hyperbolic equation with parabo-

lic degeneration of the form

y

m

u

xx

� u

yy

+ au

x

+ bu

y

+ cu = f

in a quadrangle bounded by the characteristics going out of the points

O(0; 0) and P (0; 1), the characteristic problem with boundary conditions

on pieces of characteristics going out of the origin O(0; 0) has been inves-

tigated by A. Sh. Agababyan and A. B. Nersesyan [1]. In the case of a

triangular domain bounded by the segment [0; 1] of the x-axis and by pieces
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of characteristics going out of the points O(0; 0) and Q(1; 0), the character-

istic problem for the equation

y

2

u

xx

� u

yy

+ au

x

= 0

is considered in T. Sh. Kalmenov's work [39]. The works of V. N. Vragov

[75] and B. A. Bubnov [14] are also worth mentioning in which, in particular,

the characteristic problem was treated in domains containing a piece of the

line of degeneration. The case where OP

1

is a segment of the x-axis and

OP

2

is a piece of a characteristic for one hyperbolic equation with parabolic

degeneration is studied in their works by V. N. Vragov [75] and A. M.

Nakhushev [55, 56].

Let us renumber �

�

i

, �

�

i

, i = 1; 2; : : : ; 2n, from (4.2) as follows:

�

1

= �

�

n+1

; �

2

= �

�

n+2

; : : : ; �

n

= �

�

2n

; �

n+1

= �

�

1

; : : : ; �

2n

= �

�

n

;

�

1

= �

�

n+1

; �

2

= �

�

n+2

; : : : ; �

n

= �

�

2n

; �

n+1

= �

�

1

; : : : ; �

2n

= �

�

n

:

Since the roots �

1

; �

2

; : : : ; �

2n

and �

1

; �

2

; : : : ; �

2n

of the polynomials

p

1

(�) and p

2

(�) are simple, we have

dimKer(A

1

+ 2B

1

�

i

+ C

1

�

2

i

) = 1;

dimKer(A

2

+ 2B

2

�

i

+ C

2

�

2

j

) = 1; 1 � i; j � 2n:

Denote by �

i

and �

�

j

vectors, satisfy �

i

2 Ker(A

1

+2B

1

�

i

+C

1

�

2

i

), k�

i

k 6= 0,

�

�

j

2 Ker(A

2

+ 2B

2

�

j

+ C

2

�

2

j

), k�

�

j

k 6= 0, 1 � i, j � 2n, where k:k denotes

the norm in R

n

.

5. Some Structural Properties of the Hyperbolic System (4.1)

We introduce into consideration the (2n� 2n)-matrices

A

0

=









0 �E
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�1

1
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1









;

e

A
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1
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;

A

�

0
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;

e
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;

K =

�

�

1

; : : : ; �

2n

�

1

�

1

; : : : ; �

2n

�

2n

�

;

e
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�

y

�

m

2

�
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m
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�
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1

�
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2n

�
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�

;

K
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�

�

�
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�
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�

1

�
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; : : : ; �
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�
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�

;

e
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�

=

�

y

�

m

2

�

�

1
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�

m

2

�

�

2n

�

1

�

�

1
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�

�
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�

;

where E is the unit (n� n)-matrix.

It can be easily shown that

K

�1

A

0

K = D

1

;

e

K

�1

e

A

0

e

K =

e

D

1

;

K

��1

A

�

0

K

�

= D

�

1

;

e

K

��1

e

A

�

0

e

K

�

=

e

D

�

1

:

(5.1)
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HereD

1

= diag(��

1

; : : : ;��

2n
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e

D

1

= diag(�y

�

m

2

�

1

; : : : ;�y

�

m

2

�
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�

1

=

diag(��
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e
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m

2

�

1

; : : : ;�y

�

m

2

�
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Suppose

�

i
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i
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i
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�

K

1

K

2

�

= (V

1

; V

2

); K

�1

=

�

K

0

1

; K

0

2

�

;

K

�

=

�
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�

1
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�

2

�

) = (V

�

1
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�

2

); K

��1

=

�

K

�0

1

; K

�0

2

�

;

(5.2)

where K

1

, K

2

, K

�

1

, K

�

2

are matrices of the order (n � 2n) and V

1

, V

2

, V

�

1

,

V

�

2

, K

0

1

, K

0

2

, K

�0

1

, K

�0

2

are (2n� n)-matrices.

From (5.2) it directly follows that

e
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�
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2
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;

e
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;

e
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�

;

e
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2

K
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1
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2

�

:

(5.3)

By (5.2) and (5.3), we have
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2

�
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e
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e
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m
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:

(5.4)

If
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; B
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C
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b

2









;

then obviously,

e

K
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B

0

e

K =

1
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+
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1

;

e

K
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B

�

0

e

K

�

=

1

y
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B

�
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+

e
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1

;

where

e

B
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= y
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m

2

K

0

2

C
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1

a

1

K

1

;

e

B
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= K

0

2

C
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1

b

1
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2

;

e

B

�

0

= y
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m

2
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2

C
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2

a

2

K

�

1

;

e

B

�

1

= K
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2

C

�1

2

b

2

K

�

2

:

Since by assumption
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a
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we have
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+
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0
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m
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0
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1

a

1

K

1





<1; (5.5)
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sup

�

D

+

nO

k

e

B

0x
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�
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nO





y
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m

2

K

0

2

C
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a
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1





<1; (5.6)

sup

�

D

�

nO

k

e

B

�
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<1; (5.7)
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y
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m

2

K
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C
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a
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�
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<1: (5.8)

6. Reduction of the Problem (4.1), (4.3){(4.6) to a System of

Integral Functional Equations and Its Investigation

It can be easily veri�ed that in the class (4.8) the problem (4.1), (4.3){

(4.6) can be equivalently rewritten in the form

v

+

y

+

e

A

0

v

+

x

+B

0

v

+

+ C

0

u

0+

= F

0

; (6.1)

�
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@
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m

2
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1
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1

+ v

+

2

; (6.2)

�
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1
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+
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+
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@
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m

2

�
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+

2
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y
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2
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�
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>
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;

(6.3)
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+

2

� �

1

v

�

2

)(0; y) = g

0

1

(y); 0 � y � y

0

; (6.4)
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; (6.5)
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�
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�
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;

(6.7)

(v

+

1

� �

2

v

�

1

)(0; y) = g

2

(y); 0 � y � y

0

: (6.8)

Here d

i

is the ordinate of the point P

i

2 

i

, i = 1; 2,
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+
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+
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+
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y
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�
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�
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+
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v
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i

2 C

1
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+
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�
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(6.9)

As a result of the substitution of the unknown functions v

+

=

e

KW

+

and

v

�

=

e

K

�

W

�

, by virtue of (5.1) instead of (6.1){(6.8) we will have
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(6.12)
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(6.16)
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By (5.2){(5.4), we have
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(6.18)

Taking into account (6.18), we rewrite the problem (6.1){(6.17) as
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>

>

>

>

>

=

>

>

>

>

>

>

>

>

;

(6.21)

(

e

K

2

W

+

� �

1

e

K

�

2

W

�

)(0; y) = g

0

1

(y); 0 � y � y

0

; (6.22)

W

�

y

+

e

D

�

1

W

�

x

=

1

y

�

B

�

3

W

�

+ yC

�

2

u

0�

�

+ F

+

2

; (6.23)

�

�y

m

2

�

2n

@

@x

+

@

@y

�

u

�

= (��

2n

K

�

1

+K

�

2

)W

�

; (6.24)

�

(�

2

�K

�

)W

�

+ S

2

u

�

�

�

�

2�

1

m+ 2

y

m+2

2

; y

�

= f

2

(y);

0 � y � d

2

;

��

�y

m

2

�

1

@

@x

+

@

@y

�

u

�

� (��

1

K

�

1

+K

�

2

)W

�

�

�

�

�

�

2�

1

m+ 2

y

m+2

2

; y

�

= 0; 0 � y � d

2

;

9

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

;

(6.25)

(

e

K

1

W

+

� �

2

e

K

�

1

W

�

)(0; y) = g

2

(y); 0 � y � y

0

; (6.26)

where B

3

=

m

2

K

0

1

K

1

� B

0

� yB

1

, B

�

3

=

m

2

K

�0

1

K

�

1

� B

�

0

� yB

�

1

; moreover,
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by (5.5){(5.8) we obtain

sup

�

D

+

nO

kB

3

k <1; sup

�

D

+

nO

kB

3x

k <1;

sup

�

D

�

nO

kB

�

3

k <1; sup

�

D

�

nO

kB

�

3x

k <1:

(6.27)

It follows from (6.27) that

v

+

1

= y

�

m

2

K

1

W

+

; v

+

2

= K

2

W

+

; W

+

= y

m

2

K

0

1

v

+

1

+K

0

2

v

+

2

;

v

�

1

= y

�

m

2

K

�

1

W

�

; v

�

2

= K

�

2

W

�

; W

�

= y

m

2

K

�0

1

v

�

1

+K

�0

2

v

�

2

:

Therefore the conditions v

+

i

2 C

1

(

�

D

+

) and v

�

i

2 C

1

(

�

D

�

), i = 1; 2, as well

as

sup

�

D

+

n0

ky

��

v

+

1

k <1; sup

�

D

+

n0

ky

�(�+

m

2

)

v

+

2

k <1;

sup

�

D

�

n0

ky

��

v

�

1

k <1; sup

�

D

�

n0

ky

�(�+

m

2

)

v

�

2

k <1

are ful�lled if and only if

W

+

2 C

1

(

�

D

+

); sup

�

D

+

nO

ky

�(�+

m

2

)

W

+

k <1;

W

�

2 C

1

(

�

D

�

); sup

�

D

�

nO

ky

�(�+

m

2

)

W

�

k <1:

Let

L

i

(x

0

; y

0

) : x = z

i

(x

0

; y

0

; t) � x

0

+

2�

i

m+ 2

y

m+2

2

0

�

2�

i

m+ 2

t

m+2

2

;

y = t; (x

0

; y

0

) 2

�

D

+

; 1 � i � 2n;

L

�

j

(x

0

; y

0

) : x = z

�

j

(x

0

; y

0

; t) � x

0

+

2�

j

m+ 2

y

m+2

2

0

�

2�

j

m+ 2

t

m+2

2

;

y = t; (x

0

; y

0

) 2

�

D

�

; 1 � j � 2n;

be parametric representations of the characteristic curves passing through

the point (x

0

; y

0

). Denote by !

i

(x; y) the ordinate of the point of intersec-

tion of the characteristic L

i

(x; y) with the curve 

1

for 1 � i � n and with

the straight line x = 0 for n < i � 2n. Similarly, let !

�

i

(x; y) be the ordinate

of the point of intersection of the characteristic L

�

i

(x; y) with the curve 

2

for n < i � 2n and with the straight line x = 0 for 1 � i � n. From our

construction of the functions !

i

(x; y) and !

�

i

(x; y) and from the inequalities

(4.2), it follows that

0 � !

i

(x; y) � y; (x; y) 2 D

+

; i = 1; 2; : : : ; 2n;

0 � !

�

i

(x; y) � y; (x; y) 2 D

�

; i = 1; 2; : : : ; 2n:

(6.28)
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It is not di�cult to verify that

!

i

j

OP

1

=

8

<

:

y; i = 1; 2; : : : ; n;

�

1i

y; i = n+ 1; : : : ; 2n� 1;

0; i = 2n;

!

i

j

OO

1

=

�

�

2i

y; i = 1; 2; : : : ; n;

y; i = n+ 1; : : : ; 2n;

!

�

i

j

OP

2

=

8

<

:

0; i = 1;

�

4i

y; i = 2; : : : ; n;

y; i = n+ 1; : : : ; 2n;

!

�

i

j

OO

1

=

�

y; i = 1; 2; : : : ; n;

�

3i

y; i = n+ 1; : : : ; 2n:

(6.29)

The constant numbers �

ij

here satisfy

0 < �

ij

< 1; 1 � i; j � 2n: (6.30)

Assume

'

i

=W

+

i

j

OP

1

=W

+

i

�

�

2�

2n

m+ 2

y

m+2

2

; y

�

; 0 � y � d

1

; i = 1; 2; : : : ; n;

 

i

=W

+

i

j

OO

1

=W

+

i

(0; y); 0 � y � y

0

; i = n+ 1; : : : ; 2n;

'

�

i

=W

�

i

j

OO

1

=W

�

i

(0; y); 0 � y � y

0

; i = 1; 2; : : : ; n;

 

�

i

=W

�

i

j

OP

2

=W

�

i

�

�

2�

1

m+ 2

y

m+2

2

; y

�

; 0 � y � d

2

; i = n+ 1; : : : ; 2n:

Since � > 0, it is evident that '

i

= W

+

i

(0; 0) = 0, i = 1; 2; : : : ; n,

 

i

(0) = W

+

i

(0; 0) = 0, i = n + 1; : : : ; 2n, '

�

i

= W

�

i

(0; 0) = 0, i = 1; : : : ; n,

 

�

i

(0) =W

�

i

(0; 0) = 0, i = n+ 1; : : : ; 2n.

Integrating the i-th equation of the system (6.19) along the i-th charac-

teristic L

i

(x; y) from the point P (x; y) 2

�

D

+

to the point of intersection of

L

i

(x; y) with the curve 

1

for i � n and with the straight line x = 0 for

i > n, we arrive at

W

+

i

(x; y) = '

i

(!

i

(x; y)) +

y

Z

!

i

(x;y)

1

t

0

@

2n

X

j=1

B

3ij

W

+

j

+

+

n

X

j=1

tC

2ij

u

+

j

1

A

(z

i

(x; y; t); t)dt+

e

F

1i

(x; y); i = 1; : : : ; n;

W

+

i

(x; y) =  

i

(!

i

(x; y)) +

y

Z

!

i

(x;y)

1

t

0

@

2n

X

j=1

B

3ij

W

+

j

+
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+

n

X

j=1

tC

2ij

u

+

j

1

A

(z

i

(x; y; t); t)dt +

e

F

1i

(x; y); i = n+ 1; : : : ; 2n; (6.31)

where

e

F

1i

(x; y) =

y

Z

!

i

(x;y)

F

�

1i

(z

i

(x; y; t); t)dt; i = 1; : : : ; 2n:

Integration of the equation (6.20) along the characteristic L

1

(x; y) results

in

u

+

(x; y) = g

�

1

(!

1

(x; y)) +

y

Z

!

1

(x;y)

(��

1

K

1

+K

2

)W

+

(z

1

(x; y; t)t)dt; (6.32)

where

g

�

1

(!

1

(x; y)) = u

+

�

�

2�

1

m+ 2

!

m+2

2

1

(x; y); !

1

(x; y)

�

=

=

!

1

(x;y)

Z

0

�

�y

m

2

�

1

@

@x

+

@

@y

�

u

+

�

�

2�

1

m+ 2

t

m+2

2

; t

�

dt =

=

!

1

(x;y)

Z

0

(��

1

K

1

+K

2

)W

+

�

�

2�

1

m+ 2

t

m+2

2

; t

�

dt:

Analogously, integrating the j-th equation of the system (6.23) along the

j-th characteristic L

�

j

(x; y) from the point P

�

(x; y) 2

�

D

�

to the point of

intersection of L

�

j

(x; y) with the curve 

2

for j > n and with the straight

line x = 0 for j � n, we obtain

W

�

i

(x; y) = '

�

i

(!

�

i

(x; y)) +

y

Z

!

�

i

(x;y)

1

t

0

@

2n

X

j=1

B

�

3ij

W

�

j

+

+

n

X

j=1

tC

�

2ij

u

�

j

1

A

(z

�

i

(x; y; t); t)dt +

e

F

2i

(x; y); i = 1; : : : ; n;

W

�

i

(x; y) =  

�

i

(!

�

i

(x; y)) +

y

Z

!

�

i

(x;y)

1

t

0

@

2n

X

j=1

B

�

3ij

W

�

j

+

+

n

X

j=1

tC

�

2ij

u

�

j

1

A

(z

�

i

(x; y; t); t)dt+

e

F

2i

(x; y); i = n+ 1; : : : ; 2n; (6.33)
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where

e

F

2i

(x; y) =

y

Z

!

�

i

(x;y)

F

�

2i

(z

�

i

(x; y; t); t)dt; i = 1; : : : ; 2n:

Integration of the equation (6.24) along the characteristic L

�

2n

(x; y) yields

u

�

(x; y) = g

�

2

(!

�

2n

(x; y)) +

+

y

Z

!

�

2n

(x;y)

(��

2n

K

�

1

+K

�

2

)W

�

(z

�

2n

(x; y; t); t)dt; (6.34)

where

g

�

2

(!

�

2n

(x; y)) = u

�

�

�

2�

2n

m+ 2

!

�

m+2

2

2n

(x; y); !

�

2n

(x; y)

�

=

=

!

�

2n

(x;y)

Z

0

�

�y

m

2

�

2n

@

@x

+

@

@y

�

u

�

�

�

2�

2n

m+ 2

t

m+2

2

; t

�

dt =

=

!

�

2n

(x;y)

Z

0

(��

2n

K

�

1

+K

�

2

)W

�

�

�

2�

2n

m+ 2

t

m+2

2

; t

�

dt:

We rewrite the system of equations (6.31) and (6.33) in terms of one

equation

W

+

(x; y) = e'(x; y) +

+

2n

X

i=1

y

Z

!

i

(x;y)

1

t

�

B

4i

W

+

+ C

3i

u

+

�

(z

i

(x; y; t); t)dt+

e

F

1

(x; y); (6.35)

W

�

(x; y) = e'

�

(x; y) +

+

2n

X

i=1

y

Z

!

�

i

(x;y)

1

t

�

B

�

4i

W

�

+ C

�

3i

u

�

�

(z

�

i

(x; y; t); t)dt +

e

F

2

(x; y); (6.36)

where B

4i

, B

�

4i

and C

3i

, C

�

3i

are well-de�ned matrices of orders (2n � 2n)

and (2n� n), respectively, and

e'(x; y) = ('

1

(!

1

(x; y)); : : : ; '

n

(!

n

(x; y));

 

n+1

(!

n+1

(x; y)); : : : ;  

2n

(!

2n

(x; y)));

e'

�

(x; y) = ('

�

1

(!

�

1

(x; y)); : : : ; '

�

n

(!

�

n

(x; y));

 

�

n+1

(!

�

n+1

(x; y)); : : : ;  

�

2n

(!

�

2n

(x; y))):
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Substituting the expressions for u

+

; u

�

and W

+

;W

�

from (6.32), (6.34)

and (6.35), (6.36) into the boundary conditions (6.21) and (6.25), we obtain

G

1

0

'(y) +

2n�1

X

i=n+1

G

1

i

(y) (�

1i

y) +

+[T

1

(W

+

; u

+

)](y) = f

3

(y); 0 � y � d

1

; (6.37)

G

2

0

 

�

(y) +

n

X

j=2

G

2

j

(y)'

�

(�

4j

y) +

+[T

2

(W

�

; u

�

)](y) = f

4

(y); 0 � y � d

2

; (6.38)

where G

1

i

, G

2

j

are well-de�ned constant (n � n)-matrices, f

3

and f

4

are

functions de�ned by means of f

1

; f

2

;

e

F

1

;

e

F

2

, and T

1

, T

2

are linear integral

operators; ' = ('

1

; : : : ; '

n

),  = ( 

n+1

; : : : ;  

2n

), '

�

= ('

�

1

; : : : ; '

�

n

),  

�

=

( 

�

n+1

; : : : ;  

�

2n

).

As is easily seen,

W

+

j

OO

1

= G

1

 (y) +

n

X

i=2

G

3

i

'(�

2i

y) + [T

3

(W

+

; u

+

)](y); (6.39)

W

�

j

OO

1

= G

2

'

�

(y) +

2n�1

X

i=n+1

G

4

i

 

�

(�

3i

y) + [T

4

(W

�

; u

�

)](y); (6.40)

where

G

1

=

�

0

E

�

; G

2

=

�

E

0

�

;

E is the unit (n� n)-matrix, G

3

i

, G

4

i

are well-de�ned matrices, and T

3

and

T

4

are linear integral operators.

Substituting the expressions (6.39) and (6.40) for W

�

j

OO

1

into the con-

ditions of conjugation (6.22) and (6.26), we get

G

3

0

 (y) +G

4

0

'

�

(y) +

n

X

i=2

e

K

2

G

3

i

'(�

2i

y) +

2n�1

X

i=n+1

(��

1

K

�

2

)G

4

i

 

�

(�

3i

y) +

+[T

5

(u

+

;W

+

; u

�

;W

�

)](y) = g

0

1

(y); 0 � y � y

0

; (6.41)

G

5

0

 (y) +G

6

0

'

�

(y) +

n

X

i=2

e

K

1

G

3

i

'(�

2i

y) +

2n�1

X

i=n+1

(��

2

e

K

�

1

)G

3

i

 

�

(�

3i

y) +

+[T

6

(u

+

;W

+

; u

�

;W

�

)](y) = g

2

(y); 0 � y � y

0

; (6.42)

where G

3

0

, G

4

0

, G

5

0

, G

6

0

are well-de�ned (n � n)-matrices, and T

5

, T

6

are

linear integral operators.
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Remark 1. It is easy to see that the matricesG

i

0

, i = 1; : : : ; 6, from (6:37),

(6:38) and (6:41), (6:42) are representable in terms of

G

1

0

= �

1

� V

1

; G

2

0

= �

2

� V

�

2

; G

3

0

=

e

K

2

G

1

; G

4

0

= ��

1

e

K

�

2

G

2

;

G

5

0

=

e

K

1

G

1

; G

6

0

= ��

2

e

K

�

1

G

2

:

Therefore the (2n� 2n)-matrix









G

3

0

G

4

0

G

5

0

G

6

0









and the (n � n)-matrices G

1

0

and G

2

0

are invertible in the domain of their

de�nition if and only if

det











e

K

2

G

1

��

1

e

K

�

2

G

2

e

K

1

G

1

��

2

e

K

+

1

G

2











(x; y) 6= 0; (x; y) 2 OO

1

; (6.43)

det(�

1

� V

1

)(x; y) 6= 0; (x; y) 2 OP

1

; (6.44)

det(�

2

� V

�

2

)(x; y) 6= 0; (x; y) 2 OP

2

: (6.45)

Remark 2. It is clear from the above arguments that in the class (4:8) the

problem (4:1), (4:3){(4:6) is equivalent to the system of integral di�erential

equations (6:31){(6:36), (6:41), (6:42) with respect to the unknown functions

u

+

, u

�

, W

+

, W

�

, ',  , '

�

,  

�

, where u

�

2 C

2

(

�

D

�

), u

�

(0; 0) = 0,

sup

�

D

�

nO





y

��

u

�

x





<1; sup

�

D

�

nO







y

�(�+

m

2

)

u

�

y







<1; W

�

2 C

1

(D

�

);

sup

�

D

�

nO







y

�(�+

m

2

)

W

�







<1;

' 2 C

1

[0; d

1

];  2 C

1

[0; y

0

]; '

�

2 C

1

[a; y

0

];  

�

2 C

1

[0; d

2

]:

sup

0<y�d

1







y

�(�+

m

2

)

'







<1; sup

0<y�y

0







y

�(�+

m

2

)

 







<1;

sup

0<y�y

0







y

�(�+

m

2

)

'

�







<1; sup

0<y�d

2







y

�(�+

m

2

)

 

�







<1:

Remark 3. By virtue of (6:28) and (6:30), the integral operators in the

left-hand sides of the equations (6:31){(6:36), (6:41) and (6:42) are of Vol-

terra structure.

Bearing in mind the above remarks in solving the system of integral dif-

ferential equations (6.31){(6.36), (6.41), (6.42) by the method of successive

approximations and using the scheme suggested in [41], we arrive at the

following

Theorem 6.1. Let the conditions (6:43){(6:45) be ful�lled. Then there

exists a positive number �

0

depending only on the coe�cients of the system

(4:1) and on the boundary conditions (4:3){(4:6), such that for � > �

0

the

problem (4:1), (4:3){(4:6) is uniquely solvable in the class (4:8).
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CHAPTER III

PROBLEM WITH OBLIQUE DERIVATIVE

FOR THE EQUATION OF MIXED TYPE

7. Statement of the Problem and Its Investigation in the

Elliptic Part of the Domain

In the plane of the variables x; y, let us consider a mixed type equation

sgn y u

xx

+ u

yy

+ au

x

+ bu

y

+ cu = 0; (7.1)

where a; b; c are given entire analytic functions of their arguments taking,

real values for real x; y, and u is an unknown real function.

Let D be a singly connected domain in the plane of the variables x; y

which is bounded by a curve � of the class C

2

with the ends at the points

C

1

(0; 0) and C

2

(1; 0) and lying in the upper half-plane y > 0, and by cha-

racteristics CC

1

: y = �x, CC

2

: y = x � 1, C = (

1

2

;�

1

2

) of the equation

(7.1).

Consider Problem A which is formulated as follows: it is required to

determine a function u(x; y) with the following properties: 1) u(x; y) is a

solution of the equation (7.1) for y 6= 0 in the domain D; 2) it is continuous

in the closed domain D and has continuous �rst derivatives everywhere in

this domain, except maybe at the points C

1

and C

2

near which

@u

@x

and

@u

@y

tend to in�nity with an order less than 1; 3) it satis�es the boundary

conditions

(p

1

u

x

+ q

1

u

y

+ �

1

u)j

�

= '; (7.2)

(p

2

u

x

+ q

2

u

y

+ �

2

u)j

CC

1

=  ; (7.3)

where p

i

; q

i

; �

i

(i = 1; 2), ';  are given real functions satisfying the H�older

condition.

Let D

+

and D

�

be respectively the elliptic and the hyperbolic parts

of the domain D. Below we assume that @D

+

2 C

2;h

, '; p

i

; q

i

2 C

1;h

(i = 1; 2),  2 C

2;h

, 0 < h < 1.

Instead of the real variables x and y, (x; y) 2 D

+

, we introduce the

complex variables z = x+ iy, �z = x� iy. Then the equation (7.1) takes the

form

@

2

u

@z@�z

+A(z; �z)

@u

@z

+A(z; �z)

@u

@�z

+ C(z; �z)u = 0; (7.4)

where

A(z; �z) = a

�

z + �z

2

;

z � �z

2i

�

+ ib

�

z + �z

2

;

z � �z

2i

�

;

4C(z; �z) =

�

z + �z

2

;

z � �z

2i

�

:
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Introduce the functions

�(z; �z) = exp

2

4

�

�z

Z

0

(z;

�

t)d�z

3

5

; �(z; �z; t) =

�z

Z

0

V (z; �z; t;

�

t)d

�

t;

where V (z; �z; t;

�

t) is a function uniquely de�ned as follows: 1) V (z; �z; t;

�

t) is

a solution of the di�erential equation (7.4); 2)

V (z;

�

t; t;

�

t) = (t;

�

t) exp

2

4

�

z

Z

t

�

A(t

1

; t)dt

1

3

5

; (7.5)

V (t; �z; t;

�

t) = (t;

�

t) exp

2

4

�

�z

Z

�

t

A(t;

�

t

1

)d

�

t

1

3

5

; (7.6)

where

�(z; �z) =

@�(z; �z)

@z@�z

+A(z; �z)

@�(z; �z)

@z

+

+A(z; �z)

@�(z; �z)

@�z

+ C(z; �z)�(z; �z):

If we take into account the formulas

@

@x

=

@

@z

+

@

@�z

;

@

@y

= i

@

@z

� i

@

@�z

;

then the boundary condition (7.2) takes the form

H(s)

@u

@t

+H(s)

@u

@

�

t

+ �(s)u = '(s); t 2 �; (7.7)

where H(s) = p

1

(s) + iq

1

(s), s is an arc abscissa on �.

Let us make use of a general representation of regular in D

+

solutions of

the equation (7.1) expressed in terms of the analytic functions [72]

u(x; y) = Re

8

<

:

�(z; �z)!(z) +

z

Z

P

0

�(z; �z; t)!(t)dt

9

=

;

; (7.8)

where !(z) is an arbitrary analytic in D

+

function satisfying the condition

Im!(P

0

) = 0, P

0

2 D

+

, and �(z; �z) and �(z; �z; t) are entire functions of

their arguments de�ned by the formulas (7.5), (7.6).

I. N. Vekua [72] has proved that if !(z) 2 C

1;h

(

�

D

+

) is an analytic in a

singly connected domainD

+

function satisfying the condition Im!(P

0

) = 0,

then there exists a unique real function �(t) 2 C

0;h

such that the following

formula holds:

!(z) =

Z

@D

+

�(t) log e

�

1�

z

t

�

ds

t

; (7.9)
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where ds

t

is the arc element of the boundary @D

+

and under log

�

1�

z

t

�

,

z 2 D

+

, t 2 D

+

is understood the branch of the function which equals zero

for z = 0.

Supposing that the analytic function !(z) appearing in the formula (7.8)

has the continuous �rst derivative in

�

D

+

and substituting the expression

(7.8) in the boundary condition (7.7), we obtain

Re

8

<

:

M(t)!

0

(t) +N(t)!(t) +

t

Z

0

Q(t; t

1

)!(t

1

)dt

1

9

=

;

= '(s); t 2 �; (7.10)

where

M(t) = �(t;

�

t)H(t);

N(t) = �(t;

�

t)C(t) + �(t;

�

t; t)H(t) +

@�(t;

�

t)

@t

H(t) +

@�(t;

�

t)

@

�

t

1

H(t);

Q(t; t

1

) = �(t;

�

t; t

1

)C(t) +

@�(t;

�

t; t

1

)

@t

H(t) +

@�(t;

�

t; t

1

)

@

�

t

H(t):

It is easy to verify that the limiting values of the functions !(z) and

!

0

(z), as z tends to the point t, t 2 @D

+

, are given by the formulas

!(t) =

Z

@D

+

�(t

1

) log e

�

1�

t

t

1

�

ds

1

;

!

0

(t) = ��i

�

t

0

�(t) �

Z

@D

+

�(t

1

)ds

1

t

1

� t

:

Substituting them in the boundary condition (7.10), after some transfor-

mations, we get the integral equation

�(s)�(s) +

Z

@D

+

K(s; s

1

)�(s

1

)ds

1

= '(s); (7.11)

where

�(s) = Re [��i

�

t

0

M(t)] ;

K(s; s

1

) = Re

�

N(t) log e

�

1�

t

t

1

�

�

M(t)

t

1

� t

+Q

�

(t; t

1

)

�

;

Re

�

N(t) log e

�

1�

t

t

1

��

= n

1

log e

�

�

�

�

1�

t

t

1

�

�

�

�

� n

2

arg

�

1�

t

t

1

�

;

N(t) = n

1

(t) + in

2

(t);

Re

�

M(t)

t

1

� t

�

=

1

2

M(t) +M(t)e

2i�(t;t

1

)

t

1

� t

;

�(t; t

1

) = arg(t

1

� t);
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Re [Q

�

(t; t

1

)] = Re

2

4

Q(t; t

1

)
(t; t

1

)�

t

Z

0


(t

2

; t)

@Q(t; t

2

)

@t

2

dt

2

3

5

= P (t; t

1

);


(t; t

1

) =

t

Z

0

log e

�

1�

t

2

t

1

�

dt

2

= (t� t

1

) log

�

1�

t

t

1

�

:

We can easily give (7.11) the following form

�(t)�(t) �

Z

@D

+

K

1

(t; t

1

)

t

1

� t

�(t

1

)dt

1

= '(t); t 2 @D

+

nAB; (7.12)

with

2K

1

(t; t

1

) =M(t)

�

t

1

+M(t)

�

t

0

1

e

2i�(t;t

1

)

�

�2(t

1

� t)

�

t

0

1

�

n

1

(t) log e

�

�

�

�

1�

t

t

1

�

�

�

�

� �n

2

(t) arg

�

1�

t

t

1

�

+ P (t; t

1

)

�

;

or

�

1

(t)�(t) + �

1

(t)

Z

@D

+

�(t

1

)dt

1

t

1

� t

+

Z

@D

+

K(t; t

1

)�(t

1

)dt

1

= '(t);

t 2 @D

+

nAB: (7.13)

Here

�

1

(t) = Re [��i

�

t

0

M(t)] ; �

1

(t) = Im (�i(p

1

(t) + iq

1

(t))�(t;

�

t)

�

t

0

) ;

K(t; t

1

) =

K

1

(t; t

1

)�K

1

(t; t)

t

1

� t

:

8. Investigation of the Problem (7.1), (7.2), (7.3) in the

Hyperbolic Part of the Domain

Denote by R(x; y;x

1

; y

1

) the Riemann function which by de�nition is a

solution of the so-called conjugate equation [46]

R

xy

� (aR)

x

� (bR)

y

+ cR = 0 (8.1)

which takes on the characteristics x = x

1

, y = y

1

the values

R(x

1

; y;x

1

; y

1

) = exp

0

@

y

Z

y

1

a(x

1

; �)d�

1

A

; (8.2)

R(x; y

1

;x

1

; y

1

) = exp

0

@

x

Z

x

1

b(�; y

1

)d�

1

A

; (8.3)

where (x

1

; y

1

) is an arbitrarily �xed point in the domain D

�

.
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By (8.1), (8.2) and (8.3), the function R(x; y;x

1

; y

1

) satis�es the integral

equation

R(x; y;x

1

; y

1

)�

x

Z

x

1

b(�; �)R(�; �;x

1

; y

1

)d� �

�

y

Z

y

1

a(x; �)R(x; �;x

1

; y

1

)d� +

+

x

Z

x

1

d�

y

Z

y

1

c(�; �)R(�; �;x

1

; y

1

)d� = 1: (8.4)

As is known, the equation (8.4) has a unique solution R(x; y;x

1

; y

1

)

which, as it is easily veri�ed, possesses the following continuous derivatives:

@

i;j

x;y

@

i

1

;j

1

x

1

;y

1

R(x; y;x

1

; y

1

) 2 C(

�

D

�

�

�

D

�

);

0 � i+ j � 1; 0 � i

1

+ j

1

� 2; @

i;j

x;y

= @

i+j

=@x

i

@y

j

:

(8.5)

The equalities (8.2) and (8.3) imply that

@R(x

1

; y;x

1

; y

1

)

@y

� a(x

1

; y)R(x

1

; y;x

1

; y

1

) = 0;

@R(x; y

1

;x

1

y

1

)

@x

� b(x; y

1

)R(x; y

1

;x

1

; y

1

) = 0;

R(x

1

; y

1

;x

1

; y

1

) = 1;

@R(x; y;x; y

1

)

@y

1

+ a(x; y

1

)R(x; y;x; y

1

) = 0;

@R(x; y;x

1

; y)

@x

1

+ b(x

1

; y)R(x; y;x

1

; y) = 0;

R(x; y;x; y) = 1:

9

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

;

(8.6)

By virtue of (8.4) and (8.5), every solution u(x; y) of the equation (7.1)

of the class C

2

(

�

D

�

) can be represented in the domain D

�

in the form [46]

u(x; y) =

1

2

[�(x + y)R(x+ y;�x� y;x� y;�x� y) +

+�(x� y)R(x� y;�x+ y;x� y;�x� y)] +

+

x�y

Z

x+y

h

�

1

2

R(t;�t;x� y;�x� y)�(t) +

+(a(t;�t) + b(t;�t))R(t;�t;x� y;�x� y)�(t)�

�

1

2

(R

ex

(t;�t;x� y;�x� y) +
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+R

ey

(t;�t;x� y;�x� y))�(t)

i

dt (8.7)

as the solution of the Cauchy problem

u(x; 0) = �(x); u

y

(x; 0) = �(x);

where R(ex; ey; �; �) is the Riemann function for the equation

u

exey

+ eau

ex

+

e

bu

ey

+ ecu = 0; ex = x� y; ey = �x� y;

ea(ex; ey) =

a� b

4

�

ex� ey

2

;

�ex� ey

2

�

;

e

b(ex; ey) = �

a+ b

4

�

ex� ey

2

;

�ex� ey

2

�

;

ec(ex; ey) = �

1

4

c

�

ex� ey

2

;

�ex� ey

2

�

:

From (8.7), we have

u

x

(x; y) =

1

2

[�

0

(x + y)R(x+ y;�x� y;x� y;�x� y) +

+�(x+ y)fR

�x

�R

�y

+R

�

�R

�

g(x+ y;�x� y;x� y;�x� y) +

+�

0

(x� y)R(x� y;�x+ y;x� y;�x� y) +

+�(x � y)fR

ex

�R

ey

+R

�

�R

�

g(x� y;�x+ y;x� y;�x� y)] +

+

h

�

1

2

R(x� y;�x+ y;x� y;�x� y)�(x� y) +

+(a(x� y;�x+ y) + b(x� y;�x+ y)) �

�R(x� y;�x+ y;x� y;�x� y)�(x � y)

i

�

�

1

2

(R

ex

(x� y;�x+ y;x� y;�x� y) +

+R

ey

(x� y;�x+ y;x� y;�x� y))�(x � y)�

�

h

�

1

2

R(x+ y;�x� y;x� y;�x� y)�(x+ y) + (a(x + y;�x� y) +

+b(x+ y;�x� y))R(x + y;�x� y;x� y;�x� y)�(x + y)

i

+

+

1

2

(R

ex

(x+ y;�x� y;x� y;�x� y) +

+R

ey

(x+ y;�x� y;x� y;�x� y))�(x + y) +

+

x�y

Z

x+y

h

�

1

2

(R

�

�R

�

)(t;�t;x� y;�x� y)�(t) +

+(a(t;�t) + b(t;�t))(R

�

�R

�

)(t;�t;x� y;�x� y)�(t) �
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�

1

2

((R

ex�

�R

ex�

)(t;�t;x� y;�x� y) +

+(R

ey�

�R

ey�

)(t;�t;x� y;�x� y))�(t)

i

dt: (8.8)

It follows from (8.8) that for y = �x, x 2 [0;

1

2

], i.e., on the characteristic

CC

1

we have

u

x

j

CC

1

= u

x

(x;�x) =

1

2

[�

0

(0)R(0; 0; 2x; 0) +

+�(0)fR

ex

�R

ey

�R

�

�R

�

g(0; 0; 2x; 0) + �

0

(2x)R(2x;�2x; 2x; 0) +

+�(2x)fR

ex

�R

ey

+R

�

�R

�

g(2x;�2x; 2x; 0)] +

+

h

�

1

2

R(2x;�2x; 2x; 0)�(2x) + (a(2x;�2x) +

+b(2x;�2x))R(2x;�2x; 2x; 0)�(2x)

i

�

�

1

2

(R

ex

(2x;�2x; 2x; 0) +R

ey

(2x;�2x; 2x; 0))�(2x)�

�

h

�

1

2

R(0; 0; 2x; 0)�(0) + (a(0; 0) + b(0; 0))R(0; 0; 2x; 0)�(0)

i

+

+

1

2

(R

ex

(0; 0; 2x; 0) +R

ey

(0; 0; 2x; 0))�(0) +

+

2x

Z

0

h

�

1

2

(R

�

�R

�

)(t;�t; 2x; 0)�(t) + (a(t;�t) +

+b(t;�t))(R

�

�R

�

)(t;�t; 2x; 0)�(t) �

�

1

2

((R

ex�

�R

ex�

)(t;�t; 2x; 0) + (R

ey�

�R

ey�

)(t;�t; 2x; 0))�(t)

i

dt: (8.9)

Similarly, from (8.7) and y = �x, x 2 [0;

1

2

], we get

u

y

j

CC

1

= u

y

(x;�x) =

1

2

[�

0

(0)R(0; 0; 2x; 0) +

+�(0)fR

ex

�R

ey

�R

�

�R

�

g(0; 0; 2x; 0)� �

0

(2x)R(2x;�2x; 2x; 0) +

+�(2x)f�R

ex

+R

ey

�R

�

�R

�

g(2x;�2x; 2x; 0)]�

�

h

�

1

2

R(2x;�2x; 2x; 0)�(2x) +

+(a(2x;�2x) + b(2x;�2x))R(2x;�2x; 2x; 0)�(2x)�

�

1

2

(R

ex

(2x;�2x; 2x; 0) +R

ey

(2x;�2x; 2x; 0))�(2x)

i

�

�

h

�

1

2

R(0; 0; 2x; 0)�(0) + (a(0; 0) + b(0; 0))R(0; 0; 2x; 0)�(0)�

�

1

2

(R

ex

(0; 0; 2x; 0) +R

ey

(0; 0; 2x; 0))�(0)

i

+
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+

2x

Z

0

h

�

1

2

(R

�

�R

�

)(t;�t; 2x; 0)�(t) + (a(t;�t) +

+b(t;�t))(�R

�

�R

�

)(t;�t; 2x; 0)�(t)�

1

2

(�R

ex�

�R

ex�

�

+R

ey�

�R

ey�

)(t;�t; 2x; 0)�(t)

i

dt: (8.10)

Substitution of (8.9) and (8.10) in (7.3) yields

(p

2

u

x

+ q

2

u

y

+ �

2

x)j

CC

1

=

1

2

p

2

R(2x;�2x; 2x; 0)�

0

(2x)�

�

1

2

p

2

R(2x;�2x; 2x; 0)�(2x)�

1

2

q

2

R(2x;�2x; 2x; 0)�

0

(2x) +

+

1

2

q

2

R(2x;�2x; 2x; 0)�(2x) + [T

1

(�; �)](x) =

=  (x); 0 � x �

1

2

; (8.11)

where T

1

(�; �) is a well-de�ned linear operator acting by the formula

[T

1

(�; �)] (x) = �

1

2

p

2

�

�

0

(0)R(0; 0; 2x; 0) +

+�(0)

�

R

ex

�R

ey

�R

�

�R

�

	

(0; 0; 2x; 0) +

+�(2x)

�

R

ex

�R

ey

+R

�

�R

�

	

(2x;�2x; 2x; 0)

�

+

+p

2

(a(2x;�2x) + b(2x;�2x))R(2x;�2x; 2x; 0)�(2x)�

�

1

2

p

2

(R

ex

(2x;�2x; 2x; 0) +R

ey

(2x;�2x; 2x; 0)�(2x)�

�p

2

�

�

1

2

R(0; 0; 2x; 0)�(0) + (a(0; 0) + b(0; 0))R(0; 0; 2x; 0)�(0)+

+

1

2

(R

ex

(0; 0; 2x; 0) +R

ey

(0; 0; 2x; 0))�(0)

�

+

+p

2

2x

Z

0

�

�

1

2

(R

�

�R

�

)(t;�t; 2x; 0)�(t)+

+(a(t;�t) + b(t;�t))(R

�

�R

�

)(t;�t; 2x; 0)�(t)�

�

1

2

((R

ex�

�R

ex�

)(t;�t; 2x; 0) + (R

ey�

�R

eyy

)(t;�t; 2x; 0))�(t)

�

dt+

+

1

2

q

2

h

�

0

(0)R(0; 0; 2x; 0) + �(0)

n

R

ex

�R

ey

�R

�

�R

�

o

(0; 0; 2x; 0)+

+�(2x)

n

�R

ex

+R

ey

�R

�

�R

�

o

(2x;�2x; 2x; 0)

i

�

�q

2

h

(a(2x;�2x) + b(2x;�2x))R(2x;�2x; 2x; 0)�(2x)�
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�

1

2

(R

ex

(2x;�2x; 2x; 0) +R

ey

(2x;�2x; 2x; 0))�(2x)

i

�

�q

2

�

�

1

2

R(0; 0; 2x; 0)�(0) + (a(0; 0) + b(0; 0))R(0; 0; 2x; 0)�(0)�

�

1

2

(R

ex

(0; 0; 2x; 0) +R

ey

(0; 0; 2x; 0))�(0)

�

+

+q

2

x

Z

0

�

�

1

2

(R

�

� R

�

)(t;�t; 2x; 0)�(t)+

+(a(t;�t) + b(t;�t))(�R

�

�R

�

)(t;�t; 2x; 0)�(t) �

�

1

2

(R

ex�

�R

ex�

�R

ey�

�R

ey�

)(t;�t; 2x; 0)�(t)

�

dt+

+

1

2

�

2

[�(0)R(0; 0; 2x; 0) + �(2x)R(2x;�2x; 2x; 0)] +

+�

2

2x

Z

0

�

�

1

2

R(t;�t; 2x; 0)�(t) + (a(t;�t) + b(t;�t))R(t;�t; 2x; 0)�(t)�

�

1

2

(R

ex

(t;�t; 2x; 0) +R

ey

(t;�t; 2x; 0))�(t)

�

dt:

As a result of not complicated transformations of the expression (8.11),

we arrive at

1

2

(p

2

� q

2

)R(x;�x;x; 0)�

0

(x)�

1

2

(p

2

� q

2

)R(x;�x;x; 0)�(x) +

+[T

1

(�; �)](

x

2

) =  (

x

2

); 0 � x � 1: (8.12)

Since R(x;�x;x; 0) 6= 0, under our assumption that (p

2

� q

2

)j

CC

1

6= 0 and

p

1

(0) 6= 0, we divide (8.12) by

(p

2

�q

2

)

2p

1

(0)

R(x;�x;x; 0) and obtain

p

1

(0)�

0

(x) � p

1

(0)�(x) + [T

2

(�; �](x) =

e

 (x); (8.13)

where

T

2

(�; �) =

2p

1

(0)(T

1

(�; �)](

x

2

)

(p

2

� q

2

)R(x;�x;x; 0)

;

e

 (x) =

2p

1

(0) (

x

2

)

(p

2

� q

2

)R(x;�x;x; 0)

:

Applying the general representation of regular in D

+

solutions, we can

get [68, 69]

�

0

(t) = e�

1

(t)�(t) +

e

�

1

(t)

Z

@D

+

�(t

1

)

t

1

� t

dt

1

+ [K

1

(�)](t); (8.14)
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�(t) = e�

2

(t)�(t) +

e

�

2

(t)

Z

@D

+

�(t

1

)dt

1

t

1

� t

+ [K

2

(�)](t); (8.15)

where

e�

1

(t) = Re(���(t;

�

t)

�

t

0

);

e

�

1

(t) = Im(�i�(t;

�

t)

�

t

0

);

e�

2

(t) = Re(��(t;

�

t)

�

t

0

);

e

�

2

(t) = Im(�(t;

�

t)

�

t

0

);

Here K

1

(�) and K

2

(�) are well-de�ned integral operators.

Substituting (8.14) and (8.15) in (8.13), we obtain

�

3

(t)�(t) + �

3

(t)

Z

@D

+

�(t

1

)dt

1

t

1

� t

+ [K

3

(�)](t) =

e

 (t); t 2 (0; 1); (8.16)

where

�

3

(t) = Re[��(1 + i)�(t;

�

t)

�

t

0

p

1

(0)];

�

3

(t) = Im[�(1 + i)�(t;

�

t)

�

t

0

p

1

(0)]:

Here K

3

(�) is a linear integral operator.

9. Investigation of the Problem (7.1), (7.2), (7.3) in a Mixed

Domain

We rewrite the equations (7.13) and (8.16) in the form of one singular

equation on the whole boundary @D

+

,

�

4

(t)�(t) + �

4

(t)

Z

@D

+

�(t

1

)dt

1

t

1

� t

+ [K

4

(�)](t) = f

1

(t); (9.1)

where

�

4

(t) =

�

�

1

(t); t 2 @D

+

nC

1

C

2

;

�

3

(t); t 2 C

1

C

2

;

�

4

(t) =

�

�

1

(t); t 2 @D

+

nC

1

C

2

;

�

3

(t); t 2 C

1

C

2

;

f(t) =

�

'(t); t 2 @D

+

nC

1

C

2

;

e

 (t); t 2 C

1

C

2

;

and K

4

(�) is a well-de�ned, compact linear integral operator.

Remark. The coe�cients �

4

(t) and �

4

(t) below are assumed to be con-

tinuous at the point t = 0, i.e., p

1

(0) + q

1

(0) = 0.

A solution �(t) of the singular integral equation (9.1) is sought in the

space H

�

(@D

+

), the point C

2

(1; 0) being the node of the curve @D

+

[52].

Under the assumption that

H(t) = (p

1

+ iq

1

)(t) 6= 0; t 2 �;
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we put

!(t) =

�

4

(t)� i��

4

(t)

�

4

(t) + i��

4

(t)

=

8

>

>

<

>

>

:

�it

0

H(t)�(t;

�

t)

��i

�

t

0

H(t)�(t;

�

t)

; t 2 �;

��(1� i)t

0

�(t;

�

t)p

1

(0)

��(1 + i)

�

t

0

�(t;

�

t)p

1

(0)

; t 2 @D

+

n�:

The index � of the singular integral equation (9.1) in the class H

�

(@D

+

)

is de�ned as follows [52]: denote by arg !

�

(t) and arg !

+

(t) continuous

branches of the argument of the function !(t) respectively on @D

+

n� and

�.

Let

d =

1

2�

arg !

�

(C

2

)�

1

2�

arg!

+

(C

2

) =

=

1

2�

�

2 arg(1� i) + 2 arg t

0

+ 2arg�(t;

�

t)

�

(C

2

)�

�

1

2�

�

2 arg i+ 2arg t

0

+ 2argH(t) + 2 arg�(t;

�

t)

�

(C

2

) =

=

1

2�

(2 arg(1� i)� 2 arg i)�

1

�

argH(C

2

) = �

3

4

�

1

�

argH(C

2

):

The index � is de�ned by the formula

� =

�

�[d]� 1; if d 62 Z;

�d; if d 2 Z;

(9.2)

where Z is the set of all integers and [d] is the integer part of a number d.

Thus the following theorem is valid.

Theorem 9.1. Let the conditions

H(t) = (p

1

+ iq

1

)(t) 6= 0; t 2 �;

p

2

(t)� q

2

(t) 6= 0; t 2 CC

1

;

p

1

(0) 6= 0; p

1

(0) + q

1

(0) = 0; '(0) =  (0)

(9.3)

be ful�lled. Then the problem (7:1), (7:2), (7:3) is Noetherian and its index

is given by the formula (9:2).

Below we consider Problem B which is formulated as follows: it is re-

quired to determine a function u(x; y) possessing the following properties:

1) u(x; y) is a solution of the equation (7.1) in the domain D for y 6= 0;

2) it is continuous in the closed domain

�

D and has continuous �rst deriva-

tives everywhere in the same domain except maybe at the points C

1

and

C

2

near which u

x

and u

y

tend to in�nity with an order less than 1;

3) it satis�es the boundary conditions

(pu

x

+ qu

y

+ �u)j

�

= '; (9.4)

uj

CC

1

=  ; (9.5)

where '; p; q; � 2 C

1;h

,  2 C

2;h

, 0 < h < 1.
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Theorem 9.2. Let H j

�

6= 0 and let the direction l = (p; q) form with the

exterior to the curve � normal an acute angle, i.e., cos(

d

l; N)j

�

> 0 and

cj

D

� 0; (9.6)

�j

�

� 0; (9.7)

[a

2

� b

2

+ 4c� 2(a

x

+ b

y

+ a

y

+ b

x

)]j

D

�
� 0; (a+ b)j

D

�
� 0: (9.8)

Then Problem B fails to have more than one solution.

Proof. Let us show that the corresponding to (7.1), (9.4), (9.5) homogeneous

problem has only the trivial solution. Let u

0

(x; y) be a nonzero solution of

the corresponding homogeneous problem. As far as uj

CC

1

= 0, u

0

(x; y) is

not constant. By (9.6), (9.7), cos(

d

l; N)j

�

> 0 and by the Hopf and Zaremba{

Giraud principles, the function u

0

(x; y) cannot reach in D

+

[ � a positive

maximum and a negative minimum [11]. Since the conditions (9.8) are

ful�lled, by virtue of the extremum principle for hyperbolic equations [2],

the function u

0

(x; y) takes its positive maximum and negative minimum on

the segment C

1

C

2

. Suppose, for example, that the function u

0

(x; y) at the

point P (x

0

; 0), 0 < x

0

< 1, reaches its positive maximum. Then on the one

hand

@u

0

@y

(x

0

; 0) = lim

y!�0

u

0

(x

0

; y)� u

0

(x

0

; 0)

y

� 0; (9.9)

but on the other hand, because of the Zaremba{Giraud principle, for the

domain D

+

at the point P (x

0

; 0) 2 @D

+

we have

@u

@y

(x

0

; 0) < 0;

which contradicts (9.9). The case of the negative minimum is considered

analogously. �

When considering the question on solvability of Problem B, we assume

below that c � 0, � � 0.

Having di�erentiated the condition (9.5) along the characteristic CC

1

,

we obtain

(u

x

� u

y

)j

CC

1

=  

0

: (9.10)

The problem (7.1), (9.4), (9.10) is in fact Problem A under the conditions

c � 0, p

1

= p, q

1

= q, �

1

= 0, p

2

= 1, q

2

= �1, �

2

= 0,  =  

0

. Denote by

�

1

the index of the problem (7.1), (9.4), (9.10).

We have the following

Theorem 9.3. Under the conditions (p+iq)j

�

6= 0, p(0) 6= 0, p(0)+q(0) =

0, c � 0, � � 0, � = 1, '(0) =  

0

(0) = 0, from the uniqueness of the solution

of Problem B follows its existence.
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Proof. According to the de�nition of the index �

1

= d

1

� d

2

, where d

1

is the number of linearly independent solutions of the corresponding to

(7.1), (9.4), (9.10) homogeneous problem and d

2

is the number of solvability

conditions imposed on the right sides of the problem (7.1), (9.4), (9.10). It

is obvious that under the conditions of Theorem 9.3, the function u �

const is a solution of the corresponding to (7.1), (9.4), (9.10) homogeneous

problem. Let us show that the homogeneous problem fails to have other

solutions. Indeed, let eu be a solution of the corresponding to (7.1), (9.4),

(9.10) homogeneous problem. Then because of the fact that

@eu

@CC

1

= (eu

x

�

eu

y

)j

CC

1

= 0 and hence euj

CC

1

= const, the function eu � eu(C

1

) will be a

solution of the homogeneous problem. The uniqueness of the solution of

Problem B implies that either eu� eu(C

1

) � 0 or eu � const. Thus we have

shown that d

1

= 1. But �

1

= 1, therefore d

2

= d

1

��

1

= 0 and consequently,

the nonhomogeneous problem (7.1), (9.4), (9.10) is undoubtedly solvable.

Let eu be its solution. Then the solution of Problem B has the form u(P ) =

eu(P )� eu(C

1

)+ (C

1

), P 2 D. Really, it is obvious that u(P ) satis�es both

equations (7.1) and (9.4). It remains to verify the condition (9.5). As it is

easily seen,

@eu

@CC

1

=  

0

implies that

eu(P )� eu(C

1

) =

P

Z

C

1

 

0

ds =  (P )�  (C

1

); P 2 CC

1

:

Therefore for P 2 CC

1

we have

u(P ) = eu(P )� eu(C

1

) +  (C

1

) =  (P )�  (C

1

) +  (C

1

) =  (P );

which proves Theorem 9.3. �

From Theorems 9.3 and 9.4 we have

Theorem 9.4. Let (9:8) be ful�lled and (p + iq)j

�

6= 0, cos(

d

l; N)j

�

> 0,

p(0) 6= 0, p(0) + q(0) = 0, c � 0, � � 0, �

1

= 1, '(0) =  

0

(0) = 0. Then

Problem B is uniquely solvable.
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