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In the present note, we consider the question of solvability of the boundary value

problem

u

00

(t) = F (u)(t); (1)

u(a) = 0; u(b) = 0; (2)

where the continuous operator F : C

0

([a; b]) ! L([a; b]) satis�es the Carath�eodory con-

ditions.

Before we proceed to formulate the basic results, let us introduce the following nota-

tion:

R = ]�1;+1[ , R

+

= [0;+1[ ;

C([a; b]) is the space of continuous functions f : [a; b] ! R with the norm kfk

C

=

maxfjf(t)j : a � t � bg;

C

0

([a; b]) is the space of continuously di�erentiable functions f : [a; b] ! R with the

norm kfk

C

0 = kfk

C

+ kf

0

k

C

; C

0

0

([a; b]) =

n

f 2 C

0

([a; b]) : f(a) = 0; f(b) = 0

o

;

e

C

0

([a; b]) is the set of absolutely continuous, with its �rst derivative, functions f :

[a; b]! R;

L([a; b]) is the space of summable on [a; b] functions f : ]a; b[! R with the norm

kfk

L

=

R

b

a

jf(s)j ds.

M(A;B) is the set of measurable functions F : A! B;

K

0

([a; b]) is the set of operators p : C

0

([a; b])!M([a; b]; R);

L([a; b]) is the set of linear continuous operators l : C([a; b])! L([a; b]) such that for

any r > 0 there exists g

r

2 L([a; b]) satisfying

jl(u)(t)j � g

r

(t) for a < t < b; kuk

C

� r;

K([a; b]) is the set of continuous operators F : C

0

([a; b])! L([a; b]) such that for any

r > 0 there exists g

r

2 L([a; b]) satisfying

jF (u)(t)j � g

r

(t) for a < t < b; kuk

C

0 � r;

K

1

([a; b]�R;R

+

) is the set of functions q : ]a; b[�R! R

+

satisfying the Carath�eodory

condition;

� : L([a; b])! L([a; b]) is an operator de�ned by

�(p)(t) = exp

h

t

Z

a+b

2

p(s) ds

i

:
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�

�

: L([a; b])! L([a; b]) is an operator de�ned by

�

�

(p)(t) =

1

�(p)(t)

�

�

�

t

Z

�

�(p)(s) ds

�

�

�

;

[p(t)]

+

=

1

2

(jp(t)j+ p(t)), [p(t)]

�

=

1

2

(jp(t)j � p(t)).

An operator l 2 L([a; b]) is said to be positive (negative) if for any nonnegative

function u 2 C([a; b]) the function l(u) is nonnegative (nonpositive).

In what follows, we assume F 2 K([a; b]). Under solution of the equation (1) it is

understood a function u 2

e

C

0

([a; b]) which almost everywhere satis�es it.

De�nition. Let l 2 L([a; b]). We say that a vector function (p; g

1

; g

2

) : ]a; b[! R

3

belongs to the set V (]a; b[ ; l) if p, g

1

, g

2

2 L([a; b]) and for any function g 2M([a; b]; R)

satisfying

g

1

(t) � g(t) � g

2

(t) for a < t < b;

there exists a positive function w 2

e

C

0

([a; b]) such that

w

00

(t) � p(t)w(t) + g(t)w

0

(t) + l(w)(t) for a < t < b:

Remark. Let l 2 L([a; b]) be a negative operator and p(t) + l(1)(t) � 0 for a < t < b.

Then for any g

1

, g

2

2 L([a; b]) satisfying g

1

(t) � g

2

(t) for a < t < b, we have (p; g

1

; g

2

) 2

V (]a; b[ ; l).

Theorem 1. Let on the set C

0

0

([a; b]) the inequalities

�

F (v)(t) � p

1

(t)v(t) � p

2

(v)(t)v

0

(t) � l(v)(t)

�

sgn v(t) � �q

�

t; kvk

C

0

�

;

g

1

(t) � p

2

(v)(t) � g

2

(t) (3)

be ful�lled, where l 2 L([a; b]) is a negative operator, p

2

2 K

0

([a; b]), q 2 K

1

([a; b] �

R;R

+

) is nondecreasing in the second argument and

lim

x!+1

1

x

b

Z

a

q(s; x) ds = 0: (4)

Let, moreover,

(p

1

; g

1

; g

2

) 2 V

�

]a; b[ ; l

�

:

Then the problem (1), (2) has at least one solution.

Mention two corollaries of Theorem 1 for the equation

u

00

(t) = h(t)u(�(t)) +G(u)(t); (5)

where G 2 K([a; b]), � 2M([a; b]; [a; b]), and h 2 L([a; b]) is a nonpositive function.

Corollary 1. Let on the set C

0

0

([a; b]) the inequality

G(v)(t) sgn v(t) � �q

�

t; kvk

C

0

�

(6)
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be ful�lled, where q 2 K

1

([a; b] � R;R

+

) is nondecreasing in the second argument and

satis�es (4). Moreover, let

�

b� �(t)

�

�(t)

Z

a

(s� a)jh(s)j ds+

+

�

�(t) � a

�

b

Z

�(t)

(b� s)jh(s)j ds < b� a for a < t < b:

Then the problem (5), (2) has at least one solution.

Corollary 2. Let on the set C

0

0

([a; b]) the inequality (6) be ful�lled, where q 2

K

1

([a; b]�R;R

+

) is nondecreasing in the second argument and satis�es (4). Let, more-

over, there exist c 2 [a; b] such that

c

Z

a

�

a

(p)(s)jh(s)j ds < 1;

b

Z

c

�

b

(p)(s)jh(s)j ds < 1;

�

t� �(t)

�

�(p)(t)

c

Z

t

jh(s)j

�(p)(s)

d � 1 for a < t < b;

where p(t) = h(t)(�(t) � t) for a < t < b. Then the problem (5), (2) has at least one

solution.

Finally, we give a corollary of Theorem 1 for the equation

u

00

(t) = p

1

(t)u(t) + p

2

(u)(t)u

0

(t) + h(t)u(�(t)) +G(u)(t); (7)

where p

2

, G 2 K([a; b]), � 2M([a; b]; [a; b]), p

1

, h 2 L([a; b]) and h is positive.

Corollary 3. Let on the set C

0

0

([a; b]) the inequalities (3) and (6) be ful�lled, where

g

1

, g

2

2 L([a; b]), q 2 K

1

([a; b] � R;R

+

) is nondecreasing in the second argument and

satis�es (4). Let, moreover, there exist �

i

2 [0; 1[ , �

ij

2 [0;+1[ , i; j = 1; 2, and

c 2 [a; b] such that

+1

Z

0

ds

�

11

+ �

12

s+ s

2

>

(c� a)

1��

1

1� �

1

;

+1

Z

0

ds

�

21

+ �

22

s+ s

2

>

(b� c)

1��

2

1� �

2

and

(t � a)

2�

1

�

p

1

(t) + h(t)

�

� ��

11

; (t � a)

�

1

h

g

1

(t) +

�

1

t� a

+

�

�(t) � t

�

h(t)

i

� ��

12

for a < t < c;

(b � t)

2�

2

�

p

1

(t) + h(t)

�

� ��

21

; (b � t)

�

2

h

g

2

(t) �

�

2

b� t

+

�

�(t) � t

�

h(t)

i

� �

22

for c < t < b:

Then the problem (7), (2) has at least one solution.
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