M. AshordiA

ON SYSTEMS OF LINEAR GENERALIZED ORDINARY DIFFERENTIAL AND INTEGRAL INEQUALITIES

(Reported on April 15-22, 1996)

In the present note, we consider the questions of estimates of the solutions of the system of differential inequlities

$$
\begin{equation*}
d x(t) \cdot \operatorname{sign}\left(t-t_{0}\right) \leq d C(t) \cdot x(t)+d q(t) \quad \text { for } \quad t \in[a, b] \backslash\left\{t_{0}\right\} \tag{1}
\end{equation*}
$$

satisfying the condition

$$
\begin{equation*}
x\left(t_{0}\right)+(-1)^{j} d_{j} x\left(t_{0}\right) \leq c_{0}+d_{j} C\left(t_{0}\right) \cdot c_{0}+d_{j} q\left(t_{0}\right)(j=1,2) \tag{2}
\end{equation*}
$$

and of the solutions of the system of integral inequalities

$$
\begin{equation*}
x(t) \leq c_{0}+\left(\int_{t_{0}}^{t} d C(\tau) \cdot x(\tau)+q(t)-q\left(t_{0}\right)\right) \operatorname{sign}\left(t-t_{0}\right) \quad \text { for } \quad t \in[a, b] \tag{3}
\end{equation*}
$$

satisfying the condition (2), where $t_{0} \in[a, b], c_{0} \in R^{n}, q \in \operatorname{BV}\left([a, b], R^{n}\right)$ and $C=$ $\left(c_{i k}\right)_{i, k=1}^{n} \in \operatorname{BV}\left([a, b], R^{n \times n}\right)$.

The following notation and definitions will be used: $R=]-\infty,+\infty[,[a, b](a, b \in R)$ is a closed segment, $R^{n \times m}$ is the set of all real $n \times m$-matrices $X=\left(x_{i k}\right)_{i, k=1}^{n, m}$; if $X \in R^{n \times n}$, then $\operatorname{det}(X)$ is the determinant of X, I_{n} is the identity $n \times n$-matrix; $R^{n}=R^{n \times 1}$ is the set of all real column n-vectors $x=\left(x_{i}\right)_{i=1}^{n}$.
$\operatorname{BV}\left([a, b], R^{n \times m}\right)$ is the set of all matrix-functions $X=\left(x_{i k}\right)_{i, k=1}^{n, m}:[a, b] \rightarrow R^{n \times m}$ such that every its component $x_{i k}$ has bounded total variation on [a,b]. If $I \subset R$ is an interval, then $\operatorname{BV}\left(I, R^{n \times m}\right)$ is the set of all matrix-functions $X: I \rightarrow R^{n \times m}$ such that $X \in \operatorname{BV}\left([c, d], R^{n \times m}\right)$ for every $c, d \in I . X(t-)=\left(x_{i k}(t-)\right)_{i, k=1}^{n, m}$ and $X(t+)=$ $\left(x_{i k}(t+)\right)_{i, k=1}^{n, m}$ are the left and the right limits of X at the point $t \in[a, b](X(a-)=X(a)$, $X(b+)=X(b)), d_{1} X(t)=X(t)-X(t-), d_{2} X(t)=X(t+)-X(t)$.

If $g:[a, b] \rightarrow R$ is a nondecreasing function, $x:[a, b] \rightarrow R$ and $a \leq s<t \leq b$, then

$$
\int_{s}^{t} x(\tau) d g(\tau)=\int_{] s, t[} x(\tau) d g(\tau)+x(t) d_{1} g(t)+x(s) d_{2} g(s)
$$

where $\int_{] s, t[} x(\tau) d g(\tau)$ is the Lebesgue-Stieltjes integral over the open interval $] s, t$ [with respect to the measure μ_{g} corresponding to the function g (if $s=t$, then $\int_{s}^{t} x(\tau) d g(\tau)=0$).

1991 Mathematics Subject Classification. 34B05.
Key words and phrases. Differential and integral inequalities, system of linear generalized ordinary differential equations.

If $g_{j}:[a, b] \rightarrow R(j=1,2)$ are nondeacreasing functions, $g=g_{1}-g_{2}$ and $x:[a, b] \rightarrow R$, then

$$
\int_{s}^{t} x(\tau) d g(\tau)=\int_{s}^{t} x(\tau) d g_{1}(\tau)-\int_{s}^{t} x(\tau) d g_{2}(\tau) \quad \text { for } \quad a \leq s \leq t \leq b
$$

If $G=\left(g_{i k}\right)_{i, k=1}^{n} \in \operatorname{BV}\left([a, b], R^{n \times n}\right), x=\left(x_{k}\right)_{k=1}^{n} \in \operatorname{BV}\left([a, b], R^{n}\right)$, then

$$
\int_{s}^{t} d G(\tau) \cdot x(\tau)=\left(\sum_{k=1}^{n} \int_{s}^{t} x_{k}(\tau) d g_{i k}(\tau)\right)_{i=1}^{n} \quad \text { for } \quad a \leq s \leq t \leq b
$$

Let $I \subset[a, b]$ be an interval and $A \in \mathrm{BV}\left(I, R^{n \times n}\right)$. A vector-function is said to be a solution of the system of the linear generalized ordinary differential equations $d x(t)=$ $d A(t) \cdot x(t)+d q(t)$ (inequalities $d x(t) \leq d A(t) \cdot x(t)+d q(t))$ on I if

$$
x(t)-x(s)-\int_{s}^{t} d A(\tau) \cdot x(\tau)-q(t)+q(s)=0(\leq 0) \quad \text { for } \quad s \leq t(s, t \in I)
$$

Theorem 1. Let $c_{i k}(i \neq k ; i, k=1, \ldots, n)$ be functions nondecreasing on $[a, b]$, $C(t)=\left(c_{i k}(t)\right)_{i, k=1}^{n}$,

$$
\begin{align*}
& \operatorname{det}\left(I_{n}+(-1)^{j} d_{j} C(t)\right) \neq 0 \quad \text { for } \quad(-1)^{j}\left(t-t_{0}\right) \geq 0 \quad(j=1,2) \tag{4}\\
& 1+d_{j} c_{i i}(t)>0 \quad \text { for } \quad(-1)^{j}\left(t-t_{0}\right) \geq 0 \quad(j=1,2 ; \quad i=1, \ldots, n) \tag{5}
\end{align*}
$$

and

$$
\begin{equation*}
\sum_{i=1}^{n} d_{j} c_{i k}(t)<1 \quad \text { for } \quad(-1)^{j}\left(t-t_{0}\right)<0 \quad(j=1,2 ; \quad k=1, \ldots, n) \tag{6}
\end{equation*}
$$

Let, moreover, $x \in \operatorname{BV}\left(\left[a, t_{0}\left[, R^{n}\right) \cap \mathrm{BV}(] t_{0}, b\right], R^{n}\right)$ be a solution of the system (1) satisfying the condition (2). Then

$$
\begin{equation*}
x(t) \leq y(t) \quad \text { for } \quad t \in[a, b] \backslash\left\{t_{0}\right\} \tag{7}
\end{equation*}
$$

where $y \in \operatorname{BV}\left([a, b], R^{n}\right)$ is a solution of the problem

$$
\begin{array}{cl}
d y(t)=[d C(t) \cdot y(t)+d q(t)] \operatorname{sign}\left(t-t_{0}\right) \quad \text { for } & t \in[a, b] \backslash\left\{t_{0}\right\} \\
(-1)^{j} d_{j} y\left(t_{0}\right)=d_{j} C\left(t_{0}\right) \cdot y\left(t_{0}\right)+d_{j} q\left(t_{0}\right) & (j=1,2) \\
y\left(t_{0}\right)=c_{0} \tag{10}
\end{array}
$$

Theorem 2. Let $c_{i k}(i, k=1, \ldots, n)$ be functions nondecreasing on $[a, b]$ and (4) and (6) hold, where $C(t)=\left(c_{i k}(t)\right)_{i, k=1}^{n}$. Then for every solution $x \in \operatorname{BV}\left(\left[a, t_{0}\left[, R^{n}\right) \cap\right.\right.$ BV(]$\left.\left.t_{0}, b\right], R^{n}\right)$ of the system (3) satisfying the condition (2), the estimate (7) holds, where $y_{0} \in \operatorname{BV}\left([a, b], R^{n}\right)$ is a solution of the problem (8)-(10).

Remark. The condition

$$
\max _{k=1, \ldots, n} \sum_{i=1}^{n}\left|d_{j} c_{i k}(t)\right|<1 \quad \text { for } \quad t \in[a, b] \quad(j=1,2)
$$

guarantees the conditions (4)-(6). Moreover, in view of (4) the problem (8)-(10) has a unique solution (see [1,Theorem III.1.4]).

REFERENCES

1. Š. Schwabik, M. Tvrdý, and O. Vejvoda, Differential and integral equations: boundary value problems and adjoints. Academia, Praha, 1979.

Author's address:
Sukhumi Branch of Tbilisi State University
19, Al. Chavchavadze St., Tbilisi 380049
Georgia

