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ON SYSTEMS OF LINEAR GENERALIZED ORDINARY

DIFFERENTIAL AND INTEGRAL INEQUALITIES

(Reported on April 15{22, 1996)

In the present note, we consider the questions of estimates of the solutions of the

system of di�erential inequlities
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guarantees the conditions (4){(6). Moreover, in view of (4) the problem (8){(10) has a

unique solution (see [1,Theorem III.1.4]).
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