A. Lomtatidze

ON A NONLOCAL BOUNDARY VALUE PROBLEM FOR SECOND ORDER NONLINEAR EQUATIONS

(Reported on March 11-18, 1996)

Below we will use the following notation:
R is the set of real numbers.
$L([a, b])$ is the set of the functions $p:] a, b[\rightarrow R$ which are Lebesgue integrable on $[a, b]$.
$L_{l o c}(] a, b[)$ is the set of the functions $\left.p:\right] a, b[\rightarrow R$ which are Lebesgue integrable on $[a+\varepsilon, b-\varepsilon]$ for arbitrarily small $\varepsilon>0$.
$K_{0}(] a, b\left[\times R^{2}\right)$ is the set of the functions $\left.q:\right] a, b\left[\times R^{2} \rightarrow R\right.$ for which the mapping $t \longmapsto g\left(t, x_{1}(t), x_{2}(t)\right)$ is measurable for any continuous functions $\left.x_{i}:\right] a, b[\rightarrow R(i=1,2)$.
$\sigma: L_{l o c}(] a, b[) \rightarrow L_{l o c}(] a, b[)$ is an operator defined by the equality

$$
\sigma(p)(t)=\exp \left[\int_{\frac{a+b}{2}}^{t} p(s) d s\right]
$$

If $\sigma(p) \in L([a, b]), \alpha \in[a, b]$ and $\beta \in] \alpha, b]$, then

$$
\begin{aligned}
\sigma_{\alpha}(p)(t) & =\frac{1}{\sigma(p)(t)}\left|\int_{\alpha}^{t} \sigma(p)(s) d s\right| \\
\sigma_{\alpha \beta}(p)(t) & =\frac{1}{\sigma(p)(t)} \int_{\alpha}^{t} \sigma(p)(s) d s \cdot \int_{t}^{\beta} \sigma(p)(s) d s
\end{aligned}
$$

$u(s+)$ and $u(s-)$ are the limits of the function u at the point s from the right and from the left, respectively.

If $\mu:[a, b] \rightarrow R$ is a function of bounded variation, then by $\mu^{*}(t)$ we denote the full variation of the function μ on the segment $[a, t]$.

Under solution of the equation

$$
\begin{equation*}
u^{\prime \prime}=f\left(t, u, u^{\prime}\right) \tag{1}
\end{equation*}
$$

where $f:] a, b\left[\times R^{2} \rightarrow R\right.$ satisfies the Carathéodory conditions on every compactum contained in $] a, b\left[\times R^{2}\right.$, we understand a function $\left.u:\right] a, b[\rightarrow R$ which is absolutely continuous along with its first derivative on every segment from $] a, b[$, and satisfies (1) a.e.

[^0]In the present paper, we consider the problem of existence and uniqueness of solution of the equation (1) satisfying the boundary conditions

$$
\begin{equation*}
u(a+)=0, \quad u(b-)=\int_{a}^{b} u(s) d \mu(s) \tag{2}
\end{equation*}
$$

where $\mu:[a, b] \rightarrow R$ is a function of bounded variation.
Some criteria for unique solvability of the problem in a linear case are contained in $[1,2]$. In the nonlinear case, a problem of the type (1), (2) has been considered in [3-5]. However, in those works μ is assumed to be a piecewise constant function $(\mu(t)=0$ for $a \leq t \leq t_{0}$ and $\mu(t)=1$ for $\left.t_{0}<t \leq b\right)$.

Theorems of existence and uniqueness of solution of the problem (1), (2) given in the present paper cover the case where μ is not, generaly speaking, piecewise constant, and f is not integrable in the first argument on the segment [a, b], having singularities at the points $t=a$ and $t=b$.

Before passing to the formulation of basic results, let us introduce the following definitions.

Definition 1. We say that a vector-function $\left.\left(p_{1}, p_{2}\right):\right] a, b\left[\rightarrow R^{2}\right.$ belongs to the class $U_{\mu}(] a, b[)$ if

$$
\sigma\left(p_{2}\right), \sigma_{a b}\left(p_{2}\right) p_{1} \in L(] a, b[)
$$

and the solution u_{1} of the singular Cauchy problem

$$
u^{\prime \prime}=p_{1}(t) u+p_{2}(t) u^{\prime} ; \quad u(a+)=0, \quad \lim _{t \rightarrow a+} \frac{u^{\prime}(t)}{\sigma\left(p_{2}\right)(t)}=1
$$

satisfies the conditions

$$
u_{1}(t)>0 \text { for } a<t<b, \quad u_{1}(b-)>\int_{a}^{b} u_{1}(s) d \mu^{*}(s)
$$

Definition 2. We say that a vector-function $\left.\left(p_{1}, p_{12}, p_{22}\right):\right] a, b\left[\rightarrow R^{3}\right.$ belongs to the class $V_{\mu}(] a, b[)$ if

$$
\begin{align*}
p_{12}(t) & \leq p_{22} \quad \text { for } a<t<b, \tag{3}\\
p_{i 2}, p_{1} & \in L_{l o c}(] a, b[), \quad i=1,2, \tag{4}\\
\sigma\left(p_{i 2}\right) \in L([a, b]), & \sigma_{a b}\left(p_{i 2}\right) p_{1} \in L([a, b]), \quad i=1,2, \tag{5}
\end{align*}
$$

and $\left(p_{1}, p_{2}\right) \in U_{\mu}(] a, b[)$ for any measurable function $\left.p_{2}:\right] a, b[\rightarrow R$ satisfying

$$
p_{12}(t) \leq p_{2}(t) \leq p_{22}(t) \quad \text { for } \quad a<t<b
$$

Theorem 1. On the set $] a, b\left[\times R^{2}\right.$, let the inequalities

$$
\begin{gathered}
{\left[f(t, x, y)-p_{1}(t) x-p_{2}(t, x, y) y\right] \operatorname{sgn} x \geq-p(t)} \\
p_{12}(t) \leq p_{2}(t, x, y) \leq p_{22}(t)
\end{gathered}
$$

be fulfilled, where $p_{2} \in K_{0}(] a, b\left[\times R^{2}\right)$ and $\left(p_{1}, p_{2}, p_{22}\right) \in V_{\mu}(] a, b[)$. Furthermore, let $\sigma_{a b}\left(p_{i 2}\right) p \in L([a, b])(i=1,2)$, and for some point $\left.t_{1} \in\right] a, b[$ let

$$
\begin{equation*}
\left|f(t, x, y)-p_{1}(t) x-p_{2}(t, x, y) y\right| \leq p(t) \quad \text { for } \quad t_{1}<t<b, \quad x \in R, y \in R \tag{6}
\end{equation*}
$$

Then the problem (1), (2) has at least one solution.

Remark 1. Let μ be nondecreasing, the conditions (3)-(5) be fulfilled, and let $\left(p_{1}, p_{12}, p_{22}\right) \notin V_{\mu}(] a, b[)$. Then there exists a function f satisfying the conditions of Theorem 1 for which the problem (1), (2) has no solution.

Remark 2. The condition (6) can be replaced by the condition

$$
\left|f(t, x, y)-p_{1}(t) x-\widetilde{p}_{2}(t, x, y) y\right| \leq p(t) \quad \text { for } \quad t_{1}<t<b, \quad x \in R, \quad y \in R
$$

where $\widetilde{p}_{2} \in K_{0}(] a, b\left[\times R^{2}\right)$ and $p_{12}(t) \leq \widetilde{p}_{2}(t) \leq p_{22}(t, x, y)$ for $\left.(t, x, y) \in\right] t_{1}, b\left[\times R^{2}\right.$.
As an example, let us consider the problem (1), (2) in the case where μ increases, $\mu(b)-\mu(a)<1$, and

$$
f(t, x, y)=p_{0}(t)+p_{1}(t) x+p_{2}(t) y+p_{3}(t) x^{2 n+1}|y|^{k}, \quad p_{i} \in L_{l o c}(] a, b[) i=\overline{0,3}
$$

where n and k are positive integers. Assume that $\lambda>0,0 \leq \delta<1, p_{1}(t) \geq 0, p_{3}(t) \geq 0$, $\left|p_{2}(t)\right| \leq \lambda+\frac{\delta}{t-a}+\frac{\delta}{b-t}$ for $a<t<b$,

$$
\int_{a}^{b}(s-a)(b-s)\left|p_{i}(s)\right| d s<+\infty, \quad i=0,1
$$

and $p_{3}(t) \equiv 0$ in a neighborhood of the point b. Taking into account Theorem 1.2 in [2], we obtain from Theorem 1 that in this case the problem (1), (2) has at least one solution. As it is seen from the example, the function f may have nonintegrable singularities for $t=a$ and $t=b$.

Corollary 1. On the set $] a, b\left[\times R^{2}\right.$, let the inequality

$$
\begin{equation*}
f(t, x, y) \operatorname{sgn} x \geq p_{1}(t)|x|-p_{2}(t)|y|-p(t) \tag{7}
\end{equation*}
$$

be fulfilled, where $\left(p_{1},-p_{2}, p_{2}\right) \in V_{\mu}(] a, b[)$ and

$$
\sigma_{a b}\left((-1)^{i} p_{2}\right) p \in L([a, b]), \quad i=1,2
$$

Furthermore, let for some point $\left.t_{1} \in\right] a, b[$

$$
\begin{equation*}
\left|f(t, x, y)-p_{1}(t) x-p_{2}(t) y\right| \leq p(t) \quad \text { for } t_{1}<t<b, \quad x \in R, \quad y \in R \tag{8}
\end{equation*}
$$

Then the problem (1), (2) has at least one solution.
Corolary 2. Let there exist numbers $\lambda_{i} \in\left[0,1\left[, l_{i} \in\left[0,+\infty\left[, \gamma_{i} \in[0,+\infty[, i=1,2\right.\right.\right.\right.$, $c \in] a, b[$ and the function $p:] a, b[\rightarrow] 0,+\infty[$ such that

$$
\begin{gathered}
\int_{0}^{+\infty} \frac{d s}{l_{1}+l_{2} s+s^{2}} \geq \frac{(c-a)^{1-\lambda_{1}}}{1-\lambda_{1}}, \int_{\gamma_{1}}^{\gamma_{2}} \frac{d s}{l_{1}+l_{2} s+s^{2}} \geq \frac{(b-c)^{1-\lambda_{2}}}{1-\lambda_{2}} \\
\int_{\gamma_{1}}^{\gamma_{2}} \frac{s d s}{l_{1}+l_{2} s+s^{2}}<-\ln \left(\mu^{*}(b)-\mu^{*}(a)\right)
\end{gathered}
$$

let the function $t \longmapsto(t-a)(b-t) p(t)$ be summable on $[a, b]$, and on the set $] a, b\left[\times R^{2}\right.$ let the inequality (7) be fulfilled, where

$$
\begin{aligned}
& p_{1}(t)=\left\{\begin{array}{ll}
-l_{1}(t-a)^{-2 \lambda_{1}} & \text { for } a<t \leq c \\
-l_{1}(b-t)^{-2 \lambda_{2}} & \text { for } c<t<b
\end{array},\right. \\
& p_{2}(t)=\left\{\begin{array}{lll}
l_{2}(t-a)^{-\lambda_{1}}+\lambda_{1}(t-a)^{-1} & \text { for } & a<t \leq c \\
l_{2}(b-t)^{-\lambda_{2}}+\lambda_{2}(b-t)^{-1} & \text { for } & c<t<b
\end{array} .\right.
\end{aligned}
$$

Moreover, let (8) be fulfilled for some point $\left.t_{1} \in\right] a, b[$. Then the problem (1), (2) has at least one solution.

References

1. A. G. Lomtatidze, Nonlocal boundary value problem for linear ordinary differential equations of second order. (Russian) Differentsial'nye Uravneniya 31(1995), No. 3, 446-455.
2. A. Lomtatidze, On a nonlocal boundary value problem for second order linear ordinary differential equations. J. Math. Anal. Appl. 193(1995), 889-908.
3. A. G. Lomtatidze, On a singular three-point boundary value problem. (Russian) Trudy Inst. Prikl. Mat. I. N. Vekua 17(1986), 122-133.
4. A. G. Lomtatidze, On a boundary value problem for second order linear ordinary differential equations with singularities. (Russian) Differentsial'nye Uravneniya $22(1986)$, No. 3, 416-426.
5. A. G. Lomtatidze, To the question on solvability of singular boundary value problems for second order ordinary differential equations. (Russian) Trudy Inst. Prikl. Mat. I. N. Vekua 22(1987), 135-149

Author's address:

N. Muskhelishvili Institute of Computational Mathematics

Georgian Academy of Sciences
8, Akuri St., Tbilisi 380093
Georgia

[^0]: 1991 Mathematics Subject Classification. 34K10.
 Key words and phrases. Second order equation, nonlocal boundary value problem, existence and uniqueness.

