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Below we will use the following notation:

R is the set of real numbers.

L([a; b]) is the set of the functions p : ]a; b[! R which are Lebesgue integrable on

[a; b].

L

loc

(]a; b[) is the set of the functions p : ]a; b[! R which are Lebesgue integrable on

[a+ "; b� "] for arbitrarily small " > 0.

K

0

(]a; b[�R

2

) is the set of the functions q : ]a; b[�R

2

! R for which the mapping

t 7�! g(t; x

1

(t); x

2

(t)) is measurable for any continuous functions x

i

: ]a; b[! R (i = 1; 2).

� : L

loc

(]a; b[)! L

loc

(]a; b[) is an operator de�ned by the equality

�(p)(t) = exp

h

t

Z

a+b

2

p(s)ds

i

:

If �(p) 2 L([a; b]), � 2 [a; b] and � 2 ]�; b], then

�

�

(p)(t) =

1

�(p)(t)

�

�

�

t

Z

�

�(p)(s)ds

�

�

�

;

�

��

(p)(t) =

1

�(p)(t)

t

Z

�

�(p)(s)ds �

�

Z

t

�(p)(s)ds:

u(s+) and u(s�) are the limits of the function u at the point s from the right and

from the left, respectively.

If � : [a; b] ! R is a function of bounded variation, then by �

�

(t) we denote the full

variation of the function � on the segment [a; t].

Under solution of the equation

u

00

= f(t; u; u

0

); (1)

where f : ]a; b[�R

2

! R satis�es the Carath�eodory conditions on every compactum con-

tained in ]a; b[�R

2

, we understand a function u : ]a; b[! R which is absolutely continuous

along with its �rst derivative on every segment from ]a; b[ , and satis�es (1) a.e.
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In the present paper, we consider the problem of existence and uniqueness of solution

of the equation (1) satisfying the boundary conditions

u(a+) = 0; u(b�) =

b

Z

a

u(s)d�(s); (2)

where � : [a; b]! R is a function of bounded variation.

Some criteria for unique solvability of the problem in a linear case are contained in

[1, 2]. In the nonlinear case, a problem of the type (1), (2) has been considered in [3{5].

However, in those works � is assumed to be a piecewise constant function (�(t) = 0 for

a � t � t

0

and �(t) = 1 for t

0

< t � b).

Theorems of existence and uniqueness of solution of the problem (1), (2) given in the

present paper cover the case where � is not, generaly speaking, piecewise constant, and

f is not integrable in the �rst argument on the segment [a; b], having singularities at the

points t = a and t = b.

Before passing to the formulation of basic results, let us introduce the following de�-

nitions.

De�nition 1. We say that a vector-function (p

1

; p

2

) : ]a; b[! R

2

belongs to the class

U

�

(]a; b[) if

�(p

2

); �

ab

(p

2

)p

1

2 L(]a; b[)

and the solution u

1

of the singular Cauchy problem

u

00

= p

1

(t)u + p

2

(t)u

0

; u(a+) = 0; lim

t!a+

u

0

(t)

�(p

2

)(t)

= 1

satis�es the conditions

u

1

(t) > 0 for a < t < b; u

1

(b�) >

b

Z

a

u

1

(s)d�

�

(s):

De�nition 2. We say that a vector-function (p

1

; p

12

; p

22

) : ]a; b[! R

3

belongs to the

class V

�

(]a; b[) if

p

12

(t) � p

22

for a < t < b; (3)

p

i2

; p

1

2 L

loc

(]a; b[); i = 1; 2; (4)

�(p

i2

) 2 L([a; b]); �

ab

(p

i2

)p

1

2 L([a; b]); i = 1; 2; (5)

and (p

1

; p

2

) 2 U

�

(]a; b[) for any measurable function p

2

: ]a; b[! R satisfying

p

12

(t) � p

2

(t) � p

22

(t) for a < t < b:

Theorem 1. On the set ]a; b[�R

2

, let the inequalities

�

f(t; x; y)� p

1

(t)x � p

2

(t; x; y)y

�

sgnx � �p(t);

p

12

(t) � p

2

(t; x; y) � p

22

(t)

be ful�lled, where p

2

2 K

0

(]a; b[�R

2

) and (p

1

; p

2

; p

22

) 2 V

�

(]a; b[). Furthermore, let

�

ab

(p

i2

)p 2 L([a; b]) (i = 1; 2), and for some point t

1

2 ]a; b[ let

�

�

f(t; x; y)� p

1

(t)x � p

2

(t; x; y)y

�

�

� p(t) for t

1

< t < b; x 2 R; y 2 R: (6)

Then the problem (1), (2) has at least one solution.
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Remark 1. Let � be nondecreasing, the conditions (3){(5) be ful�lled, and let

(p

1

; p

12

; p

22

) 62 V

�

(]a; b[). Then there exists a function f satisfying the conditions of

Theorem 1 for which the problem (1), (2) has no solution.

Remark 2. The condition (6) can be replaced by the condition

�

�

f(t; x; y)� p

1

(t)x � ep

2

(t; x; y)y

�

�

� p(t) for t

1

< t < b; x 2 R; y 2 R;

where ep

2

2 K

0

(]a; b[�R

2

) and p

12

(t) � ep

2

(t) � p

22

(t; x; y) for (t; x; y) 2 ]t

1

; b[�R

2

.

As an example, let us consider the problem (1), (2) in the case where � increases,

�(b) � �(a) < 1, and

f(t; x; y) = p

0

(t) + p

1

(t)x + p

2

(t)y + p

3

(t)x

2n+1

jyj

k

; p

i

2 L

loc

(]a; b[) i = 0; 3;

where n and k are positive integers. Assume that � > 0, 0 � � < 1, p

1

(t) � 0, p

3

(t) � 0,

jp

2

(t)j � �+

�

t�a

+

�

b�t

for a < t < b,

b

Z

a

(s� a)(b � s)jp

i

(s)jds < +1; i = 0; 1;

and p

3

(t) � 0 in a neighborhood of the point b. Taking into account Theorem 1.2 in [2],

we obtain from Theorem 1 that in this case the problem (1), (2) has at least one solution.

As it is seen from the example, the function f may have nonintegrable singularities for

t = a and t = b.

Corollary 1. On the set ]a; b[�R

2

, let the inequality

f(t; x; y) sgnx � p

1

(t)jxj � p

2

(t)jyj � p(t) (7)

be ful�lled, where (p

1

;�p

2

; p

2

) 2 V

�

(]a; b[) and

�

ab

((�1)

i

p

2

)p 2 L([a; b]); i = 1; 2:

Furthermore, let for some point t

1

2 ]a; b[

�

�

f(t; x; y)� p

1

(t)x � p

2

(t)y

�

�

� p(t) for t

1

< t < b; x 2 R; y 2 R: (8)

Then the problem (1), (2) has at least one solution.

Corolary 2. Let there exist numbers �

i

2 [0; 1[ , l

i

2 [0;+1[ , 

i

2 [0;+1[ , i = 1; 2,

c 2 ]a; b[ and the function p : ]a; b[! ]0;+1[ such that

+1

Z

0

ds

l

1

+ l

2

s+ s

2

�

(c� a)

1��

1

1� �

1

;



2

Z



1

ds

l

1

+ l

2

s+ s

2

�

(b� c)

1��

2

1� �

2

;



2

Z



1

sds

l

1

+ l

2

s+ s

2

< � ln(�

�

(b) � �

�

(a));

let the function t 7�! (t � a)(b � t)p(t) be summable on [a; b], and on the set ]a; b[�R

2

let the inequality (7) be ful�lled, where

p

1

(t) =

�

�l

1

(t� a)

�2�

1

for a < t � c

�l

1

(b� t)

�2�

2

for c < t < b

;

p

2

(t) =

�

l

2

(t� a)

��

1

+ �

1

(t � a)

�1

for a < t � c

l

2

(b� t)

��

2

+ �

2

(b� t)

�1

for c < t < b

:
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Moreover, let (8) be ful�lled for some point t

1

2 ]a; b[ . Then the problem (1), (2) has at

least one solution.
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