N. Partsvania

TO THE QUESTION OF OSCILLATION OF SOLUTIONS OF TWO-DIMENSIONAL DIFFERENTIAL SYSTEMS WITH DEVIATED ARGUMENTS

(Reported on February 26 and March 4, 1996)

Consider the system of differential inequalities

$$
\begin{align*}
u_{1}^{\prime}(t) \operatorname{sign} u_{2}(\sigma(t)) & \geq p(t)\left|u_{2}(\sigma(t))\right| \\
u_{2}^{\prime}(t) \operatorname{sign} u_{1}(\tau(t)) & \leq-q(t)\left|u_{1}(\tau(t))\right| \tag{1}
\end{align*}
$$

where $p, q: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$are locally summable functions, $\tau, \sigma: \mathbb{R}_{+} \rightarrow \mathbb{R}$ are nondecreasing continuous functions and $\sigma(t) \leq t, \sigma(\tau(t)) \leq t$ for $t \in \mathbb{R}_{+}, \lim _{t \rightarrow+\infty} \tau(t)=+\infty$, $\lim _{t \rightarrow+\infty} \sigma(t)=+\infty$.

Definition. A proper solution $\left(u_{1}, u_{2}\right)$ of the system (1), i.e. a nontrivial solution defined in some neighbourhood of $+\infty$, is said to be oscillatory if both u_{1} and u_{2} have sequences of zeros tending to infinity. If there exists $t_{0} \in \mathbb{R}_{+}$such that $u_{1}(t) u_{2}(t) \neq 0$ for $t \geq t_{0}$, then (u_{1}, u_{2}) is said to be nonoscillatory.

In this paper, we are especially interested in the question whether every proper solution of (1) is oscillatory.

In the sequel, we assume that the condition

$$
\int_{0}^{+\infty} p(s) d s=+\infty
$$

is fulfilled.
Theorem 1. Let for some $k \in \mathbb{N}$ and for any $t_{0} \in \mathbb{R}_{+}$the inequality

$$
\begin{gathered}
\limsup _{t \rightarrow+\infty}\left(\int_{\sigma(\tau(t))}^{t} q(s) \omega_{k}\left(\sigma(\tau(s)), \sigma(\tau(t)) ; t_{0}\right) \int_{\eta_{k}\left(t_{0}\right)}^{\tau(s)} p(\xi) d \xi d s+\right. \\
\left.\quad+g_{k}\left(\sigma(\tau(t)) ; t_{0}\right) \int_{t}^{+\infty} q(s) d s\right)>1
\end{gathered}
$$

be fulfilled, where

$$
g_{k}\left(t ; t_{0}\right)=\int_{\eta_{k}\left(t_{0}\right)}^{t} p(s) \omega_{k}\left(\sigma(s), s ; t_{0}\right) d s+
$$

1991 Mathematics Subject Classification. 34K15.
Key words and phrases. Two-dimensional differential system with deviated arguments, proper solution, oscillatory solution.

$$
\begin{gather*}
+\int_{\eta_{k}\left(t_{0}\right)}^{t} q(s) \psi_{k}\left(s ; t_{0}\right) \int_{\eta_{k}\left(t_{0}\right)}^{s} p(\xi) \omega_{k}\left(\sigma(\xi), \xi ; t_{0}\right) d \xi d s \text { for } t \geq \eta_{k}\left(t_{0}\right), \\
\omega_{j}\left(t, s ; t_{0}\right)=\exp \left\{\int_{t}^{s} q(\xi) \varphi_{j}\left(\xi ; t_{0}\right) \int_{\eta_{j}\left(t_{0}\right)}^{\tau(\xi)} p\left(\xi_{1}\right) d \xi_{1} d \xi\right\} \\
\text { for } s \geq t \geq \eta_{j}\left(t_{0}\right) \quad(j=1, \ldots, k), \\
\varphi_{1}\left(t ; t_{0}\right)=1, \quad \varphi_{j}\left(t ; t_{0}\right)=\omega_{j-1}\left(\sigma(\tau(t)), t ; t_{0}\right) \quad \text { for } t \geq \eta_{j}\left(t_{0}\right) \quad(j=2, \ldots, k), \\
\psi_{1}\left(t ; t_{0}\right)=0, \quad \psi_{j}\left(t ; t_{0}\right)=\int_{\eta_{j-1}\left(t_{0}\right)}^{\sigma(\tau(t))} p(s) \exp \left\{\int_{\sigma(s)}^{t} q(\xi) \psi_{j-1}\left(\xi ; t_{0}\right) d \xi\right\} d s \tag{2}\\
\int_{1}(t)=\max \left\{s: \min (\sigma(\tau(\sigma(s))), \sigma(s)) \leq t \eta_{j}\left(t_{0}\right) \quad(j=2, \ldots, k), \quad \eta_{j}(t)=\eta_{1}\left(\eta_{j-1}(t)\right)\right.
\end{gather*}
$$

Then every proper solution of (1) is oscillatory.
(In the case of second order differential inequalities, an analogous construction of the functions $\varphi_{k}, \psi_{k}, \eta_{k}$ can be found in [1]).

Theorem 2. Let for some $k \in \mathbb{N}$ and for any $t_{0} \in \mathbb{R}_{+}$the inequality

$$
\limsup _{t \rightarrow+\infty} \psi_{k}\left(t ; t_{0}\right) \int_{t}^{+\infty} q(s) d s>1
$$

be fulfilled, where the function ψ_{k} is defined by (2).
Then every proper solution of (1) is oscillatory.

References

1. R. Koplatadze, Oscillation criteria of solutions of second order differential inequalities and equations with a delayed argument. (Russian) Trudy Inst. Prikl. Mat. I. N. Vekua 17(1986), 104-120.

Author's address:
A. Razmadze Mathematical Institute

Georgian Academy of Sciences
1, M. Aleksidze St., Tbilisi 380093
Georgia

