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TO THE QUESTION OF OSCILLATION OF SOLUTIONS

OF TWO-DIMENSIONAL DIFFERENTIAL SYSTEMS WITH

DEVIATED ARGUMENTS

(Reported on February 26 and March 4, 1996)

Consider the system of di�erential inequalities
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De�nition. A proper solution (u
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) of the system (1), i.e. a nontrivial solution

de�ned in some neighbourhood of +1, is said to be oscillatory if both u
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In this paper, we are especially interested in the question whether every proper solution

of (1) is oscillatory.

In the sequel, we assume that the condition
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Then every proper solution of (1) is oscillatory.

(In the case of second order di�erential inequalities, an analogous construction of the

functions '

k

,  

k

, �

k

can be found in [1]).

Theorem 2. Let for some k 2 N and for any t
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the inequality
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be ful�lled, where the function  

k

is de�ned by (2).

Then every proper solution of (1) is oscillatory.
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