I. Kiguradze and B. Puža

ON THE SOLVABILITY OF BOUNDARY VALUE PROBLEMS FOR SYSTEMS OF NONLINEAR DIFFERENTIAL EQUATIONS WITH DEVIATING ARGUMENTS

(Reported on November 18-25, 1996)
In the present note, basing on the results of our previous work [1] we establish sufficient conditions for the existence and uniqueness of a solution of the boundary value problem

$$
\begin{align*}
\frac{d x(t)}{d t} & =g\left(t, x\left(\tau_{1}(t)\right), \ldots, x\left(\tau_{m}(t)\right)\right) \tag{1}\\
h(x) & =0 \tag{2}
\end{align*}
$$

where $g:[a, b] \times R^{n m} \rightarrow R^{n}$ is a vector function satisfying the local Carathéodory conditions, $\tau_{i}:[a, b] \rightarrow[a, b](i=1, \ldots, m)$ are measurable functions and $h: C\left([a, b] ; R^{n}\right) \rightarrow$ R^{n} is a continuous operator.

Under solution of the system (1) we understand an absolutely continuous vector function $x:[a, b] \rightarrow R^{n}$ which almost everywhere on $[a, b]$ satisfies it, and under solution of the problem (1), (2) we mean a solution of the system (1) which satisfies the condition (2).

The use is made of the following notation:
$I=[a, b], R=]-\infty,+\infty\left[, R_{+}=[0,+\infty[\right.$;
R^{n} - the space of n-dimensional column vectors $x=\left(x_{i}\right)_{i=1}^{n}$ with $x_{i} \in R(i=1, \ldots, n)$ and the norm

$$
\|x\|=\sum_{i=1}^{n}\left|x_{i}\right|
$$

$R^{n \times n}$ - the space of $n \times n$ matrices $X=\left(x_{i k}\right)_{i, k=1}^{n}$ with $x_{i k} \in R(i, k=1, \ldots, n)$ and the norm

$$
\begin{aligned}
\|X\| & =\sum_{i, k=1}^{n}\left|x_{i k}\right| \\
R_{+}^{n} & =\left\{\left(x_{i}\right)_{i=1}^{n} \in R^{n}: x_{i} \geq 0(i=1, \ldots, n)\right\} \\
R_{+}^{n \times n} & =\left\{\left(x_{i k}\right)_{i, k=1}^{n} \in R^{n \times n}: x_{i k} \geq 0 \quad(i, k=1, \ldots, n)\right\}
\end{aligned}
$$

if $x, y \in R^{n}$ and $X, Y \in R^{n \times n}$, then

$$
x \leq y \Longleftrightarrow y-x \in R_{+}^{n} \quad \text { and } \quad X \leq Y \Longleftrightarrow Y-X \in R_{+}^{n \times n}
$$

$$
\text { if } x=\left(x_{i}\right)_{i=1}^{n} \in R^{n} \text { and } X=\left(x_{i k}\right)_{i, k=1}^{n} \in R^{n \times n} \text {, then }
$$

$$
|x|=\left(\left|x_{i}\right|\right)_{i=1}^{n}, \quad|X|=\left(\left|x_{i k}\right|\right)_{i, k=1}^{n}
$$

1991 Mathematics Subject Classification. 34K10.
Key words and phrases. System of nonlinear differential equations with deviating arguments, boundary value problem, existence theorem, uniqueness theorem.
$C\left(I ; R^{n}\right)$ - the space of continuous vector functions* $x: I \rightarrow R^{n}$ with the norm

$$
\|x\|_{C}=\max \{\|x(t)\|: t \in I\}
$$

$$
C\left(I ; R_{+}^{n}\right)=\left\{x \in C\left(I ; R^{n}\right): x(t) \geq 0 \text { for } a \leq t \leq b\right\}
$$

$L\left(I ; R^{n}\right)$ - the space of summable vector functions $x: I \rightarrow R^{n}$ with the norm

$$
\|x\|_{L}=\int_{a}^{b}\|x(t)\| d t
$$

Definition 1. Let $\mathcal{P}: I \times R^{n_{0}} \rightarrow R^{n \times n}$ be a matrix function satisfying the local Carathéodory conditions. We say that a summable matrix function $\mathcal{P}_{0}: I \rightarrow R^{n \times n}$ belongs to the set $\mathcal{E}_{\mathcal{P}}^{n_{0}}$ if there exists a sequence $u_{k} \in C\left(I ; R^{n_{0}}\right)(k=1,2, \ldots)$ such that

$$
\lim _{k \rightarrow \infty} \int_{a}^{t} \mathcal{P}\left(s, u_{k}(s)\right) d s=\int_{a}^{t} \mathcal{P}_{0}(s) d s \text { uniformly on } I
$$

Definition 2. Let $l: C\left(I ; R^{n_{0}}\right) \times C\left(I ; R^{n}\right) \rightarrow R^{n}$ be a continuous operator. We say that a linear operator $l_{0}: C\left(I ; R^{n}\right) \rightarrow R^{n}$ belongs to the set $\mathcal{E}_{l}^{n_{0}}$ if there exists a sequence $u_{k} \in C\left(I ; R^{n_{0}}\right)(k=1,2, \ldots)$ such that

$$
\lim _{k \rightarrow \infty} l\left(u_{k}, v\right)=l_{0}(v) \quad \text { for } \quad v \in C\left(I ; R^{n}\right)
$$

Definition 3. An operator $h_{0}: C\left(I ; R_{+}^{n}\right) \rightarrow R_{+}^{n}$ is said to be positively homogeneous if for any $\lambda \in R_{+}$and $u \in C\left(I ; R_{+}^{n}\right)$ we have $h_{0}(\lambda u)=\lambda h_{0}(u)$. However, if for any $u, v \in C\left(I ; R_{+}^{n}\right)$ satisfying $u(t) \leq v(t)$ for $t \in I$ the inequality $h_{0}(u) \leq h_{0}(v)$ is fulfilled, then h_{0} is said to be nondecreasing.

Definition 4. Let $Q_{k}: I \rightarrow R_{+}^{n \times n}(k=1, \ldots, m)$ be summable matrix functions, $\tau_{k}:[a, b] \rightarrow[a, b](k=1, \ldots, m)$ be measurable functions and $h_{0}: C\left(I ; R_{+}^{n}\right) \rightarrow R_{+}^{n}$ be a positively homogeneous continuous nondecreasing operator. Then the writing

$$
\left(\mathcal{P}_{1}, \ldots, \mathcal{P}_{m} ; l\right) \in O_{Q_{1}, \ldots, Q_{m} ; \tau_{1}, \ldots, \tau_{m} ; h_{0}}^{n_{1}, n_{2}}
$$

means that
(i) $\mathcal{P}_{k}: I \times R^{n_{1}} \rightarrow R^{n \times n}(k=1, \ldots, n)$ are matrix functions satisfying the local Carathéodory conditions and $l: C\left(I ; R^{n_{2}}\right) \times C\left(I ; R^{n}\right) \rightarrow R^{n}$ is a continuous operator; moreover, $l(u, \cdot): C\left(I ; R^{n}\right) \rightarrow R^{n}$ is linear for arbitrarily fixed $u \in C\left(I ; R^{n_{2}}\right)$.
(ii) there exist a summable function $\alpha: I \rightarrow R_{+}$and a positive number α_{0} such that the inequalities

$$
\left\|\mathcal{P}_{k}(t, x)\right\| \leq \alpha(t) \quad(k=1, \ldots, m) \quad \text { and } \quad\|l(u, v)\| \leq \alpha_{0}\|v\|_{C}
$$

are fulfilled on $I \times R^{n_{1}}$ and $C\left(I ; R^{n_{2}}\right) \times C\left(I ; R^{n}\right)$, respectively;
(iii) for any $\mathcal{P}_{0 k} \in \mathcal{E}_{\mathcal{P}}^{n_{1}}(k=1, \ldots, m)$ and $l_{0} \in \mathcal{E}_{l}^{n_{2}}$, the problem

$$
\left.\left|\frac{d v(t)}{d t}-\sum_{k=1}^{m} \mathcal{P}_{0 k}(t) v\left(\tau_{k}(\tau)\right)\right| \leq \sum_{k=1}^{m} Q_{k}(t) \right\rvert\, v\left(\tau_{k}(t)|, \quad| l_{0}(v) \mid \leq h_{0}(|v|)\right.
$$

has only the trivial solution.

[^0]Theorem 1. Let on $I \times R^{m n}$ the inequality

$$
\begin{equation*}
\left|g\left(t, x_{1}, \ldots, x_{m}\right)-\sum_{k=1}^{m} \mathcal{P}_{k}\left(t, x_{1}, \ldots, x_{m}\right) x_{k}\right| \leq \sum_{k=1}^{m} Q_{k}(t)\left|x_{k}\right|+\eta(t) \tag{3}
\end{equation*}
$$

and on $C\left(I ; R^{n}\right)$ the inequality

$$
\begin{equation*}
|h(x)-l(x, x)| \leq h_{0}(|x|)+\eta_{0} \tag{4}
\end{equation*}
$$

be fulfilled, where $Q_{k}: I \rightarrow R_{+}^{n \times n}(k=1, \ldots, m)$ are summable matrix functions, η : $I \rightarrow R_{+}^{n}$ is a summable vector function, $h_{0}: C\left(I ; R_{+}^{n}\right) \rightarrow R_{+}^{n}$ is a positively homogeneous continuous nondecreasing operator, $\eta_{0} \in R_{+}^{n}$ and

$$
\begin{equation*}
\left(\mathcal{P}_{1}, \ldots, \mathcal{P}_{m} ; l\right) \in O_{Q_{1}, \ldots, Q_{m} ; \tau_{1}, \ldots, \tau_{m} ; h_{0}}^{m n, n} \tag{5}
\end{equation*}
$$

Then the problem (1), (2) has at least one solution.
Scheme of the proof. For any $x, y \in C\left(I ; R^{n}\right)$ and $u \in C\left(I ; R_{+}^{n}\right)$, put $f(x)(t)=$ $g\left(t, x\left(\tau_{1}(t), \ldots, x\left(\tau_{m}(t)\right)\right), p(x, y)(t)=\sum_{k=1}^{m} \mathcal{P}_{k}\left(t, x_{1}\left(\tau_{1}(t), \ldots, x_{m}\left(\tau_{m}(t)\right)\right) y\left(\tau_{k}(t)\right)\right.\right.$ and $q_{0}(u)(t)=\sum_{k=1}^{m} Q_{k}(t) u\left(\tau_{k}(t)\right)$. Then the system (1) and the condition (3) take respectively the form

$$
\begin{align*}
\frac{d x(t)}{d t} & =f(x)(t) \\
|f(x)(t)-p(x, x)(t)| & \leq q_{0}(|x|)(t)+\eta(t)
\end{align*}
$$

Owing to the restrictions imposed on g and $\tau_{k}(k=1, \ldots, n)$, the operator f : $C\left(I ; R^{n}\right) \rightarrow L\left(I ; R^{n}\right)$ is continuous. On the other hand, by Definition 4 and also by Definition 1.3 of [1], we can show that the condition (5) implies the condition

$$
(p, l) \in O_{q_{0}, h_{0}}^{n}
$$

By Theorem 1.1 from [1], the conditions $\left(3^{\prime}\right)$, (4) and (5^{\prime}) ensure the solvability of the problem (1^{\prime}), (2).

According to Theorem 1 , we can easily prove
Theorem 2. Let on $I \times R^{m n}$ the inequality

$$
\begin{gathered}
\left|g\left(t, x_{1}, \ldots, x_{m}\right)-g\left(t, y_{1}, \ldots, y_{m}\right)-\sum_{k=1}^{m} \mathcal{P}_{k}\left(t, x_{1}, \ldots, x_{m}, y_{1}, \ldots, y_{m}\right)\left(x_{k}-y_{k}\right)\right| \leq \\
\leq \sum_{k=1}^{m} Q_{k}(t)\left|x_{k}-y_{k}\right|
\end{gathered}
$$

and on $C\left(I ; R^{n}\right)$ the inequality

$$
|h(x)-h(y)-l(x, y, x-y)| \leq h_{0}(|x-y|)
$$

be fulfilled, where $Q_{k}: I \rightarrow R_{+}^{n \times n}(k=1, \ldots, m)$ are summable matrix functions, $h_{0}: C\left(I ; R_{+}^{n}\right) \rightarrow R_{+}^{n}$ is a positively homogeneous continuous nondecreasing operator and

$$
\left(\mathcal{P}_{1}, \ldots, \mathcal{P}_{m} ; l\right) \in O_{Q_{1}, \ldots, Q_{m} ; \tau_{1}, \ldots, \tau_{m} ; h_{0}}^{2 m n,}
$$

Then the problem (1), (2) has a unique solution.
In the case where the matrix functions $\mathcal{P}_{k}(k=1, \ldots, m)$ depend only on t and $l: C\left(I ; R^{n}\right) \rightarrow R^{n}$ is a linear operator, Theorems 1 and 2 will respectively take the following form.

Corollary 1. Let on $I \times R^{m n}$ the inequality

$$
\left|g\left(t, x_{1}, \ldots, x_{m}\right)-\sum_{k=1}^{m} \mathcal{P}_{k}(t) x_{k}\right| \leq \sum_{k=1}^{m} Q_{k}(t)\left|x_{k}\right|+\eta(t)
$$

and on $C\left(I ; R^{n}\right)$ the inequality

$$
|h(x)-l(x)| \leq h_{0}(|x|)+\eta_{0}
$$

be fulfilled, where $\mathcal{P}_{k}: I \rightarrow R^{n \times n}, Q_{k}: I \rightarrow R_{+}^{n \times m}(k=1, \ldots, m)$ are summable matrix functions, $\eta: I \rightarrow R_{+}^{n}$ is a summable vector function, $l: C\left(I ; R^{n}\right) \rightarrow R^{n}$ is a linear bounded operator and $h_{0}: C\left(I ; R_{+}^{n}\right) \rightarrow R_{+}^{n}$ is a positively homogeneous continuous nondecreasing operator. Let, moreover, the problem

$$
\begin{equation*}
\left|\frac{d v(t)}{d t}-\sum_{k=1}^{m} \mathcal{P}_{k}(t) v\left(\tau_{k}(t)\right)\right| \leq \sum_{k=1}^{m} Q_{k}(t)\left|v\left(\tau_{k}(t)\right)\right|, \quad|l(v)| \leq h_{0}(|v|) \tag{6}
\end{equation*}
$$

have only the trivial solution. Then the problem (1), (2) has at least one solution.
Corollary 2. Let on $I \times R^{m n}$ the inequality

$$
\left|g\left(t, x_{1}, \ldots, x_{m}\right)-g\left(t, y_{1}, \ldots, y_{m}\right)-\sum_{k=1}^{m} \mathcal{P}_{k}(t)\left(x_{k}-y_{k}\right)\right| \leq \sum_{k=1}^{m} Q_{k}(t)\left|x_{k}-y_{k}\right|
$$

and on $C\left(I ; R^{n}\right)$ the inequality

$$
|h(x)-h(y)-l(x-y)| \leq h_{0}(|x-y|)
$$

be fulfilled, where $\mathcal{P}_{k}: I \rightarrow R^{n \times n}, Q_{k}: I \rightarrow R_{+}^{n \times n}(k=1, \ldots, m)$ are summable matrix functions, $l: C\left(I ; R^{n}\right) \rightarrow R^{n}$ is a linear bounded operator and $h_{0}: C\left(I ; R_{+}^{n}\right) \rightarrow R_{+}^{n}$ is a positively homogeneous continuous nondecreasing operator such that the problem (6) has only the trivial solution. Then the problem (1), (2) has a unique solution.

Consider now the case where the boundary conditions (2) have the form

$$
\begin{equation*}
\varphi\left(x\left(t_{1}\right), \ldots, x\left(t_{m_{0}}\right)\right)=0 \tag{7}
\end{equation*}
$$

where $\varphi: R^{m_{0} n} \rightarrow R^{n}$ is a continuous vector function and $t_{k} \in I\left(i=1, \ldots, m_{0}\right)$.
For the problem (1), (7), we have from Theorem 2 the following
Corollary 3. Let: (i) for almost all $t \in I$ there exist $\frac{\partial g\left(t, x_{1}, \ldots, x_{m}\right)}{\partial x_{k}}(k=1, \ldots, m)$ which are continuous with respect to x_{1}, \ldots, x_{m} in $R^{m n}$ and satisfy

$$
\mathcal{P}_{1 k}(t) \leq \frac{\partial g\left(t, x_{1}, \ldots, x_{m}\right)}{\partial x_{k}} \leq \mathcal{P}_{2 k}(t) \quad(k=1, \ldots, m),
$$

where $\mathcal{P}_{1 k}$ and $\mathcal{P}_{2 k}: I \rightarrow R^{n \times n}(k=1, \ldots, m)$ are summable matrix functions;
(ii) the vector function φ have the first order continuous partial derivatives and

$$
A_{1 k} \leq \frac{\partial \varphi\left(x_{1}, \ldots, x_{m_{0}}\right)}{\partial x_{k}} \leq A_{2 k} \quad\left(k=1, \ldots, m_{0}\right)
$$

on $R^{m_{0} n}$, where $A_{1 k}$ and $A_{2 k} \in R^{n \times n}\left(k=1, \ldots, m_{0}\right)$; (iii) for any summable matrix functions $\mathcal{P}_{k}: I \rightarrow R^{n \times n}(k=1, \ldots, m)$ and matrices $A_{k} \in R^{n \times n}\left(k=1, \ldots, m_{0}\right)$ satisfying

$$
\begin{gathered}
\mathcal{P}_{1 k}(t) \leq \mathcal{P}_{k}(t) \leq \mathcal{P}_{2 k}(t) \quad \text { for } \quad t \in I \quad(k=1, \ldots, m) \\
A_{1 k} \leq A_{k} \leq A_{2 k} \quad\left(k=1, \ldots, m_{0}\right)
\end{gathered}
$$

the boundary value problem

$$
\frac{d v(t)}{d t}=\sum_{k=1}^{m} \mathcal{P}_{k}(t) v\left(\tau_{k}(t)\right), \quad \sum_{k=1}^{m_{0}} A_{k} v\left(t_{k}\right)=0
$$

have only the trivial solution. Then the problem (1), (7) has a unique solution.
Remark. This work was supported by Grant 201/96/0410 of the Grant Agency of the Czech Republic (Prague) and by Grant 619/1996 of the Development Fund of Czech Universities.

References

1. I. T. Kiguradze and B. Puža, Conti-Opial type theorems for nonlinear functional differential equations. (Russian) Differentsial'nye Uravneniya 33(1997), No. 2 (to appear).

Authors' addresses:
I. Kiguradze
A. Razmadze Mathematical Institute

Georgian Academy of Sciences
1, M. Aleksidze St., Tbilisi 380093
Georgia
B. Puža

Department of mathematics
Masaryk University
Janáčkovo nám. 2a
66295 Brno
Czech Republic

[^0]: *A vector or matrix function is said to be continuous, absolutely continuous, summable, etc., if all its components have such a property.

