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CRITICAL CASE OF MULTIPLE PAIRS OF PURE IMAGINARY

ROOTS OF A NONAUTONOMOUS ESSENTIALLY NONLINEAR n-th

ORDER EQUATION

(Reported on October 14, 1996)

We investigate the asymptotic stability in the Lyapunov sense as t " ! of the zero

solution of a di�erential equation of the form
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Below the use is made of the following de�nitions and notation:

De�nition 1. The di�erential equation (1) possesses the property St as t " ! if for

any arbitrarily small " 2 R

+
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De�nition 2. The di�erential equation (2) possesses the property AsSt as t " ! if

De�nition 1 is ful�lled, and �

�1

�y(t) = o(1) and �

�s
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De�nition 1

0

. The di�erential system
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possesses the property St as t " ! if for any arbitrarily small " 2 R there exist �

"

2]0; "]

and T

"

2 � such that any solution Y = Y (t) of the di�erential system (2) with the

condition kY (T
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)k < �

"

possesses the property kY (t)k < " for all t 2 [T

"

; ![.

For ! < +1, the property St of the di�erential system (2) is de�ned by a rephrasing

of this property for ! = +1 [2, p. 168].

De�nition 2

0

. The di�erential system (2) possesses the property AsSt as t " ! if

De�nition 1

0

is ful�lled, and kY (t)k = o(1) as t " !.
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The results of this paper are e�ectively applied to the di�erential equation (1) whose

coe�cients are slowly varying functions, i.e., the functions whose derivatives are small as

t " ! in comparison with the functions themselves. For example,

p

k

� t

k��

�

�

a

k0

+ b

k

� t

�a

k

� (ln t)

�

k

� sin t



k

�

;

F

Q

� t

�kQk

�

�

F

Q0

+ g

Q

� t

�a

Q

� (ln t)

�

Q

� sin t



Q

�

;

k; �; a

k0

; b

k0

; �

k

; ; F

Q0

; g

Q

; �

Q

2 R; a

k

; a

Q

2 f0; R

+

g;



k

; 

Q

2]0; 1]; k = 1; n; kQk = 2;m:
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The proof of the lemma is obvious.

Assume �rst that using the generalized "shearing" [3], "frozen" [4] and K.P. Per-

sidsky's methods of transformations, we can construct a nondegenerate substitution
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Then the di�erential equation (1) possesses the property AsSt as t " !.

Proof. Consider the di�erential system (4) in terms of the quasi-linear di�erential system

and apply the results of [6].
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Assume that the di�erential system (6) can be substituted by an equivalent 2 �
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-th order di�erential equation with respect to one of the components of the vector
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Then the di�erential equation (1) possesses the property AsSt as t " !.

Proof. In the di�erential system (5), we make the substitution Z

n

s

= 	

n

s

�Y

n

s

, s = 1; k

0

,

Z
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s
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0

,

Y
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the analogue of the lemma [4] on the stability in a ring-shaped domain involving

the origin.
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Remark. If the coe�cients of the di�erential equation (1) are slowly varying functions,

then applying several times the method of \frozen' transformations, one can attain for

�xed Z that the functions �

n

s

, s = 1; k

0

, �

n�2�n

0

and �

n

s

, s = 1; k

0

, �

n�2�n

0

in the

di�erential systems (4) and (5), respectively, would tend rapidly enough to zero as t " !.
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