I. Vitrichenko

CRITICAL CASE OF MULTIPLE PAIRS OF PURE IMAGINARY ROOTS OF A NONAUTONOMOUS ESSENTIALLY NONLINEAR DIFFERENTIAL SYSTEM

(Reported on October 7, 1996)

In the present note, we suggest a criterion of the asymptotic stability (in the Lyapunov sense) as $t \uparrow \omega$ of the trivial solution of a differential system of the kind

$$
\begin{equation*}
X^{\prime}=F(t, X) \tag{1}
\end{equation*}
$$

where $X=\operatorname{col}\left(x_{1}, \ldots, x_{n}\right), t \in \Delta \equiv\left[a_{0}, \omega\left[,-\infty<a_{0}<\omega \leq+\infty, F: \Delta \times S(X, r) \rightarrow R^{n}\right.\right.$, R^{n} is the n-dimensional real Euclidean space, $S(X, r) \equiv\left\{X, X^{T}:\|X\| \leq r ; r \in R_{+}\right\}$, $\left.R_{+} \equiv\right] 0,+\infty[$,

$$
\begin{gathered}
F(t, X) \equiv \pi_{1} \cdot P_{1} \cdot X+\sum_{\|Q\|=2}^{m} F_{Q} \cdot X^{Q}+R_{m}, \pi_{1}: \Delta \rightarrow R_{+}, \quad P_{1}=\left\|p_{s k}\right\| \\
\left.\left.s, k=\overline{1, n}, \quad\left\|P_{1}\right\|: \Delta \rightarrow\right] 0, M\right], \quad M \in R_{+} \\
F_{Q} \equiv \operatorname{col}\left(F_{1 Q}, \ldots, F_{n Q}\right), \quad F_{k Q}: \Delta \rightarrow R, \quad k=\overline{1, n}, \quad Q=\left(q_{1}, \ldots, q_{n}\right) \\
q_{k} \in\{0,1,2, \ldots\}, \quad\|Q\|=\sum_{k=1}^{n} q_{k}, \quad X^{Q} \equiv \prod_{k=1}^{n} x_{k}^{q_{k}}
\end{gathered}
$$

and the following conditions are fulfilled:
(1) $\pi_{1}, p_{s k}, F_{k Q} \in C_{\Delta}^{h}, p_{s k}^{(1)}=o(1)$ as $t \uparrow \omega, s, k=\overline{1, n}, l \in\{\overline{1, h}\}, h \in N,\|Q\|=\overline{2, m} ;$
(2) the equation $\operatorname{det}\left(P_{0}-\lambda \cdot E\right)=0, P_{0}=\lim _{t \uparrow \omega} P_{1}$ has $2 \cdot n_{0}, 1 \leq n_{0} \leq\left[\frac{1}{2} \cdot n\right]$ roots λ_{0} satisfying $\operatorname{Re} \lambda_{0}=0$, while the rest of roots λ of the same equation has negative real parts;
(3) $\left\|R_{m}\right\| \leq L\left(\sum_{k=1}^{n}\left|x_{k}\right|\right)^{m+a}, L \in C_{\Delta}, L: \Delta \rightarrow\left[0,+\infty\left[, a \in R_{+}\right.\right.$.

The results of this paper are effectively applied to differential systems whose coefficients are slowly varying functions, i.e., the functions whose derivatives are small as $t \uparrow \omega$ in comparison with the functions themselves. For example, $t^{a},(\ln t)^{b}, \sin t^{c}, a, b \in R$, $c \in] 0,1[, \omega=+\infty$, etc.

Below we use the following definitions and notation:
Definition 1. The differential system (1) possesses the property $S t$ as $t \uparrow \omega$ if for every arbitrarily small $\varepsilon \in R$ there exist $\left.\left.\delta_{k} \in\right] 0, \varepsilon\right], T_{\varepsilon} \in \Delta$ such that any solution $X=X(t)$ under the condition $\left\|X\left(T_{\varepsilon}\right)\right\|<\delta_{\varepsilon}$ possesses the property $\|X(t)\|<\varepsilon$ for all $t \in\left[T_{\varepsilon}, \omega[\right.$.

For $\omega<+\infty$, the property $S t$ of the differential system (1) is defined by a rephrasing of this property for $\omega=+\infty$ [2, p. 168].

[^0]Definition 2. The differential system (1) possesses the property $A s S t$ as $t \uparrow \omega$ if Definition 1 is fulfilled, and $\|X(t)\|=o(1)$ as $t \uparrow \omega$.
E_{k}, H_{k} are respectively the unit and the displacement matrices of the dimension $r \times k ; Y_{k}$ is a vector column of the dimension k;

$$
\begin{gathered}
Y=\operatorname{col}\left(y_{1}, \ldots, y_{n}\right)=\operatorname{col}\left(Y_{n_{1}}, \ldots, Y_{n_{k_{0}}}, \bar{Y}_{n_{1}}, \ldots, \bar{Y}_{n_{k_{0}}}, Y_{n-2 \cdot n_{0}}\right) \\
X^{-1} \equiv \operatorname{col}\left(x_{1}^{-1}, \ldots, x_{n}^{-1}\right),<X, Y>\equiv \sum_{k=1}^{n} x_{k} \cdot y_{k} \\
\|X\|^{2} \not \equiv \sum_{k=1}^{n}\left|x_{k}\right|^{2}, X \cdot Y \equiv \operatorname{col}\left(x_{1} \cdot y_{1}, \ldots, x_{n} \cdot y_{n}\right) \\
\operatorname{grad} V(t, X) \equiv \operatorname{col}\left(\frac{\partial V}{\partial x_{1}}, \ldots, \frac{\partial V}{\partial x_{n}}\right), \bar{O} \equiv \operatorname{col}(0, \ldots, 0) \\
\Lambda \equiv \max i\left\{g_{s}: \Delta \rightarrow R ; s=\overline{1, n}\right\}, \text { for } \Lambda: \Delta \Rightarrow R_{+} \\
\Lambda^{-1} \cdot g_{s}=c_{s}+o_{s}(1), t \uparrow \omega, c_{s} \in R, s=\overline{1, n}, \sum_{s=1}^{n}\left|c_{s}\right|>0 \\
E_{k}^{T} \equiv(0, \ldots, 0,1,0, \ldots, 0)
\end{gathered}
$$

Assume that by using the methods of generalized "shearing" [3] and "frozen" [4] transformations we can construct a nondegenerate substitution $X=G(t, Y)$ with $G(t, Y)$ an m-th degree polynomial in $Y, G(t, \bar{O}) \equiv \bar{O}$, which reduces the differential system (1) to that of the special kind
where $\pi_{s}: \Delta \rightarrow R_{+}, \mu_{s} \in R_{+}, f_{n_{s}, Q_{n_{s}}, L_{n_{s}}},\left\|Q_{n_{s}}+L_{n_{s}}\right\|=\overline{2, m}, g_{n-2 \cdot n_{0}, Q_{n_{s}}},\left\|Q_{n_{s}}\right\|=$ $\overline{1, m-1}, s=\overline{1, k_{0}}$, are known values; $\left.\left.\left\|P_{n-2 \cdot n_{0}}\right\|: \Delta \rightarrow\right] 0, M\right]$, the roots of the equation $\operatorname{det}\left(\underline{P_{n-2} \cdot n_{0}}-\lambda \cdot E_{n-2 \cdot n_{0}}\right)=0$ possess the property $\left.\left.\operatorname{Re} \lambda: \Delta \rightarrow\right] 0,-\gamma\right], y \in R_{+} ; \Phi_{n_{s}}$, $s=\overline{1, k_{0}}, \Phi_{n-2 \cdot n_{0}}$ are small in a sense.

For autonomous differential systems, an analogous critical case for two simple pairs of pure imaginary roots has been investigated by G.V. Kamenkov [5] and I.G. Malkin [6].

Lemma. Let for a differential system of the kind

$$
\begin{equation*}
X^{\prime}=U(t, X), \quad t \in \Delta, \quad X \in S(X, r), \quad U(t, \bar{O}) \equiv \bar{O} \tag{3}
\end{equation*}
$$

there exist a positively definite Lyapunov function $V=V(t, X)$ admitting an infinitely small higher limit, such that
(1) for all $t \in \Delta$ and all $X \in S(X, r)$

$$
\begin{gathered}
<\operatorname{grad} V(t, X), \quad U(t, X)>\equiv G_{0}(t, X) \cdot\left[1+G_{1}(t, X)\right] \\
G_{0}(t, \bar{O}) \equiv 0, \quad G_{0}(t, X)<0, \quad X \neq \bar{O}
\end{gathered}
$$

(2) there exists $c_{0} \in R$ such that for all $t \in \Delta$, it holds $S(t, X) \equiv\{X: V(t, X)=$ $\left.c_{0}\right\} \in S(X, r) ;$
(3) for all $X \in S(X, r) \backslash \bar{O}, \frac{\partial V(t, X)}{\partial t} \cdot G_{0}^{-1}(t, X)=o(1)$ and $G_{1}(t, X)=o(1)$ as $t \uparrow \omega$. Then there exists $T_{0} \in \Delta$ such that any solution $X=X(t)$ of the differential system (3) with the initial condition $\left\|X\left(T_{0}\right)\right\| \leq \inf _{t \in \Delta, X \in S(t, X)}\|X\|$ possesses the property $\|X(t)\| \leq \sup _{t \in \Delta, X \in S(t, X)}\|X\|$ for all $t \in\left[T_{0}, \omega[\right.$.

The proof can be performed by reductio ad absurdum. Select from the differential system (2) that of the kind

$$
\left\{\begin{array}{l}
Y_{n_{s}}^{\prime}=\pi_{s} \cdot\left(i \cdot \mu_{s} \cdot E_{n_{s}}+H_{n_{s}}\right) \cdot Y_{n_{s}}+\sum_{\left\|Q_{n_{s}}+L_{n_{s}}\right\|=2}^{m} f_{n_{s}, Q_{n_{s}}, L_{n_{s}}} \cdot Y_{n_{s}}^{Q_{n_{s}}} \cdot \bar{Y}_{n_{s}}^{L_{n_{s}}} \tag{4}\\
\sum_{k=1}^{k_{0}} \mu_{k} \cdot \pi_{k} \cdot\left(\left\|Q_{n_{s}}\right\|-\left\|L_{n_{s}}\right\|\right)+\mu_{s} \cdot \pi_{s}=0 \\
\quad s=\overline{1, k_{0}}, \quad n_{1}+\cdots+n_{k_{0}}=n_{0}
\end{array}\right.
$$

Suppose that the differential system (4) can be substituted by an equivalent $2 \cdot n_{0}$-th order differential equation with respect to one of the components of the vector $\operatorname{col}\left(Y_{n_{1}}, \ldots, Y_{n_{k_{0}}}\right)$. Then, using the method presented in [7], one can obtain asymptotic representations of all proper solutions of the above-obtained differential equation.

Let $\Psi_{n_{s}}=\Psi_{n_{s}}(t), s=\overline{1, k_{0}}$, be an asymptotic representation of one of the proper solutions of the differential system (4).

Theorem. Let the differential system (1) be such that
(1) the transformation $X=G(t, Y)$ reduces the differential system (1) to (2) in which $\left\|P_{n-2 \cdot n_{0}}^{\prime}\right\| \cdot \pi_{1}^{-1}=o(1)$ as $t \uparrow \omega$;
(2) there exists an asymptotic representation of one of the proper solutions of the differential system (4), $\Psi_{n_{s}}=\Psi_{n_{s}}(t)$, such that $\left\|\Psi_{n_{s}}\right\|=o(1)$ and $\left\|\Psi_{n_{s}}^{\prime} \cdot \Psi_{n_{s}}^{-1}\right\| \cdot \pi_{s}^{-1}=$ $o(1)$ as $t \uparrow \omega, s=\overline{1, k_{0}}$;
(3) there exist positive definite Lyapunov functions $V=V_{s}\left(Y_{n_{s}}\right)$ such that for all $t \in \Delta$ and all $\left(Y_{n_{s}}, \ldots, Y_{n_{k_{0}}}, \bar{O}\right) \in S(Y, r)$, we have

$$
\begin{gathered}
\operatorname{Re}<\operatorname{grad} V_{s}\left(Y_{n_{s}}\right), \pi_{s} \cdot\left[\left(i \cdot \mu_{s}-\Psi_{n_{s}}^{\prime} \cdot \Psi_{n_{s}}^{-1} \cdot \pi_{s}^{-1}\right) \cdot E_{n_{s}}+H_{n_{s}}\right] \cdot Y_{n_{s}}+ \\
+\sum_{\left\|Q_{n_{s}}+L_{n_{s}}\right\|=2}^{m} f_{n_{s}, Q_{n_{s}}, L_{n_{s}}} \cdot \Psi_{n_{s}}^{Q_{n_{s}}-E_{n_{s}}^{T} \cdot \bar{\Psi}_{n_{s}}^{L_{n_{s}}} \cdot Y_{n_{s}}^{Q_{n_{s}}} \cdot \bar{Y}_{n_{s}}^{L_{n_{s}}}>\equiv} \\
\equiv \Lambda_{s} \cdot\left[W_{0 s}\left(Y_{n_{s}}\right)+W_{1 s}\left(t, Y_{n_{s}}\right)\right] \\
\left.\sum_{k=1}^{k_{0}} \mu_{k} \cdot \pi_{k} \cdot\left(\left\|Q_{n_{s}}\right\|-\left\|L_{n_{s}}\right\|\right)+\mu_{s} \cdot \pi_{s},\left\|Q_{n_{s}}+L_{n_{s}}\right\|=\overline{2, m}\right\} \\
\left.W_{0 s}\left(Y_{n_{s}}\right)<0, \quad Y_{n_{s}} \neq \bar{O}, Q_{n_{s}, L_{n_{s}}} \cdot \Psi_{n_{s}}^{Q_{n_{s}}-E_{n_{s}}^{T}} \cdot \overline{\Psi_{n}}\right)=0, \\
W_{1 s}\left(t, Y_{n_{s}}\right)=o(1), \Lambda_{s}^{-1} \cdot \pi_{s}=o(1), \\
\Lambda_{s}^{-1} \cdot g_{n-2 \cdot n_{0}, Q_{n_{s}}} \cdot \Psi_{n_{s}}^{Q_{n_{s}}} \cdot \bar{\Psi}_{n_{s}}^{Q_{n_{s}}}=o(1) \text { as } t \uparrow \omega, \quad s=\overline{1, k_{0}}
\end{gathered}
$$

(4) there exists $v: \Delta \rightarrow R_{+}, v \in C_{\Delta}^{1}$, such that $v=o(1), v^{\prime} \cdot v^{-1} \cdot \pi_{1}^{-1}=o(1)$ as $t \uparrow \omega$, and for all $Y \in S(Y, r) \backslash \bar{O}$, it holds

$$
\begin{aligned}
& {\left[\sum_{s=1}^{k_{0}}\left\|\Phi_{n_{s}}\left(t, \Psi_{n_{1}} \cdot Y_{n_{1}}, \ldots, \Psi_{n_{k_{0}}} \cdot Y_{n_{k_{0}}}, v \cdot Y_{n-2 \cdot n_{0}}\right) \cdot \Psi_{n_{s}}^{-1}\right\|+\right.} \\
& \left.+\left\|\Phi_{n-2 \cdot n_{0}}\left(t, \Psi_{n_{1}} \cdot Y_{n_{1}}, \ldots, \Psi_{n_{k_{0}}} \cdot Y_{n_{k_{0}}}, v \cdot Y_{n-2 \cdot n_{0}}\right) \cdot v^{-1}\right\|\right] \times \\
& \quad \times\left[\sum_{s=1}^{k_{0}} \Lambda_{s} \cdot W_{0 s}\left(Y_{n_{s}}\right)-\pi_{1} \cdot\left\|Y_{n-2 \cdot n_{0}}\right\|^{2}\right]^{-1}=o(1) \\
& \left\|G\left(t, \Psi_{n_{1}} \cdot Y_{n_{1}}, \ldots, \Psi_{n_{k_{0}}} \cdot Y_{n_{k_{0}}}, v \cdot Y_{n-2 \cdot n_{0}}\right)\right\|=o(1), \text { as } t \uparrow \omega
\end{aligned}
$$

Then the differential system (1) possesses the property AsSt as $t \uparrow \omega$.
Proof. In the differential system (2), we make the substitution $Y_{n_{s}}=\psi_{n_{k}} \cdot X_{n_{k}}, s=\overline{1, k_{0}}$, $Y_{n-2 \cdot n_{0}}=v \cdot X_{n-2 \cdot n_{0}}$ and use the lemma for the differential system with respect to $X_{n_{k}}$, $s=1, k_{0}, X_{n-2 \cdot n_{0}}$.

Remark 1. If the coefficients of the differential system (1) are slowly varying functions, then using several times the method of "frozen" t, one can attain that for a fixed Y, the functions $\Phi_{n_{k}}, s=\overline{1, k_{0}}, \Phi_{n-2 \cdot n_{0}}$ in the differential system (2) would tend rapidly to zero as $t \uparrow \omega$.

Remark 2. When the differential system (2) possesses only simple pairs of pure imaginary roots, then the number of equations of the differential system (4) which determines the stability of the differential system (1), can be reduced exactly by half. This facilitates finding of asymptotic representations of proper solutions. In this case, $n_{s}=1, s=\overline{1, k_{0}}$, $k_{o}=n_{0}$, and the differential system (4) takes the form

$$
\begin{align*}
x_{s}^{\prime} & =i \cdot \mu_{s} \cdot \pi_{s} \cdot x_{s}+\sum_{k=1}^{m_{0}} f_{s, 2 \cdot k+1} \cdot x_{s}^{k+1} \cdot \bar{x}_{s}^{k} \tag{5}\\
s & =\overline{1, k_{0}}, \quad m_{0}=\frac{1}{4} \cdot\left[2 \cdot m-3+(-1)^{m}\right]
\end{align*}
$$

The substitution $x_{s}=\rho_{s} \cdot \exp \left(i \cdot \theta_{k}\right), s=\overline{1, k_{0}}$, reduces the differential system (5) to that of the kind

$$
\begin{gathered}
\rho_{s}^{\prime}=\sum_{k=1}^{m_{0}} \operatorname{Re} f_{s, 2 \cdot k+1} \cdot \rho_{s}^{2 \cdot k+1} \\
\theta_{s}^{\prime}=\mu_{s} \cdot \pi_{s}+\sum_{k=1}^{m_{0}} \operatorname{Im} f_{s, 2 \cdot k+1} \cdot \rho_{s}^{2 k}, \quad s=\overline{1, k_{0}}
\end{gathered}
$$

It follows from the substitution that the variables x_{s} and $\rho_{s}, s=\overline{1, k_{0}}$ are equivalent in terms of stability. Therefore one can neglect the differential equation with respect to $\theta_{s}, s=1, k_{0}$. Then the necessary asymptotic representations of proper solutions of the differential system (5) are to be found among the functions [$-\operatorname{Re} f_{s, 2 \cdot k+1}$. $\left.\operatorname{Re}^{-1} f_{s, 2 l+1}\right]^{\frac{1}{2(k-l)}}, k \neq l,\left[-2 k \int_{\tau}^{l} \operatorname{Re} f_{s, 2 k+1} \cdot d \tau\right]^{-\frac{1}{2 k}}, s=\overline{1, k_{0}}, k, l=\overline{1, m_{0}}$.

References

1. A. M. Lyapunov, General problem on the stability of motion and other works in the stability theory and in the theory of ordinary differential equations. (Russian) Izdat. Akad. Nauk SSSR, Moscow, 1956.
2. V. V. Nemytskǐ̆ and V. V. Stepanov, Quantitative theory of differential equations. (Russian) Gostekhizdat, Moscow-Leningrad, 1949.
3. I. E. Vitrichenko and V. V. Nikonenko, On the reduction to a nearly blocktriangular (diagonal) form of a linear non-autonomous system in the case of multiple zero eigenvalue of the limiting matrix of coefficients. Proc. A. Razmadze Math. Inst. 110(1994), 59-67.
4. A. V. Kostin and I. F. Vitrichenko, A generalization of the Liapounov's theorem on the stability in the case of one zero characteristic exponent for non-autonomous systems. (Russian) Dokl. Akad. Nauk SSSR 264(1982), No. 4, 819-822.
5. G. V. Kamenkov, On the stability of motion. (Russian) Sbornik Nauchn. Trudov Kazan. Aviats. Inst., 1939, No. 9, 3-137.
6. I. G. Malkin, Solution of some critical cases of the problem of stability of motion. (Russian) Priklad. Matem. i Mekhan. 15(1951), No. 5, 575-590.
7. A. V. Kostin, Asymptotics of proper solutions of nonlinear ordinary differential equations. (Russian) Differentsial'nye Uravneniya 23(1987), No. 3, 522-526.

Author's address:
Chair of Higher Mathematics
Odessa I. I. Mechnikov State University
Odessa 270086
Ukraine

[^0]: 1991 Mathematics Subject Classification. 34B05.
 Key words and phrases. Nonlinear differential system, asymptotic stability, pure imaginary roots.

