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Consider the equation
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A solution u(k) of the equation (1) is said to be nonoscillatory if there exists k
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such that either u(k) > 0 or u(k) < 0 for k � k
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. Otherwise the solution is called

oscillatory.

Below su�cient conditions are given for all proper solutions of (1) to be oscillatory as

well as for a nonoscillatory solution to exist.
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Then every proper solution of (1) is oscillatory.

Theorem 2. Suppose that (2) is ful�lled and for any � 2 [0; 1[ there exists " > 0

such that
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Then every proper solution of (1) is oscillatory.
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Theorem 3. Suppose that
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is oscillatory.

Corollary. Suppose that
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. Then every solution of the equation
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is oscillatory.

Theorem 4. Suppose that for some � 2]0; 1[ there exists k

0

2 N such that

k

1��

+1

X

i=k

p(i)

�

�(i)

�

�

� � for k � k

0

:

Then (1) has a nonoscillatory solution.
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