Mem. Differential Equations Math. Phys. 10(1997), 111-112

M. Ashordia

ON SUCCESSIVE APPROXIMATIONS FOR SOLVING THE CAUCHY PROBLEM FOR A SYSTEM OF LINEAR GENERALIZED ORDINARY DIFFERENTIAL EQUATIONS

(Reported on February 12-19, 1996)

In the present note, we consider a succesive approximations method of construction of the solution of the Cauchy problem

$$dx(t) = dA(t) \cdot x(t) + dq(t), \tag{1}$$

$$x(t_0) = c_0, \tag{2}$$

where $t_0 \in [a, b]$, $c_0 \in \mathbb{R}^n$, $A : [a, b] \to \mathbb{R}^{n \times n}$ and $q : [a, b] \to \mathbb{R}^n$ are a matrix-function and a vector-function with bounded variation components, respectively.

The following notation and definitions will be used: $R =]-\infty, +\infty[, [a, b] (a, b \in R)$ is a closed segment, $R^{n \times m}$ is the set of all real $n \times m$ -matrices $X = (x_{ik})_{i,k=1}^{n,m}$; If $X \in R^{n \times n}$, then det(X) is the determinant of X, I_n is the identity $n \times n$ -matrix; $R^n = R^{n \times 1}$ is the set of all real column *n*-vectors $x = (x_i)_{i=1}^n$.

By $([a, b], R^{n \times m})$ is the set of all matrix-functions $X = (x_{ik})_{i,k=1}^{n,m}$: $[a, b] \to R^{n \times m}$ such that every its component x_{ik} has bounded total variation on [a, b]; $X(t-) = (x_{ik}(t-))_{i,k=1}^{n,m}$ and $X(t+) = (x_{ik}(t+))_{i,k=1}^{n,m}$ are the left and the right limits of X at the point $t \in [a, b]$ $(X(a-) = X(a), X(b+) = X(b)), d_1 X(t) = X(t) - X(t-), d_2 X(t) = X(t+) - X(t).$

If $g:[a,b] \to R$ is a nondecreasing function, $x:[a,b] \to R$ and $a \leq s < t \leq b$, then

$$\int_{s}^{t} x(\tau) \, dg(\tau) = \int_{]s,t[} x(\tau) \, dg(\tau) + x(t) d_1 g(t) + x(s) d_2 g(s),$$

where $\int_{]s,t[} x(\tau) \, dg(\tau)$ is the Lebesgue–Stieltjes integral over the open interval]s,t[with

respect to the measure μ_g corresponding to the function g (if s = t, then $\int_s^t x(\tau) dg(\tau) = 0$). If $g_j : [a, b] \to R$ (j = 1, 2) are nondecreasing functions, $g = g_1 - g_2$ and $x : [a, b] \to R^n$, then

$$\int_{s}^{t} x(\tau) dg(\tau) = \int_{s}^{t} x(\tau) dg_1(\tau) - \int_{s}^{t} x(\tau) dg_2(\tau) \quad \text{for} \quad a \le s \le t \le b.$$

¹⁹⁹¹ Mathematics Subject Classification. 34B05.

Key words and phrases. Cauchy problem, system of linear generalized ordinary differential equations, successive approximations.

If
$$G=(g_{ik})_{i,k=1}^n\in \mathrm{BV}([a,b],R^{n\times n}),\;x=(x_k)_{k=1}^n\in \mathrm{BV}([a,b],R^n),$$
 then

$$\int_{s}^{t} dG(\tau) \cdot x(\tau) = \left(\sum_{k=1}^{n} \int_{s}^{t} x_{k}(\tau) dg_{ik}(\tau)\right)_{i=1}^{n} \quad \text{for} \quad a \leq s \leq t \leq b.$$

A vector-function $x \in BV([a, b], R^n)$ is said to be a solution of the problem (1),(2) if it satisfies the condition (2) and

$$x(t) = x(s) + \int_{s}^{t} dA(\tau) \cdot x(\tau) + q(t) - q(s) \quad \text{for} \quad a \le s < t \le b.$$

Theorem. Let

det
$$(I_n + (-1)^j d_j A(t)) \neq 0$$
 for $(-1)^j (t - t_0) < 0$ $(j = 1, 2)$.

Then the problem (1),(2) has a unique solution x and

 $\lim_{k \to +\infty} x_k(t) = x(t) \quad uniformly \ on \ [a,b],$

where

$$\begin{aligned} x_k(t_0) &= c_0 \quad (k = 0, 1, \dots), \\ x_0(t) &= \left(I_n + (-1)^j d_j A(t) \right)^{-1} c_0 \quad \text{for} \quad (-1)^j (t - t_0) < 0 \quad (j = 1, 2) \end{aligned}$$

and

$$\begin{aligned} x_k(t) &= \left(I_n + (-1)^j d_j A(t)\right)^{-1} \left[c_0 + \int_{t_0}^t dA(\tau) \cdot x_{k-1}(\tau) + \right. \\ &+ (-1)^j d_j A(t) \cdot x_{k-1}(t) + q(t) - q(t_0) \right] \\ for \quad (-1)^j (t-t_0) < 0 \quad (j=1,2; \ k=1,2,\ldots). \end{aligned}$$

Note that the unique solvability of the problem (1),(2) is proved in [1].

References

1. Š. SCHWABIK, M. TVRDÝ, AND O. VEJVODA, Differential and integral equations: Boundary value problems and adjoints. Academia, Praha, 1979.

Author's address: Sukhumi Branch of Tbilisi State University 19, Al. Chavchavadze St., Tbilisi 380049 Georgia

112