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Abstract We investigate the variant of epistemic logic S5 for reasoning about knowledge under hypotheses. The

logic is equipped with a modal operator of necessity that can be parameterized with a hypothesis representing

background assumptions. The modal operator can be described as relative necessity and the resulting logic turns

out to be a variant of Chellas’ Conditional Logic. We present an axiomatization of the logic and its extension

with the common knowledge operator and distributed knowledge operator. We show that the logics are decidable,

complete w.r.t. Kripke as well as topological structures. The topological completeness results are obtained by

utilizing the Alexandroff connection between preorders and Alexandroff spaces.
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1 Introduction

This paper is a combination and extension of the results from [24], [25] and [26]. We apply techniques
from [24] for obtaining Kripke completeness results for certain extensions of a modal logics, and a tech-
nique for obtaining topological completeness from Kripke completeness to the extensions of modal logic
of Hypothesis. Consider extensions of a modal logic L with modal definitions of the form

�p↔ ϕ(p),

where ‘�’ is a fresh box-modality, and p is a proposition occurring in ϕ. That is, the modality � is
defined in terms of ϕ in which � does not occur. In the paper [24] authors point out the conditions on
ϕ under which we obtain Kripke completeness of the extended logic. It is stated as an interesting open
problem to find a syntactic characterisation of modal definitions that give rise to a relational semantics.
The related problem of characterising elementary formulas (i.e., modal formulas that define a first-order
frame property) has been studied extensively; see, e.g., [21], [13], [27]. However, elementarity is neither
a necessary nor sufficient criterion for a modal formula to be used in relational modal definitions.

The idea to add modal definitions to existing normal modal logics is quite common, e.g., for (dynamic)
epistemic logics. The following formulas are examples of modal definitions: EAp↔

∧
a∈A�ap is the axiom

for ‘everyone knows’ in epistemic logic, i.e., every agent in the group A knows p [11]; [!ϕ]p ↔ (ϕ → p)
is the reduction axiom for the announcement operator [!ϕ] in Public Announcement Logic [19], [28];
�S4p ↔ �K4p ∧ p is a definition of an S4-box modality in terms of an K4-box modality [9]; and [ϕ]p ↔
�p∨ (ϕ∧�(ϕ→ p)) is the reduction axiom used for the logic S5r for reasoning under hypotheses in [23].
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It is shown that one can obtain a finite axiomatisation of normal modal logics extended with relational
modal definitions in a straightforward way. We illustrate this technique with two extensions of the modal
logic S5. We consider the epistemic logic for reasoning about knowledge under hypotheses from [23].
The resulting logic S5r is an extension of the epistemic logic S5 with a modal operator ‘[·]’ that can be
parameterized with a hypothesis. The operator can be described as relative necessity, a notion already
used by Chellas to describe conditionality [7]. It turns out that S5r is a special case of Chellas’ Condition
Logic. The modality ‘[ϕ]’ represents the knowledge state under the hypothesis ϕ. The formula [ϕ]ψ
states that ‘under the hypothesis ϕ, the agent knows ψ’. If ϕ happens to be true at the current world
and the agent knows that ϕ implies ψ, then the agent knows ψ; otherwise, i.e., if ϕ does not hold at
the current world, the agent knows only what it would know anyway, i.e. without any assumptions. For
instance, consider a simple dice game, where the game is won if, and only if, a three or a six has been
rolled. The formula ‘[> ] (three∨ six↔ win)’ states that the agent knows this rule. The parameter ‘>’ of
the box-modality stands for the fact that no hypothesis is being adopted by the agent. Suppose that the
dice is rolled under a cup, so that the rolled number of points is concealed from the agent. Consequently,
as long as the dice remains concealed, the agent does not know whether or not the game is won. This
can be described by the formula ‘¬ [> ]win’. However, the agent knows that the game is won under
the hypothesis that a six has been rolled: ‘[ six ]win’. We can distinguish two situations: one, where the
hypothesis is correct, i.e., a six has been rolled; and another one, where it is false, i.e., the dice shows
a number between one to five. In the former situation, the game is won and we have that the formula
holds true. In case the hypothesis is in fact wrong, the formula is not necessarily true. Irrespective of
the hypotheses held by the agent, the game may still be won provided that a three has been rolled. In
all other cases, the game is lost. This is different to ordinary implications, which are true whenever the
premise is false or the consequent is true.

Sentences in English of the form “If A, then B.” are called conditional sentences. Here, A is called
the antecedent (or condition) and B the consequent. Conditional sentences are traditionally put into
different categories (according to mood or tense) such as indicative/subjunctive or factual/counterfactual.
However, there is much disagreement on the logical theory of conditional sentences (in particular that of
defeasible conditionals). One logical formalization is Conditional Logic, which essentially is Propositional
Logic extended with a binary operator ‘⇒’ standing for conditionality. Several readings of ‘⇒’ were
proposed, among them counterfactual conditional, non-monotonic consequence relation, normality and
belief revision. Historically several logical accounts of conditionals have been suggested, among them
Stalnaker [22], Lewis [16] and Chellas [7].

The logic S5r rejects the common assumption that logics allow to conclude anything from false
premises. We borrow the term ‘explosive’ from Paraconsistent Logic, but we refer to conditional op-
erators instead of the logical consequence relation. We say that a conditional operator ‘X’ is explosive
if the conditional ϕXψ holds for all conclusions ψ whenever the antecedent ϕ is false. In this sense,
implication of Classical Logic and even of Intuitionistic Logic is explosive, so is the conditional operator
‘⇒’ of Conditional Logic [16, 22]. On the other hand, the relativized necessity of our logic, which is a
special case of Chellas’ conditional operator [7], [8], is not explosive. We have that [⊥]ψ is true iff ψ is
universally true. The consequence relation of S5r is not paraconsistent.

Epistemic logic traditionally describes the knowledge state of agents at a point in time. To be able to
describe the evolution of knowledge over time, we can either combine epistemic logic with a temporal logic,
or add dynamic operators for knowledge-changing actions such as communication. The latter approach
is followed in the family of Dynamic Epistemic Logics [31]. A basic DEL is Public Announcement Logic
(PAL) [19] which is the extension of the basic epistemic logic S5 with an operator ‘[·]’ parameterised
with a formula expressing the announcement. A formula of the form [ϕ]ψ states that ψ holds after
ϕ has been truthfully announced (by someone) to every agent in the system simultaneously. After
the announcement, ϕ is incorporated in the knowledge state of every agent, i.e. ϕ becomes common
knowledge. This is achieved by employing an update semantics, which cuts off the model all worlds in
which the announcement does not hold.

Our relative necessity operator ‘[·]’ bears an interesting relationship to Provability Logic [6]. This is a
modal logic, where the modality is considered to capture the metamathematical concept of ‘a proposition
being provable in some arithmetical theory’. An important logic in this context is the Gödel–Löb system
GL as it characterises provability in Peano Arithmetic. A recent line of research is to modify GL and
study the effects of these modifications w.r.t. provability [10]. For instance, [10] introduces three variants
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of the modality in GL and studies their algebraic semantics. Here is where the connection to this paper
turns up as one of the modified modalities corresponds syntactically to the relative necessity operator ‘[·]’
considered in this paper. To be precise, the definition of the modal operator called ‘Modest Enrichment
(Type B)’ in [10] equals Axiom (R) [ϕ]ψ ↔ �ψ∨ϕ∧�(ϕ→ ψ), which we introduce below. In this paper,
however, we do not investigate further the relationship to Provability Logic.

In this paper, we present an axiomatization of S5r and its extension with the common knowledge
operator [25] as well as distributed knowledge operator [26] in Kripke and topological semantics. The
paper is organized as follows. In the next section, we briefly recall basic definitions on modal logic,
including a modal language and the Kripke semantics, and its standard translation into first-order logic.
We review a technique for obtaining Kripke completeness results for certain extensions of a modal logic.
we also review a technique for obtaining topological completeness from Kripke completeness based on
the Alexandroff connection between preorders and Alexandroff spaces. In Section 3, we recall the logic
S5r. In Section 4, we show that the technique from section 2 is applicable to S5C r and thus prove the
completeness results. Finally, the extension of S5r with modalities for distributed hypotheses is discussed
in Section 5. We show how knowledge of an agent can be represented as distributed hypotheses, where
the agents’ knowledge corresponds to any system between S4 and S5 some constraints. We prove Kripke
completeness and topological completeness results for the logic S5Dr. Finally, the paper closes with a
summary and outlook in Section 6.

2 Preliminaries

In this section, we briefly review modal logic, cf. [5]. Moreover, we introduce two techniques for obtaining
completeness results: one for obtaining Kripke completeness for the extensions/enrichments of Kripke
complete logics, and the other for obtaining topological completeness from Kripke completeness. The
first technique is introduced in detail in [24], whereas the second is well known in the literature [4, 3].

Let 〈Π,M〉 be a signature consisting of countable sets Π and M of symbols for propositions and
modalities, respectively. The propositional modal language L for this signature consists of formulas ϕ
that are built up inductively according to the grammar:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | �mϕ,

where p ranges over proposition symbols in Π and m over modality symbols in M . The logical symbols ‘>’
and ‘⊥’, and the additional connectives such as ‘∨’, ‘→’ and ‘↔’ and the dual modalities ‘♦m’ with m ∈M
are defined as usual, i.e.: > := p ∨ ¬p for some atomic proposition p; ⊥ := ¬>; ϕ ∨ ψ := ¬(¬ϕ ∧ ¬ψ);
ϕ→ ψ := ¬ϕ ∨ ψ; ϕ↔ ψ := (ϕ→ ψ) ∧ (ψ → ϕ); and ♦mϕ := ¬�m¬ϕ.

A subset L of the propositional modal language L is a modal logic iff it contains all propositional
tautologies, is closed under substitution, modus ponens and modal replacement (mrep) p↔q

�mp↔�mq
, for

m ∈M . The modal logic L is called normal if it contains the formulas (k) �m(p→ q)→ (�mp→ �mq)
and are closed under (nec) p

�mp
. The smallest normal modal logic is commonly denoted with K.

2.1 Kripke Semantics

The relational semantics for the propositional modal language L is based on Kripke structures for the
signature 〈Π,M〉 of L. Formally, an M -frame (or Kripke frame) is a tuple F = (W, {Rm}m∈M ), where
W is a non-empty set of worlds and Rm ⊆ W 2 a binary relation over W , for every m ∈ M . A Kripke
model for 〈Π,M〉 is a pair M = (F, V ) consisting of a Kripke frame F = (W, {Rm}m∈M ) together with
a valuation function V : Π → 2W assigning to every proposition p in Π a set V (p) of worlds. A Kripke
model M = (F, V ) is said to be based on the frame F.

An interpretation of formulas from L is given by means of a satisfaction relation ‘|=’, which is
a binary relation between pointed models and formulas. A pointed model is a pair 〈M, w〉, where
M = (W, {Rm}m∈M , V ) is a Kripke model and w a world from W . The satisfaction relation is defined
inductively on the structure of formulas ϕ as:

• 〈M, w〉 |= p iff w ∈ V (p);

• 〈M, w〉 |= ¬ψ iff 〈M, w〉 6|= ψ;
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• 〈M, w〉 |= ψ ∧ χ iff 〈M, w〉 |= ψ and 〈M, w〉 |= χ;

• 〈M, w〉 |= �mψ iff for all v ∈W with (w, v) ∈ Rm, 〈M, v〉 |= ψ.

A formula ϕ is said to be true at w in M iff 〈M, w〉 |= ϕ; ϕ is satisfiable iff there is a pointed model
〈M, w〉 at which it is true; ϕ is valid in M (written ‘M |= ϕ’) iff 〈M, w〉 |= ϕ for all w in M; ϕ is valid on
F (written ‘F |= ϕ’) iff ϕ is valid in all models based on F; and ϕ is valid in the class C of Kripke frames
(written ‘|=C ϕ’) iff it is valid in every Kripke frame from C.

The set of L-formulas that are valid in a class C of Kripe frames is called the L-theory ThL(C) of C,
i.e.:

ThL(C) := {ϕ ∈ L | for every F from C, ϕ is valid in F }.

A modal logic L is said to be Kripke complete w.r.t. C iff L ⊇ ThL(C), and L is said to be sound w.r.t. C
iff L ⊆ ThL(C).

2.2 Standard Translation

The relationship to first-order logic is made precise by the so-called standard translation st(·), which
assigns to a modal formula ϕ a corresponding first-order formula stx(ϕ) with one free variable x. The
signature of the first-order language contains unary predicate symbols P and binary predicate sym-
bols Rm, one P for every p ∈ Π and one Rm for every m ∈ M . The translation function st(·) is
inductively defined as follows:

stx(p) := P (x)
stx(¬ϕ) := ¬stx(ϕ)

stx(ϕ ∧ ψ) := stx(ϕ) ∧ stx(ψ)
stx(�mϕ) := ∀y(Rm(x, y)→ sty(ϕ))

where y is a fresh variable for every occurrence of a box-modality.
A Kripke structure M = (W, {Rm}m∈M , V ) for 〈Π,M〉 can be seen as a first-order structure inter-

preting the formula stx(ϕ). While a predicate symbol Rm is interpreted using the binary relation Rm
over W that is interpreting the modality m in M , a predicate symbol P is interpreted as the subset
V (p) of W , where p is the proposition symbol from Π that corresponds to P . Neither constants nor
function symbols are introduced by the standard translation. In the first-order structure M, however,
we introduce a dedicated constant cw for every world w ∈ W and we interpret cw as w. At the level of
pointed models 〈M, w〉, the relationship between ϕ and stx(ϕ) is such that:

〈M, w〉 |= ϕ iff M |= stx(ϕ)[x 7→ cw],

where [x 7→ cw] substitutes every occurrence of the free variable x in stx(ϕ) with the constant cw. Note
that stx(ϕ)[x 7→ cw] is a sentence, i.e. a first-order formula without free variables.

When considering the notion of validity on frames F, we have that ϕ corresponds to the monadic
second-order formula ∀~P ∀x stx(ϕ) as follows:

F |= ϕ(~p) iff F |= ∀~P ∀x stx(ϕ),

where ~p are the propositions from Π that occur in ϕ, and ~P are the corresponding unary predicates.

2.3 Completeness by Modal Definitions

In [24] we introduced a technique on how to obtain Kripke completeness w.r.t. a specific class of Kripke
structures for certain extensions of complete modal logics. We apply this technique to extensions of the
modal logic S5.

By extending a modal logic L with a formula ϕ we mean obtaining a modal logic L′ as a set of
formulas that is minimal w.r.t. ⊆, that contains all tautologies over the symbols for propositions occurring
in L∪ {ϕ}, that contains all formulas from L∪ {ϕ} and that is closed under substitution, modus-ponens
and modal replacement. Clearly L ∪ {ϕ} is not necessarily a modal logic. Moreover, an extension of a
modal logic that is Kripke complete w.r.t. a class C of models is not necessarily complete w.r.t. C itself nor
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any other class of models. We are interested in studying formulas of a specific form (modal definitions)
that, when used to extend a modal logic, yield a modal logic that is complete w.r.t. a specific class of
models. Let L be a propositional modal language over the signature 〈Π,M〉. Let ϕ(~p) be a formula in L,
where ~p are the propositions occurring in ϕ. Let ‘+’ be a fresh symbol for a unary modality not in M ,
and � the box-version of this modality. A modal definition in L is a formula of the form

�p↔ ϕ(~p),

where ~p contains p. The box-modality � is defined in terms of a modal formula in which � does not
occur. Notice that the modal definition �p↔ ϕ(~p) itself is a formula in the propositional modal language
over the extended signature 〈Π,M ∪{+}〉. We only consider + to be a unary modality symbol. Moreover,
we will only consider the modal definitions for the box-version of +. The results for the dual modality
can be obtained in a similar way.

In this paper, we only consider modal definitions �p ↔ ϕ(~p), where the box-modality � does not
occur in ϕ(~p).

A modal definition is interpreted in models M = (F, V ) that are based on M ∪ {+}-frames F =
(W, {Rm}m∈M ∪ {R+}), i.e., frames that are extended with a binary relation R+ to interpret the new
box-modality �. The semantics of � can be defined in the usual way as for any other box-modality:

• 〈M, w〉 |= �ψ iff for all v ∈W with (w, v) ∈ R+, it holds that 〈M, v〉 |= ψ.

We want to interpret � as specified in the modal logic L′ obtained from the modal logic L extended
with a modal definition of �. To this end, we have to confine ourselves to the models from C(L′), i.e.,
all models from K〈Π,M∪{+}〉 in which all formulas of L′ are valid. It is now interesting to investigate
the relationship between the modal definition of � and the properties of the relation R+ in the models
from C(L′).
Example 1. Let L be a propositional modal language over a signature 〈Π,M〉. Additionally, let ‘+’ be
a fresh symbol for a modality not in M . Finally, let L ⊆ L be a modal logic.

The modal definition α1 = �p↔ p yields that R+ is the identity relation. This can be seen as follows.
Obtain the modal logic L1 by extending L with α1. One can see that class of frames for L1 is the class of
frames for L extended with the relation R+ being the identity relation.

Another simple example of a modal definition is �p↔ �mp, for some m ∈M . Here we have that R+

equals Rm in every model. Consider two more examples: �p↔ p ∨ ¬p and �p↔ p ∧ ¬p. In the former
case, R+ is the empty relation, whereas in the latter case the modal definition does not yield any relation.

As the examples show, not all modal definitions yield a relational semantics for the logic extended with
the newly defined modality. Taking the standard translation of a formula ϕ that is used in a definition
�p ↔ ϕ(~p) results in the second-order formula ∀~P ∀x stx(ϕ), where the predicates in ~P correspond to
the propositional variables in ~p. We are interested in elementary formulas, i.e., those formulas ϕ for
which there exists a first-order formula that is equivalent to the second-order formula ∀~P ∀x stx(ϕ), that
additionally yield a relational semantics for the new modality +. It is a non-trivial problem to give a
syntactic characterization of such formulas ϕ that are suitable for defining fresh modalities.

To start tackling this problem, we introduce the notion of a ‘relational modal definition’.

Definition 1. Let L be a propositional modal language over the signature 〈Π,M〉. Let ϕ(p, p1, . . . , pn)
with n ≥ 0 be a formula in L, where p, p1, . . . , pn are the propositions occurring in ϕ. Let ‘+’ be a fresh
symbol for a unary modality not in M , and � the box-version of this modality.

A modal definition �p↔ ϕ(p, p1, . . . , pn) is called a relational modal definition if there exists a first-
order formula Ψ+(x, y) with two free variables x and y using only predicates that occur in stx(ϕ(p, p1,
. . . , pn)) such that for every ψ ∈ L, it holds that for all pointed models 〈M, w〉, M |= (∀y)(Ψ+(x, y) →
sty(ψ))[x 7→ cw] iff M |= stx(ϕ(ψ, p1, . . . , pn))[x 7→ cw].

Example 2. Let us consider modal logic K extended with a new modality �. A formula �p ↔ �p ∧ p
is a relational modal definition. Indeed, for every pointed model 〈M, w〉, it holds that M |= ((∀y)(xRy →
P (y)) ∧ P (x))[x 7→ cw] iff (∀y)(Ψ(x, y)→ P (y))[x 7→ cw], where Ψ(x, y) is the formula (xRy) ∨ (x = y).

We note that elementarity is neither a sufficient nor a necessary condition for modal formulas being
suitable for a relational modal definition; see, e.g., the reduction axiom for S5r in the following section
which yields a relational modal definition despite it being non-elementary.
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Let Ψ+(x, y) be the first-order formula with two free variables x and y corresponding to a relational
modal definition. Given a model M = (F, V ) with F = (W, {Rm}m∈M ), we uniquely construct the
model M+ = (F+, V ), where the underlying frame F+ is obtained from F by adding the binary relation
R+ ⊆W ×W defined as:

(v, w) ∈ R+ iff M |= Ψ+(x, y)[x 7→ cv, y 7→ cw].

For a class C of models, we denote with C+ the class consisting of the models M+, where M ranges over
the models in C.

Formulas from the extended language L+ can be translated to formulas in L in a straightforward way.

Definition 2. Let L and L+ be propositional modal languages over the signatures 〈Π,M〉 and 〈Π,M ∪
{+}〉, respectively, where + is a fresh unary modality not in M . The translation function ∗ : L+ → L for
the modal definition �p↔ ϕ+(p, p1, . . . , pn) is inductively defined as follows, where m ranges over M :

p∗ := p
(ϕ ∨ ψ)∗ := ϕ∗ ∨ ψ∗

(¬ϕ)∗ := ¬ϕ∗
(�mϕ)∗ := �mϕ∗

(�ψ)∗ := ϕ+(ψ∗, p1, . . . , pn)

The following theorem shows the intended completeness technique.

Theorem 1 ([24]). Let L and L+ be propositional modal languages over the signatures 〈Π,M〉 and 〈Π,M∪
{+}〉, respectively, where + is a fresh unary modality not in M . Let L ⊆ L be a normal modal logic that
is sound and complete w.r.t. a class F of Kripke frames. Obtain L+ ⊆ L+ from L by adding a relational
modal definition �p ↔ ϕ(p1, . . . , pn) as an only axiom schema for �. Then the logic L+ is sound and
complete w.r.t. the class F+.

2.4 Topological Semantics

In [17] McKinsey&Tarski introduced topological semantics of modal logic. A pair (X, τ) is called a
topological space iff X is a set and τ is a collection of subsets of X with the following properties: (i)
X, ∅ ∈ τ ; (ii) A,B ∈ τ implies A ∩ B ∈ τ ; and (iii) Ai ∈ τ , for all i ∈ I, implies

⋃
i∈I Ai ∈ τ , for some

index set I. Condition (ii) states that τ contains every finite intersection of its members, whereas (iii)
states that τ contains every finite or infinite union of its members. Elements of a topological space τ are
called open sets of τ . Closed sets are defined as complements of open sets. A topological space (X, τ) is
called an Alexandroff space iff an arbitrary (finite or infinite) intersection of open sets is open, i.e., for
some index set I it holds that Ai ∈ τ , for all i ∈ I, implies

⋂
i∈I Ai ∈ τ . For a topological space (X, τ),

the function Int(X,τ) : 2X 7→ 2X maps every set A ⊆ X to the interior Int(X,τ)(A) of A, which is the
maximal open set included in A, i.e., the set Int(X,τ)(A) is a subset of A that is open w.r.t. τ , and
it is maximal w.r.t. ⊆ among the open sets w.r.t. τ that are subsets of A. A topological space (X, τ)
uniquely determines the function Int(X,τ). We drop (X, τ) from the subscript of Int(X,τ) if it is clear from
the context. An interior operator satisfies the following conditions, also known as Kuratowski axioms:
(i) Int(X) = X; (ii) Int(A) ⊆ A; (iii) Int(Int(A)) = Int(A); and (iv) Int(A ∩B) = Int(A) ∩ Int(B).

An interpretation of formulas from L on topological spaces is given by means of a satisfaction rela-
tion ‘|=’, which is a binary relation between pointed topological models and formulas. A pointed topological
model is a pair 〈T, x〉, where T = (X, {τm}m∈M , V ) is a topological space with a topology τm for every
m ∈ M extended with a valuation V , and x is an element of the set X. The satisfaction relation is
defined inductively on the structure of formulas ϕ as:

• 〈T, x〉 |= p iff x ∈ V (p);

• 〈T, x〉 |= ¬ψ iff 〈T, x〉 6|= ψ;

• 〈T, x〉 |= ψ ∧ χ iff 〈T, x〉 |= ψ and 〈T, x〉 |= χ;

• 〈T, x〉 |= �mψ iff x ∈ Intm({ y | 〈T, y〉 |= ψ }),
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where Intm is the interior operator of the topological space (X, τm). A formula ϕ is said to be true at x
in T iff 〈T, x〉 |= ϕ; ϕ is satisfiable iff there is a pointed topological model 〈T, x〉 at which it is true; ϕ is
valid in T (written ‘T |= ϕ’) iff 〈T, x〉 |= ϕ for all x in T; ϕ is valid in the topological space (X, {τm}m∈M )
(written ‘(X, {τm}m∈M ) |= ϕ’) iff ϕ is valid in all topological models based on (X, {τm}m∈M ); and ϕ is
valid in the class T of topological spaces (written ‘|=T ϕ’) iff it is valid in every topological space from T .

A modal logic L ⊆ L is said to be topologically complete w.r.t. T iff L ⊇ ThL(T ), and L is said to
be sound w.r.t. T iff L ⊆ ThL(T ). The notion of a theory ThL(·) generalizes from Kripke structures to
topological spaces in a straightforward way.

2.5 Completeness by Alexandroff connection

A well-known technique for obtaining topological completeness from Kripke completeness utilises the
relationship between preorders and Alexandroff topologies.

Proposition 1 ([10]). There is a one-to-one correspondence between preorders and Alexandroff spaces
on a given set X. Moreover, if we consider the lattice Pre(X) of all preorders on a set X and the lattice
of all Alexandroff topologies TopAl(X) on the same set X, the two lattices are unti-isomorphic.

To illustrate the correspondence, we first introduce the downset operator. For a preorder (X,R), the
downset operator R−1 is defined as follows: For every A ⊆ X, we set R−1(A) := {x | (∃y)(y ∈ A∧xRy) }.
Now, if we are given a preorder (X,R), it is possible to prove that the downset operator R−1 satisfies all
the properties of the topological closure operator. Hence, we obtain a topological space (X, τR), where
τR is the topology obtained from the closure operator R−1. Conversely, every Alexandroff space (X, τ)
can be associated with a preorder (X,Rτ ) such that xRτy iff x ∈ Cl({y}), where Cl denotes the closure
operator of a topological space (X, τ). The set A is open in (X, τR) iff x ∈ A implies that the implication
(xRy ⇒ y ∈ A) holds for every y ∈ X.

If R1 and R2 are two preorders on X and (R1 ∪ R2)+ is a transitive closure of the union of the two
relations, then τ(R1∪R2)+

∼= τR1
∩ τR2

and τ(R1∩R2)
∼= τR1

t τR2
, where t stands for the union topology

of the two topologies.

Proposition 2 ([10]). The correspondence in the Proposition 1 preserves the truth of modal formulas.
Formally, (X,R, V ), x |= ϕ iff (X, τR, V ), x |= ϕ, and (X,Rτ , V ), x |= ϕ iff (X, τ, V ), x |= ϕ.

3 The Modal Logic S5r

In this section, we recall the multi-modal logic S5r from [23] together with the completeness result w.r.t.
a particular class of models called basic structures. In addition, we provide the topological semantics of
the S5r and prove topological completeness.

3.1 Syntax

The language of S5r is the language of propositional logic extended with modal operators parameterized
with S5r-formulas. Formally, this is done as follows. Let Π be a countable set of propositions. Formulas
ϕ of the language L are defined inductively over Π by the following grammar:

ϕ,ψ ::= p | ¬ϕ | ϕ ∨ | [ϕ]K ψ,

where p ranges over propositions in Π. The logical symbols ‘>’ and ‘⊥’, and additional operators such
as ‘∧’, ‘→’, ‘↔’, and the dual modalities ‘〈ϕ〉K ’ are defined as usual.

3.2 Relational semantics

Modal formulas are commonly evaluated in models containing a binary relation over the domain, one for
each modality in the modal language. In this case, however, every binary relation is determined by the
valuation of the atomic propositions in the domain. Therefore, it is sufficient to consider models without
relations, which we call basic structures. Formally, a basic structure M is a tuple M = (W,V ), where W
is a non-empty set of worlds and V : Π→ 2W a valuation function mapping every atomic proposition p



8 Inteligencia Artificial 65(2020)

to a set of worlds V (p) at which it is true. The relations that are required to evaluate the modalities are
defined alongside the satisfaction relation. But first we introduce an auxiliary notion, a binary operation
‘⊗’ on sets yielding a binary relation. Let X and Y be two sets. Let X ⊗ Y be a binary relation over
X ∪ Y such that

X ⊗ Y = X2 ∪ (X × Y ) ∪ Y 2. (1)

We illustrate this notion with an example.

Example 3. Let X = {x1, x2} and Y = {y1, y2, y3} be two sets. Then, according to Equation (1), X⊗Y
is a binary relation over X∪Y that is composed of the relations X2, X×Y and Y 2 by taking their union. It
holds that X2 = {(x1, x2), (x2, x1)}∪ id(X), X×Y = {(x1, y1), (x1, y2), (x1, y3), (x2, y1), (x2, y2), (x2, y3)}
and Y 2 = {(y1, y2), (y2, y1), (y1, y3), (y3, y1), (y2, y3), (y3, y2)} ∪ id(Y ). Then the relation X ⊗ Y =
X2 ∪ (X × Y ) ∪ Y 2 contains two fully connected clusters X2 and Y 2, and directed edges between every
point in X to every point in Y . Figure 1 below gives a graphical representation of X ⊗Y (leaving out the
reflexive and symmetric edges).

We are now ready to introduce the semantics of S5r. It differs from the semantics of Public Announce-
ment Logic [19, 31] in that the model does not change during the evaluation of formulas.

Let M = (W,V ) be a basic structure. The logical satisfaction relation ‘|=’ is defined by induction on
the structure of S5r-formulas as follows: For all p ∈ Π and all ϕ,ψ ∈ L,

• 〈M, w〉 |= p iff w ∈ V (p);

• 〈M, w〉 |= ϕ ∨ ψ iff 〈M, w〉 |= ϕ or 〈M, w〉 |= ψ;

• 〈M, w〉 |= ¬ϕ iff 〈M, w〉 6|= ϕ;

• 〈M, w〉 |= [ϕ]K ψ iff for all v ∈W with (w, v) ∈ Rϕ, it holds that 〈M, v〉 |= ψ;

where Rϕ = (W \ [[ϕ]]M) ⊗ [[ϕ]]M as defined in Equation (1) and [[ϕ]]M = {x ∈ W | 〈M, w〉 |= ϕ } is the
extension of ϕ in M. We say that a S5r-formula ϕ is satisfiable if there is a model M and a world w in
M such that 〈M, w〉 |= ϕ; ϕ is valid in M if 〈M, w〉 |= ϕ for all w in M; and ϕ is valid if ϕ is valid in all
models. We will refer to the relation Rϕ as being determined by ϕ and a model.

According to the semantics, a formula determines a binary relation in a model. The following propo-
sition states the properties of such relations.

Proposition 3. Let ϕ be an S5r-formula and let M = (W,V ) be a basic structure. Then, the relation Rϕ
determined by ϕ and M (cf. Definition 3.2) is a one-step total preorder, i.e., Rϕ satisfies the following
conditions:

• Rϕ is transitive: ∀xyz(Rϕ(x, y) ∧Rϕ(y, z)→ Rϕ(x, z));

• Rϕ is total: ∀xy(Rϕ(x, y) ∨Rϕ(y, x)); and

• Rϕ is one-step: ∀xyz(Rϕ(x, y) ∧ ¬Rϕ(y, x) ∧Rϕ(x, z)→ (zRϕy)).

Instead of ‘preorder’ also the term ‘quasiorder’ is often used in the literature. Note that totality
implies reflexivity and that a symmetric total preorder is an equivalence relation. The proposition is
readily checked as any relation Rϕ in a model determined by ϕ is defined using the operation ‘⊗’, which
always yields a so-called ‘one-step total preorder’. As the domain of a model is non-empty, it contains at
least one point and, thus, the smallest relation Rϕ is the edge of a single reflexive point.

Proposition 4. The relation Rϕ for every formula ϕ ∈ S5r is characterized by the following condition:
Rϕ(w, v) iff w ∈ [[ϕ]] implies that v ∈ [[ϕ]].

Figure 1 illustrates the relation Rϕ in a model M. The domain of M is partitioned into two clusters,
the worlds in each of which are fully connected (reflexive and symmetric edges within the clusters are not
shown). Between the clusters there are outgoing directed edges from worlds in the cluster on the left- to
worlds in the cluster on the right-hand side, but not vice versa. Revisit Example 3 to see in detail how
Rϕ is computed (where X = W \ [[ϕ]]M and Y = [[ϕ]]M).

Consider the following example, which illustrates the effect that hypotheses can have on an agent’s
knowledge.
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Figure 1: Model M with Relation Rϕ

Example 4. Let M = (W,V ) be a basic structure with W = {x, y}, V (ph) = V (pc) = {x} and V (pu) =
{x, y}. Intuitively, the three propositions ph, pc and pu stand for hypothesis, conclusion and universal or
already established knowledge, respectively. Then, [ph]K pu is true at x and y in M. In fact, we have that
〈M, x〉 |= [ϕ]K pu for every S5r-formula ϕ, because pu holds everywhere in M. But [ph]K pc holds only at
x and not at y, because 〈M, x〉 |= ph and ph implies pc everywhere in M.

We conclude this section with a discussion on how S5r could possibly be used to reason about the
knowledge of multiple agents; see, e.g., [11], [18] for standard references. Syntactically, S5r is a single-
agent logic. That is, it does not provide us with syntactic markers to distinguish agents such as a different
modality for each agent as in the modal epistemic logic S5n. Consequently, there is no way to distinguish
different agents other than by what they know. In S5r we can represent the individuality of agents in
the hypothesis itself. For instance, in order to represent what the agents a and b know, we can use
different hypotheses pa and pb, which are atomic propositions labelling the states which the agents a and
b, respectively, consider possible. Thus [pa]K ϕ states ‘a knows ϕ’ and [pb]K ψ states that ‘b knows ψ’.

3.3 Axiomatization

We now present a sound and complete axiomatization of the logic S5r from [23]. The axiom system
consists of all propositional tautologies and the following axioms:

(K) [>]K (p→ q)→ ([>]K p→ [>]K q)

(T) [>]K p→ p

(4) [>]K p→ [>]K [>]K p

(B) p→ [>]K ¬[>]K ¬p

(R) [ϕ]K p↔ [>]K p ∨ (ϕ ∧ [>]K (ϕ→ p))

The first four axioms are similar to the axioms known from the modal epistemic logic S5 characterizing
any modality [ϕ]K in our logic S5r as epistemic operator that can be used to represent what is known
under the hypothesis ϕ.

The axioms (T), (4), and (B) are for the modality [>]K only, whereas we need additional instances
of the axioms (K) and (R), namely the ones for each modal parameter ϕ (cf. Section 3.1). The reduction
axiom (R) states that every modality [ϕ]K is definable in terms of the basic modal operator [>]K , which
corresponds to the S5-box or the universal modality. As it was already mentioned in the introduction,
Axiom (R) corresponds to the definition of the modal operator ‘Modest Enrichment (Type B)’ in [10].

Theorem 2 ([23]). The system S5r is sound and complete w.r.t. the class of basic structures.
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3.4 Topological Semantics

The topological semantics for S5r is provided by the pair (X, τ), where the set X is equipped with the
least topology τ , i.e., the set of open sets τ = {X, ∅}. We call such pairs topological structures.

A triple (X, τ, V ), where (X, τ) is a topological structure and V is a valuation function, is called a
topological model. The formulas on topological models are evaluated as follows:

Let T = (X, τ, V ) be a topological model. The logical satisfaction relation ‘|=’ is defined by induction
on the structure of S5r-formulas as follows: For all p ∈ Π and all ϕ,ψ ∈ L,

• 〈T, w〉 |= p iff w ∈ V (p);

• 〈T, w〉 |= ϕ ∨ ψ iff 〈T, w〉 |= ϕ or 〈T, w〉 |= ψ;

• 〈T, w〉 |= ¬ϕ iff 〈T, w〉 6|= ϕ;

• 〈T, w〉 |= [ϕ]K ψ iff w ∈ Intϕ([[ψ]]), where Intϕ is the interior operator of the topology τ extended
with one open set [[ϕ]].

Let τϕ denote the topology {∅, [[ϕ]], X} which is a refinement of a topology τ by the open set [[ϕ]]. The
main theorem of this section is a topological completeness result for the modal logic S5r.

Lemma 1. The Alexandroff space τRϕ
corresponding to the preorder Rϕ is exactly τϕ.

Proof. By the Alexandroff correspondence we know that the open sets of a space corresponding to the
relation Rϕ are exactly up-sets of Rϕ. By Proposition 4, the relation Rϕ has only three up-sets ∅, [[ϕ]]
and X. Hence the topology τRϕ is equal to τϕ.

The following lemma is essential for reducing the problem of topological completeness to Kripke
completeness.

Lemma 2. For an arbitrary formula α from S5r and an arbitrary structure (W,V ) the following holds:
(W,V ), w |= α iff (W, τ, V ), w |= α where τ = {∅,W} and w is an arbitrary point from W .

Proof. The proof goes by induction on the complexity of formulas. The only non-trivial case is for modal
formulas. For simplicity of presentation we won’t write but assume that for the subformulas we by
induction already have the desired iff condition. Let M = (W,V ) and w ∈W such that 〈M, w〉 |= [ϕ]K ψ.
This is equivalent to (∀v) (Rϕ(w, v) ⇒ v |= ψ). By Proposition 4, we obtain that if w ∈ [[ϕ]]⇒ v ∈ [[ϕ]],
then v |= ψ. We distinguish two cases. Case 1: w |= ϕ. For v ∈ W , if v |= ϕ, then the implication
w ∈ [[ϕ]]⇒ v ∈ [[ϕ]] is satisfied. Hence, v |= ψ. This means that [[ϕ]] ⊆ [[ψ]] and w ∈ [[ψ]]. Additionally, by
the properties of Alexandroff connection, we know that the upset [[ϕ]] is open in τRϕ

. By lemma 1, this
means that [[ϕ]] is open in τϕ. Hence, Intϕ([[ψ]]) ⊇ [[ϕ]]. We conclude that w ∈ Intϕ([[ψ]]).

Case 2: w 6|= ϕ. In this case w ∈ [[ϕ]] ⇒ v ∈ [[ϕ]] holds for an arbitrary v ∈ W . Hence, ψ is valid in
the entire model. This means that Intϕ([[ψ]]) = W . Hence, w ∈ Intϕ([[ψ]]).

In either case, we obtain that w ∈ Intϕ([[ψ]]). By definition of satisfaction on topological models, this
yields that (W, τ, V ), w |= [ϕ]K ψ. The converse direction can be shown similarly.

Theorem 3. The logic S5r is sound and complete w.r.t. the class of all topological structures.

Proof. Soundness can be proved by straightforward check. Completeness of the logic S5r w.r.t. topological
structures immediately follows from the Kripke completeness result (Theorem 2) and lemma 2. Assume
that ϕ is not a S5r theorem. By Theorem 2 there is a basic structure (W,V ) which falsifies ϕ. And by
lemma 2 ϕ is falsified on the topological structure T = (W, τ, V )

4 The Modal Logic S5C r

Probably one of the most interesting examples in the direction of dynamic epistemic logic is provided
by the notion of common knowledge. Common knowledge, originally defined by Lewis [15], has been
extensively studied from various perspectives including philosophy [2], game theory [29] artificial intel-
ligence [14] and Epistemic and modal logic [1]. The usual definition of common knowledge of agents is
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given as an infinite conjunction of nested individual knowledge. For example in the case of two agents,
say, agent 1 and agent 2 with corresponding knowledge operators �1 and �2, common knowledge that p
is formalized by an infinite formula of the form

ϕ ∧�1ϕ ∧�2ϕ ∧�1�1ϕ ∧�1�2ϕ ∧�2�1ϕ ∧�2�2ϕ ∧�1�1�1ϕ . . .

At the end of Section 3, we have explained that the logic S5r can be seen as a multi-agent logic if the
labeling for the agents is given not by natural numbers but by formulas, i.e., the facts or hypotheses they
have. With that in mind, it seems natural to extend the language with a modality for common knowledge.
In this section, we extend S5r with modalities for common knowledge and prove Kripke completeness.

Definition 3 (Syntax of S5C r). Let Π be a countable set of propositions. Formulas ϕ of S5C r are defined
inductively over Π by the following grammar:

ϕ,ψ, ϕi ::= p | ¬ϕ | ϕ ∨ | [ϕ]K | [{ϕ1, . . . , ϕn}]C ψ,

where p ranges over atomic propositions in Π and n ≥ 0.

To improve readability, we index the modalities with ‘K’ and ‘C’ to indicate that they stand for
knowledge and common knowledge, respectively. Moreover, we may omit the braces in [{ϕ1, . . . , ϕn}]C ψ
and simply write [ϕ1, . . . , ϕn]C ψ instead.

Formulas of S5C r are evaluated in basic structures as well. A modality [Φ]C is a necessity depending
on the formulas in the set Φ. The semantics of [Φ]C is based on the relations Rϕ with ϕ ∈ Φ as follows.

Definition 4 (Semantics of S5C r). Let M = (W,V ) be a basic structure. The satisfaction relation ‘|=’
and the relations Rϕ for formulas ϕ of S5C r are defined as for S5r but extended with the following clauses:
For all S5C r-formulas and all finite sets Φ of S5C r-formulas,

• 〈M, w〉 |= [Φ]C ψ iff for all v ∈W with (w, v) ∈ RC

Φ, it holds that 〈M, v〉 |= ψ,

where R
C

Φ =
(⋃

ϕ∈ΦRϕ
)∗

and (·)∗ yields the reflexive and transitive closure of relation.

Due to the simple structure of one-step relations, it may seem the union
⋃
ϕ∈ΦRϕ is itself transitive.

The following example illustrates that this is not always the case.

Example 5. Let M = (W,V ) be a model, where W = {x, y, s, t}, V (p) = {t, y} and V (q) = {x, t}. Then
Rp = {s, x} ⊗ {t, y} and Rq = {s, y} ⊗ {t, x}. Hence, we have that (Rp ∪ Rq)(t, y) and (Rp ∪ Rq)(y, s)
but not (Rp ∪Rq)(t, s); see Figure 2.

[[¬q]]M [[q]]Mu
y us

ux
ut

Rq

[[¬p]]M [[p]]Muxus
uy

ut
Rp

Figure 2: Model M with Relations Rp and Rq

The example also shows that the reflexive and transitive closure of the union relation
⋃
ϕ∈ΦRϕ will

be a cluster if for every pair s and t of worlds that are from different clusters of each relation Rϕ with
ϕ ∈ Φ, there are formulas θ and ψ in Φ such that 〈M, s〉 |= θ ∧ ¬ψ and 〈M, t〉 |= ¬θ ∧ ψ.
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In the remainder of the section, we focus on the case where Φ = {ϕ1, ϕ2}. It can readily be seen that
the results can be generalized to an arbitrary finite subset of formulas. The definition of the satisfaction
relation boils down to the following:

• 〈M, w〉 |= [Φ]C ψ iff for all v ∈W : w
(
Rϕ1 ∪Rϕ2

)∗
v implies that 〈M, v〉 |= ψ.

The proof of the following proposition follows from the semantics of [Φ]C ψ and properties of the
transitive and reflexive closure of the relation.

Proposition 5. Let M be a model and w be a world in M. Then the following holds: 〈M, w〉 |= [Φ]C
iff 〈M, w〉 |= ψ ∧ [ϕ1]K ψ ∧ [ϕ2]K ψ ∧ [ϕ1]K [ϕ2]K ψ ∧ [ϕ2]K [ϕ1]K ψ ∧ [ϕ1]K [ϕ1]K ψ ∧ · · · .

The next proposition shows that the infinitary nature of the common knowledge operator could be
captured by a formula of the language S5r.

Proposition 6. Let M be a model and w be a world in M. Then the following holds: 〈M, w〉 |=
〈{ϕ1, ϕ2}〉Cψ iff 〈M, w〉 |= 〈ϕ1〉Kψ ∨ 〈ϕ2〉Kψ ∨ 〈ϕ1〉K〈ϕ2〉Kψ ∨ 〈ϕ2〉K〈ϕ1〉Kψ.

Proof. For the direction from left to right, suppose that 〈M, w〉 |= 〈{ϕ1, ϕ2}〉Cψ. Then there exists a

world v in M such that w
(
Rϕ1 ∪Rϕ2

)∗
v and 〈M, v〉 |= ψ. We distinguish the following two cases:

(a) M |= ϕ1 ↔ ϕ2;

(b) 〈M, u〉 |= (ϕ1 ∧ ¬ϕ2) ∨ (ϕ2 ∧ ¬ϕ1) for some world u.

For (a), it is clear that Rϕ1
= Rϕ2

= Rϕ1
∪ Rϕ2

and, as each Rϕi
is reflexive and transitive, it holds

that
(
Rϕ1
∪ Rϕ2

)∗
= Rϕi

for every i ∈ {1, 2}. Hence, w
(
Rϕ1
∪ Rϕ2

)∗
v implies that wRϕi

v which yields
〈M, w〉 |= 〈ϕi〉Kψ for every i ∈ {1, 2}. Consequently, it holds that 〈M, w〉 |= 〈ϕ1〉Kψ ∨〈ϕ2〉Kψ∨ 〈ϕ1〉K
〈ϕ2〉Kψ ∨ 〈ϕ2〉K〈ϕ1〉Kψ.

For (b), we show that the relation R = (Rϕ1
∪Rϕ2

) ◦ (Rϕ1
∪Rϕ2

) is a universal relation. Let t, s ∈W
be two worlds. We show that tRs. We will use the world u as a linking point between s and t. We
know that each Rϕi

is of the form [[ϕi]] ⊗ [[¬ϕi]] (similar to Example 5 if we take p = ϕ1 and q = ϕ2).
Hence, since 〈M, u〉 |= (ϕ1 ∧ ¬ϕ2) ∨ (ϕ2 ∧ ¬ϕ1), it will belong to the upper cluster according to the first
relation among Rϕ1

and Rϕ2
, while it will belong to the lower cluster according to the second relation.

Therefore t(Rϕ1
∪Rϕ2

)u and similarly u(Rϕ1
∪Rϕ2

)s. Hence, it holds that tRs. Since t and s were chosen
arbitrarily we can infer that R = W ×W , and as R is reflexive and transitive we have that R∗ = R. Now
w
(
Rϕ1
∪ Rϕ2

)∗
v implies that wRv. This means that the world v can be reached from w in two steps,

i.e., it holds that wRϕ1
◦Rϕ1

v, wRϕ2
◦Rϕ2

v, wRϕ2
◦Rϕ1

v or wRϕ1
◦Rϕ2

v. We obtain the first two since
each Rϕi

is transitive, which means that v can be reached in one step as well, whereas the second two
cases do not simplify further.

For each of the above case it holds that 〈M, w〉 |= 〈ϕ1〉Kψ∨〈ϕ2〉K ψ∨ 〈ϕ1〉K 〈ϕ2〉Kψ∨〈ϕ2〉K〈ϕ1〉Kψ.
For the other direction from right to left, suppose that 〈M, w〉 6|= 〈{ϕ1, ϕ2}〉Cψ. Then, it holds that

〈M, w〉 |= [{ϕ1, ϕ2}]C ¬ψ. By Proposition 5 we infer that 〈M, w〉 |= [ϕ1]K ¬ψ∧[ϕ2]K ¬ψ∧[ϕ1]K [ϕ2]K ¬ψ∧
[ϕ2]K [ϕ1]K ¬ψ. As a result we obtain that 〈M, w〉 6|= 〈ϕ1〉Kψ ∨ 〈ϕ2〉Kψ∨ 〈ϕ1〉K〈ϕ2〉Kψ ∨〈ϕ2〉K〈ϕ1〉Kψ.

Lemma 3. Let ϕ1 and ϕ2 be two formulas in the language of S5r. Then the formula [ϕ1, ϕ2]C p↔ ψ(p)
with ψ(p) = [ϕ1]K p∧[ϕ2]K p∧[ϕ1]K [ϕ2]K p∧[ϕ2]K [ϕ1]K p is a relational modal definition for the language
of S5r.

Proof. We need to show the existence of a first-order formula Ψϕ1,ϕ2(x, y) with two free variables x and y
that uses only predicates from stx(ψ(p)) such that for every χ ∈ S5r and every pointed model 〈M, w〉, it
holds that 〈M, w〉 |= (∀y)(Ψ+(x, y)⇒ sty(ψ)) iff M |= stx(ψ(χ))[x 7→ cw] (cf. Definition 1).

Let Ψϕ1,ϕ2(x, y) be such that (v, w) ∈ R{ϕ1,ϕ2} iff M |= Ψϕ1,ϕ2(x, y) [x 7→ cv, y 7→ cw], where

R{ϕ1,ϕ2} = (Rϕ1
∪Rϕ2

) ◦ (Rϕ1
∪Rϕ2

).

Moreover, let M be a model and let w be a world in M. It suffices to show the following equivalence:
M |= (∀y)(xR{ϕ1,ϕ2}y ⇒ P (y))[x 7→ cw] iff the following four conditions are satisfied:
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• M |= (∀y)(xRϕ1y ⇒ P (y))[x 7→ cw];

• M |= (∀y)(xRϕ2
y ⇒ P (y))[x 7→ cw];

• M |= (∀y, z)((xRϕ1
z ∧ zRϕ2

y)⇒ P (y))[x 7→ cw]; and

• M |= (∀y, z)((xRϕ2z ∧ zRϕ1y)⇒ P (y))[x 7→ cw],

where [x 7→ cw] substitutes the occurrences of the free variable x with the constant cw which is interpreted
as w in M extended with dedicated constants, one for every world.

The equivalence is a direct application of the following equality

(Rϕ1
∪Rϕ2

) ◦ (Rϕ1
∪Rϕ2

) = Rϕ1
∪Rϕ2

∪ (Rϕ2
◦Rϕ1

) ∪ (Rϕ1
◦Rϕ2

).

It suffices to show that Rϕ1 ∪Rϕ2 ⊆ (Rϕ2 ◦Rϕ1)∪ (Rϕ1 ◦Rϕ2). But this is immediate since each Rϕ is a
reflexive relation.

The reduction of the common knowledge modality for a finite set Φ = {ϕ1, . . . , ϕn} of agents is
recursively defined as a function Rd as follows, where n ≥ 3:

Rd([ϕ1]C p) := [ϕ1]K p
Rd([ϕ1, ϕ2]C p) := [ϕ1]K p ∧ [ϕ2]K p ∧ [ϕ1]K [ϕ2]K p∧

[ϕ2]K [ϕ1]K p
Rd([ϕ1, . . . , ϕn]C p) := Rd([Rd([ϕ1, . . . , ϕn−1]C p), ϕn]C )

Note that here we implicitly assume that each ϕi belongs to the language of S5r, i.e., ϕi does not
contain the modality for common knowledge. The reduction for arbitrary formulas Φ = {ϕ1, . . . , ϕn},
where the ϕi-s may include the common knowledge modality, is a simple application of the reduction
step by step. It can readily be seen that the function Rd yields a formula in the language of S5r.

Theorem 4. Let Φ be a finite set of formulas in the language of S5r. Then the formula [Φ]C p ↔
Rd([Φ]C p) is a relational modal definition for the language of S5r.

Proof. The case where |Φ| = 1 is trivial; and the case where |Φ| = 2 follows from Lemma 3. Let Φ =
{ϕ1, . . . , ϕn} with n ≥ 3. We show that [ϕ1, . . . , ϕn]C p ↔ Rd([ϕ1, . . . , ϕn]C p) is a relational modal
definition. It holds that

Rd([ϕ1, . . . , ϕn]C p) = Rd([Rd([ϕ1, . . . , ϕn−1]C p), ϕn]C p).

Let γ = Rd([ϕ1, . . . , ϕn−1]C p). It can readily be seen that γ is a formula in the language S5r. Then
Rd([ϕ1, . . . , ϕn]C p) ↔ Rd([γ, ϕn]C p) and by Lemma 3 is equivalent to [γ]K p ∧ [ϕ2]K p ∧ [γ]K [ϕ2]K p ∧
[ϕ2]K [γ]K p. Again by Lemma 3, it is a relational modal definition.

Let S5C r be the logic obtained by extending S5r with modal definitions of the form [Φ]C p ↔
Rd([Φ]C p), where Φ ranges over sets of formulas in the language of S5r and the function Rd is defined as
above. We obtain the following result.

Theorem 5. The modal logic S5C r is sound and complete w.r.t. the class of all basic structures.

The proof of the theorem follows from theorems 1, 2 and 4.

Theorem 6. The logic S5C r is decidable.

Proof. Proof follows from decidability of the logic S5r and reducibility of an arbitrary S5Dr formula to
a S5r formula.
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4.1 Topological Semantics

Here we introduce the topological semantics for the logic S5C r. Following the ideas from [30] we interpret
the common knowledge modality on the intersection topology. More formally the satisfaction of the
formula [ϕ1, . . . , ϕn]C ψ in the topological model T = (X, τ, V ) at a point x is defined by the following
clause:

• T, x |= [ϕ1, . . . , ϕn]C ψ iff x ∈ Int∩[[ψ]], where Int∩ is the interior operator of the intersection
topology (X, τ∩) with τ∩ =

⋂
i=1..n τϕi .

Theorem 7. The modal logic S5C r is sound and complete w.r.t. the class of all topological structures.

Proof. We skip soundness since it follows by straightforward check. For completeness assume that α 6∈
S5C r. By Theorem 5 there is a basic structure M = (W,V ) and a point w such that w 6|= α. Let us
consider all generated relations Rϕ which we need to evaluate the formula α in the model M. Formally we
take a set Γ of all formulas ϕ such that there exists a subformula of α of the form [ϕ]K ψ or [ϕ1, . . . , ϕn]C ψ
with ϕ = ϕk for some k. Let us consider the model (W, {Rϕ}ϕ∈Γ, V ). It follows from the semantics of
the logic S5C r that M, w |= α iff (W, {Rϕ}, V ), w |= α when each [ϕ]K is evaluated on the corresponding
relation Rϕ as a standard box operator and [ϕ1, . . . , ϕn]C ψ is evaluated as a standard box operator on the
reflexive and transitive closure (

⋃
i=1,2,..nRϕi

)∗. Now by Alexandroff connection 2 we have the following

iff condition: (W, {Rϕ}ϕ∈Γ, V ), w |= α iff (W, {τRϕ
}ϕ∈Γ, V ), w |= α with common knowledge modality

being evaluated on τR(
⋃
i=1,2,..n Rϕi

)∗ . Again by the property of Alexandroff connection 1 we know that

τ(
⋃

i=1,2,..,n Rϕi
)∗ =

⋂
i=1,2,..,n τRϕi

. By lemma 1 we conclude that τ(
⋃

i=1,2,..,n Rϕi
)∗ =

⋂
i=1,2,..,n τϕi

which

finishes the proof.

5 The Modal Logic S5Dr

In this section, we introduce the modal logic S5Dr which is an extension of S5r with modalities for
distributed hypotheses that are analogous to modalities for distributed knowledge. Distributed knowledge
in modal logic is a well-known notion; standard references include [11, 18] and for a more recent discussion,
see [12, 20]. We leave the prove of the completeness results for this logic for future work. We show how
distributed hypotheses can be used to represent the knowledge of an agent whose epistemic capacity
corresponds to any system containing S4.

Let Π be a countably infinite set of atomic propositions. Formulas ϕ of S5Dr are defined inductively
over Π by the following grammar:

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | [ϕ]K ϕ | [Φ]D ϕ,

where p ranges over atomic propositions in Π, and Φ over finite sets of S5Dr-formulas.

Formulas of S5Dr are evaluated in basic structures as well. The operators [Φ]D are necessities de-
pending on the formulas in Φ. The semantics of [Φ]D is based on the relations Rϕ, where ϕ ∈ Φ, as
follows. Let M = (W,V ) be a basic structure. The logical consequence relation ‘|=’ and the relations R
for formulas of S5Dr are defined as for S5r but extended with the following clauses: For all S5Dr-formulas

and all finite sets Φ of S5Dr-formulas,

• M, w |= [Φ]D ψ iff for all v ∈W with (w, v) ∈ RΦ, M, v |= ψ,

where RΦ =
⋂
ϕ∈ΦRϕ.

The following proposition shows how any finite preorder can be represented as an intersection of
one-step frames. This hints at the possibility that an arbitrary modal operator can be represented as
a distributed knowledge of some hypothetical knowledge operator. Here we assume that knowledge
operators are box-modalities for logics in the interval [S4, S5]. Below we show a version of this claim.

Proposition 7. Let W = {w1, . . . , wk} be a set. Let R be a preorder over W . For all i ∈ {1, . . . , k}, let
Ri = (W \R(wi))⊗R(wi). Then it holds that R =

⋂
i=1..k Ri. a



Inteligencia Artificial 65(2020) 15

Intuitively, the proposition can be understood as follows. Observe that a preorder R induces a partial
order (i.e. an antisymmetic preorder) on the set of R-clusters, which are sets of points fully connected
by R. In other words, R gives rise to a collection of directed graphs whose nodes are R-clusters. Note
that the graph is loopless (and thus antisymmetric). Now, if R is total, all points are connected which
gives rise to just one such graph. If, additionally, R is ‘one-step’, the graph consists of merely two nodes.
Intersecting one-step total preorders has the effect of erasing directed edges from the universal relation.
Note that the intersection of preorders is again a preorder. Proposition 7 shows that by intersecting
a certain selection of one-step total preorders, we can “carve out” the desired preorder. The following
example illustrates the scenario.

Example 6. Let W = {x, y, z} be a set and R = {(x, y), (x, z)} ∪ id(W ). It is readily checked that
R is a reflexive and transitive relation. Now let Rw = (W \ R(w)) ⊗ R(w) for all w ∈ W . That is,
according to Equation (1), we have Rx = W ×W , Ry = {(x, y), (z, y), (x, z), (z, x)} ∪ id(W ) and Rz =
{(y, z), (x, z), (x, y), (y, x)}∪ id(W ). Intersecting these relations we obtain Rx∩Ry∩Rz = {(x, y), (x, z)}∪
id(W ), which is equivalent to R.

The intersection in Proposition 7 reminds us on the relations RΦ determined by a finite set Ψ of
S5Dr-formulas in a model. In fact, this is the connection we seek to establish in order to represent the
knowledge of an agent as distributed knowledge. In the following, we state how this is done.

Take an arbitrary uni-modal logic L between S4 and S5 (whose satisfaction relation is denoted by
|=L). The necessity operator ‘�’ of L is thought of as representing the knowledge of the agent. Note that
the system L contains the axioms (T) and (4), each of which represent important epistemic properties,
namely, veridicality and positive introspection, respectively. Of course, L may contain other axioms, in
fact, any axiom that can be derived in system S5. We assume that L is determined by a class C of Kripke
structures (i.e., the theorems of L are exactly the formulas that are valid on all structures in C). Clearly,
the structures in C are reflexive and transitive. What we require as a precondition is that L has the
finite-model property w.r.t. C. This means that, if a formula ϕ is not a theorem of L then there is a finite
Kripke structure Mk in C that falsifies ϕ, i.e. Mk, w 6|= ϕ for some world w in Mk.

Before we can state the theorem, we need one more auxiliary notion. Let Mk = (W,R, V ) be a finite
Kripke structure such that the relation R is a preorder. We say that the valuation function V covers R
if for every world w ∈ W , there is an atomic proposition pw such that V (pw) = R(w), i.e. the R-image
at w.

Theorem 8. Let C be a class of Kripke structures whose relations are preorders. Let Mk = (W,R, V ) be
a finite structure from C such that V covers R. Let M = (W,V ) be a basic structure and let w ∈W be a
world. Let ϕ be a Boolean formula over Π. Then, there is a finite set Ψ of atomic propositions such that
the following are equivalent:

(i) Mk, w |=L �ϕ;

(ii) M, w |=S5Dr [Ψ]D ϕ. a

Proof. For every w ∈ W , select an atomic proposition pw such that V (pw) = R(w). Note that such pw
exists since V covers R. Set Ψ = { pw | w ∈ W }. Using Lemma 7 the equivalence of (i) and (ii) can be
shown by induction on the structure of ϕ.

We remark that the theorem can be generalized since the condition of using finite models is a bit
too strict. Recall the metaphor that views a preorder R as a collection of loopless graphs whose nodes
are R-clusters. What is actually required is that the collection of graphs and the graphs themselves are
finite. So, we can still find a finite intersection of relations as desired.

The following example illustrates Theorem 8 and discusses the presented notions.

Example 7. Consider the Kripke model Mk = (W,R, V ), where W and R are as in Example 6, and
V (p) = {x, z} and V (q) = {z}. Clearly, Mk is not an S5-model as R is not symmetric. Let ϕ.2, ϕ.3, ϕ.4

be the instances of the axioms (.2), (.3) and (.4) as shown above. It turns out that only ϕ.3 holds at x,
but not ϕ.2 nor ϕ.4. In fact, ϕ.3 holds at all worlds in Mk. Let us assume that the box (i.e., the epistemic
capacity of the agent) is characterized by the system S4.3.

Now label the worlds with fresh atomic propositions px, py, pz, i.e., we set V ′(pw) = {w} for all
w ∈ W . Notice that V ′ covers R. Let Rpx , Rpy , Rpz be the relations determined by the basic structure
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M = (W,V ′) and the fresh propositions. Notice that Rpw equals Rw from Example 6, for every w ∈ W .
Thus Rpx ∩ Rpy ∩ Rpz = R. Now it is immediate that M, w |= [{px, py, pz}]D ϕ iff Mk, w |= �ϕ, for all
w ∈ W and all propositional formulas ϕ without occurrence of any of px, py and pz. In other words,
[{px, py, pz}]D simulates the S4.3-box. We can see px, py, pz as hypotheses that another agent has to adopt
in order to know what the S4.3-agent knows.

In some cases, we have an alternative to introducing fresh propositions even though V does not cover
R. This means that V covering R is a sufficient but not necessary condition for Theorem 8. Here
¬p and q are hypotheses so that [{¬p, q}]D simulates S4.3-box as well. That is, hypotheses do not
need to be atomic propositions. Moreover, (parts of) hypotheses may occur in the conclusion as in
(W,V ), x |= [{¬p, q}]D ϕ.3.

The reduction of the distributive knowledge modality for a finite set Φ = {ϕ1, . . . , ϕn} of agents is
recursively defined as a function Rd as follows, where n ≥ 3:

Rd([ϕ1]D p) := [ϕ1]K p
Rd([ϕ1, ϕ2]D p) := [ϕ2]K p ∨ (ϕ1 ∧ [ϕ2]K (ϕ1 → p)

Rd([ϕ1, . . . , ϕn]D p) := Rd([Rd([ϕ1, . . . , ϕn−1]D p), ϕn]D p)

Here we assume that each ϕi belongs to the language of S5r, i.e., ϕi does not contain the distributive
knowledge modality although the reduction for arbitrary formulas Φ = {ϕ1, . . . , ϕn}, where the ϕi-s may
include the distributive knowledge modality, is a simple application of the reduction step by step. It can
readily be seen that the function Rd yields a formula in the language of S5r.

Theorem 9. Let Φ be a finite set of formulas in the language of S5r. Then the formula [Φ]D p ↔
Rd([Φ]D p) is a relational modal definition for the language of S5r.

Let S5Dr be the logic obtained by extending S5r with modal definitions of the form [Φ]D p ↔
Rd([Φ]D p), where Φ ranges over sets of formulas in the language of S5r and the function Rd is defined as
above. We obtain the following result.

Theorem 10. The modal logic S5Dr is sound and complete w.r.t. the class of all basic structures.

The proof of the theorem follows from the fact that the modal logic S5r is complete and theorems 1
and 9. We also imply decidability of the logic since all formulas are reduced to S5r formulas.

Theorem 11. The logic S5Dr is decidable.

Proof. Proof follows from decidability of the logic S5r and reducibility of an arbitrary S5Dr formula to
a S5r formula.

5.1 Topological Semantics

Topological semantics for the logic S5Dr is provided by the topological sum in other words we interpret
the distributed knowledge modality by the interior operator of the topological sum of the corresponding
topologies. More formally the satisfaction of the formula [ϕ1, . . . , ϕn]D ψ in the topological model T =
(X, τ, V ) at a point x is defined by the following clause:

• T, x |= [ϕ1, . . . , ϕn]D ψ iff x ∈ Intt[[ψ]], where Intt is the interior operator of the topological sum
of topologies (X, τt) with τt =

⊔
i=1..n τϕi

.

Theorem 12. The modal logic S5Dr is sound and complete w.r.t. the class of all topological structures.

Proof. Again we skip soundness since it follows by easy check. For completeness assume that α 6∈ S5Dr.
By Theorem 10 there is a basic structure M = (W,V ) and a point w such that w 6|= α. Let us
consider all generated relations Rϕ which we need to evaluate the formula α in the model M. For-
mally we take a set Γ of all formulas ϕ such that there exists a subformula of α of the form [ϕ]K ψ
or [ϕ1, . . . , ϕn]D ψ with ϕ = ϕk for some k. Let us consider the model (W, {Rϕ}ϕ∈Γ, V ). It follows
from the semantics of the logic S5Dr that M, w |= α iff (W, {Rϕ}, V ), w |= α when each [ϕ]K is eval-
uated on the corresponding relation Rϕ as a standard box operator and [ϕ1, . . . , ϕn]D ψ is evaluated as
a standard box operator on

⋂
i=1,2,..nRϕi . Now by Alexandroff connection 2 we have the following iff
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condition: (W, {Rϕ}ϕ∈Γ, V ), w |= α iff (W, {τRϕ}ϕ∈Γ, V ), w |= α with distributed knowledge modality
being evaluated on τR⋂

i=1,2,..n Rϕi
. Again by the property of Alexandroff connection 1 we know that

τ⋂
i=1,2,..,n Rϕi

=
⊔
i=1,2,..,n τRϕi

. By lemma 1 we conclude that τ⋂
i=1,2,..,n Rϕi

=
⊔
i=1,2,..,n τϕi

which

finishes the proof.

6 Conclusion

In this paper, we continue investigating the logic S5r, which is both an extension of S5 and a special
case of Chella’s Conditional Logic. We recall a Kripke completeness result and prove the topological
completeness for the logic S5r. In the second part of the paper, we extend the logic with modalities for
common knowledge and prove Kripke and topological completeness theorems. Also we show that S5C r is
decidable. In the third part of the paper, we extend the logic with modalities for distributed hypotheses
that are analog to modalities for distributed knowledge. Distributed hypotheses can be employed to
represent the knowledge of agents whose epistemic capacity corresponds to any system containing S4.
We also prove Kripke and topological completeness and decidability results for the logic S5Dr. Possible
directions for future work are to investigate complexity issues of the logics S5C r and S5Dr.
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