ON THE HOMOTOPY CLASSIFICATION OF MAPS

SAMSON SANEBLIDZE

(communicated by James Stasheff)

To Nodar Berikashvili

Abstract

We establish certain conditions which imply that a map $f: X \rightarrow Y$ of topological spaces is null homotopic when the induced integral cohomology homomorphism is trivial; one of them is: $H^{*}(X)$ and $\pi_{*}(Y)$ have no torsion and $H^{*}(Y)$ is polynomial.

1. Introduction

We give certain classification theorems for maps via induced cohomology homomorphism. Such a classification is based on a new aspects of obstruction theory to the section problem in a fibration beginning in [4], [5] and developed in some directions in $[\mathbf{2 4}],[\mathbf{2 5}]$. Given a fibration $F \rightarrow E \xrightarrow{\xi} X$, the obstructions to the section problem of ξ naturally lay in the groups $H^{i+1}\left(X ; \pi_{i}(F)\right), i \geqslant 0$. A basic method here is to use the Hurewicz homomorphism $u_{i}: \pi_{i}(F) \rightarrow H_{i}(F)$ for passing the above obstructions into the groups $H^{i+1}\left(X ; H_{i}(F)\right), i \geqslant 0$. In particular, this suggests the following condition on a fibration: The induced homomorphism

$$
\begin{equation*}
u^{*}: H^{i+1}\left(X ; \pi_{i}(F)\right) \rightarrow H^{i+1}\left(X ; H_{i}(F)\right), 1 \leqslant i<m \tag{1.1}
\end{equation*}
$$

is an inclusion (assuming $u_{1}: \pi_{1}(F) \rightarrow H_{1}(F)$ is an isomorphism). Note also that the idea of using the Hurewicz map in the obstruction theory goes back to the paper [23]. (Though its main result was erroneous, it became one crucial point for applications of characteristic classes (see [7]).)

For the homotopy classification of maps $X \rightarrow Y$, the space F in (1.1) $)_{m}$ is replaced by ΩY and we establish the following statements. Below all topological spaces are assumed to be path connected (hence, Y is also simply connected) and the ground coefficient ring is the integers \mathbb{Z}. Given a commutative graded algebra (cga) H^{*} and an integer $m \geqslant 1$, we say that H^{*} is m-relation free if H^{i} is torsion free for $i \leqslant m$ and also there is no multiplicative relation in H^{i} for $i \leqslant m+1$; in particular, $H^{2 i-1}=0$ for $1 \leqslant i \leqslant\left[\frac{m+2}{2}\right]$. We also allow $m=\infty$ for H to be polynomial on even degree generators.

This research described in this publication was made possible in part by the grant GNF/ST06/3007 of the Georgian National Science Foundation. I am grateful to Jesper Grodal for helpful comments. I thank to Jim Stasheff for helpful comments and suggestions.
Received October 28, 2008, revised June 8, 2009; published on October 14, 2009.
2000 Mathematics Subject Classification: Primary 55S37, 55R35; Secondary 55S05, 55P35.
Key words and phrases: cohomology homomorphism, functor D, polynomial algebra, section. (C) 2009, Samson Saneblidze. Permission to copy for private use granted.

Theorem 1. Let $f: X \rightarrow Y$ be a map such that the pair $(X, \Omega Y)$ satisfies $(1.1)_{m}$, X is an m-dimensional polyhedron and $H^{*}(Y)$ is m-relation free. Then f is null homotopic if and only if

$$
0=H^{*}(f): H^{*}(Y) \rightarrow H^{*}(X)
$$

Theorem 2. Let X and Y be spaces such that the Hurewicz map $u_{i}: \pi_{i}(\Omega Y) \rightarrow$ $H_{i}(\Omega Y)$ is an inclusion for $1 \leqslant i<m$, and $\operatorname{Tor}\left(H^{i+1}(X), H_{i}(\Omega Y) / \pi_{i}(\Omega Y)\right)=0$ when $\pi_{i}(\Omega Y) \neq 0, X$ is an m-dimensional polyhedron and $H^{*}(Y)$ is m-relation free. Then a map $f: X \rightarrow Y$ is null homotopic if and only if

$$
0=H^{*}(f): H^{*}(Y) \rightarrow H^{*}(X)
$$

Theorem 3. Let X be an m-dimensional polyhedron and G a topological group such that $\pi_{i}(G)$ is torsion free for $1 \leqslant i<m$, and $\operatorname{Tor}\left(H^{i+1}(X)\right.$, Coker $\left.u_{i}\right)=0$, $u_{i}: \pi_{i}(G) \rightarrow H_{i}(G)$ when $\pi_{i}(G) \neq 0$. Suppose that the cohomology algebra $H^{*}(B G)$ of the classifying space $B G$ is m-relation free. Then a map $f: X \rightarrow B G$ is null homotopic if and only if

$$
0=H^{*}(f): H^{*}(B G) \rightarrow H^{*}(X)
$$

In fact the two last Theorems follow from the first one, since their hypotheses imply $(1.1)_{m}$, too. A main example of G in Theorem 3 is the unitary group $U(n)$ with $m=2 n$, since $u_{2 i}$ is a trivial inclusion and $u_{2 i-1}$ is an inclusion given by multiplication by the integer $(i-1)$! for $1 \leqslant i \leqslant n$. A $U(n)$-principal fibre bundle over X is classified by a map $X \rightarrow B U(n)$. Suppose that all its Chern classes are trivial, then $H^{*}(f)=0$ and by Theorem 3, f is null homotopic. Therefore the $U(n)$-principal fibre bundle is trivial. Thus, we have in fact deduced the following statement, the main result of $[\mathbf{2 2}]$ (compare also [29]).
Corollary 1. Let ξ be a $U(n)$-principal fibre bundle over X with $\operatorname{dim} X \leqslant 2 n$ and the only torsion in $H^{2 i}(X)$ is relatively prime to $(i-1)$!. Then ξ is trivial if and only if the Chern classes $c_{k}(\xi)=0$ for $1 \leqslant k \leqslant n$.

While the proof of this statement in [22] does not admit an immediate generalization for an infinite dimensional X, Theorem 3 does by taking $m=\infty$. Furthermore, for $G=U$ and $X=B U$ recall that $[B U, B U]$ is an abelian group, so we get that two maps $f, g: B U \rightarrow B U$ are homotopic if and only if $H^{*}(f)=H^{*}(g): H^{*}(B U ; \mathbb{Q}) \rightarrow$ $H^{*}(B U ; \mathbb{Q})$ (compare [14], $\left.[\mathbf{2 1}]\right)$. Note also that when $m=\infty$ in Theorem $3, H^{*}(Y)$ must have infinitely many polynomial generators (e.g. $Y=B U, B S p$) as it follows from the solution of the Steenrod problem for finitely generated polynomial rings [1] (the underlying spaces do not have torsion free homotopy groups in all degrees).

Finally, note that beside obstruction theory we apply a main ingredient of the proof of Theorem 1 is an explicit form of minimal multiplicative (non-commutative) resolution of an m-relation free cga (of a polynomial algebra when $m=\infty$) in total degrees $\leqslant m$ (compare [24], [26]). Namely, the generator set of the resolution in the above range only consists of monomials formed by \smile_{1} products. Remark that the idea of using \smile_{1} product when dealing with polynomial cohomology, especially in the context of homogeneous spaces, has been realized by several authors $[\mathbf{1 7}],[\mathbf{9}]$, $[20],[\mathbf{1 3}]$ (see also [18] for further references).

In sections 2 and 3 we recall certain basic definitions and constructions, including the functor $D\left(X ; H_{*}\right)[\mathbf{2}],[\mathbf{3}]$, for the aforementioned obstruction theory, and in section 4 prove Theorems 1-3.

2. Functor $\mathbf{D}(\mathbf{X} ; \mathbf{H})$

Given a bigraded differential algebra $A=\left\{A^{i, j}\right\}$ with $d: A^{i, j} \rightarrow A^{i+1, j}$ and total degree $n=i+j$, let $D(A)$ be the set [3] defined by $D(A)=M(A) / G(A)$ where

$$
\begin{aligned}
& M(A)=\left\{a \in A^{1} \mid d a=-a a, a=a^{2,-1}+a^{3,-2}+\cdots\right\} \\
& G(A)=\left\{p \in A^{0} \mid p=1+p^{1,-1}+p^{2,-2}+\cdots\right\}
\end{aligned}
$$

and the action $M(A) \times G(A) \rightarrow M(A)$ is given by the formula

$$
\begin{equation*}
a * p=p^{-1} a p+p^{-1} d p \tag{2.1}
\end{equation*}
$$

In other words, two elements $a, b \in M(A)$ are on the same orbit if there is $p \in$ $G(A), p=1+p^{\prime}$, with

$$
\begin{equation*}
b-a=a p^{\prime}-p^{\prime} b+d p^{\prime} \tag{2.2}
\end{equation*}
$$

Note that an element $a=\left\{a^{*, *}\right\}$ from $M(A)$ is of total degree 1 and referred to as twisting; we usually suppress the second degree below. There is a distinguished element in the set $D(A)$, the class of $0 \in A$, and denoted by the same symbol.

There is simple but useful (cf. [24])
Proposition 1. Let $f, g: A^{*, *} \rightarrow B^{*, *}$ be two dga maps that preserve the bigrading. If they are (f, g)-derivation homotopic via $s: A^{i, j} \rightarrow B^{i-1, j}$, i.e., $f-g=s d+d s$ and $s(a b)=(-1)^{|a|}$ fasb + sagb, then $D(f)=D(g): D(A) \rightarrow D(B)$.

Proof. Given $a \in M(A)$, apply the (f, g)-derivation homotopy s to get $f a-g a=$ $d s a+s d a=d s a+s(-a a)=d s a+f a s a-s a g a$. From this we deduce that $f a$ and $g a$ are equivalent by (2.2) for $p^{\prime}=-s a$.

Another useful property of D is fixed by the following comparison theorem [2], [3]:
Theorem 4. If $f: A \rightarrow B$ is a cohomology isomorphism, then $D(f): D(A) \rightarrow$ $D(B)$ is a bijection.

For our purposes the main example of $D(A)$ is the following (cf. [2], [3])
Example 1. Fix a graded (abelian) group H_{*}. Let

$$
\rho:\left(R_{\geqslant 0} H_{q}, \partial^{R}\right) \rightarrow H_{q}, \quad \partial^{R}: R_{i} H_{q} \rightarrow R_{i-1} H_{q},
$$

be its free group resolution. Form the bigraded Hom complex

$$
\left(\mathcal{R}^{*, *}, d^{R}\right)=\left(H o m\left(R H_{*}, R H_{*}\right), d^{R}\right), \quad d^{R}: \mathcal{R}^{s, t} \rightarrow \mathcal{R}^{s+1, t} ;
$$

an element $f \in \mathcal{R}^{*, *}$ has bidegree (s, t) if $f: R_{j} H_{q} \rightarrow R_{j-s} H_{q-t}$. Note also that $\mathcal{R}^{*, *}$ becomes a dga with respect to the composition product.

Given a topological space X, consider the dga

$$
(\mathcal{H}, \nabla)=\left(C^{*}(X ; \mathcal{R}), \nabla=d^{C}+d^{R}\right)
$$

which is bigraded via $\mathcal{H}^{r, t}=\prod_{r=i+j} C^{i}\left(X ; \mathcal{R}^{j, t}\right)$. Thus we get

$$
\mathcal{H}=\left\{\mathcal{H}^{n}\right\}, \quad \mathcal{H}^{n}=\prod_{n=r+t} \mathcal{H}^{r, t}, \quad \nabla: \mathcal{H}^{r, t} \rightarrow \mathcal{H}^{r+1, t}
$$

We refer to r as the perturbation degree which is mainly exploited by inductive arguments below. For example, for a twisting cochain $h \in M(\mathcal{H})$, we have

$$
h=h^{2}+\cdots+h^{r}+\cdots, \quad h^{r} \in \mathcal{H}^{r, 1-r},
$$

satifying the following sequence of equalities:

$$
\begin{equation*}
\nabla\left(h^{2}\right)=0, \quad \nabla\left(h^{3}\right)=-h^{2} h^{2}, \quad \nabla\left(h^{4}\right)=-h^{2} h^{3}-h^{3} h^{2}, \ldots \tag{2.3}
\end{equation*}
$$

Define

$$
D\left(X ; H_{*}\right)=D(\mathcal{H}, \nabla)
$$

Then $D\left(X ; H_{*}\right)$ becomes a functor on the category of topological spaces and continuous maps to the category of pointed sets.

Example 2. Given two dga's B^{*} and $C^{*, *}$ with $d^{B}: B^{i} \rightarrow B^{i+1}$ and $d_{1}^{C}: C^{j, t} \rightarrow$ $C^{j+1, t}, d_{2}^{C}=0$, let $A=B \hat{\otimes} C$. View (A, d) as bigraded via $A=\left\{A^{r, t}, d\right\}, A^{r, t}=$ $\prod_{r=i+j} B^{i} \otimes C^{j, t}, d=d^{B} \otimes 1+1 \otimes d_{1}^{C}$. Note also that the dga (\mathcal{H}, ∇) in the previous example can also be viewed as a special case of the above tensor product algebra by setting $B^{*}=C^{*}(X)$ and $C^{*, *}=\mathcal{R}^{*, *}$.

3. Predifferential $d(\xi)$ of a fibration

Let $F \rightarrow E \xrightarrow{\xi} X$ be a fibration. In [2] a unique element of $D\left(X ; H_{*}(F)\right)$ is naturally assigned to ξ; this element is denoted by $d(\xi)$ and referred to as the predifferential of ξ. The naturalness of $d(\xi)$ means that for a map $f: Y \rightarrow X$,

$$
\begin{equation*}
d(f(\xi))=D(f)(d(\xi)) \tag{3.1}
\end{equation*}
$$

where $f(\xi)$ denotes the induced fibration on Y.
Originally $d(\xi)$ appeared in homological perturbation theory for measuring the non-freeness of the Brown-Hirsch model: First, in [11] G. Hirsch modified E. Brown's twisting tensor product model $\left(C_{*}(X) \otimes C_{*}(F), d_{\phi}\right) \rightarrow\left(C_{*}(E), d_{E}\right)[\mathbf{6}],[\mathbf{8}]$ by replacing the chains $C_{*}(F)$ by its homology $H_{*}(F)$ provided the homology is a free module. In [2] the Hirsch model was extended for arbitrary $H_{*}(F)$ by replacing it by a free module resolution $R H_{*}(F)$ to obtain $\left(C_{*}(X) \otimes R H_{*}(F), d_{h}\right)$ in which $d_{h}=d_{X} \otimes 1+1 \otimes d_{F}+-\cap h$ and h is just an element of $M(\mathcal{H})$ in Example 1 with $H_{*}=H_{*}(F)$. Furthermore, to an isomorphism $p:\left(C_{*}(X) \otimes R H_{*}(F), d_{h}\right) \rightarrow$ $\left(C_{*}(X) \otimes R H_{*}(F), d_{h^{\prime}}\right)$ between two such models answers an equivalence relation $h \sim_{p} h^{\prime}$ in $M(\mathcal{H})$, and the class of h in $D\left(X ; H_{*}(F)\right)$ is identified as $d(\xi)$. More precisely, we recall some basic constructions for the definition of $d(\xi)$ we need for the obstruction theory in question.

For convenience, assume that X is a polyhedron and that $\pi_{1}(X)$ acts trivially on $H_{*}(F)$. Then ξ defines the following colocal system of chain complexes over X :

To each simplex $\sigma \in X$ is assigned the singular chain complex $\left(C_{*}\left(F_{\sigma}\right), \gamma_{\sigma}\right)$ of the space $F_{\sigma}=\xi^{-1}(\sigma)$:

$$
X \ni \sigma \longrightarrow\left(C_{*}\left(F_{\sigma}\right), \gamma_{\sigma}\right) \subset\left(C_{*}(E), d_{E}\right),
$$

and to a pair $\tau \subset \sigma$ of simplices an induced chain map

$$
C_{*}\left(F_{\tau}\right) \rightarrow C_{*}\left(F_{\sigma}\right)
$$

Set $\mathcal{C}_{\sigma}=\left\{\mathcal{C}_{\sigma}^{s, t}\right\}, \mathcal{C}_{\sigma}^{s, t}=\operatorname{Hom}^{s, t}\left(R_{*} H_{*}(F), C_{*}\left(F_{\sigma}\right)\right)$ where C_{*} is regarded as bigraded via $C_{0, *}=C_{*}, C_{i, *}=0, i \neq 0$, and $f: R_{j} H_{q}(F) \rightarrow C_{j-s, q-t}\left(F_{\sigma}\right)$ is of bidegree (s, t). Then we obtain a colocal system of cochain complexes $\mathcal{C}=\left\{\mathcal{C}_{\sigma}^{*, *}\right\}$ on X. Define \mathcal{F} as the simplicial cochain complex $C^{*}(X ; \mathcal{C})$ of X with coefficients in the colocal system \mathcal{C}. Then

$$
\mathcal{F}=\left\{\mathcal{F}^{i, j, t}\right\}, \quad \mathcal{F}^{i, j, t}=C^{i}\left(X ; \mathcal{C}^{j, t}\right)
$$

Furthermore, obtain the bicomplex $\mathcal{F}=\left\{\mathcal{F}^{r, t}\right\}$ via

$$
\mathcal{F}^{r, t}=\prod_{r=i+j} \mathcal{F}^{i, j, t}, \delta: \mathcal{F}^{r, t} \rightarrow \mathcal{F}^{r+1, t}, \gamma: \mathcal{F}^{r, t} \rightarrow \mathcal{F}^{r, t+1}, \delta=d^{C}+\partial^{R}, \gamma=\left\{\gamma_{\sigma}\right\}
$$

and finally set

$$
\mathcal{F}=\left\{\mathcal{F}^{m}\right\}, \quad \mathcal{F}^{m}=\prod_{m=r+t} \mathcal{F}^{r, t}
$$

We have a natural dg pairing

$$
(\mathcal{F}, \delta+\gamma) \otimes(\mathcal{H}, \nabla) \rightarrow(\mathcal{F}, \delta+\gamma)
$$

defined by \smile product on $C^{*}(X ;-)$ and the obvious pairing $\mathcal{C}_{\sigma} \otimes \mathcal{R} \rightarrow \mathcal{C}_{\sigma}$ in coefficients; in particular we have $\gamma(f h)=\gamma(f) h$ for $f \otimes h \in \mathcal{F} \otimes \mathcal{H}$. Denote $\mathcal{R}_{\#}=\operatorname{Hom}\left(R H_{*}(F), H_{*}(F)\right)$ and define

$$
\left(\mathcal{F}_{\#}, \delta_{\#}\right):=\left(H(\mathcal{F}, \gamma), \delta_{\#}\right)=\left(C^{*}\left(X ; \mathcal{R}_{\#}\right), \delta_{\#}\right)
$$

Clearly, the above pairing induces the following dg pairing

$$
\left(\mathcal{F}_{\#}, \delta_{\#}\right) \otimes(\mathcal{H}, \nabla) \rightarrow\left(\mathcal{F}_{\#}, \delta_{\#}\right)
$$

In other words, this pairing is also defined by \smile product on $C^{*}(X ;-)$ and the pairing $\mathcal{R}_{\#} \otimes \mathcal{R} \rightarrow \mathcal{R}_{\#}$ in coefficients. Note that ρ induces an epimorphism of chain complexes

$$
\rho^{*}:(\mathcal{H}, \nabla) \rightarrow\left(\mathcal{F}_{\#}, \delta_{\#}\right)
$$

In turn, ρ^{*} induces an isomorphism in cohomology.
Consider the following equation

$$
\begin{equation*}
(\delta+\gamma)(f)=f h \tag{3.2}
\end{equation*}
$$

with respect to a pair $(h, f) \in \mathcal{H}^{1} \times \mathcal{F}^{0}$,

$$
\begin{array}{ll}
h=h^{2}+\cdots+h^{r}+\cdots, & h^{r} \in \mathcal{H}^{r, 1-r} \\
f=f^{0}+\cdots+f^{r}+\cdots, & f^{r} \in \mathcal{F}^{r,-r}
\end{array}
$$

satisfying the initial conditions:

$$
\begin{aligned}
& \nabla(h)=-h h \\
& \gamma\left(f^{0}\right)=0, \quad\left[f^{0}\right]_{\gamma}=\rho^{*}(1) \in \mathcal{F}_{\#}^{0,0}, \quad 1 \in \mathcal{H} .
\end{aligned}
$$

Let (h, f) be a solution of the above equation. Then $d(\xi) \in D\left(X ; H_{*}(F)\right)$ is defined as the class of h. Moreover, the transformation of h by (2.1) is extended to pairs (h, f) by the map

$$
\left(M(\mathcal{H}) \times \mathcal{F}^{0}\right) \times\left(G(\mathcal{H}) \times \mathcal{F}^{-1}\right) \rightarrow M(\mathcal{H}) \times \mathcal{F}^{0}
$$

given for $((h, f),(p, s)) \in\left(M(\mathcal{H}) \times \mathcal{F}^{0}\right) \times\left(G(\mathcal{H}) \times \mathcal{F}^{-1}\right)$ by the formula

$$
\begin{equation*}
(h, f) *(p, s)=(h * p, f p+s(h * p)+(\delta+\gamma)(s)) . \tag{3.3}
\end{equation*}
$$

We have that a solution (h, f) of the equation exists and is unique up to the above action. Therefore, $d(\xi)$ is well defined.

Note that action (3.3) in particular has a property that if $(\bar{h}, \bar{f})=(h, f) *(p, s)$ and $h^{r}=0$ for $2 \leqslant r \leqslant n$, then in view of (2.2) one gets the equalities

$$
\begin{equation*}
\bar{h}^{n+1}=h *\left(1+p^{n}\right)=h^{n+1}+\nabla\left(p^{n}\right) \tag{3.4}
\end{equation*}
$$

3.1. Fibrations with $d(\xi)=0$

The main fact of this subsection is the following theorem from [4]:
Theorem 5. Let $F \rightarrow E \xrightarrow{\xi} X$ be a fibration such that (X, F) satisfies $(1.1)_{m}$. If the restriction of $d(\xi) \in D\left(X ; H_{*}(F)\right)$ to $\left.d(\xi)\right|_{X^{m}} \in D\left(X^{m} ; H_{*}(F)\right)$ is zero, then ξ has a section on the m-skeleton of X. The case of $m=\infty$, i.e., $d(\xi)=0$, implies the existence of a section on X.

Proof. Given a pair $(h, f) \in \mathcal{H} \times \mathcal{F}$, let $\left(h_{t r}, f_{\text {tr }}\right)$ denote its component that lies in

$$
C^{*}\left(X ; \operatorname{Hom}\left(H_{0}(F), R H_{*}(F)\right)\right) \times C^{*}\left(X ; \operatorname{Hom}\left(H_{0}(F), C_{*}\left(F_{\sigma}\right)\right)\right) .
$$

Below ($h_{t r}, f_{t r}$) is referred to as the transgressive component of (h, f). Observe that since $R H_{0}(F)=H_{0}(F)=\mathbb{Z}$, we can view $\left(h_{t r}^{r+1}, f_{t r}^{r}\right)$ as a pair of cochains laying in $C^{>r}\left(X ; R H_{r}(F)\right) \times C^{r}\left(X ; C_{r}\left(F_{\sigma}\right)\right)$. Such an interpretation allows us to identify a section $\chi^{r}: X^{r} \rightarrow E$ on the r-skeleton $X^{r} \subset X$ with a cochain, denoted by c_{χ}^{r}, in $C^{r}\left(X ; C_{r}\left(F_{\sigma}\right)\right)$ via $c_{\chi}^{r}(\sigma)=\left.\chi^{r}\right|_{\sigma}: \Delta^{r} \rightarrow F_{\sigma} \subset E, \sigma \subset X^{r}$ is an r-simplex, $r \geqslant 0$.

The proof of the theorem just consists of choosing a solution (h, f) of (3.2) so that the transgressive component $f_{t r}=\left\{f_{t r}^{r}\right\}_{r \geqslant 0}$ is specified by $f_{t r}^{r}=c_{\chi}^{r}$ with χ a section of ξ. Indeed, since F is path connected, there is a section χ^{1} on X^{1}; consequently, we get the pairs $\left(0, f_{t r}^{0}\right):=\left(0, c_{\chi}^{0}\right)$ and $\left(0, f_{t r}^{1}\right):=\left(0, c_{\chi}^{1}\right)$ with $\gamma\left(f_{t r}^{1}\right)=\delta\left(f_{t r}^{0}\right)$. Then $\delta\left(f_{t r}^{1}\right) \in C^{2}\left(X ; C_{1}(F)\right)$ is a γ-cocycle and $\left[\delta\left(f_{t r}^{1}\right)\right]_{\gamma} \in C^{2}\left(X ; H_{1}(F)\right)$ becomes the obstruction cocycle $c\left(\chi^{1}\right) \in C^{2}\left(X ; \pi_{1}(F)\right)$ for extending of χ^{1} on X^{2}; moreover, one can choose $h_{t r}^{2}$ to be satisfying $\rho^{*}\left(h_{t r}^{2}\right)=\left[\delta\left(f_{t r}^{1}\right)\right]_{\gamma}$ (since ρ^{*} is an epimorphism and a weak equivalence).

Suppose by induction that we have constructed a solution (h, f) of (3.2) and a section χ^{n} on X^{n} such that $h^{r}=0$ for $2 \leqslant r \leqslant n, f_{t r}^{n}=c_{\chi}^{n}$ and

$$
\rho^{*}\left(h_{t r}^{n+1}\right)=\left[\delta\left(f_{t r}^{n}\right)\right]_{\gamma} \in C^{n+1}\left(X ; H_{n}(F)\right) .
$$

In view of (2.3) we have $\nabla\left(h^{n+1}\right)=0$ and from the above equality immediately follows that

$$
u^{\#}\left(c\left(\chi^{n}\right)\right)=\rho^{*}\left(h_{t r}^{n+1}\right)
$$

in which $c\left(\chi^{n}\right) \in C^{n+1}\left(X ; \pi_{n}(F)\right)$ is the obstruction cocycle for extending of χ^{n} on X^{n+1} and $u^{\#}: C^{n+1}\left(X ; \pi_{n}(F)\right) \rightarrow C^{n+1}\left(X ; H_{n}(F)\right)$.

Since $\left.d(\xi)\right|_{X^{m}}=0$, there is $p \in G(\mathcal{H})$ such that $\left.(h * p)\right|_{X^{m}}=0$; in particular, $(h * p)^{n+1}=0 \in \mathcal{H}^{n+1,-n}$ and in view of (3.4) we establish the equality $h^{n+1}=$ $-\nabla\left(p^{n}\right)$, i.e., $\left[h^{n+1}\right]=0 \in H^{*}(\mathcal{H}, \nabla)$; in particular, $\left[h_{t r}^{n+1}\right]=0 \in H^{n+1}\left(X ; H_{n}(F)\right)$. Consequently, $\left[u^{\#}\left(c\left(\chi^{n}\right)\right)\right]=0 \in H^{n+1}\left(X ; H_{n}(F)\right)$. Since (1.1) $)_{n}$ is an inclusion induced by $u^{\#},\left[c\left(\chi^{n}\right)\right]=0 \in H^{n+1}\left(X ; \pi_{n}(F)\right)$. Therefore, we can extend χ^{n} on X^{n+1} without changing it on X^{n-1} in a standard way. Finally, put $f_{t r}^{n+1}=c_{\chi}^{n+1}$ and choose a ∇-cocycle $h_{t r}^{n+2}$ satisfying $\rho^{*}\left(h_{t r}^{n+2}\right)=\left[\delta\left(f_{t r}^{n+1}\right)\right]_{\gamma}$. The induction step is completed.

4. Proof of Theorems 1, 2 and 3

First we recall the following application of Theorem 5 ([4])
Theorem 6. Let $f: X \rightarrow Y$ be a map such that X is an m-polyhedron and the pair $(X, \Omega Y)$ satisfies $(1.1)_{m}$. If $0=D(f): D\left(Y ; H_{*}(\Omega Y)\right) \rightarrow D\left(X ; H_{*}(\Omega Y)\right)$, then f is null homotopic.

Proof. Let $\Omega Y \rightarrow P Y \xrightarrow{\pi} Y$ be the path fibration and $f(\pi)$ the induced fibration. It suffices to show that $f(\pi)$ has a section. Indeed, (3.1) together with $D(f)=0$ implies $d(f(\pi))=0$, so Theorem 5 guaranties the existence of the section.

Now we are ready to prove the theorems stated in the introduction. Note that just below we shall heavily use multiplicative, non-commutative resolutions of cga's that are enriched with \smile_{1} products. Namely, given a space Z, recall its filtered model $f_{Z}:\left(R H(Z), d_{h}\right) \rightarrow C^{*}(Z)[\mathbf{2 4}],[\mathbf{2 6}]$ in which the underlying differential (bi)graded algebra $(R H(Z), d)$ is a non-commutative version of Tate-Jozefiak resolution of the cohomology algebra $H^{*}(Z)([\mathbf{2 8}],[\mathbf{1 5}])$, while h denotes a perturbation of d similar to [10]. Moreover, given a map $X \rightarrow Y$, there is a dga map $R H(f):\left(R H(Y), d_{h}\right) \rightarrow$ $\left(R H(X), d_{h}\right)$ (not uniquely defined!) such that the following diagram

$$
\begin{array}{ccc}
\left(R H(Y), d_{h}\right) & \xrightarrow{R H(f)} & \left(R H(X), d_{h}\right) \tag{4.1}\\
f_{Y} \downarrow & & \downarrow^{f_{X}} \\
C^{*}(Y) & \xrightarrow{C(f)} & C^{*}(X)
\end{array}
$$

commutes up to (α, β)-derivation homotopy with $\alpha=C(f) \circ f_{Y}$ and $\beta=f_{X} \circ R H(f)$ (see, [12], [24]).

Proof of Theorem 1. The non-trivial part of the proof is to show that $H(f)=0$ implies f is null homotopic. In view of Theorem 6 it suffices to show that $D(f)=0$.

By (4.1) and Proposition 1 we get the commutative diagram of pointed sets

$$
\begin{array}{ccc}
D\left(\mathcal{H}_{Y}\right) & \xrightarrow{D(\mathcal{H}(f))} & D\left(\mathcal{H}_{X}\right) \\
D\left(f_{Y}\right) \downarrow & & \downarrow^{D\left(f_{X}\right)} \\
\left(Y ; H_{*}(\Omega Y)\right) & \xrightarrow{D(f)} & D\left(X ; H_{*}(\Omega Y)\right)
\end{array}
$$

in which

$$
\begin{aligned}
& \mathcal{H}_{X}=R H^{*}(X) \hat{\otimes} \operatorname{Hom}\left(R H_{*}(\Omega Y), R H_{*}(\Omega Y)\right) \\
& \mathcal{H}_{Y}=R H^{*}(Y) \hat{\otimes} \operatorname{Hom}\left(R H_{*}(\Omega Y), R H_{*}(\Omega Y)\right)
\end{aligned}
$$

(see Example 2) and the vertical maps are induced by $f_{X} \otimes 1$ and $f_{Y} \otimes 1$; these maps are bijections by Theorem 4. Below we need an explicit form of $R H(f)$ to see that $H(f)=0$ necessarily implies $\left.R H(f)\right|_{V^{(m)}}=0$ with $V^{(m)}=\bigoplus_{1 \leqslant i+j \leqslant m} V^{i, j}$; hence, the restriction of the map $\mathcal{H}(f):=R H(f) \otimes 1$ to $R H^{(m)} \otimes 1, R H^{(m)}=$ $\bigoplus_{1 \leqslant i+j \leqslant m} R^{i} H^{j}(Y)$, is zero, and, consequently,

$$
\begin{equation*}
D\left(f_{X}\right) \circ D(\mathcal{H}(f))=0 \tag{4.2}
\end{equation*}
$$

First observe that any multiplicative resolution $(R H, d)=\left(T\left(V^{*, *}\right), d\right), V=\langle\mathcal{V}\rangle$, of a cga H admits a sequence of multiplicative generators, denoted by

$$
\begin{equation*}
a_{1} \smile_{1} \cdots \smile_{1} a_{n+1} \in \mathcal{V}^{-n, *}, \quad a_{i} \in \mathcal{V}^{0, *}, \quad n \geqslant 1, \tag{4.3}
\end{equation*}
$$

where $a_{i} \smile_{1} a_{j}=(-1)^{\left(\left|a_{i}\right|+1\right)\left(\left|a_{j}\right|+1\right)} a_{j} \smile_{1} a_{i}$ and $a_{i} \neq a_{j}$ for $i \neq j$. Furthermore, the expression $a b \smile_{1} u v$ also has a sense by means of formally (successively) applying the Hirsch formula

$$
\begin{equation*}
c \smile_{1}(a b)=\left(c \smile_{1} a\right) b+(-1)^{|a|(|c|+1)} a\left(c \smile_{1} b\right) \tag{4.4}
\end{equation*}
$$

The resolution differential d acts on (4.3) by iterative application of the formula

$$
d\left(a \smile_{1} b\right)=d a \smile_{1} b-(-1)^{|a|} a \smile_{1} d b+(-1)^{|a|} a b-(-1)^{|a|(|b|+1)} b a
$$

Consequently, we get

$$
d\left(a_{1} \smile_{1} \cdots \smile_{1} a_{n}\right)=\sum_{(\mathbf{i} ; \mathbf{j})}(-1)^{\epsilon}\left(a_{i_{1}} \smile_{1} \cdots \smile_{1} a_{i_{k}}\right) \cdot\left(a_{j_{1}} \smile_{1} \cdots \smile_{1} a_{j_{\ell}}\right)
$$

where the summation is over unshuffles $(\mathbf{i} ; \mathbf{j})=\left(i_{1}<\cdots<i_{k} ; j_{1}<\cdots<j_{\ell}\right)$ of \underline{n}.
In the case of H to be m-relation free with a basis $U^{i} \subset H^{i}, i \leqslant m$, we have that the minimal multiplicative resolution $R H$ of H can be built by taking \mathcal{V} with $\mathcal{V}^{0, i} \approx \mathcal{U}^{i}, i \leqslant m$, and $\mathcal{V}^{-n, i}, n>0$, to be the set consisting of monomials (4.3) for $1 \leqslant i-n \leqslant m$ (compare [26]). The verification of the acyclicity in the negative resolution degrees of $R H$ restricted to the range $R H^{(m)}$ is straightforward (see also Remark 1). Regarding the map $R H(f)$, we can choose it on $R H^{(m)}$ as follows. Let $R_{0} H(f): R_{0} H(Y) \rightarrow R_{0} H(X)$ be determined by $H(f)$ in an obvious way and then define $R H(f)$ for $a \in \mathcal{V}^{(m)}$ by
$R H(f)(a)= \begin{cases}R_{0} H(f)(a), & a \in \mathcal{V}^{0, *}, \\ R_{0} H(f)\left(a_{1}\right) \smile_{1} \ldots \smile_{1} R_{0} H(f)\left(a_{n}\right), & a=a_{1} \smile_{1} \ldots \smile_{1} a_{n+1}, \\ & a \in \mathcal{V}^{-n, *}, a_{i} \in \mathcal{V}^{0, *}, n \geqslant 1,\end{cases}$
and extend to $R H^{(m)}$ multiplicatively. Furthermore, f_{X} and f_{Y} are assumed to be preserving the generators of the form (4.3) with respect to the right most association of \smile_{1} products in question. Since h annihilates monomials (4.3) and the existence of formula (4.4) in a simplicial cochain complex, f_{X} and f_{Y} are automatically compatible with the differentials involved. Then the maps α and β in (4.1) also preserve \smile_{1} products, and become homotopic by an (α, β)-derivation homotopy $s: R H(Y) \rightarrow C^{*}(X)$ defined as follows: choose s on $\mathcal{V}^{0, *}$ by $d s=\alpha-\beta$ and extend on $\mathcal{V}^{-n, *}$ inductively by

$$
s\left(a_{0} \smile_{1} z_{n}\right)=-\alpha\left(a_{0}\right) \smile_{1} s\left(z_{n}\right)+s\left(a_{0}\right) \smile_{1} \beta\left(z_{n}\right)+s\left(z_{n}\right) s\left(a_{0}\right), \quad n \geqslant 1
$$

in which $z_{1}=a_{1}$ and $z_{k}=a_{1} \smile_{1} \cdots \smile_{1} a_{k}$ for $k \geqslant 2, a_{i} \in \mathcal{V}^{0, *}$. Clearly, $H(f)=0$ implies $\left.R H(f)\right|_{V^{(m)}}=0$. Since (4.2), $D(f)=0$ and so f is null homotopic by Theorem 6. Theorem is proved.

Remark 1. Let $\mathcal{V}_{n}^{(m)}$ be a subset of $\mathcal{V}^{(m)}$ consisting of all monomials formed by the \cdot and \smile_{1} products evaluated on a string of variables a_{1}, \ldots, a_{n}. Then there is a bijection of $\mathcal{V}_{n}^{(m)}$ with the set of all faces of the permutahedron P_{n} ([19], [27]) such that the resolution differential d is compatible with the cellular differential of P_{n} (compare [16]). In particular, the monomial $a_{1} \smile_{1} \cdots \smile_{1} a_{n}$ is assigned to the top cell of P_{n}, while the monomials $a_{\sigma(1)} \cdots a_{\sigma(n)}, \sigma \in S_{n}$, to the vertices of P_{n} (see Fig. 1 for $n=3$). Thus, the acyclicity of P_{n} immediately implies the acyclicity of $R H^{(m)}$ in the negative resolution degrees as desired.

Figure 1. Geometrical interpretation of some syzygies involving \smile_{1} product as homotopy for commutativity in the resolution $R H$.

Remark 2. An example provided by the Hopf map $f: S^{3} \rightarrow S^{2}$ shows that the implication $H(f)=\left.0 \Rightarrow R H(f)\right|_{V^{(k)}}=0, k<m$ for $R H(f)$ making (4.1) commutative up to (α, β)-derivation homotopy is not true in general. More precisely, let $x \in R^{0} H^{2}\left(S^{2}\right)$ and $y \in R^{0} H^{3}\left(S^{3}\right)$ with $\rho x \in H^{2}\left(S^{2}\right)$ and $\rho y \in H^{3}\left(S^{3}\right)$ to be the generators, and let $x_{1} \in R^{-1} H^{4}\left(S^{2}\right)$ with $d x_{1}=x^{2}$. Then $s\left(x^{2}\right)=\alpha(x) s(x)$ is a cocycle in $C^{3}\left(S^{3}\right)$ with $d_{S^{3}} s(x)=\alpha(x)($ since $\beta=0)$ and $[\alpha(x) s(x)]=\rho y$. Consequently, while $H(f)=0=R^{0} H(f)$, a map $R H(f): R H\left(S^{2}\right) \rightarrow R H\left(S^{3}\right)$ required in (4.1) has a non-trivial component increasing the resolution degree: Namely, $R^{-1} H^{4}\left(S^{2}\right) \rightarrow R^{0} H^{3}\left(S^{3}\right), x_{1} \rightarrow y$.

Proof of Theorem 2. The conditions that $u_{i}: \pi_{i}(\Omega Y) \rightarrow H_{i}(\Omega Y)$ is an inclusion and Tor $\left(H^{i+1}(X), H_{i}(\Omega Y) / \pi_{i}(\Omega Y)\right)=0$ for $1 \leqslant i<m$, immediately implies (1.1) m_{m}. So the theorem follows from Theorem 1.

Proof of Theorem 3. Since the homotopy equivalence $\Omega B G \simeq G$, the conditions of Theorem 2 are satisfied: Indeed, there is the following commutative diagram

$$
\begin{array}{ccc}
\pi_{k}(G) & \xrightarrow{u_{k}} & H_{k}(G) \\
i_{\pi} \downarrow & & \downarrow i_{H} \\
\pi_{k}(G) \otimes \mathbb{Q} & \xrightarrow{u_{k} \otimes 1} & H_{k}(G) \otimes \mathbb{Q}
\end{array}
$$

where i_{π}, i_{H} and $u_{k} \otimes 1$ are the standard inclusions (the last one is a consequence of a theorem of Milnor-Moore). Consequently, $u_{k}: \pi_{k}(\Omega B G) \rightarrow H_{k}(\Omega B G), k<m$, is an inclusion, too. Theorem is proved.

References

[1] K.K.S. Andersen and J. Grodal, The Steenrod problem of realizing polynomial cohomology rings, J. Topology, 1 (2008), 747-460.
[2] N. Berikashvili, On the differentials of spectral sequences (Russian), Proc. Tbilisi Mat. Inst., 51 (1976), 1-105.
[3] - Zur Homologietheorie der Faserungen I, Proc. A. Razmadze Math. Inst. 116 (1998), 1-29.
[4] -, On the obstruction theory in fibre spaces (in Russian), Bull. Acad. Sci. Georgian SSR, 125 (1987), 257-259, 473-475.
[5] -, On the obstruction functor, Bull. Georgian Acad. Sci., 153 (1996), 25-30.
[6] E. Brown, Twisted tensor products, Ann. of Math., 69 (1959), 223-246.
[7] A. Dold and H. Whitney, Classification of oriented sphere bundles over 4complex, Ann. Math., 69 (1959), 667-677.
[8] V.K.A.M. Gugenheim, On the chain complex of a fibration, Ill. J. Math., 16 (1972), 398-414.
[9] V.K.A.M. Gugenheim and J.P. May, On the theory and applications of differential torsion products, Memoirs of AMS, 142 (1974), 1-93.
[10] S. Halperin and J. D. Stasheff, Obstructions to homotopy equivalences, Adv. in Math., 32 (1979), 233-279.
[11] G. Hirsch, Sur les groups d'homologies des espaces fibres, Bull. Soc. Math. de Belg., 6 (1953), 76-96.
[12] J. Huebschmann, Minimal free multi-models for chain algebras, Georgian Math. J., 11 (2004), 733-752.
[13] D. Husemoller, J.C. Moore and J. Stasheff, Differential homological algebra and homogeneous spaces, J. Pure and Applied Algebra, 5 (1974), 113-185.
[14] S. Jackowski, J. McClure and R. Oliver, Homotopy classification of self-maps of $B G$ via G-actions, I,II, Ann. Math., 135 (1992), 183-226, 227-270.
[15] J.T. Jozefiak, Tate resolutions for commutative graded algebras over a local ring, Fund. Math., 74 (1972), 209-231.
[16] S. MacLane, Natural associativity and commutativity, Rice University Studies, 49 (1963), 28-46.
[17] J.P. May, The cohomology of principal bundles, homogeneous spaces, and two-stage Postnikov systems, Bull. AMS, 74 (1968), 334-339.
[18] J. McCleary, "Users' guide to spectral sequences "(Publish or Perish. Inc., Wilmington, 1985).
[19] R.J. Milgram, Iterated loop spaces, Ann. of Math. 84 (1966), 386-403.
[20] H. J. Munkholm, The Eilenberg-Moore spectral sequence and strongly homotopy multiplicative maps, J. Pure and Applied Algebra, 5 (1974), 1-50.
[21] D. Notbohm, "Classifying spaces of compact Lie groups and finite loop spaces,"Handbook of algebraic topology (Ed. I.M. James), Chapter 21, North-Holland, 1995.
[22] F.P. Peterson, Some remarks on Chern classes, Ann. Math., 69 (1959), 414420.
[23] L. Pontrjagin, Classification of some skew products, Dokl. Acad. Nauk. SSSR, 47 (1945), 322-325.
[24] S. Saneblidze, Perturbation and obstruction theories in fibre spaces, Proc. A. Razmadze Math. Inst., 111 (1994), 1-106.
[25] - , Obstructions to the section problem in a fibration with a weak formal base, Georgian Math. J., 4 (1997), 149-162.
[26] , Filtered Hirsch algebras, preprint math.AT/0707.2165.
[27] S. Saneblidze and R. Umble, Diagonals on the Permutahedra, Multiplihedra and Associahedra, J. Homology, Homotopy and Appl., 6 (2004), 363-411.
[28] J. Tate, Homology of noetherian rings and local rings, Illinois J. Math., 1 (1957), 14-27.
[29] E. Thomas, Homotopy classification of maps by cohomology homomorphisms, Trans. AMS, 111 (1964), 138-151.

This article may be accessed via WWW at http://www.rmi.acnet.ge/jhrs/

Samson Saneblidze
 sane@rmi.acnet.ge

A. Razmadze Mathematical Institute

Department of Geometry and Topology
M. Aleksidze st., 1

0193 Tbilisi, Georgia

