ON THE BETTI NUMBERS OF A LOOP SPACE

SAMSON SANEBLIDZE

(communicated by James Stasheff)

Abstract

Let A be a special homotopy G-algebra over a commutative unital ring \mathbb{k} such that both $H(A)$ and $\operatorname{Tor}_{i}^{A}(\mathbb{k}, \mathbb{k})$ are finitely generated \mathbb{k}-modules for all i, and let $\tau_{i}(A)$ be the cardinality of a minimal generating set for the \mathbb{k}-module $\operatorname{Tor}_{i}^{A}(\mathbb{k}, \mathbb{k})$. Then the set $\left\{\tau_{i}(A)\right\}$ is unbounded if and only if $\tilde{H}(A)$ has two or more algebra generators. When $A=C^{*}(X ; \mathbb{k})$ is the simplicial cochain complex of a simply connected finite $C W$-complex X, there is a similar statement for the "Betti numbers" of the loop space ΩX. This unifies existing proofs over a field \mathbb{k} of zero or positive characteristic.

To Tornike Kadeishvili and Mamuka Jibladze

1. Introduction

Let Y be a topological space, let \mathbb{k} be a commutative ring with identity, and assume that the $i^{t h}$-cohomology group $H^{i}(Y ; \mathbb{k})$ of Y is finitely generated as a \mathbb{k} module. We refer to the cardinality of a minimal generating set of $H^{i}(Y$; $\mathbb{k})$, denoted by $\beta_{i}(Y)$, as the generalized $i^{\text {th }}$-Betti number of Y.

Theorem 1. Let X be a simply connected space. If $H^{*}(X ; \mathbb{k})$ is finitely generated as $a \mathbb{k}$-module and $H^{*}(\Omega X ; \mathbb{k})$ has finite type, then the set of generalized $i^{\text {th }}$-Betti numbers $\left\{\beta_{i}(\Omega X ; \mathbb{k})\right\}$ is unbounded if and only if $\tilde{H}^{*}(X ; \mathbb{k})$ has at least two algebra generators.

Theorem 1 was proved by Sullivan [11] over fields of characteristic zero and by McCleary [8] over fields of positive characteristic. However, Theorem 1 is a consequence of the following more general algebraic fact: Let $A^{\prime}=\left\{A^{\prime i}\right\}, i \geqslant 0$, with $A^{\prime 0}=\mathbb{Z}, A^{\prime 1}=0$, be a torsion free graded abelian group endowed with a homotopy G-algebra (hga) structure. Then for $A=A^{\prime} \otimes_{\mathbb{Z}} \mathbb{k}$ we have the following theorem whose proof appears in Section 4:

[^0]Theorem 2. Assume that $H^{*}(A)$ is finitely generated as $a \mathbb{k}$-module and that $\operatorname{Tor}_{*}^{A}(\mathbb{k}, \mathbb{k})$ has finite type. Let $\tau_{i}(A)$ denote the cardinality of a minimal generating set of $\operatorname{Tor}_{i}^{A}(\mathbb{k}, \mathbb{k})$. Then the set $\left\{\tau_{i}(A)\right\}$ is unbounded if and only if $\tilde{H}(A)$ has at least two algebra generators.

Let $C^{*}(X ; \mathbb{k})=C^{*}\left(\operatorname{Sing}^{1} X ; \mathbb{k}\right) / C^{>0}(\operatorname{Sing} x ; \mathbb{k})$ in which $\operatorname{Sing}^{1} X \subset \operatorname{Sing} X$ is the Eilenberg 1-subcomplex generated by the singular simplices that send the 1 -skeleton of the standard n-simplex Δ^{n} to the base point x of X. To deduce Theorem 2 from Theorem 1, set $A=C^{*}(X ; \mathbb{k})$, and apply Proposition 2 below together with the filtered hga model $\left(R H(A), d_{h}\right) \rightarrow A$ of A (a special case of the filtered Hirsch algebra [9]). Let $B A$ denote the bar construction of A. When $\tilde{H}(A)$ has at least two algebra generators, we construct two infinite sequences in the filtered model and take all possible \smile_{1}-products of their components to detect a submodule of $H^{*}(B A)$ at least as large as the polynomial algebra $\mathbb{k}[x, y]$.

Each of the sequences mentioned above can be thought of as generalizations of an infinite sequence (∞-implications of its first component) introduced by Browder [1]. Indeed, this work arose after writing down these special sequences in the hga resolution of a commutative graded algebra (cga) over the integers via formulas (3.2)-(3.4) below, at which point we realized that their construction mimics that of Massey symmetric products defined by Kraines [7] (see also [9]). In general, a sequence formed from Massey symmetric products is closely related to the one obtained from A_{∞}-operations in an A_{∞}-algebra defined by Stasheff [10] by restricting to the same variables in question. When a differential graded algebra (dga) A is free as a \mathbb{k}-module, the sequence of A_{∞}-operations on the homology $H(A)$ was constructed by Kadeishvili [5].

2. Some preliminaries and conventions

We adopt the notations and terminology of [9]. We fix a ground ring \mathbb{k} with identity, a primary example of which is the integers \mathbb{Z}. Let $\mathbb{Z}_{\mathbb{k}} \subset \mathbb{Z}$ be the subset defined by

$$
\mathbb{Z}_{\mathbb{k}}=\left\{\lambda \in \mathbb{Z} \mid \lambda_{\mathbb{k}}: \mathbb{k} \rightarrow \mathbb{k}, \kappa \rightarrow \lambda \kappa, \quad \text { is injective }\right\}
$$

Let $\mu \in \mathbb{Z} \backslash \mathbb{Z}_{\mathbb{k}}$ denote the smallest integer such that $\mu \kappa=0$ for all $\kappa \in \mathbb{k}$. Thus if $\mu=0, \mathbb{Z}_{\mathbb{k}}=\mathbb{Z} \backslash 0$ (e.g. \mathbb{k} is a field of characteristic zero).

A (positively) graded algebra A is 1-reduced if $A^{0}=\mathbb{k}$ and $A^{1}=0$. For a general definition of an homotopy Gerstenhaber algebra (hga) $\left(A, d, \cdot,\left\{E_{p, q}\right\}\right)_{p \geqslant 0, q=0,1}$ see [3], [4], [6]. The defining identities for an hga are the following: Given $k \geqslant 1$,

$$
\begin{align*}
& d E_{k, 1}\left(a_{1}, \ldots, a_{k} ; b\right)= \sum_{i=1}^{k}(-1)^{\epsilon_{i-1}^{a}} \\
& \quad+(-1)_{k, 1}\left(a_{1}, \ldots, d a_{i}, \ldots, a_{k} ; b\right) \\
&+E_{k, 1}\left(a_{1}, \ldots, a_{k} ; d b\right) \tag{2.1}\\
&+\sum_{i=1}^{k-1}(-1)_{i}^{\epsilon_{i}^{a}} \\
& \quad E_{k-1,1}\left(a_{1}, \ldots, a_{i} a_{i+1}, \ldots, a_{k} ; b\right) \\
&+(-1)^{\epsilon_{k}^{a}+\left|a_{k} \| b\right|} \mid \\
&+(-1)^{\left|a_{1}\right|} \\
& a_{k-1,1}\left(a_{1}, \ldots, E_{k-1,1}\left(a_{2}, \ldots, a_{k} ; b\right)\right.
\end{align*}
$$

$$
\begin{align*}
& E_{k, 1}\left(a_{1}, \ldots, a_{k} ; b \cdot c\right) \\
& \qquad=\sum_{i=0}^{k}(-1)^{|b|\left(\epsilon_{i}^{a}+\epsilon_{k}^{a}\right)} E_{i, 1}\left(a_{1}, \ldots, a_{i} ; b\right) \cdot E_{k-i, 1}\left(a_{i+1}, \ldots, a_{k} ; c\right) \tag{2.2}
\end{align*}
$$

and

$$
\begin{align*}
& \sum_{\substack{k_{1}+\cdots+k_{p}=k \\
1 \leqslant p \leqslant k+\ell}}(-1)^{\epsilon} E_{p, 1}\left(E_{k_{1}, \ell_{1}}\left(a_{1}, \ldots, a_{k_{1}} ; b_{1}^{\prime}\right), \ldots, E_{k_{p}, \ell_{p}}\left(a_{k-k_{p}+1}, \ldots, a_{k} ; b_{p}^{\prime}\right) ; c\right) \\
& =E_{k, 1}\left(a_{1}, \ldots, a_{k} ; E_{\ell, 1}\left(b_{1}, \ldots, b_{\ell} ; c\right)\right) \\
& b_{i}^{\prime} \in\left\{1, b_{1}, . ., b_{\ell}\right\}, \quad \epsilon=\sum_{i=1}^{p}\left(\left|b_{i}^{\prime}\right|+1\right)\left(\varepsilon_{k_{i}}^{a}+\varepsilon_{k}^{a}\right), b_{i}^{\prime} \neq 1 \\
& \varepsilon_{i}^{a}=\left|a_{1}\right|+\cdots+\left|a_{i}\right|+i \tag{2.3}
\end{align*}
$$

A morphism $f: A \rightarrow A^{\prime}$ of hga's is a dga map f commuting with all $E_{k, 1}$.
Remark 1. Note that we do not use axiom (2.3) in the sequel.
Below we review the notion of an hga resolution of a cga as a special Hirsch algebra (the existence of such a resolution is proved in [9]). Given a cga H, its hga resolution is a multiplicative resolution

$$
\rho:\left(R^{*} H^{*}, d\right) \rightarrow H^{*}, \quad R H=T(V), \quad V=\langle\mathcal{V}\rangle,
$$

endowed with an hga structure

$$
E_{k, 1}: R H^{\otimes k} \otimes R H \rightarrow R H, \quad k \geqslant 1
$$

together with a decomposition of V such that $V^{*, *}=\mathcal{E}^{*, *} \oplus U^{*, *}$, where $\mathcal{E}^{*, *}=$ $\left\{\mathcal{E}_{p, q}^{<0, *}\right\}$ is distinguished by an isomorphism of modules

$$
E_{k, 1}: \otimes_{r=1}^{k} R^{i_{r}} H^{k_{r}} \bigotimes V^{j, \ell} \xrightarrow{\approx} \mathcal{E}_{k, 1}^{s-k, t} \subset V^{k-s, t}, \quad(s, t)=\left(\sum_{r=1}^{k} i_{r}+j, \sum_{r=1}^{k} k_{r}+\ell\right) .
$$

Furthermore, if H is a \mathbb{Z}-algebra, its hga resolution $(R H, d)$ is automatically endowed with two operations \cup_{2} and \smile_{2}. The first operation \cup_{2} appears because each cocycle $a \smile_{1} a \in \mathcal{E}_{1,1} \cap R^{-1} H^{2 j}$, where $a \in R^{0} H^{2 j}$, is killed by some element in $R^{-2} H^{2 j}$, denoted by $a \cup_{2} a$. The second operation arises from the non-commutativity of \smile_{1}-product in the usual way, and satisfies Steenrod's formula for the \smile_{2}-cochain operation. These two operations are related to each other by the initial relations $a \smile_{2} a=2 a \cup_{2} a$ and $a \smile_{2} b=a \cup_{2} b, a \neq b \in \mathcal{U}$ with $\langle\mathcal{U}\rangle=U$. Note also that $a \smile_{2} a=a \cup_{2} a=0$ for $a \in U$ of odd degree. In general, $U=\mathcal{T} \oplus \mathcal{N}$, with an element of \mathcal{T} given by $a_{1} \cup_{2} \cdots \cup_{2} a_{n}, a_{i} \in U, n \geqslant 2$. The action of the resolution differential d on elements of \mathcal{T} such that $d a_{i}=0$ is

$$
\begin{align*}
d\left(a_{1} \cup_{2} \cdots\right. & \left.\cup_{2} a_{n}\right) \\
& =\sum_{(\mathrm{i} \mathbf{j})}(-1)^{\left|a_{i_{1}}\right|+\cdots+\left|a_{i_{k}}\right|}\left(a_{i_{1}} \cup_{2} \cdots \cup_{2} a_{i_{k}}\right) \smile_{1}\left(a_{j_{1}} \cup_{2} \cdots \cup_{2} a_{j_{\ell}}\right), \tag{2.4}
\end{align*}
$$

where we sum over all unshuffles $(\mathbf{i} ; \mathbf{j})=\left(i_{1}<\cdots<i_{k} ; j_{1}<\cdots<j_{\ell}\right)$ of \underline{n} with $\left(a_{i_{1}}, \ldots, a_{i_{k}}\right)=\left(a_{i_{1}^{\prime}}, \ldots, a_{i_{k}^{\prime}}\right)$ if and only if $\mathbf{i}=\mathbf{i}^{\prime}$ and \smile_{1} denotes $E_{1,1}$. In particular, for $a_{1}=\cdots=a_{n}=a=a^{\cup_{2} 1}$ and $n \geqslant 2$ we get $d a^{\cup_{2} n}=\sum_{k+\ell=n} a^{\cup_{2} k} \smile_{1}$ $a^{\cup_{2} \ell}, k, \ell \geqslant 1$. And in general $d\left(a \smile_{2} b\right)=n d\left(a \cup_{2} b\right), n \geqslant 1$.

An hga resolution $(R H, d)$ is minimal if

$$
d(U) \subset \mathcal{E}+\mathcal{D}+\kappa \cdot V
$$

where $\mathcal{D}^{*, *} \subset R^{*} H^{*}$ denotes the submodule of decomposables $R H^{+} . R H^{+}$and $\kappa \in \mathbb{k}$ is non-invertible; For example, $\kappa \in \mathbb{Z} \backslash\{-1,1\}$ when $\mathbb{k}=\mathbb{Z}$ and $\kappa=0$ when \mathbb{k} is a field.

Let $K=\left\{K^{j}\right\}_{j \geqslant 3}$ with $K^{j}=\left\{a \in \mathcal{V}^{-1, j} \mid d a=\lambda b, \lambda \neq \pm 1, b \in \mathcal{V}^{0, j}\right\}$. Note that a general form of a relation in (minimal) $(R H, d)$ starting by variables $v_{i} \in K \cup \mathcal{V}^{0, *}$ is

$$
\begin{align*}
d u=\sum_{s \geqslant 1} \lambda_{s} P_{s}\left(v_{1}, \ldots, v_{r_{s}}\right)+\lambda v, \quad \lambda \neq \pm 1, & \lambda_{s} \neq 0, r_{s} \geqslant 1 \\
u & \in \bigcup_{i \geqslant 1} \mathcal{V}^{-i, *}, v \in \bigcup_{i \geqslant 1} \mathcal{V}^{-i, *} \backslash K \tag{2.5}
\end{align*}
$$

where $P_{s}\left(v_{1}, \ldots, v_{r_{s}}\right)$ is a monomial in $\mathcal{D}^{*, *} \subset R^{*} H^{*}$.
Let A be an hga and let $\rho:(R H, d) \rightarrow H$ be an hga resolution. A filtered hga model of A is an hga quasi-isomorphism

$$
f:\left(R H, d_{h}\right) \rightarrow\left(A, d_{A}\right)
$$

in which

$$
d_{h}=d+h, \quad h=h^{2}+\cdots+h^{r}+\cdots, \quad h^{r}: R^{p} H^{q} \rightarrow R^{p+r} H^{q-r+1}
$$

The equality $d_{h}^{2}=0$ implies the sequence of equalities

$$
d h^{2}+h^{2} d=0, \quad d h^{3}+h^{3} d=-h^{2} h^{2}, \quad d h^{4}+h^{4} d=-h^{2} h^{3}-h^{3} h^{2}, \ldots,
$$

and h is referred to as a perturbation of d. The map $\left.h^{r}\right|_{R^{-r} H}: R^{-r} H \rightarrow R^{0} H, r \geqslant 2$, denoted by $h^{t r}$, is referred to as the transgressive component of h. The fact that the perturbation h acts as a derivation on elements of \mathcal{E} implies $\left.h^{t r}\right|_{\mathcal{E}}=0$. For the existence of the filtered model see [9].

In the sequel, A^{\prime} denotes a 1 -reduced torsion free hga over \mathbb{Z}, while A denotes the tensor product hga $A^{\prime} \otimes_{\mathbb{Z}} \mathbb{k}$. Denote also $H=H^{*}\left(A^{\prime}\right)$ and $H_{\mathbb{k}}=H^{*}(A)$. Assume $(R H, d)$ is minimal and let $R H_{\mathbb{k}}=R H \otimes_{\mathbb{Z}} \mathbb{k}$; in particular, $R H_{\mathbb{k}}=T\left(V_{\mathbb{k}}\right)$ for $V_{\mathbb{k}}=V \otimes_{\mathbb{Z}} \mathbb{k}$. When \mathbb{k} is a field of characteristic zero, $\rho \otimes 1: R H_{\mathbb{k}} \rightarrow H \otimes_{\mathbb{Z}} \mathbb{k}=H_{\mathbb{k}}$ is an hga resolution of $H_{\mathfrak{k}}$, which is not minimal when Tor $H \neq 0$. In general, given a filtered model $\left(R H, d_{h}\right)$ of A^{\prime}, we obtain an hga model

$$
f \otimes 1:\left(R H_{\mathbb{k}}, d_{h} \otimes 1\right) \rightarrow\left(A, d_{A}\right)
$$

for $\left(A, d_{A}\right)$. Denote $\bar{V}_{\mathbb{k}}=s^{-1}\left(V_{\mathbb{k}}^{>0}\right) \oplus \mathbb{k}$ and define the differential \bar{d}_{h} on $\bar{V}_{\mathbb{k}}$ by the restriction of $d+h$ to $V_{\mathbb{k}}$ and obtain the cochain complex $\left(\bar{V}_{\mathbb{k}}, \bar{d}_{h}\right)$.

Since the map $f \otimes 1$ is in particular a homology isomorphism (by the universal coefficient theorem), the following two propositions follow immediately from
the results in $[\mathbf{2}]$ and the standard isomorphisms $H^{*}\left(B A, d_{B A}\right) \approx \operatorname{Tor}^{A}(\mathbb{k}, \mathbb{k})$ and $H^{*}\left(B C^{*}(X ; \mathbb{k}), d_{B C}\right) \approx H^{*}(\Omega X ; \mathbb{k})$.

Proposition 1. There are isomorphisms

$$
H^{*}\left(\bar{V}_{\mathfrak{k}}, \bar{d}_{h}\right) \approx H^{*}\left(B\left(R H_{\mathbb{k}}\right), d_{B\left(R H_{\mathfrak{k}}\right)}\right) \approx H^{*}\left(B A, d_{B A}\right) \approx \operatorname{Tor}^{A}(\mathbb{k}, \mathbb{k})
$$

And for $A=C^{*}(X ; \mathbb{k})$ we obtain:
Proposition 2. There are isomorphisms

$$
H^{*}\left(\bar{V}_{\mathbb{k}}, \bar{d}_{h}\right) \approx H^{*}\left(B C^{*}(X ; \mathbb{k}), d_{B C}\right) \approx H^{*}(\Omega X ; \mathbb{k})
$$

Given $(R H, d)$ and $x, c \in V$ with $d x, d c \in \mathcal{D}+\lambda V, \lambda \neq 1$, let $\eta_{x, c}$ denote an element of $\mathcal{E}_{>1,1}$ such that

$$
x \smile_{\mathbf{1}} c:=\eta_{x, c}+x \smile_{1} c
$$

satisfies $d\left(x \smile_{\mathbf{1}} c\right) \in \mathcal{D}+\lambda V$. For example, if $d x \in \lambda V$, then $\eta_{x, c}=0$, and if $d x=\sum_{i} a_{i} b_{i}+\lambda v$ with $d a_{i}, d b_{i} \in \lambda V$, then $\eta_{x, c}=\sum_{i}(-1)^{\left|a_{i}\right|} E_{2,1}\left(a_{i}, b_{i} ; c\right)$. In general, $\eta_{x, c}$ can be found as follows: Let $j: B(R H) \rightarrow \overline{R H} \rightarrow \bar{V}$ be the canonical projection used by the proof of the first isomorphism in Proposition 1, and choose $y \in B(R H)$ so that $j(y)=\bar{x}$ and $j \mu_{E}(y ; \bar{c})=\bar{\eta}_{x, c}+\overline{x \smile_{1} c}$, where the product $\mu_{E}: B(R H) \otimes B(R H) \rightarrow B(R H)$ is determined by the hga structure on $R H$.

The following proposition is simple but useful. Let $\mathcal{D}_{\mathfrak{k}} \subset R H$ be a subset defined by $\mathcal{D}_{\mathbb{k}}=\mathcal{D}$ for $\mu=0$ and

$$
\mathcal{D}_{\mathbb{k}}=\{u+\lambda v \mid u \in \mathcal{D}, v \in V, \lambda \text { is divisible by } \mu\} \quad \text { for } \quad \mu \geqslant 2 .
$$

Definition 1. An element $x \in V$ with $d_{h} x \in \mathcal{D}+\lambda V, \lambda \neq 1$, is λ-homologous to zero, denoted by $[\bar{x}]_{\lambda}=0$, if there are $u, v \in V$ and $z \in \mathcal{D}$ such that

$$
d_{h} u=x+z+\lambda v
$$

x is weakly homologous to zero when $v=0$ above.
Proposition 3. Let $c \in V$ and $d_{h} c \in \mathcal{D}_{\mathbb{k}}$. If $d_{h} c$ has a summand component $a b \in \mathcal{D}$ such that $a, b \in V, d_{h} a, d_{h} b \in \mathcal{D}_{\mathbb{k}}$, both a and b are not weakly homologous to zero, then c is also not weakly homologous to zero.
Proof. The proof is straightforward using the equality $d_{h}^{2}=0$.
In particular, for $\mathbb{k}=\mathbb{Z}$, under hypotheses of the proposition if $[\bar{a}],[\bar{b}] \neq 0$, then $[\bar{c}] \neq 0$ in $H^{*}\left(\bar{V}, \bar{d}_{h}\right)$.

Note that over a field \mathbb{k}, Proposition 3 reflects the obvious fact that $x \in H^{*}(\Omega X ; \mathbb{k})$ is non-zero whenever some $x^{\prime} \otimes x^{\prime \prime} \neq 0$ in $\Delta x=\sum x^{\prime} \otimes x^{\prime \prime}$.

3. Formal ∞-implication sequences

Let x be an element of a Hopf algebra over a finite field. In [1], W. Browder introduced the notion of ∞-implications (of an infinite sequence) associated with x in the Hopf algebra. The following can be thought of as a generalization of this: Let $x^{\smile_{1} p}$ denote the (right most) $p^{t h}$-power of x with respect to \smile_{1}-product with the convention that $x^{\smile_{1}^{1}}=x$.

Definition 2. Let $x \in V^{k}, k \geqslant 2$, $d_{h} x \in \mathcal{D}_{\mathrm{k}}$. A sequence $\mathbf{x}=\{x(i)\}_{i \geqslant 0}$ is a formal ∞-implication sequence (f.i.s.) of x if
(i) $x(0)=x, x(i) \in V^{(i+1) k-i}$, and $x(i)$ is not μ-homologous to zero for all i;
(ii) Either $x(i)=x^{\smile^{(i+1)}}$ or $x(i)$ is resolved from the following relation in the filtered hga model (RH, d_{h}) :

$$
\begin{equation*}
d_{h} \mathfrak{b}(i)=x^{\smile_{1}(i+1)}+z(i)+\mu^{\prime} x(i), \quad \mathfrak{b}(i) \in V, z(i) \in \mathcal{D}, \mu^{\prime} \text { is divisible by } \mu \tag{3.1}
\end{equation*}
$$

We are interested in the existence of an f.i.s. for an odd dimensional $x \in V$.
Proposition 4. Let $x \in V$ be of odd degree with $d_{h} x \in \mathcal{D}_{\mathbb{k}}$ such that x is not μ-homologous to zero. For $\mu \geqslant 2$, assume, in addition, there is no relation $d_{h} u=\mu x$ $\bmod \mathcal{D}$, some $u \in V$. Then x has an f.i.s. $\mathbf{x}=\{x(i)\}_{i \geqslant 0}$.

Proof. Suppose we have constructed $x(i)$ for $0 \leqslant i<n$. If $x^{\smile_{1}^{(n+1)}}$ is not μ homologous to zero, set $x(n)=x^{\smile_{1}(n+1)}$; otherwise, there is the relation $d_{h} u=$ $x^{\smile^{(n+1)}}+z+\mu^{\prime} v$ for some $u, v \in V, z \in \mathcal{D}$ and μ^{\prime} divisible by μ. Using (2.1)-(2.2) one can easily establish the fact that $d x^{\smile_{1}(n+1)}$ contains a summand component of the form $-\sum_{k+\ell=n+1}\binom{n+1}{k} x^{\smile^{1} k} x^{\smile} \ell, k, \ell \geqslant 1$. We have that $v \neq 0$ in the aforementioned relation since Proposition 3 (applied for $c=x^{\smile_{1}(n+1)}$ and $a \cdot b=$ $-\binom{n+1}{k} x^{\smile_{1} k} \cdot x^{\smile_{1} \ell}$, some $\left.k\right)$. Clearly, $d_{h} v=-\frac{1}{\mu^{\prime}} d\left(x^{\smile_{1}(n+1)}+z\right) \in \mathcal{D}$; Assuming μ^{\prime} to be maximal v is not λ-homologous to zero. Set $x(n)=v$ and $\mathfrak{b}(n)=u, z(n)=z$ to obtain (3.1) for $i=n$.

Thus, for $\mu=0$ (when \mathbb{k} is a field of characteristic zero, for example) $\mathbf{x}=$ $\left\{x^{\smile_{1}(n+1)}\right\}_{n \geqslant 0}$.

Remark 2. 1. The restriction on x in Proposition 4 that no relation $d_{h} u=\mu x$ $\bmod \mathcal{D}$ exists is essential. A counterexample is provided by the exceptional group $F_{4}:$ Let $A=C^{*}\left(B F_{4} ; \mathbb{Z}_{3}\right)$ be the cochain complex of the classifying space $B F_{4}$. Then we have the relation $d u=3 x$ in $(R H, d)$ corresponding to the Bockstein cohomology homomorphism $\delta x_{8}=x_{9}$ on $H^{*}\left(B F_{4} ; \mathbb{Z}_{3}\right)$ (in the notation of [13]), but the element $x(2)$ does not exist (see [9] for more details).
2. Note that if $d u=\mu x$ in Proposition 4, but $[u][x] \neq 0 \in H_{\mathbb{k}}$, then one can modify the proof of the proposition to show that x again has an f.i.s. $\{x(i)\}_{i \geqslant 0}$. Note that in the above example we just have $[u][x]=0 \in H_{\mathbb{Z}_{3}}=H^{*}\left(B F_{4} ; \mathbb{Z}_{3}\right)$.
3. The existence of ∞-implications of x in [1] uses both the \smile-product and the Pontrjagin product in the loop space (co)homology. In our case each component of the sequence \mathbf{x} is determined by item (ii) of Definition 2 in which the first case can be thought of as related to the - -product, and the second with the Pontrjagin product. In particular, primitivity of x required in [1] is not issue for the existence of ∞-implications of x.

In certain cases, a given odd dimensional $b \in V$ rises to an infinite sequence $\mathbf{b}=\left\{b_{i}\right\}_{i \geqslant 0}$ with $b=b_{0}$ in the hga resolution $(R H, d)$. These sequences are built by explicit formulas and include also the case $d u=\lambda b$, i.e., when the hypothesis of

Proposition 4 formally fails (see, for example, Case I of the proof of Proposition 5 below). Namely, we have the following cases:
(i) For $b \in V^{0, *}$ and $[b]^{2}=0 \in H$ (i.e., there exists $b_{1} \in V^{-1, *}$ with $d b_{1}=b^{2}$; e.g. $b_{1}=a b+\frac{\lambda-1}{2} b \smile_{1} b$ for $d a=\lambda b$ with λ odd, some $\left.a \in V^{-1, *}\right), \mathbf{b}=\left\{b_{i}\right\}_{i \geqslant 0}$ is given by

$$
\begin{equation*}
d b_{n}=\sum_{i+j=n-1} b_{i} b_{j} \tag{3.2}
\end{equation*}
$$

and satisfies the following relation with $\mathfrak{c}_{i} \in V$

$$
d \mathfrak{c}_{n}=-(-1)^{n}\left((n+1) b_{n}+b_{0} \smile_{1} b_{n-1}\right)+\sum_{i+j=n-1}(-1)^{i}\left(\mathfrak{c}_{j} b_{i}-b_{i} \mathfrak{c}_{j}\right), n \geqslant 1
$$

(ii) For $b \in V^{0, *}$ and $[b]^{2} \neq 0 \in H$ (and $b_{1}=b \smile_{1} b$), $\mathbf{b}=\left\{b_{i}\right\}_{i \geqslant 0}$ is given by

$$
\begin{equation*}
d b_{2 k}=\sum_{i+j=2 k-1} b_{i} b_{j}, \quad d b_{2 k+1}=\sum_{i+j=k}\left(2 b_{2 i} b_{2 j}+b_{2 i-1} b_{2 j+1}\right), \tag{3.3}
\end{equation*}
$$

and satisfies the following relation with $\mathfrak{c}_{i} \in V$ (below $\left.\mathfrak{c}_{1}=0\right)$

$$
\begin{aligned}
d \mathfrak{c}_{2 k}=-(2 k+1) b_{2 k}-b_{0} \smile_{1} b_{2 k-1}+ & \sum_{i+j=k} 2\left(\mathfrak{c}_{2 j-1} b_{2 i}-b_{2 i} \mathfrak{c}_{2 j-1}\right) \\
& -\sum_{i+j=k}\left(\mathfrak{c}_{2 j} b_{2 i-1}-b_{2 i-1} \mathfrak{c}_{2 j}\right), \\
d \mathfrak{c}_{2 k+1}=(k+1) b_{2 k+1}+b_{0} \smile_{1} b_{2 k} & +\sum_{i+j=2 k}(-1)^{i}\left(\mathfrak{c}_{j} b_{i}-b_{i} \mathfrak{c}_{j}\right), k \geqslant 1 ;
\end{aligned}
$$

(iii) For $b \in V^{-1, *}$ and $d b=\mu c, \mu \geqslant 2, c \in V^{0, *}$ (below $\omega_{0}:=c$), $\mathbf{b}=\left\{b_{i}\right\}_{i \geqslant 0}$ is given by

$$
\begin{align*}
& d b_{n}=\sum_{i+j=n-1} b_{i} b_{j}+\mu c_{n}, \\
& c_{n}=-\omega_{0} \smile_{1} b_{n-1}-\sum_{\substack{i+j=n-1 \\
i \geqslant 1 ; j \geqslant 0}}(-1)^{i} \omega_{i} \smile_{1} b_{j}-(-1)^{n} \omega_{n}, n \geqslant 1 \tag{3.4}
\end{align*}
$$

and satisfies the following relation with $\mathfrak{c}_{i} \in V$

$$
\begin{aligned}
& d \mathfrak{c}_{1}=2 b_{1}+b_{0} \smile_{1} b_{0}+\mu \omega_{0} \cup_{2} b_{0}, \\
& d \mathfrak{c}_{n}=-(-1)^{n}\left((n+1) b_{n}+b_{0} \smile_{1} b_{n-1}\right)+\sum_{i+j=n-1}(-1)^{i}\left(\mathfrak{c}_{j} b_{i}-b_{i} \mathfrak{c}_{j}\right) \\
& +\mu \mathfrak{a}_{n} \\
& \mathfrak{a}_{n}=\sum_{i+j=n-2}(-1)^{j}\left(\left(\omega_{i} \cup_{2} b_{0}\right) \smile_{1} b_{j}+\omega_{i} \smile_{1} \mathfrak{c}_{j+1}\right)+\omega_{n-1} \cup_{2} b_{0} \\
& \quad d \omega_{k}=\sum_{i+j=k-1} \mu \omega_{i} \smile_{1} \omega_{j}, \quad \omega_{k}=\mu^{k} \omega_{0}^{\cup_{2}(k+1)}, k \geqslant 1, n \geqslant 2 .
\end{aligned}
$$

For example, in view of Proposition 2, the formulas above are enough to calculate the loop space cohomology algebra with coefficients in \mathbb{k} for Moore spaces, i.e., the $C W$-complexes obtained by attaching an $(n+1)$-cell to the n-sphere S^{n} by a map $S^{n} \rightarrow S^{n}$ of degree μ.

3.1. Odd dimensional element $l(a)$

Given $m \geqslant 2$, let $H(A)$ be finitely generated as a \mathbb{k}-module with $H^{i}(A)=0$ for $i>m$. Let $\mathcal{Z}_{\mathfrak{k}}$ be the subset of $R H$ defined by

$$
\begin{gathered}
\mathcal{Z}_{\mathbb{k}}=\mathcal{Z}_{\mathrm{kk}}^{\prime}+\mathcal{Z}_{\mathrm{k}}^{\prime \prime}+\mathcal{D}_{\mathbb{k}} \\
\mathcal{Z}_{\mathrm{k}}^{\prime}=\left\{v \in V \mid d u=\lambda v, \quad u \in V, \lambda \in \mathbb{Z}_{\mathfrak{k}}\right\}
\end{gathered}
$$

and

$$
\mathcal{Z}_{\mathbb{k}}^{\prime \prime}=\left\{v \in V \mid v=\lambda u, \quad u \in V, \lambda \in \mathbb{Z} \backslash \mathbb{Z}_{\mathbb{k}}\right\} .
$$

Given $x \in V$ with $d_{h} x=w \in \mathcal{Z}_{\mathbb{k}}, w=w^{\prime}+w^{\prime \prime}+z$, define

$$
\tilde{x}=\frac{l . c . m \cdot\left(\lambda^{\prime \prime} ; \mu\right)}{\lambda^{\prime \prime}}\left(\lambda^{\prime} x-u\right), d u=\lambda^{\prime} w^{\prime}, w^{\prime \prime}=\lambda^{\prime \prime} v^{\prime \prime}
$$

to obtain $d_{h} \tilde{x} \in \mathcal{D}_{\mathrm{k}}$.
Regarding (2.5), define also the following subsets $K_{\mu}^{*}, K_{0}^{*} \subset \mathcal{V}^{-1, *}$ with $K_{\mu}^{*} \subset K^{*}$ as

$$
K_{\mu}=\{a \in K \mid \lambda \text { is divisible by } \mu\}, \quad K_{0}=\left\{u \in \mathcal{V}^{-1, *} \backslash \mathcal{E} \mid d u \in \mathcal{D}^{0, *}\right\}
$$

and assign to a given even dimensional element $a \in V^{0, *} \cup K_{\mu}$ an odd dimensional element $l(a) \in V$ with $d l(a) \in \mathcal{D}_{\mathbb{k}}$ as follows. If $a \in V^{0, *}$, let $l(a) \in K_{0}$ be an element such that $d l(a)=a^{k}$, where $k \geqslant 2$ is chosen to be the smallest. If $a \in K_{\mu}$ with $d a=\lambda b$ consider the relation

$$
\begin{equation*}
d u_{1}=-a^{2}+\lambda v_{1}, \quad d v_{1}=\frac{1}{\lambda} d\left(a^{2}\right), \quad u_{1} \in V^{-3, *}, v_{1} \in V^{-2, *} \tag{3.5}
\end{equation*}
$$

and the perturbation $h u_{1}=h^{2} u_{1}+h^{3} u_{1}$. When $h u_{1} \in \mathcal{Z}_{\mathbb{k}}$, set $l(a)=\widetilde{u}_{1}$, while when $h^{3} u_{1} \notin \mathcal{Z}_{\mathbb{k}}$, consider $\mathfrak{u}_{1}=\left.h^{3} u_{1}\right|_{V^{0, *}}$, the component of $h^{3} u_{1}$ in $V^{0, *}$, and define $l(a)$ as $l\left(\mathfrak{u}_{1}\right)$. When $h^{2} u_{1} \notin \mathcal{Z}_{\mathfrak{k}}$, and $h^{3} u_{1} \in \mathcal{Z}_{\mathfrak{k}}$, choose the smallest $n>1$ such that there is the relation

$$
\begin{array}{r}
d u_{n}=-a h^{2} u_{n-1}+\lambda v_{n}, \quad d v_{n}=\frac{1}{\lambda} d\left(a h^{2} u_{n-1}\right), \quad u_{n} \in V^{-3, *}, v_{n} \in V^{-2, *}, \\
\text { with } h^{2} u_{n} \in \mathcal{Z}_{\mathbb{k}} . \tag{3.6}
\end{array}
$$

(The inequality $(n+1)|a|>m$ guarantees the existence of such a relation, since $h^{2} u_{i} \in \mathcal{D}+K_{\mu}$, while $K_{\mu}^{j}=0$ for $j>m$ in the minimal $V \subset R H$.) Then set $l(a)=\widetilde{u}_{n}$ for $h^{3} u_{n} \in \mathcal{Z}_{\mathrm{k}} ;$ otherwise, define $l(a)$ as $l\left(\mathfrak{u}_{n}\right)$ for $\mathfrak{u}_{n}=\left.h^{3} u_{n}\right|_{V^{0, *}}$.

4. Proof of Theorem 2

The proof of the theorem relies on the two basic propositions below in which the condition that $\tilde{H}(A)$ has at least two algebra generators is treated in two specific cases.

Proposition 5. Let $H_{\mathbb{k}}$ be a finitely generated \mathbb{k}-module with $\mu \geqslant 2$. If $\tilde{H}_{\mathbb{k}}$ has at least two algebra generators and $\tilde{H}_{\mathbb{Q}}$ is either trivial or has a single algebra generator, there are two sequences of odd degree elements $\mathbf{x}_{\mathbb{k}}=\{x(i)\}_{i \geqslant 0}$ and $\mathbf{y}_{\mathrm{k}}=\{y(j)\}_{j \geqslant 0}$ in V_{k} whose degrees form arithmetic progressions such that all $\bar{x}(i), \bar{y}(j)$ are \bar{d}_{h} cocycles in \bar{V}_{k} and the classes $\left\{\left[s^{-1}\left(x(i) \smile_{\mathbf{1}} y(j)\right)\right]\right\}_{i, j \geqslant 0}$ are linearly independent in $H\left(\bar{V}_{\mathbb{k}}, \bar{d}_{h}\right)$.

Proof. The hypotheses of the proposition imply that K_{μ} defined in subsection 3.1 above is non-empty; also by the restriction on $\tilde{H}_{\mathbb{Q}}$, relation (2.5) reduces to

$$
d a=\lambda b^{m}, \lambda \neq 0, m \geqslant 1,(\lambda, m) \neq(1,1), b \in \mathcal{V}^{0, *}
$$

for $a \in \mathcal{V}^{-1, *}$ to be of the smallest degree.
In the three cases below, we exhibit two odd dimensional elements $x, y \in V \backslash \mathcal{E}$ that fail to be μ-homologous to zero.

Case I. Let $a \in K_{\mu}$ be of the smallest degree in $K_{\mu} \cup K_{0}$ with $d a=\lambda b$ and let $|a|$ be even. Consider the element $l(a)$. If it is not λ-homologous to zero, set $x=l(a)$; otherwise, we must have relation (2.5) in which $v_{i}=a$ for some i and $h u \in \mathcal{Z}_{\mathbb{k}}$ with $|u|<|l(a)|, u \in \bigcup_{i \geqslant 1} \mathcal{V}^{-i, *} \backslash \mathcal{E}$. By (2.5) choose u to be of the smallest degree with $h u \in \mathcal{Z}_{\mathbb{k}}, u \neq u_{i}, a_{1}$, where u_{i} is given by (3.5)-(3.6) and $d a_{1}=-a b+\lambda b_{1}, d b_{1}=b^{2}$. Set $x=\tilde{u}$ for $|u|$ odd. If $|u|$ is even and $u \in \bigcup_{i>1} \mathcal{V}^{-i, *} \backslash \mathcal{E}$ set $x=\tilde{v}$; if $u \in K_{0}$ and $d u$ contains an odd dimensional $v_{i} \in V^{0, *}$ with $\left[v_{i}\right] \neq 0 \in H_{\mathbb{Q}}$, set $x=v_{i}$; otherwise, for each monomial $P_{s}\left(v_{1}, \ldots, v_{r_{s}}\right)$ choose a variable v_{i} with a relation $d u_{i}=\mu_{i} v_{i}$ (for example, we can choose v_{i} to be odd dimensional for all s). Let λ be the smallest integer divisible by all μ_{i}, and replace v_{i} by $\frac{\lambda}{\mu_{i}} u_{i}$ to detect a new relation in ($R H, d$) given again by (2.5):

$$
d w=\sum_{1 \leqslant s \leqslant n} \frac{\lambda_{s} \lambda}{\mu_{i}} P_{s}\left(v_{1}, \ldots, v_{i-1}, u_{i}, v_{i+1} \ldots, v_{r_{s}}\right)+\lambda u, \quad \lambda_{s} \in \mathbb{Z}_{\mathbb{k}}, w \in \mathcal{V}^{-2, *}
$$

Hence, $|w|$ is odd, and set $x=\widetilde{w}$ for $h^{2} w \in \mathcal{Z}_{\mathfrak{k}}$. If $h^{2} w \notin \mathcal{Z}_{\mathfrak{k}}$ we have the following two subcases:
(i1) Assume there exists $v \in K_{\mu}$ with $d v=\lambda h^{2} w$. If $[\bar{v}]_{\lambda} \neq 0$, set $x=v$; otherwise we have a relation $d_{h} u^{\prime}=v+z+\lambda^{\prime} v^{\prime}$, some $u^{\prime}, v^{\prime} \in V, z \in \mathcal{D}$. Clearly, $h^{t r} v^{\prime}=-\frac{\lambda}{\lambda^{\prime}} h^{2} w \bmod \mathcal{D}$, and set $x=\frac{\lambda}{\lambda^{\prime}} w+v^{\prime}$. Note that x is not λ-homologous to zero since the component $\frac{\lambda^{2}}{\lambda^{\prime}} u$ in $d x$.
(i2) Assume $\left[h^{2} w\right] \neq 0 \in H_{\mathbb{Q}}$. When $r_{s}>1$ for all s, choose a variable v_{j} different from v_{i} in $P_{s}\left(v_{1}, \ldots, v_{r_{s}}\right)$ to form w^{\prime} entirely analogously to w, and then find x similarly to the above unless $\left[h^{2} w^{\prime}\right] \neq 0 \in H_{\mathbb{Q}}$, in which case set $x=\alpha w+\beta w^{\prime}$, some $\alpha, \beta \in \mathbb{Z}$. When $\mathbf{k}=\left\{s \in \underline{n} \mid r_{s}=1\right.$ in $\left.d u\right\} \neq \varnothing$, i.e., $P_{s}\left(v_{1}, \ldots, v_{r_{s}}\right)=$ $v_{1}^{2 m_{1}+1}:=v_{s}^{2 m_{s}+1}, m_{s} \geqslant 1,\left|v_{s}\right|$ is odd for $s \in \mathbf{k}$ (in particular, μ_{s} is even, since $\left[v_{s}\right]^{2}=0 \in H$ for μ_{s} odd; c.f. (3.2)), then

$$
d u^{\prime}= \begin{cases}\sum_{s \in \mathbf{k}} \frac{\lambda_{s} \lambda}{2}\left(v_{s} \smile_{1} v_{s}\right) v_{s}^{2 m_{s}-1} & \\ +\sum_{s \in \underline{n} \backslash \mathbf{k}} \frac{\lambda_{s} \lambda}{\mu_{j}} P_{s}\left(v_{1}, \ldots, v_{j-1}, u_{j}, v_{j+1} \ldots, v_{r_{s}}\right)+\lambda u, & \mathbf{k} \neq \underline{n} \\ \sum_{s \in \underline{n}} \lambda_{s}\left(v_{s} \smile_{1} v_{s}\right) v_{s}^{2 m_{s}-1}+2 u, & \mathbf{k}=\underline{n}\end{cases}
$$

with $u^{\prime} \in \mathcal{V}^{-2, *}$, and by considering $h^{2} u^{\prime}$ we find x as in item (i1).
To find y, consider b and the associated sequence $\mathbf{b}=\left\{b_{i}\right\}$ given by (3.2) or (3.3). If $h b_{i} \in \mathcal{Z}_{\mathbb{k}}$ for all i, set $y=b$ and $\mathbf{y}=\left\{\tilde{b}_{i}\right\}_{i \geqslant 0}$. If $h \mathbf{b} \nsubseteq \mathcal{Z}_{\mathbb{k}}$, consider the smallest $p>0$ such that $h^{\operatorname{tr}} b_{p} \notin \mathcal{Z}_{\mathbf{k}}$. Consider $t_{p}=\left.h^{\operatorname{tr}} b_{p}\right|_{V^{0, *}}$, and if $\left[\overline{l\left(t_{p}\right)}\right]_{\lambda} \neq 0$, set $y=l\left(t_{p}\right)$; if $\left[\overline{l\left(t_{p}\right)}\right]_{\lambda}=0$ and $\alpha h^{3} u_{i}+\beta h^{t r} b_{p}=0, \alpha, \beta \in \mathbb{Z}$, for some u_{i} from (3.5)-(3.6), set $y=\alpha u_{i}+\beta b_{p}$; otherwise, we obtain $l\left(t_{p}\right) \in K_{0}$ different from $l(a)$ above; consequently, we must have another relation in ($R H, d$) given by (2.5) in which $v_{i}=t_{p}$ for some i and $h u \in \mathcal{Z}_{\mathbb{k}}$ with $|u|<\left|l\left(t_{p}\right)\right|$, and then y is found similarly to x.

Case II. Let $a \in K_{\mu}$ be of the smallest degree in $K_{\mu} \cup K_{0}$ with $d a=\lambda b$ and let $|a|$ be odd. Set $x=a$. Consider $l(b) \in K_{0}$, and then y is found as in Case I.

Case III. Let $a \in K_{0}$ be of smallest degree in $K_{\mu} \cup K_{0}$ with $d a=\lambda b^{m}, m \geqslant 2$, and $[b] \neq 0 \in H_{\mathbb{Q}}$. Set

$$
x=\left\{\begin{array}{lll}
b, & |b| & \text { is odd } \\
a, & |b| & \text { is even. }
\end{array}\right.
$$

To find y consider the following two subcases:
(i) Assume $\lambda \in \mathbb{Z} \backslash \mathbb{Z}_{\mathbb{k}}$. When both $|a|$ and $|b|$ are odd, set $y=a$; otherwise, either $|a|$ or $|b|$ is even, in which case consider $l(\tilde{a})$ or $l(b)$ respectively, and then y is found as in Case I.
(ii) Assume $\lambda \in \mathbb{Z}_{\mathbb{k}}$. Since $K_{\mu} \neq \varnothing$, this subcase reduces either to Case I or to Case II.

Finally, having found the elements x and y in Cases I-III, consider the f.i.s. \mathbf{x} and \mathbf{y} in V and the induced sequences $\mathbf{x}_{\mathrm{k}}=\{x(i)\}_{i \geqslant 0}$ and $\mathbf{y}_{\mathrm{k}}=\{y(j)\}_{j \geqslant 0}$ in $V_{\mathbb{k}}$. Then the both sequences $\overline{\mathbf{x}}_{\mathrm{k}}$ and $\overline{\mathbf{y}}_{\mathrm{k}}$ consist of \bar{d}_{h}-cocycles in \bar{V}_{k} whose degrees form an arithmetic progression respectively. Thus, we obtain that $\left[\overline{\mathbf{x}}_{\mathrm{k}}\right],\left[\overline{\mathbf{y}}_{\mathbf{k}}\right] \subset$ $H\left(\bar{V}_{\mathbb{k}}, \bar{d}_{h}\right)$ are sequences of non-trivial classes. Moreover, they are linearly independent and $\left\{\left[s^{-1}\left(x(i) \smile_{1} y(j)\right)\right]\right\}_{i, j \geqslant 0}$ is the sequence of linearly independent classes in $H\left(\bar{V}_{\mathrm{k}}, \bar{d}_{h}\right)$ as required.

Before proving the second basic proposition we need the following auxiliary statement. Given a cochain complex $\left(C^{*}, d\right)$ over \mathbb{Q}, let $S_{C}(T)=\sum_{n \geqslant 0}\left(\operatorname{dim}_{\mathbb{Q}} C^{n}\right) T^{n}$ and $S_{H(C)}(T)=\sum_{n \geqslant 0}\left(\operatorname{dim}_{\mathbb{Q}} H^{n}(C)\right) T^{n}$ be the Poincaré series. As usual, we write $\sum_{n \geqslant 0} a_{n} T^{n} \leqslant \sum_{n \geqslant 0} b_{n} T^{n}$ if and only if $a_{n} \leqslant b_{n}$. The following proposition can be thought of as a modification of Propositions 3 and 4 in [12] for the non-commutative case.

Proposition 6. Given an element $y \in V_{\mathbb{Q}}$ of total degree $K_{\mu} \geqslant 2$ such that $\bar{d}_{h}(\bar{y})=$ 0 , let $y \bar{V}_{\mathbb{Q}} \subset \bar{V}_{\mathbb{Q}}$ be a subcomplex (additively) generated by the expressions $\{\bar{y}=$ $\left.s^{-1} y, s^{-1}\left(y \smile_{1} v\right)\right\}_{v \in V_{\mathbb{Q}}}$. Then

$$
\begin{equation*}
S_{H\left(\bar{V}_{\mathbb{Q}} / y \bar{V}_{\mathbb{Q}}\right)}(T) \leqslant\left(1+T^{k-1}\right) S_{H\left(\bar{V}_{\mathbb{Q}}\right)}(T) \tag{4.1}
\end{equation*}
$$

Proof. Consider the inclusion of cochain complexes $s^{k} \bar{V}_{\mathbb{Q}} \xrightarrow{\iota} \bar{V}_{\mathbb{Q}}$ defined for $1 \in \mathbb{Q}=$ $\left(s^{k} \bar{V}_{\mathbb{Q}}\right)^{k}$ by $\iota(1)=\bar{y}$, and for $s^{k}(\bar{v}) \in\left(s^{k} \bar{V}_{\mathbb{Q}}\right)^{>k}, v \in V_{\mathbb{Q}}^{>1}$, by $\iota\left(s^{k}(\bar{v})\right)=s^{-1}\left(y \smile_{1} v\right)$.

Then $\iota\left(s^{k} \bar{Q}_{Q}\right)=y \bar{V}_{\mathbb{Q}}$ and there is the short exact sequence of cochain complexes

$$
0 \rightarrow s^{k} \bar{V}_{\mathbb{Q}} \xrightarrow{\iota} \bar{V}_{\mathbb{Q}} \rightarrow \bar{V}_{\mathbb{Q}} / y \bar{V}_{\mathbb{Q}} \rightarrow 0
$$

Consider the induced long exact sequence

$$
\cdots \rightarrow H^{n-k}\left(\bar{V}_{\mathbb{Q}}\right) \xrightarrow{H^{n}(\iota)} H^{n}\left(\bar{V}_{\mathbb{Q}}\right) \rightarrow H^{n}\left(\bar{V}_{\mathbb{Q}} / y \bar{V}_{\mathbb{Q}}\right) \rightarrow H^{n-k+1}\left(\bar{V}_{\mathbb{Q}}\right) \rightarrow \cdots
$$

Let $I=\oplus I_{n}$, where $I_{n}=\operatorname{Im}\left(H^{n}(\iota)\right), n \geqslant 0$, and form the exact sequence

$$
0 \rightarrow I_{n} \rightarrow H^{n}\left(\bar{V}_{\mathbb{Q}}\right) \rightarrow H^{n}\left(\bar{V}_{\mathbb{Q}} / y \bar{V}_{\mathbb{Q}}\right) \rightarrow H^{n-k+1}\left(\bar{V}_{\mathbb{Q}}\right) \rightarrow I_{n+1} \rightarrow 0
$$

Since $I_{0}=0$, we have

$$
\sum_{n \geqslant 0}\left(\operatorname{dim}_{\mathbb{Q}} I_{n}+\operatorname{dim}_{\mathbb{Q}} I_{n+1}\right) T^{n}=\frac{(1+T) S_{I}(T)}{T}
$$

Now apply the Euler-Poincaré lemma for the above exact sequence to obtain the equality

$$
\frac{(1+T) S_{I}(T)}{T}-S_{H\left(\bar{V}_{\mathbb{Q}}\right)}(T)+S_{H\left(\bar{V}_{\mathbb{Q}} / y \bar{V}_{\mathbb{Q}}\right)}(T)-T^{k-1} S_{H\left(\bar{V}_{\mathbb{Q}}\right)}(T)=0
$$

Consequently,

$$
S_{H\left(\bar{V}_{\mathbb{Q}} / y \bar{V}_{\mathbb{Q}}\right)}(T)=\left(1+T^{k-1}\right) S_{H\left(\bar{V}_{\mathbb{Q}}\right)}(T)-\frac{(1+T) S_{I}(T)}{T},
$$

and since $S_{I}(T) \geqslant 0$, we get (4.1) as required.
Proposition 7. Let $H_{\mathbb{k}}$ be a finitely generated \mathbb{k}-module. If $\tilde{H}_{\mathbb{Q}}$ has at least two algebra generators and $A_{\mathbb{Q}}=A^{\prime} \otimes_{\mathbb{Z}} \mathbb{Q}$, the set $\left\{\tau_{i}\left(A_{\mathbb{Q}}\right)=\operatorname{dim}_{\mathbb{Q}} \operatorname{Tor}_{i}^{A_{\mathbb{Q}}}(\mathbb{Q}, \mathbb{Q})\right\}$ is unbounded.

Proof. Consider the first two generators $a_{i} \in V_{\mathbb{Q}}^{-1, *}$ with $d a_{i} \in \mathcal{D}^{0, *}, i=1,2$. We have two cases:
(i) Both $\left|a_{1}\right|$ and $\left|a_{2}\right|$ are odd. Set $x=a_{1}$ and $y=a_{2}$. Then both \bar{x} and \bar{y} are \bar{d}_{h}-cocycles and the classes $[\bar{x}]$ and $[\bar{y}]$ are non-trivial in $H\left(\bar{V}_{Q}, \bar{d}_{h}\right)$. Consequently, the classes

$$
\begin{equation*}
\left\{\left[s^{-1}\left(x^{\smile_{1} i} \smile_{\mathbf{1}} y^{\smile^{1 j} j}\right)\right]\right\}_{i, j \geqslant 1} \tag{4.2}
\end{equation*}
$$

are linearly independent in $H\left(\bar{V}_{Q}, \bar{d}_{h}\right)$.
(ii) Either $\left|a_{1}\right|$ or $\left|a_{2}\right|$ is even. Denote the (smallest) even dimensional generator by a and consider $d a$. Then for $a,(2.5)$ reduces to

$$
d a=u v, \quad u \in V_{\mathbb{Q}}^{0,2 k+1} \text { and } v \in R^{0} H_{\mathbb{Q}}^{2 \ell}, \text { some } k, \ell \geqslant 1
$$

There are the following induced relations in $\left(R H_{Q}, d\right)$:

$$
\begin{array}{ll}
d b=-u\left(a+u \smile_{1} v\right)-a u, & b \in V_{\mathbb{Q}}^{-2,2(2 k+\ell+1)} \quad \text { and } \\
d c=-u\left(v \smile_{1} a+\left(u \cup_{2} v\right) v+u\left(v \cup_{2} v\right)\right)-a^{2}+b v, & c \in V_{\mathbb{Q}}^{-3,4(k+\ell)+2} .
\end{array}
$$

Thus we have $h c=h^{2} c+h^{3} c$, and in particular, $d h^{2} c=h^{2} b \cdot v$. Consider the following two cases:
(1) Assume $h c \in \mathcal{D}$. Set $x=u, y=c$, and obtain linearly independent classes in $H\left(\bar{V}_{Q}, \bar{d}_{h}\right)$ by formula (4.2).
(2) Assume $h c \notin \mathcal{D}$. Let $\left(\bar{W}, \bar{d}_{W}\right)=\left(\bar{V}_{\mathbb{Q}} / \bar{C}, \bar{d}_{W}\right)$, where $C \subset V_{\mathbb{Q}}$ is a subcomplex (additively) generated by the expressions $h c$ and $h c \smile_{1} z$ for $z \in V_{\mathbb{Q}}$. Define x and y as the projections of the elements u and c from V_{Q} under the quotient map $V_{\mathrm{Q}} \rightarrow$ V_{\odot} / C, respectively. Then \bar{x} and \bar{y} are \bar{d}_{W}-cocycles in \bar{W}. Once again apply formula (4.2) to obtain linearly independent classes in $H\left(\bar{W}, \bar{d}_{W}\right)$. Finally, Proposition 6 implies that $S_{H(\bar{W})}(T) \leqslant S_{H\left(V_{\mathbb{Q}}\right)}(T)$, and an application of Proposition 1 completes the proof.

4.1. Proof of Theorem 2

In view of Proposition 1, the proof reduces to the examination of the \mathbb{k}-module $H\left(\bar{V}_{\mathbb{k}}, \bar{d}_{h}\right)$. If \tilde{H}_{k} has a single algebra generator a, then the set $\left\{\tau_{i}(A)\right\}$ is bounded since $\tau_{i}(A)=1$. For example, this can be seen from the fact that $H\left(\bar{V}_{\mathrm{k}}, \bar{d}_{h}\right)$ is generated by a single sequence induced by (3.2) or by (3.3), where $x=a$ or $x=l(a)$ for $|a|$ odd or even respectively, and by \smile_{1}-products of its components. If \tilde{H}_{k} has at least two algebra generators, then the proof follows from Propositions 5 and 7.

References

[1] W. Browder, Torsion in H-spaces, Ann. Math., 74 (1961), 24-51.
[2] Y. Felix, S. Halperin and J.-C. Thomas, Adams' cobar equivalence, Trans. AMS, 329 (1992), 531-549.
[3] M. Gerstenhaber and A.A. Voronov, Higher operations on the Hochschild complex, Functional Analysis and its Applications, 29 (1995), 1-5.
[4] E. Getzler and J.D.S. Jones, Operads, homotopy algebra, and iterated integrals for double loop spaces, preprint (1995).
[5] T. Kadeishvili, On the homology theory of fibre spaces, Russian Math. Survey, 35 (1980), 131-138.
[6] T. Kadeishvili and S. Saneblidze, A cubical model of a fibration, J. Pure and Applied Algebra, 196 (2005), 203-228.
[7] D. Kraines, Massey higher products, Trans. AMS, 124 (1966), 431-449.
[8] J. McCleary, On the mod p Betti numbers of loop spaces, Invent. Math., 87 (1987), 643-654.
[9] S. Saneblidze, Filtered Hirsch algebras, preprint math.AT/0707.2165.
[10] J. D. Stasheff, Homotopy Associativity of H-spaces I, II, Trans. AMS, 108 (1963), 275-312.
[11] D. Sullivan, Diffrential forms and the topology of manifolds, ManifoldsTokyo 1973, ed. Akio Hattori, Tokyo Univ. Press, 37-51.
[12] M. Vigué-Poirrier and D. Sullivan, The homology theory of the closed geodesic problem, J. Diff. Geom., 11 (1976), 633-644.
[13] H. Toda, Cohomology mod 3 of the classifying space $B F_{4}$ of the exceptional group F_{4}, J. Math. Kyoto Univ., 13-1 (1973), 97-115.

This article may be accessed via WWW at http://www.rmi.acnet.ge/jhrs/

Samson Saneblidze
 sane@rmi.acnet.ge

A. Razmadze Mathematical Institute

Department of Geometry and Topology
M. Aleksidze st., 1

0193 Tbilisi, Georgia

[^0]: I am grateful to Jim Stasheff for comments and suggestions and to the referee for comments that helped to improve the exposition.
 Received May 15, 2009, revised December 05, 2009; published on December 27, 2009.
 2000 Mathematics Subject Classification: Primary 55P35; Secondary 55U20, 55S30.
 Key words and phrases: Betti numbers, loop space, filtered model.
 (C) 2010, Samson Saneblidze. Permission to copy for private use granted.

