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ON THE BETTI NUMBERS OF A LOOP SPACE

SAMSON SANEBLIDZE

(communicated by James Stasheff)

Abstract
Let A be a special homotopy G-algebra over a commutative

unital ring k such that both H(A) and TorA
i (k, k) are finitely

generated k-modules for all i, and let τi(A) be the cardinality
of a minimal generating set for the k-module TorA

i (k, k). Then
the set {τi(A)} is unbounded if and only if H̃(A) has two or
more algebra generators. When A = C∗(X;k) is the simplicial
cochain complex of a simply connected finite CW -complex X,
there is a similar statement for the ”Betti numbers” of the loop
space ΩX. This unifies existing proofs over a field k of zero or
positive characteristic.

To Tornike Kadeishvili and Mamuka Jibladze

1. Introduction

Let Y be a topological space, let k be a commutative ring with identity, and
assume that the ith-cohomology group Hi(Y ; k) of Y is finitely generated as a k-
module. We refer to the cardinality of a minimal generating set of Hi(Y ; k), denoted
by βi(Y ), as the generalized ith-Betti number of Y.

Theorem 1. Let X be a simply connected space. If H∗(X; k) is finitely generated
as a k-module and H∗(ΩX; k) has finite type, then the set of generalized ith-Betti
numbers {βi(ΩX; k)} is unbounded if and only if H̃∗(X;k) has at least two algebra
generators.

Theorem 1 was proved by Sullivan [11] over fields of characteristic zero and
by McCleary [8] over fields of positive characteristic. However, Theorem 1 is a
consequence of the following more general algebraic fact: Let A′ = {A′i}, i > 0,

with A′0 = Z, A′1 = 0, be a torsion free graded abelian group endowed with a
homotopy G-algebra (hga) structure. Then for A = A′ ⊗Z k we have the following
theorem whose proof appears in Section 4:
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Theorem 2. Assume that H∗(A) is finitely generated as a k-module and that
TorA

∗ (k ,k) has finite type. Let τi(A) denote the cardinality of a minimal gener-
ating set of TorA

i (k , k). Then the set {τi(A)} is unbounded if and only if H̃(A) has
at least two algebra generators.

Let C∗(X; k) = C∗(Sing1 X;k)/C>0(Sing x ; k) in which Sing1X ⊂ SingX is the
Eilenberg 1-subcomplex generated by the singular simplices that send the 1-skeleton
of the standard n-simplex ∆n to the base point x of X. To deduce Theorem 2 from
Theorem 1, set A = C∗(X; k), and apply Proposition 2 below together with the
filtered hga model (RH(A), dh) → A of A (a special case of the filtered Hirsch
algebra [9]). Let BA denote the bar construction of A. When H̃(A) has at least
two algebra generators, we construct two infinite sequences in the filtered model
and take all possible ^1-products of their components to detect a submodule of
H∗(BA) at least as large as the polynomial algebra k[x, y].

Each of the sequences mentioned above can be thought of as generalizations of
an infinite sequence (∞-implications of its first component) introduced by Browder
[1]. Indeed, this work arose after writing down these special sequences in the hga
resolution of a commutative graded algebra (cga) over the integers via formulas
(3.2)–(3.4) below, at which point we realized that their construction mimics that
of Massey symmetric products defined by Kraines [7] (see also [9]). In general, a
sequence formed from Massey symmetric products is closely related to the one ob-
tained from A∞-operations in an A∞-algebra defined by Stasheff [10] by restricting
to the same variables in question. When a differential graded algebra (dga) A is
free as a k-module, the sequence of A∞-operations on the homology H (A) was
constructed by Kadeishvili [5].

2. Some preliminaries and conventions

We adopt the notations and terminology of [9]. We fix a ground ring k with
identity, a primary example of which is the integers Z. Let Zk ⊂ Z be the subset
defined by

Zk = {λ ∈ Z |λk : k→k, κ → λκ, is injective}.
Let µ ∈ Z \ Zk denote the smallest integer such that µκ = 0 for all κ ∈ k. Thus if
µ = 0, Zk = Z \ 0 (e.g. k is a field of characteristic zero).

A (positively) graded algebra A is 1-reduced if A0 = k and A1 = 0. For a general
definition of an homotopy Gerstenhaber algebra (hga) (A, d, · , {Ep,q})p>0, q=0,1 see
[3], [4], [6]. The defining identities for an hga are the following: Given k > 1,

dEk,1(a1, ..., ak; b) =
∑k

i=1 (−1)εa
i−1 Ek,1(a1, ..., dai, ..., ak; b)

+ (−1)εa
k Ek,1(a1, ..., ak; db)

+
∑k−1

i=1 (−1)εa
i Ek−1,1(a1, ..., aiai+1, ..., ak; b)

+ (−1)εa
k+|ak||b|Ek−1,1(a1, ..., ak−1; b)·ak

+ (−1)|a1| a1 ·Ek−1,1(a2, ..., ak; b),

(2.1)
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Ek,1(a1,..., ak; b · c)

=
k∑

i=0

(−1)|b|(ε
a
i +εa

k)Ei,1(a1,..., ai; b) · Ek−i,1(ai+1,..., ak; c) (2.2)

and
∑

k1+···+kp=k

16p6k+`

(−1)εEp,1

(
Ek1,`1(a1, ..., ak1 ; b

′
1),..., Ekp,`p

(a
k−kp+1 , ..., ak; b′p) ; c

)

= Ek,1 (a1, ..., ak; E`,1(b1, ..., b`; c)) ,

b′i ∈ {1, b1, .., b`}, ε =
p∑

i=1

(|b′i|+ 1)(εa
ki

+ εa
k), b′i 6= 1,

εa
i = |a1|+ · · ·+ |ai|+ i. (2.3)

A morphism f : A → A′ of hga’s is a dga map f commuting with all Ek,1.

Remark 1. Note that we do not use axiom (2.3) in the sequel.

Below we review the notion of an hga resolution of a cga as a special Hirsch
algebra (the existence of such a resolution is proved in [9]). Given a cga H, its hga
resolution is a multiplicative resolution

ρ : (R∗H∗, d) → H∗, RH = T (V ), V = 〈V〉,
endowed with an hga structure

Ek,1 : RH⊗k ⊗RH → RH, k > 1,

together with a decomposition of V such that V ∗,∗ = E∗,∗ ⊕ U∗,∗, where E∗,∗ =
{E<0,∗

p,q } is distinguished by an isomorphism of modules

Ek,1 : ⊗k
r=1R

irHkr

⊗
V j,` ≈−→ Es−k , t

k,1 ⊂ V k−s,t, (s, t)=

(
k∑

r=1

ir+j,

k∑
r=1

kr+`

)
.

Furthermore, if H is a Z-algebra, its hga resolution (RH, d) is automatically en-
dowed with two operations ∪2 and ^2. The first operation ∪2 appears because each
cocycle a ^1 a ∈ E1,1 ∩ R−1H2j , where a ∈ R0H2j , is killed by some element in
R−2H2j , denoted by a∪2a. The second operation arises from the non-commutativity
of ^1-product in the usual way, and satisfies Steenrod’s formula for the ^2-cochain
operation. These two operations are related to each other by the initial relations
a ^2 a = 2a ∪2 a and a ^2 b = a ∪2 b, a 6= b ∈ U with 〈U〉 = U. Note also that
a ^2 a = a ∪2 a = 0 for a ∈ U of odd degree. In general, U = T ⊕ N , with an
element of T given by a1 ∪2 · · · ∪2 an, ai ∈ U, n > 2. The action of the resolution
differential d on elements of T such that dai = 0 is

d(a1 ∪2 · · · ∪2 an)

=
∑

(i;j)

(−1)|ai1|+···+|aik
|(ai1 ∪2 · · · ∪2 aik

) ^1 (aj1 ∪2 · · · ∪2 aj`
), (2.4)
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where we sum over all unshuffles (i; j) = (i1 < · · · < ik ; j1 < · · · < j`) of n with
(ai1 , ..., aik

) = (ai′1 , ..., ai′k) if and only if i = i′ and ^1 denotes E1,1. In particular,
for a1 = · · · = an = a = a∪21 and n > 2 we get da∪2n =

∑
k+`=n a∪2k ^1

a∪2`, k, ` > 1. And in general d(a ^2 b) = nd(a ∪2 b), n > 1.
An hga resolution (RH, d) is minimal if

d(U) ⊂ E +D + κ·V
where D∗,∗ ⊂ R∗H∗ denotes the submodule of decomposables RH+·RH+ and κ ∈ k
is non-invertible; For example, κ ∈ Z \ {−1, 1} when k = Z and κ = 0 when k is a
field.

Let K = {Kj}j>3 with Kj = {a ∈ V−1,j | da = λb, λ 6= ±1, b ∈ V0,j}. Note that
a general form of a relation in (minimal) (RH, d) starting by variables vi ∈ K∪V0,∗

is

du =
∑

s>1

λsPs(v1, ..., vrs) + λv, λ 6= ±1, λs 6= 0, rs > 1,

u ∈
⋃

i>1

V−i,∗, v ∈
⋃

i>1

V−i,∗ \K, (2.5)

where Ps(v1, ..., vrs) is a monomial in D∗,∗ ⊂ R∗H∗.
Let A be an hga and let ρ : (RH, d) → H be an hga resolution. A filtered hga

model of A is an hga quasi-isomorphism

f : (RH, dh) → (A, dA)

in which

dh = d + h, h = h2 + · · ·+ hr + · · · , hr : RpHq → Rp+rHq−r+1.

The equality d2
h = 0 implies the sequence of equalities

dh2 + h2d = 0, dh3 + h3d = −h2h2, dh4 + h4d = −h2h3 − h3h2, . . . ,

and h is referred to as a perturbation of d. The map hr|R−rH : R−rH → R0H, r > 2,
denoted by htr, is referred to as the transgressive component of h. The fact that
the perturbation h acts as a derivation on elements of E implies htr|E = 0. For the
existence of the filtered model see [9].

In the sequel, A′ denotes a 1-reduced torsion free hga over Z, while A denotes the
tensor product hga A′ ⊗Z k. Denote also H = H∗(A′) and Hk = H∗(A). Assume
(RH, d) is minimal and let RHk = RH ⊗Z k; in particular, RHk = T (Vk) for
Vk = V ⊗Z k. When k is a field of characteristic zero, ρ⊗ 1 : RHk → H ⊗Z k = Hk
is an hga resolution of Hk, which is not minimal when TorH 6= 0. In general, given
a filtered model (RH, dh) of A′, we obtain an hga model

f ⊗ 1 : (RHk, dh ⊗ 1) → (A, dA).

for (A, dA). Denote V̄k = s−1(V >0
k ) ⊕ k and define the differential d̄h on V̄k by the

restriction of d + h to Vk and obtain the cochain complex (V̄k, d̄h).
Since the map f ⊗ 1 is in particular a homology isomorphism (by the univer-

sal coefficient theorem), the following two propositions follow immediately from
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the results in [2] and the standard isomorphisms H∗(BA, d
BA

) ≈ TorA(k,k) and
H∗(BC∗(X; k), dBC ) ≈ H∗(ΩX;k).

Proposition 1. There are isomorphisms

H∗(V̄k, d̄h) ≈ H∗(B(RHk), dB(RHk)
) ≈ H∗(BA, d

BA
) ≈ TorA(k, k).

And for A = C∗(X; k) we obtain:

Proposition 2. There are isomorphisms

H∗(V̄k, d̄h) ≈ H∗(BC∗(X; k), d
BC

) ≈ H∗(ΩX;k).

Given (RH, d) and x, c ∈ V with dx, dc ∈ D + λV, λ 6= 1, let ηx,c denote an
element of E>1,1 such that

x ^1 c := ηx,c + x ^1 c

satisfies d(x ^1 c) ∈ D + λV. For example, if dx ∈ λV, then ηx,c = 0, and if
dx =

∑
i aibi + λv with dai, dbi ∈ λV, then ηx,c =

∑
i(−1)|ai|E2,1(ai, bi ; c). In

general, ηx,c can be found as follows: Let j : B(RH) → RH → V̄ be the canonical
projection used by the proof of the first isomorphism in Proposition 1, and choose
y ∈ B(RH) so that j(y) = x̄ and jµE(y; c̄) = η̄x,c + x ^1 c, where the product
µE : B(RH)⊗B(RH) → B(RH) is determined by the hga structure on RH.

The following proposition is simple but useful. Let Dk ⊂ RH be a subset defined
by Dk = D for µ = 0 and

Dk = {u + λv|u ∈ D, v ∈ V, λ is divisible by µ} for µ > 2.

Definition 1. An element x ∈ V with dhx ∈ D + λV, λ 6= 1, is λ-homologous
to zero, denoted by [x̄]λ = 0, if there are u, v ∈ V and z ∈ D such that

dhu = x + z + λv;

x is weakly homologous to zero when v = 0 above.

Proposition 3. Let c ∈ V and dhc ∈ Dk. If dhc has a summand component ab ∈ D
such that a, b ∈ V, dha, dhb ∈ Dk, both a and b are not weakly homologous to zero,
then c is also not weakly homologous to zero.

Proof. The proof is straightforward using the equality d2
h = 0.

In particular, for k = Z, under hypotheses of the proposition if [ā], [b̄] 6= 0, then
[c̄] 6= 0 in H∗(V̄ , d̄h).

Note that over a field k, Proposition 3 reflects the obvious fact that x∈H∗(ΩX; k)
is non-zero whenever some x′ ⊗ x′′ 6= 0 in ∆x =

∑
x′ ⊗ x′′.

3. Formal ∞-implication sequences

Let x be an element of a Hopf algebra over a finite field. In [1], W. Browder
introduced the notion of ∞-implications (of an infinite sequence) associated with x
in the Hopf algebra. The following can be thought of as a generalization of this: Let
x^1p denote the (right most) pth-power of x with respect to ^1-product with the
convention that x^11 = x.
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Definition 2. Let x ∈ V k, k > 2, dhx ∈ Dk. A sequence x = {x(i)}i>0 is a
formal ∞-implication sequence (f.i.s.) of x if

(i) x(0) = x, x(i) ∈ V (i+1)k−i, and x(i) is not µ-homologous to zero for all i;

(ii) Either x(i) = x^1(i+1) or x(i) is resolved from the following relation in the
filtered hga model (RH, dh) :

dhb(i) = x^1(i+1) + z(i) + µ′x(i), b(i) ∈ V, z(i) ∈ D, µ′ is divisible by µ.
(3.1)

We are interested in the existence of an f.i.s. for an odd dimensional x ∈ V.

Proposition 4. Let x ∈ V be of odd degree with dhx ∈ Dk such that x is not
µ-homologous to zero. For µ > 2, assume, in addition, there is no relation dhu = µx
mod D, some u ∈ V. Then x has an f.i.s. x = {x(i)}i>0.

Proof. Suppose we have constructed x(i) for 0 6 i < n. If x^1(n+1) is not µ-
homologous to zero, set x(n) = x^1(n+1); otherwise, there is the relation dhu =
x^1(n+1) + z +µ′v for some u, v ∈ V, z ∈ D and µ′ divisible by µ. Using (2.1)–(2.2)
one can easily establish the fact that dx^1(n+1) contains a summand component
of the form −∑

k+`=n+1

(
n+1

k

)
x^1kx^1`, k, ` > 1. We have that v 6= 0 in the

aforementioned relation since Proposition 3 (applied for c = x^1(n+1) and a · b =
−(

n+1
k

)
x^1k ·x^1`, some k). Clearly, dhv = − 1

µ′ d
(
x^1(n+1) + z

) ∈ D; Assuming µ′

to be maximal v is not λ-homologous to zero. Set x(n) = v and b(n) = u, z(n) = z
to obtain (3.1) for i = n.

Thus, for µ = 0 (when k is a field of characteristic zero, for example) x =
{x^1(n+1)}n>0.

Remark 2. 1. The restriction on x in Proposition 4 that no relation dhu = µx
mod D exists is essential. A counterexample is provided by the exceptional group
F4: Let A = C∗(BF4;Z3) be the cochain complex of the classifying space BF4. Then
we have the relation du = 3x in (RH, d) corresponding to the Bockstein cohomology
homomorphism δx8 = x9 on H∗(BF4;Z3) (in the notation of [13]), but the element
x(2) does not exist (see [9] for more details).

2. Note that if du = µx in Proposition 4, but [u][x] 6= 0 ∈ Hk, then one can
modify the proof of the proposition to show that x again has an f.i.s. {x(i)}i>0.
Note that in the above example we just have [u][x] = 0 ∈ HZ3 = H∗(BF4;Z3).

3. The existence of ∞-implications of x in [1] uses both the ^-product and the
Pontrjagin product in the loop space (co)homology. In our case each component of
the sequence x is determined by item (ii) of Definition 2 in which the first case
can be thought of as related to the ^-product, and the second with the Pontrjagin
product. In particular, primitivity of x required in [1] is not issue for the existence
of ∞-implications of x.

In certain cases, a given odd dimensional b ∈ V rises to an infinite sequence
b = {bi}i>0 with b = b0 in the hga resolution (RH, d). These sequences are built
by explicit formulas and include also the case du = λb, i.e., when the hypothesis of
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Proposition 4 formally fails (see, for example, Case I of the proof of Proposition 5
below). Namely, we have the following cases:

(i) For b ∈ V 0,∗ and [b]2 = 0 ∈ H (i.e., there exists b1 ∈ V −1,∗ with db1 = b2;
e.g. b1 = ab + λ−1

2 b ^1 b for da = λb with λ odd, some a ∈ V −1,∗), b = {bi}i>0 is
given by

dbn =
∑

i+j=n−1

bibj (3.2)

and satisfies the following relation with ci ∈ V

dcn = −(−1)n((n + 1)bn + b0 ^1 bn−1) +
∑

i+j=n−1

(−1)i (cjbi − bicj) , n > 1;

(ii) For b ∈ V 0,∗ and [b]2 6= 0 ∈ H (and b1 = b ^1 b), b = {bi}i>0 is given by

db2k =
∑

i+j=2k−1

bibj , db2k+1 =
∑

i+j=k

(2b2ib2j + b2i−1b2j+1), (3.3)

and satisfies the following relation with ci ∈ V (below c1 = 0)

dc2k = −(2k + 1)b2k − b0 ^1 b2k−1 +
∑

i+j=k

2 (c2j−1b2i − b2ic2j−1)

−
∑

i+j=k

(c2jb2i−1 − b2i−1c2j) ,

dc2k+1 = (k + 1)b2k+1 + b0 ^1 b2k +
∑

i+j=2k

(−1)i (cjbi − bicj) , k > 1;

(iii) For b ∈ V −1,∗ and db = µc, µ > 2, c ∈ V 0,∗ (below ω0 := c), b = {bi}i>0 is
given by

dbn =
∑

i+j=n−1

bibj + µcn,

cn = −ω0 ^1 bn−1 −
∑

i+j=n−1
i>1; j>0

(−1)iωi ^1 bj − (−1)nωn, n > 1 (3.4)

and satisfies the following relation with ci ∈ V

dc1 = 2b1 + b0 ^1 b0 + µω0 ∪2 b0,

dcn = −(−1)n((n + 1)bn + b0 ^1 bn−1) +
∑

i+j=n−1

(−1)i (cjbi − bicj)

+ µan,

an =
∑

i+j=n−2

(−1)j ((ωi∪2 b0) ^1 bj + ωi ^1 cj+1)+ ωn−1∪2 b0,

dωk =
∑

i+j=k−1

µωi ^1 ωj , ωk = µkω
∪2(k+1)
0 , k > 1, n > 2.
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For example, in view of Proposition 2, the formulas above are enough to calculate
the loop space cohomology algebra with coefficients in k for Moore spaces, i.e., the
CW -complexes obtained by attaching an (n + 1)-cell to the n-sphere Sn by a map
Sn → Sn of degree µ.

3.1. Odd dimensional element l(a)
Given m > 2, let H(A) be finitely generated as a k-module with Hi(A) = 0 for

i > m. Let Zk be the subset of RH defined by

Zk = Z ′k + Z ′′k +Dk,
Z ′k = {v ∈ V | du = λv, u ∈ V, λ ∈ Zk}

and
Z ′′k = {v ∈ V | v = λu, u ∈ V, λ ∈ Z \ Zk} .

Given x ∈ V with dhx = w ∈ Zk, w = w′ + w′′ + z, define

x̃ =
l.c.m.(λ′′; µ)

λ′′
(λ′x− u), du = λ′w′, w′′ = λ′′v′′,

to obtain dhx̃ ∈ Dk.
Regarding (2.5), define also the following subsets K∗

µ,K∗
0 ⊂ V−1,∗ with K∗

µ ⊂ K∗

as

Kµ = {a ∈ K |λ is divisible by µ} , K0 =
{
u ∈ V−1,∗ \ E | du ∈ D0,∗} ,

and assign to a given even dimensional element a ∈ V 0,∗ ∪Kµ an odd dimensional
element l(a) ∈ V with dl(a) ∈ Dk as follows. If a ∈ V 0,∗, let l(a) ∈ K0 be an
element such that dl(a) = ak, where k > 2 is chosen to be the smallest. If a ∈ Kµ

with da = λb consider the relation

du1 = −a2 + λv1, dv1 =
1
λ

d(a2), u1 ∈ V −3,∗, v1 ∈ V −2,∗, (3.5)

and the perturbation hu1 = h2u1+h3u1. When hu1 ∈ Zk, set l(a) = ũ1, while when
h3u1 /∈ Zk, consider u1 = h3u1|V 0,∗ , the component of h3u1 in V 0,∗, and define l(a)
as l(u1). When h2u1 /∈ Zk, and h3u1 ∈ Zk, choose the smallest n > 1 such that
there is the relation

dun = −ah2un−1 + λvn, dvn =
1
λ

d(ah2un−1), un ∈ V −3,∗, vn ∈ V −2,∗,

with h2un ∈ Zk. (3.6)

(The inequality (n + 1)|a| > m guarantees the existence of such a relation, since
h2ui ∈ D + Kµ, while Kj

µ = 0 for j > m in the minimal V ⊂ RH.) Then set
l(a) = ũn for h3un ∈ Zk; otherwise, define l(a) as l(un) for un = h3un|V 0,∗ .

4. Proof of Theorem 2

The proof of the theorem relies on the two basic propositions below in which the
condition that H̃(A) has at least two algebra generators is treated in two specific
cases.
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Proposition 5. Let Hk be a finitely generated k-module with µ > 2. If H̃k has at
least two algebra generators and H̃Q is either trivial or has a single algebra generator,
there are two sequences of odd degree elements xk = {x(i)}i>0 and yk = {y(j)}j>0

in Vk whose degrees form arithmetic progressions such that all x̄(i), ȳ(j) are d̄h-
cocycles in V̄k and the classes

{
[s−1(x(i) ^1 y(j))]

}
i,j>0

are linearly independent
in H(V̄k, d̄h).

Proof. The hypotheses of the proposition imply that Kµ defined in subsection 3.1
above is non-empty; also by the restriction on H̃Q, relation (2.5) reduces to

da = λbm, λ 6= 0, m > 1, (λ,m) 6= (1, 1), b ∈ V0,∗

for a ∈ V−1,∗ to be of the smallest degree.
In the three cases below, we exhibit two odd dimensional elements x, y ∈ V \ E

that fail to be µ-homologous to zero.
Case I. Let a ∈ Kµ be of the smallest degree in Kµ ∪K0 with da = λb and let |a|

be even. Consider the element l(a). If it is not λ-homologous to zero, set x = l(a);
otherwise, we must have relation (2.5) in which vi = a for some i and hu ∈ Zk with
|u| < |l(a)|, u ∈ ⋃

i>1 V−i,∗ \ E . By (2.5) choose u to be of the smallest degree with
hu ∈ Zk, u 6= ui, a1, where ui is given by (3.5)–(3.6) and da1 = −ab+λb1, db1 = b2.
Set x = ũ for |u| odd. If |u| is even and u ∈ ⋃

i>1 V−i,∗ \ E set x = ṽ; if u ∈ K0 and
du contains an odd dimensional vi ∈ V 0,∗ with [vi] 6= 0 ∈ HQ, set x = vi; otherwise,
for each monomial Ps(v1, ..., vrs) choose a variable vi with a relation dui = µivi (for
example, we can choose vi to be odd dimensional for all s). Let λ be the smallest
integer divisible by all µi, and replace vi by λ

µi
ui to detect a new relation in (RH, d)

given again by (2.5):

dw =
∑

16s6n

λsλ

µi
Ps(v1, ..., vi−1, ui, vi+1..., vrs) + λu, λs ∈ Zk, w ∈ V−2,∗.

Hence, |w| is odd, and set x = w̃ for h2w ∈ Zk. If h2w /∈ Zk we have the following
two subcases:

(i1) Assume there exists v ∈ Kµ with dv = λh2w. If [v̄]λ 6= 0, set x = v;
otherwise we have a relation dhu′ = v + z + λ′v′, some u′, v′ ∈ V, z ∈ D. Clearly,
htrv′ = − λ

λ′h
2w mod D, and set x = λ

λ′w + v′. Note that x is not λ-homologous to
zero since the component λ2

λ′ u in dx.
(i2) Assume [h2w] 6= 0 ∈ HQ. When rs > 1 for all s, choose a variable vj different

from vi in Ps(v1, ..., vrs) to form w′ entirely analogously to w, and then find x
similarly to the above unless [h2w′] 6= 0 ∈ HQ, in which case set x = αw + βw′,
some α, β ∈ Z. When k = {s ∈ n | rs = 1 in du} 6= ∅, i.e., Ps(v1, ..., vrs) =
v2m1+1
1 := v2ms+1

s ,ms > 1, |vs| is odd for s ∈ k (in particular, µs is even, since
[vs]2 = 0 ∈ H for µs odd; c.f. (3.2)), then

du′ =





∑
s∈k

λsλ
2 (vs ^1 vs)v2ms−1

s

+
∑

s∈n\k
λsλ
µj

Ps(v1, ..., vj−1, uj , vj+1..., vrs) + λu, k 6= n,

∑
s∈n λs(vs ^1 vs)v2ms−1

s + 2u, k = n
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with u′ ∈ V−2,∗, and by considering h2u′ we find x as in item (i1).
To find y, consider b and the associated sequence b = {bi} given by (3.2) or

(3.3). If hbi ∈ Zk for all i, set y = b and y = {b̃i}i>0. If hb * Zk, consider the

smallest p > 0 such that htrbp /∈ Zk. Consider tp = htrbp|V 0,∗ , and if
[
l(tp)

]
λ
6= 0,

set y = l(tp); if
[
l(tp)

]
λ

= 0 and αh3ui + βhtrbp = 0, α, β ∈ Z, for some ui from

(3.5)–(3.6), set y = αui + βbp; otherwise, we obtain l(tp) ∈ K0 different from l(a)
above; consequently, we must have another relation in (RH, d) given by (2.5) in
which vi = tp for some i and hu ∈ Zk with |u| < |l(tp)|, and then y is found
similarly to x.

Case II. Let a ∈ Kµ be of the smallest degree in Kµ ∪K0 with da = λb and let
|a| be odd. Set x = a. Consider l(b) ∈ K0, and then y is found as in Case I.

Case III. Let a ∈ K0 be of smallest degree in Kµ ∪K0 with da = λbm,m > 2,
and [b] 6= 0 ∈ HQ. Set

x =
{

b, |b| is odd
a, |b| is even.

To find y consider the following two subcases:
(i) Assume λ ∈ Z\Zk. When both |a| and |b| are odd, set y = a; otherwise, either

|a| or |b| is even, in which case consider l(ã) or l(b) respectively, and then y is found
as in Case I.

(ii) Assume λ ∈ Zk. Since Kµ 6= ∅, this subcase reduces either to Case I or to
Case II.

Finally, having found the elements x and y in Cases I-III, consider the f.i.s. x
and y in V and the induced sequences xk = {x(i)}i>0 and yk = {y(j)}j>0 in
Vk. Then the both sequences x̄k and ȳk consist of d̄h-cocycles in V̄k whose de-
grees form an arithmetic progression respectively. Thus, we obtain that [x̄k], [ȳk] ⊂
H(V̄k, d̄h) are sequences of non-trivial classes. Moreover, they are linearly indepen-
dent and

{
[s−1(x(i) ^1 y(j))]

}
i,j>0

is the sequence of linearly independent classes
in H(V̄k, d̄h) as required.

Before proving the second basic proposition we need the following auxiliary state-
ment. Given a cochain complex (C∗, d) over Q, let SC(T ) =

∑
n>0(dimQ Cn)Tn

and SH(C)(T ) =
∑

n>0(dimQHn(C))Tn be the Poincaré series. As usual, we write∑
n>0 anTn 6

∑
n>0 bnTn if and only if an 6 bn. The following proposition can be

thought of as a modification of Propositions 3 and 4 in [12] for the non-commutative
case.

Proposition 6. Given an element y ∈ VQ of total degree Kµ > 2 such that d̄h(ȳ) =
0, let yV̄Q ⊂ V̄Q be a subcomplex (additively) generated by the expressions {ȳ =
s−1y, s−1(y ^1 v)}v∈VQ

. Then

SH(V̄Q/yV̄Q )(T ) 6 (1 + T k−1)SH(V̄Q )(T ). (4.1)

Proof. Consider the inclusion of cochain complexes skV̄Q
ι→ V̄Q defined for 1 ∈ Q =

(skV̄Q)
k by ι(1) = ȳ, and for sk(v̄) ∈ (skV̄Q)

>k, v ∈ V >1
Q , by ι(sk(v̄)) = s−1(y ^1 v).
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Then ι(skV̄Q) = yV̄Q and there is the short exact sequence of cochain complexes

0 → skV̄Q
ι→ V̄Q → V̄Q/yV̄Q → 0.

Consider the induced long exact sequence

· · · → Hn−k(V̄Q)
Hn(ι)−→ Hn(V̄Q) → Hn(V̄Q/yV̄Q) → Hn−k+1(V̄Q) → · · · .

Let I = ⊕In, where In = Im(Hn(ι)), n > 0, and form the exact sequence

0 → In → Hn(V̄Q) → Hn(V̄Q/yV̄Q) → Hn−k+1(V̄Q) → In+1 → 0.

Since I0 = 0, we have
∑

n>0

(dimQ In + dimQ In+1)Tn =
(1 + T )SI(T )

T
.

Now apply the Euler-Poincaré lemma for the above exact sequence to obtain the
equality

(1 + T )SI(T )
T

− SH(V̄Q )(T ) + SH(V̄Q/yV̄Q )(T )− T k−1SH(V̄Q )(T ) = 0.

Consequently,

SH(V̄Q/yV̄Q )(T ) = (1 + T k−1)SH(V̄Q )(T )− (1 + T )SI(T )
T

,

and since SI(T ) > 0, we get (4.1) as required.

Proposition 7. Let Hk be a finitely generated k-module. If H̃Q has at least two

algebra generators and AQ = A′ ⊗Z Q, the set
{

τi(AQ) = dimQ Tor
AQ
i (Q ,Q)

}
is

unbounded.

Proof. Consider the first two generators ai ∈ V −1,∗
Q with dai ∈ D0,∗, i = 1, 2. We

have two cases:
(i) Both |a1| and |a2| are odd. Set x = a1 and y = a2. Then both x̄ and ȳ are

d̄h-cocycles and the classes [x̄] and [ȳ] are non-trivial in H(V̄Q , d̄h). Consequently,
the classes {

[s−1
(
x`1i ^1 y`1j

)
]
}

i,j>1
(4.2)

are linearly independent in H(V̄Q , d̄h).
(ii) Either |a1| or |a2| is even. Denote the (smallest) even dimensional generator

by a and consider da. Then for a, (2.5) reduces to

da = uv, u ∈ V 0,2k+1
Q and v ∈ R0H2`

Q , some k, ` > 1.

There are the following induced relations in (RHQ , d) :

db = −u(a + u ^1 v)− au, b ∈ V −2,2(2k+`+1)
Q and

dc = −u (v ^1 a + (u ∪2 v)v + u(v ∪2 v))− a2 + bv, c ∈ V −3,4(k+`)+2
Q .

Thus we have hc = h2c + h3c, and in particular, dh2c = h2b · v. Consider the
following two cases:



Journal of Homotopy and Related Structures, vol. 5(1), 2010 12

(1) Assume hc ∈ D. Set x = u, y = c, and obtain linearly independent classes in
H(V̄Q , d̄h) by formula (4.2).

(2) Assume hc /∈ D. Let (W̄ , d̄W ) = (V̄Q/C̄, d̄W ), where C ⊂ VQ is a subcomplex
(additively) generated by the expressions hc and hc ^1 z for z ∈ VQ . Define x and
y as the projections of the elements u and c from VQ under the quotient map VQ →
VQ/C, respectively. Then x̄ and ȳ are d̄W -cocycles in W̄ . Once again apply formula
(4.2) to obtain linearly independent classes in H(W̄ , d̄W ). Finally, Proposition 6
implies that SH(W̄ )(T ) 6 SH(VQ )(T ), and an application of Proposition 1 completes
the proof.

4.1. Proof of Theorem 2
In view of Proposition 1, the proof reduces to the examination of the k-module

H(V̄k, d̄h). If H̃k has a single algebra generator a, then the set {τi(A)} is bounded
since τi(A) = 1. For example, this can be seen from the fact that H(V̄k, d̄h) is
generated by a single sequence induced by (3.2) or by (3.3), where x = a or x = l(a)
for |a| odd or even respectively, and by ^1-products of its components. If H̃k has
at least two algebra generators, then the proof follows from Propositions 5 and 7.
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