Journal of Homotopy and Related Structures, vol. 5(1), 2010, pp.1–13

ON THE BETTI NUMBERS OF A LOOP SPACE

SAMSON SANEBLIDZE

(communicated by James Stasheff)

Abstract

Let A be a special homotopy G-algebra over a commutative unital ring k such that both H(A) and $\operatorname{Tor}_i^A(\Bbbk, \Bbbk)$ are finitely generated k-modules for all i, and let $\tau_i(A)$ be the cardinality of a minimal generating set for the k-module $\operatorname{Tor}_i^A(\Bbbk, \Bbbk)$. Then the set $\{\tau_i(A)\}$ is unbounded if and only if $\tilde{H}(A)$ has two or more algebra generators. When $A = C^*(X; \Bbbk)$ is the simplicial cochain complex of a simply connected finite *CW*-complex *X*, there is a similar statement for the "Betti numbers" of the loop space ΩX . This unifies existing proofs over a field k of zero or positive characteristic.

To Tornike Kadeishvili and Mamuka Jibladze

1. Introduction

Let Y be a topological space, let \Bbbk be a commutative ring with identity, and assume that the i^{th} -cohomology group $H^i(Y; \Bbbk)$ of Y is finitely generated as a \Bbbk module. We refer to the cardinality of a minimal generating set of $H^i(Y; \Bbbk)$, denoted by $\beta_i(Y)$, as the generalized i^{th} -Betti number of Y.

Theorem 1. Let X be a simply connected space. If $H^*(X; \Bbbk)$ is finitely generated as a \Bbbk -module and $H^*(\Omega X; \Bbbk)$ has finite type, then the set of generalized i^{th} -Betti numbers $\{\beta_i(\Omega X; \Bbbk)\}$ is unbounded if and only if $\tilde{H}^*(X; \Bbbk)$ has at least two algebra generators.

Theorem 1 was proved by Sullivan [11] over fields of characteristic zero and by McCleary [8] over fields of positive characteristic. However, Theorem 1 is a consequence of the following more general algebraic fact: Let $A' = \{A'^i\}, i \ge 0$, with $A'^0 = \mathbb{Z}, A'^1 = 0$, be a torsion free graded abelian group endowed with a homotopy *G*-algebra (hga) structure. Then for $A = A' \otimes_{\mathbb{Z}} \mathbb{K}$ we have the following theorem whose proof appears in Section 4:

I am grateful to Jim Stasheff for comments and suggestions and to the referee for comments that helped to improve the exposition.

Received May 15, 2009, revised December 05, 2009; published on December 27, 2009.

²⁰⁰⁰ Mathematics Subject Classification: Primary 55P35; Secondary 55U20, 55S30.

Key words and phrases: Betti numbers, loop space, filtered model.

 $[\]bigodot$ 2010, Samson Saneblidze. Permission to copy for private use granted.

Theorem 2. Assume that $H^*(A)$ is finitely generated as a k-module and that $Tor^A_*(\Bbbk, \Bbbk)$ has finite type. Let $\tau_i(A)$ denote the cardinality of a minimal generating set of $Tor^A_i(\Bbbk, \Bbbk)$. Then the set $\{\tau_i(A)\}$ is unbounded if and only if $\tilde{H}(A)$ has at least two algebra generators.

Let $C^*(X; \Bbbk) = C^*(\operatorname{Sing}^1 X; \Bbbk)/C^{>0}(\operatorname{Sing} x; \Bbbk)$ in which $\operatorname{Sing}^1 X \subset \operatorname{Sing} X$ is the Eilenberg 1-subcomplex generated by the singular simplices that send the 1-skeleton of the standard *n*-simplex Δ^n to the base point x of X. To deduce Theorem 2 from Theorem 1, set $A = C^*(X; \Bbbk)$, and apply Proposition 2 below together with the filtered hga model $(RH(A), d_h) \to A$ of A (a special case of the filtered Hirsch algebra [9]). Let BA denote the bar construction of A. When $\tilde{H}(A)$ has at least two algebra generators, we construct two infinite sequences in the filtered model and take all possible \smile_1 -products of their components to detect a submodule of $H^*(BA)$ at least as large as the polynomial algebra $\Bbbk[x, y]$.

Each of the sequences mentioned above can be thought of as generalizations of an infinite sequence (∞ -implications of its first component) introduced by Browder [1]. Indeed, this work arose after writing down these special sequences in the hga resolution of a commutative graded algebra (cga) over the integers via formulas (3.2)–(3.4) below, at which point we realized that their construction mimics that of Massey symmetric products defined by Kraines [7] (see also [9]). In general, a sequence formed from Massey symmetric products is closely related to the one obtained from A_{∞} -operations in an A_{∞} -algebra defined by Stasheff [10] by restricting to the same variables in question. When a differential graded algebra (dga) A is free as a k-module, the sequence of A_{∞} -operations on the homology H(A) was constructed by Kadeishvili [5].

2. Some preliminaries and conventions

We adopt the notations and terminology of [9]. We fix a ground ring \Bbbk with identity, a primary example of which is the integers \mathbb{Z} . Let $\mathbb{Z}_{\Bbbk} \subset \mathbb{Z}$ be the subset defined by

$$\mathbb{Z}_{\Bbbk} = \{ \lambda \in \mathbb{Z} \mid \lambda_{\Bbbk} : \Bbbk \to \Bbbk, \ \kappa \to \lambda \kappa, \ \text{ is injective} \}.$$

Let $\mu \in \mathbb{Z} \setminus \mathbb{Z}_{\mathbb{k}}$ denote the smallest integer such that $\mu \kappa = 0$ for all $\kappa \in \mathbb{k}$. Thus if $\mu = 0, \mathbb{Z}_{\mathbb{k}} = \mathbb{Z} \setminus 0$ (e.g. \mathbb{k} is a field of characteristic zero).

A (positively) graded algebra A is 1-reduced if $A^0 = \mathbb{k}$ and $A^1 = 0$. For a general definition of an homotopy Gerstenhaber algebra (hga) $(A, d, \cdot, \{E_{p,q}\})_{p \ge 0, q=0,1}$ see [3], [4], [6]. The defining identities for an hga are the following: Given $k \ge 1$,

$$dE_{k,1}(a_1,...,a_k;b) = \sum_{i=1}^k (-1)^{\epsilon_{i-1}^a} E_{k,1}(a_1,...,a_i,...,a_k;b) + (-1)^{\epsilon_a^a} E_{k,1}(a_1,...,a_k;db) + \sum_{i=1}^{k-1} (-1)^{\epsilon_i^a} E_{k-1,1}(a_1,...,a_ia_{i+1},...,a_k;b) + (-1)^{\epsilon_a^a+|a_k||b|} E_{k-1,1}(a_1,...,a_{k-1};b) \cdot a_k + (-1)^{|a_1|} a_1 \cdot E_{k-1,1}(a_2,...,a_k;b),$$
(2.1)

$$E_{k,1}(a_1,...,a_k;b\cdot c) = \sum_{i=0}^k (-1)^{|b|(\epsilon_i^a + \epsilon_k^a)} E_{i,1}(a_1,...,a_i;b) \cdot E_{k-i,1}(a_{i+1},...,a_k;c) \quad (2.2)$$

and

$$\sum_{\substack{k_1+\dots+k_p=k\\1\leqslant p\leqslant k+\ell}} (-1)^{\epsilon} E_{p,1} \left(E_{k_1,\ell_1}(a_1,\dots,a_{k_1};b_1'),\dots,E_{k_p,\ell_p}(a_{k-k_p+1},\dots,a_k;b_p');c \right)$$
$$= E_{k,1} \left(a_1,\dots,a_k;E_{\ell,1}(b_1,\dots,b_\ell;c)\right),$$
$$b_i' \in \{1,b_1,\dots,b_\ell\}, \quad \epsilon = \sum_{i=1}^p (|b_i'|+1)(\varepsilon_{k_i}^a + \varepsilon_k^a), \ b_i' \neq 1,$$
$$\varepsilon_i^a = |a_1| + \dots + |a_i| + i. \quad (2.3)$$

A morphism $f: A \to A'$ of hga's is a dga map f commuting with all $E_{k,1}$.

Remark 1. Note that we do not use axiom (2.3) in the sequel.

Below we review the notion of an hga resolution of a cga as a special Hirsch algebra (the existence of such a resolution is proved in [9]). Given a cga H, its hga resolution is a multiplicative resolution

$$\rho: (R^*H^*, d) \to H^*, \quad RH = T(V), \quad V = \langle \mathcal{V} \rangle,$$

endowed with an hga structure

$$E_{k,1}: RH^{\otimes k} \otimes RH \to RH, \quad k \ge 1,$$

together with a decomposition of V such that $V^{*,*} = \mathcal{E}^{*,*} \oplus U^{*,*}$, where $\mathcal{E}^{*,*} = \{\mathcal{E}_{p,q}^{<0,*}\}$ is distinguished by an isomorphism of modules

$$E_{k,1}: \otimes_{r=1}^k R^{i_r} H^{k_r} \bigotimes V^{j,\ell} \xrightarrow{\approx} \mathcal{E}_{k,1}^{s-k,t} \subset V^{k-s,t}, \quad (s,t) = \left(\sum_{r=1}^k i_r + j, \sum_{r=1}^k k_r + \ell\right).$$

Furthermore, if H is a \mathbb{Z} -algebra, its hga resolution (RH, d) is automatically endowed with two operations \cup_2 and \smile_2 . The first operation \cup_2 appears because each cocycle $a \smile_1 a \in \mathcal{E}_{1,1} \cap R^{-1}H^{2j}$, where $a \in R^0H^{2j}$, is killed by some element in $R^{-2}H^{2j}$, denoted by $a \cup_2 a$. The second operation arises from the non-commutativity of \smile_1 -product in the usual way, and satisfies Steenrod's formula for the \smile_2 -cochain operation. These two operations are related to each other by the initial relations $a \smile_2 a = 2a \cup_2 a$ and $a \smile_2 b = a \cup_2 b$, $a \neq b \in \mathcal{U}$ with $\langle \mathcal{U} \rangle = \mathcal{U}$. Note also that $a \smile_2 a = a \cup_2 a = 0$ for $a \in \mathcal{U}$ of odd degree. In general, $\mathcal{U} = \mathcal{T} \oplus \mathcal{N}$, with an element of \mathcal{T} given by $a_1 \cup_2 \cdots \cup_2 a_n$, $a_i \in \mathcal{U}$, $n \geq 2$. The action of the resolution differential d on elements of \mathcal{T} such that $da_i = 0$ is

$$d(a_1 \cup_2 \cdots \cup_2 a_n) = \sum_{(\mathbf{i};\mathbf{j})} (-1)^{|a_{i_1}| + \cdots + |a_{i_k}|} (a_{i_1} \cup_2 \cdots \cup_2 a_{i_k}) \smile_1 (a_{j_1} \cup_2 \cdots \cup_2 a_{j_\ell}), \quad (2.4)$$

where we sum over all unshuffles $(\mathbf{i}; \mathbf{j}) = (i_1 < \cdots < i_k; j_1 < \cdots < j_\ell)$ of \underline{n} with $(a_{i_1}, \dots, a_{i_k}) = (a_{i'_1}, \dots, a_{i'_k})$ if and only if $\mathbf{i} = \mathbf{i}'$ and \smile_1 denotes $E_{1,1}$. In particular, for $a_1 = \cdots = a_n = a = a^{\cup_2 1}$ and $n \ge 2$ we get $da^{\cup_2 n} = \sum_{k+\ell=n} a^{\cup_2 k} \smile_1 a^{\cup_2 \ell}$, $k, \ell \ge 1$. And in general $d(a \smile_2 b) = nd(a \cup_2 b), n \ge 1$.

An hga resolution (RH, d) is minimal if

$$d(U) \subset \mathcal{E} + \mathcal{D} + \kappa \cdot V$$

where $\mathcal{D}^{*,*} \subset R^*H^*$ denotes the submodule of decomposables $RH^+ RH^+$ and $\kappa \in \mathbb{k}$ is non-invertible; For example, $\kappa \in \mathbb{Z} \setminus \{-1, 1\}$ when $\mathbb{k} = \mathbb{Z}$ and $\kappa = 0$ when \mathbb{k} is a field.

Let $K = \{K^j\}_{j \ge 3}$ with $K^j = \{a \in \mathcal{V}^{-1,j} | da = \lambda b, \lambda \neq \pm 1, b \in \mathcal{V}^{0,j}\}$. Note that a general form of a relation in (minimal) (RH, d) starting by variables $v_i \in K \cup \mathcal{V}^{0,*}$ is

$$du = \sum_{s \ge 1} \lambda_s P_s(v_1, ..., v_{r_s}) + \lambda v, \quad \lambda \ne \pm 1, \ \lambda_s \ne 0, \ r_s \ge 1,$$
$$u \in \bigcup_{i \ge 1} \mathcal{V}^{-i,*}, \ v \in \bigcup_{i \ge 1} \mathcal{V}^{-i,*} \setminus K, \quad (2.5)$$

where $P_s(v_1, ..., v_{r_s})$ is a monomial in $\mathcal{D}^{*,*} \subset R^* H^*$.

Let A be an hga and let $\rho : (RH, d) \to H$ be an hga resolution. A *filtered hga* model of A is an hga quasi-isomorphism

$$f: (RH, d_h) \to (A, d_A)$$

in which

$$d_h = d + h, \quad h = h^2 + \dots + h^r + \dots, \quad h^r : R^p H^q \to R^{p+r} H^{q-r+1}.$$

The equality $d_h^2 = 0$ implies the sequence of equalities

$$dh^2 + h^2 d = 0$$
, $dh^3 + h^3 d = -h^2 h^2$, $dh^4 + h^4 d = -h^2 h^3 - h^3 h^2$,...,

and h is referred to as a *perturbation of d*. The map $h^r|_{R^{-r}H} : R^{-r}H \to R^0H, r \ge 2$, denoted by h^{tr} , is referred to as the *transgressive* component of h. The fact that the perturbation h acts as a derivation on elements of \mathcal{E} implies $h^{tr}|_{\mathcal{E}} = 0$. For the existence of the filtered model see [9].

In the sequel, A' denotes a 1-reduced torsion free hga over \mathbb{Z} , while A denotes the tensor product hga $A' \otimes_{\mathbb{Z}} \mathbb{k}$. Denote also $H = H^*(A')$ and $H_{\mathbb{k}} = H^*(A)$. Assume (RH, d) is minimal and let $RH_{\mathbb{k}} = RH \otimes_{\mathbb{Z}} \mathbb{k}$; in particular, $RH_{\mathbb{k}} = T(V_{\mathbb{k}})$ for $V_{\mathbb{k}} = V \otimes_{\mathbb{Z}} \mathbb{k}$. When \mathbb{k} is a field of characteristic zero, $\rho \otimes 1 : RH_{\mathbb{k}} \to H \otimes_{\mathbb{Z}} \mathbb{k} = H_{\mathbb{k}}$ is an hga resolution of $H_{\mathbb{k}}$, which is *not* minimal when Tor $H \neq 0$. In general, given a filtered model (RH, d_h) of A', we obtain an hga model

$$f \otimes 1 : (RH_{\Bbbk}, d_h \otimes 1) \to (A, d_A).$$

for (A, d_A) . Denote $\bar{V}_{\Bbbk} = s^{-1}(V_{\Bbbk}^{>0}) \oplus \Bbbk$ and define the differential \bar{d}_h on \bar{V}_{\Bbbk} by the restriction of d + h to V_{\Bbbk} and obtain the cochain complex $(\bar{V}_{\Bbbk}, \bar{d}_h)$.

Since the map $f \otimes 1$ is in particular a homology isomorphism (by the universal coefficient theorem), the following two propositions follow immediately from

the results in [2] and the standard isomorphisms $H^*(BA, d_{BA}) \approx Tor^A(\Bbbk, \Bbbk)$ and $H^*(BC^*(X; \Bbbk), d_{BC}) \approx H^*(\Omega X; \Bbbk).$

Proposition 1. There are isomorphisms

$$H^*(\bar{V}_{\Bbbk}, \bar{d}_h) \approx H^*(B(RH_{\Bbbk}), d_{B(RH_{\Bbbk})}) \approx H^*(BA, d_{BA}) \approx Tor^A(\Bbbk, \Bbbk).$$

And for $A = C^*(X; \Bbbk)$ we obtain:

Proposition 2. There are isomorphisms

$$H^*(\bar{V}_{\Bbbk}, \bar{d}_h) \approx H^*(BC^*(X; \Bbbk), d_{BC}) \approx H^*(\Omega X; \Bbbk).$$

Given (RH, d) and $x, c \in V$ with $dx, dc \in \mathcal{D} + \lambda V, \lambda \neq 1$, let $\eta_{x,c}$ denote an element of $\mathcal{E}_{>1,1}$ such that

$$x \smile_1 c := \eta_{x,c} + x \smile_1 c$$

satisfies $d(x \sim_1 c) \in \mathcal{D} + \lambda V$. For example, if $dx \in \lambda V$, then $\eta_{x,c} = 0$, and if $dx = \sum_i a_i b_i + \lambda v$ with $da_i, db_i \in \lambda V$, then $\eta_{x,c} = \sum_i (-1)^{|a_i|} E_{2,1}(a_i, b_i; c)$. In general, $\eta_{x,c}$ can be found as follows: Let $j: B(RH) \to \overline{RH} \to \overline{V}$ be the canonical projection used by the proof of the first isomorphism in Proposition 1, and choose $y \in B(RH)$ so that $j(y) = \overline{x}$ and $j\mu_E(y; \overline{c}) = \overline{\eta}_{x,c} + \overline{x \sim_1 c}$, where the product $\mu_E: B(RH) \otimes B(RH) \to B(RH)$ is determined by the hga structure on RH.

The following proposition is simple but useful. Let $\mathcal{D}_{\Bbbk} \subset RH$ be a subset defined by $\mathcal{D}_{\Bbbk} = \mathcal{D}$ for $\mu = 0$ and

$$\mathcal{D}_{\Bbbk} = \{ u + \lambda v | u \in \mathcal{D}, v \in V, \lambda \text{ is divisible by } \mu \} \text{ for } \mu \ge 2.$$

Definition 1. An element $x \in V$ with $d_h x \in \mathcal{D} + \lambda V$, $\lambda \neq 1$, is $\underline{\lambda}$ -homologous to zero, denoted by $[\bar{x}]_{\lambda} = 0$, if there are $u, v \in V$ and $z \in \mathcal{D}$ such that

$$d_h u = x + z + \lambda v;$$

x is weakly homologous to zero when v = 0 above.

Proposition 3. Let $c \in V$ and $d_h c \in D_k$. If $d_h c$ has a summand component $ab \in D$ such that $a, b \in V$, $d_h a, d_h b \in D_k$, both a and b are not weakly homologous to zero, then c is also not weakly homologous to zero.

Proof. The proof is straightforward using the equality $d_h^2 = 0$.

In particular, for $\mathbb{k} = \mathbb{Z}$, under hypotheses of the proposition if $[\bar{a}], [\bar{b}] \neq 0$, then $[\bar{c}] \neq 0$ in $H^*(\bar{V}, \bar{d}_h)$.

Note that over a field k, Proposition 3 reflects the obvious fact that $x \in H^*(\Omega X; \Bbbk)$ is non-zero whenever some $x' \otimes x'' \neq 0$ in $\Delta x = \sum x' \otimes x''$.

3. Formal ∞ -implication sequences

Let x be an element of a Hopf algebra over a finite field. In [1], W. Browder introduced the notion of ∞ -implications (of an infinite sequence) associated with x in the Hopf algebra. The following can be thought of as a generalization of this: Let x^{1p} denote the (right most) p^{th} -power of x with respect to \sim_1 -product with the convention that $x^{11} = x$.

Definition 2. Let $x \in V^k$, $k \ge 2$, $d_h x \in \mathcal{D}_k$. A sequence $\mathbf{x} = \{x(i)\}_{i\ge 0}$ is a formal ∞ -implication sequence (f.i.s.) of x if

- (i) $x(0) = x, x(i) \in V^{(i+1)k-i}$, and x(i) is not μ -homologous to zero for all i;
- (ii) Either $x(i) = x^{-1(i+1)}$ or x(i) is resolved from the following relation in the filtered hga model (RH, d_h) :

$$d_h \mathfrak{b}(i) = x^{\smile_1(i+1)} + z(i) + \mu' x(i), \quad \mathfrak{b}(i) \in V, \ z(i) \in \mathcal{D}, \ \mu' \ is \ divisible \ by \ \mu.$$
(3.1)

We are interested in the existence of an f.i.s. for an odd dimensional $x \in V$.

Proposition 4. Let $x \in V$ be of odd degree with $d_h x \in \mathcal{D}_k$ such that x is not μ -homologous to zero. For $\mu \ge 2$, assume, in addition, there is no relation $d_h u = \mu x \mod \mathcal{D}$, some $u \in V$. Then x has an f.i.s. $\mathbf{x} = \{x(i)\}_{i \ge 0}$.

Proof. Suppose we have constructed x(i) for $0 \leq i < n$. If $x^{-1(n+1)}$ is not μ -homologous to zero, set $x(n) = x^{-1(n+1)}$; otherwise, there is the relation $d_h u = x^{-1(n+1)} + z + \mu' v$ for some $u, v \in V, z \in \mathcal{D}$ and μ' divisible by μ . Using (2.1)–(2.2) one can easily establish the fact that $dx^{-1(n+1)}$ contains a summand component of the form $-\sum_{k+\ell=n+1} \binom{n+1}{k} x^{-1\ell}, k, \ell \geq 1$. We have that $v \neq 0$ in the aforementioned relation since Proposition 3 (applied for $c = x^{-1(n+1)}$ and $a \cdot b = -\binom{n+1}{k} x^{-1\ell}, \text{ some } k$). Clearly, $d_h v = -\frac{1}{\mu'} d \left(x^{-1(n+1)} + z \right) \in \mathcal{D}$; Assuming μ' to be maximal v is not λ -homologous to zero. Set x(n) = v and $\mathfrak{b}(n) = u, z(n) = z$ to obtain (3.1) for i = n.

Thus, for $\mu = 0$ (when k is a field of characteristic zero, for example) $\mathbf{x} = \{x^{\sim_1(n+1)}\}_{n \ge 0}$.

Remark 2. 1. The restriction on x in Proposition 4 that no relation $d_h u = \mu x$ mod \mathcal{D} exists is essential. A counterexample is provided by the exceptional group F_4 : Let $A = C^*(BF_4; \mathbb{Z}_3)$ be the cochain complex of the classifying space BF_4 . Then we have the relation du = 3x in (RH, d) corresponding to the Bockstein cohomology homomorphism $\delta x_8 = x_9$ on $H^*(BF_4; \mathbb{Z}_3)$ (in the notation of [13]), but the element x(2) does not exist (see [9] for more details).

2. Note that if $du = \mu x$ in Proposition 4, but $[u][x] \neq 0 \in H_{\Bbbk}$, then one can modify the proof of the proposition to show that x again has an f.i.s. $\{x(i)\}_{i\geq 0}$. Note that in the above example we just have $[u][x] = 0 \in H_{\mathbb{Z}_3} = H^*(BF_4; \mathbb{Z}_3)$.

3. The existence of ∞ -implications of x in [1] uses both the \frown -product and the Pontrjagin product in the loop space (co)homology. In our case each component of the sequence **x** is determined by item (ii) of Definition 2 in which the first case can be thought of as related to the \frown -product, and the second with the Pontrjagin product. In particular, primitivity of x required in [1] is not issue for the existence of ∞ -implications of x.

In certain cases, a given odd dimensional $b \in V$ rises to an infinite sequence $\mathbf{b} = \{b_i\}_{i \ge 0}$ with $b = b_0$ in the hga resolution (RH, d). These sequences are built by explicit formulas and include also the case $du = \lambda b$, i.e., when the hypothesis of

Proposition 4 formally fails (see, for example, Case I of the proof of Proposition 5 below). Namely, we have the following cases:

(i) For $b \in V^{0,*}$ and $[b]^2 = 0 \in H$ (i.e., there exists $b_1 \in V^{-1,*}$ with $db_1 = b^2$; e.g. $b_1 = ab + \frac{\lambda - 1}{2}b \smile_1 b$ for $da = \lambda b$ with λ odd, some $a \in V^{-1,*}$), $\mathbf{b} = \{b_i\}_{i \ge 0}$ is given by

$$db_n = \sum_{i+j=n-1} b_i b_j \tag{3.2}$$

and satisfies the following relation with $c_i \in V$

$$d\mathbf{c}_n = -(-1)^n ((n+1)b_n + b_0 \smile_1 b_{n-1}) + \sum_{i+j=n-1} (-1)^i (\mathbf{c}_j b_i - b_i \mathbf{c}_j), n \ge 1;$$

(ii) For $b \in V^{0,*}$ and $[b]^2 \neq 0 \in H$ (and $b_1 = b \smile_1 b$), $\mathbf{b} = \{b_i\}_{i \ge 0}$ is given by

$$db_{2k} = \sum_{i+j=2k-1} b_i b_j, \qquad db_{2k+1} = \sum_{i+j=k} (2b_{2i}b_{2j} + b_{2i-1}b_{2j+1}), \qquad (3.3)$$

and satisfies the following relation with $c_i \in V$ (below $c_1 = 0$)

$$\begin{aligned} d\mathfrak{c}_{2k} &= -(2k+1)b_{2k} - b_0 \smile_1 b_{2k-1} + \sum_{i+j=k} 2\left(\mathfrak{c}_{2j-1}b_{2i} - b_{2i}\mathfrak{c}_{2j-1}\right) \\ &\quad -\sum_{i+j=k} \left(\mathfrak{c}_{2j}b_{2i-1} - b_{2i-1}\mathfrak{c}_{2j}\right), \\ d\mathfrak{c}_{2k+1} &= (k+1)b_{2k+1} + b_0 \smile_1 b_{2k} + \sum_{i+j=2k} \left(-1\right)^i \left(\mathfrak{c}_j b_i - b_i \mathfrak{c}_j\right), \ k \geqslant 1; \end{aligned}$$

(iii) For $b \in V^{-1,*}$ and $db = \mu c, \ \mu \ge 2, \ c \in V^{0,*}$ (below $\omega_0 := c$), $\mathbf{b} = \{b_i\}_{i \ge 0}$ is given by

$$db_n = \sum_{i+j=n-1} b_i b_j + \mu c_n,$$

$$c_n = -\omega_0 \smile_1 b_{n-1} - \sum_{\substack{i+j=n-1\\i\geqslant 1; j\geqslant 0}} (-1)^i \omega_i \smile_1 b_j - (-1)^n \omega_n, \ n \ge 1 \quad (3.4)$$

and satisfies the following relation with $\mathfrak{c}_i \in V$

$$\begin{aligned} d\mathfrak{c}_{1} &= 2b_{1} + b_{0} \smile_{1} b_{0} + \mu\omega_{0} \cup_{2} b_{0}, \\ d\mathfrak{c}_{n} &= -(-1)^{n}((n+1)b_{n} + b_{0} \smile_{1} b_{n-1}) + \sum_{i+j=n-1} (-1)^{i} (\mathfrak{c}_{j}b_{i} - b_{i}\mathfrak{c}_{j}) \\ &+ \mu\mathfrak{a}_{n}, \\ \mathfrak{a}_{n} &= \sum_{i+j=n-2} (-1)^{j} ((\omega_{i} \cup_{2} b_{0}) \smile_{1} b_{j} + \omega_{i} \smile_{1} \mathfrak{c}_{j+1}) + \omega_{n-1} \cup_{2} b_{0}, \\ d\omega_{k} &= \sum_{i+j=k-1} \mu\omega_{i} \smile_{1} \omega_{j}, \quad \omega_{k} = \mu^{k} \omega_{0}^{\cup_{2}(k+1)}, \ k \ge 1, \ n \ge 2. \end{aligned}$$

For example, in view of Proposition 2, the formulas above are enough to calculate the loop space cohomology algebra with coefficients in \Bbbk for Moore spaces, i.e., the *CW*-complexes obtained by attaching an (n + 1)-cell to the *n*-sphere S^n by a map $S^n \to S^n$ of degree μ .

3.1. Odd dimensional element l(a)

Given $m \ge 2$, let H(A) be finitely generated as a k-module with $H^i(A) = 0$ for i > m. Let \mathcal{Z}_k be the subset of RH defined by

$$\begin{aligned} \mathcal{Z}_{\Bbbk} &= \mathcal{Z}'_{\Bbbk} + \mathcal{Z}''_{\Bbbk} + \mathcal{D}_{\Bbbk}, \\ \mathcal{Z}'_{\Bbbk} &= \{ v \in V \, | \, du = \lambda v, \ u \in V, \, \lambda \in \mathbb{Z}_{\Bbbk} \} \end{aligned}$$

and

$$\mathcal{Z}_{\Bbbk}^{\prime\prime} = \{ v \in V \mid v = \lambda u, \quad u \in V, \, \lambda \in \mathbb{Z} \setminus \mathbb{Z}_{\Bbbk} \} \,.$$

Given $x \in V$ with $d_h x = w \in \mathcal{Z}_k, w = w' + w'' + z$, define

$$\tilde{x} = \frac{l.c.m.(\lambda'';\mu)}{\lambda''}(\lambda'x - u), \, du = \lambda'w', \, w'' = \lambda''v'',$$

to obtain $d_h \tilde{x} \in \mathcal{D}_k$.

Regarding (2.5), define also the following subsets $K^*_{\mu}, K^*_0 \subset \mathcal{V}^{-1,*}$ with $K^*_{\mu} \subset K^*$ as

$$K_{\mu} = \{ a \in K \mid \lambda \text{ is divisible by } \mu \}, \quad K_0 = \{ u \in \mathcal{V}^{-1,*} \setminus \mathcal{E} \mid du \in \mathcal{D}^{0,*} \}$$

and assign to a given even dimensional element $a \in V^{0,*} \cup K_{\mu}$ an odd dimensional element $l(a) \in V$ with $dl(a) \in \mathcal{D}_{\Bbbk}$ as follows. If $a \in V^{0,*}$, let $l(a) \in K_0$ be an element such that $dl(a) = a^k$, where $k \ge 2$ is chosen to be the smallest. If $a \in K_{\mu}$ with $da = \lambda b$ consider the relation

$$du_1 = -a^2 + \lambda v_1, \quad dv_1 = \frac{1}{\lambda} d(a^2), \quad u_1 \in V^{-3,*}, \quad v_1 \in V^{-2,*},$$
 (3.5)

and the perturbation $hu_1 = h^2 u_1 + h^3 u_1$. When $hu_1 \in \mathcal{Z}_{\Bbbk}$, set $l(a) = \tilde{u}_1$, while when $h^3 u_1 \notin \mathcal{Z}_{\Bbbk}$, consider $\mathfrak{u}_1 = h^3 u_1|_{V^{0,*}}$, the component of $h^3 u_1$ in $V^{0,*}$, and define l(a) as $l(\mathfrak{u}_1)$. When $h^2 u_1 \notin \mathcal{Z}_{\Bbbk}$, and $h^3 u_1 \in \mathcal{Z}_{\Bbbk}$, choose the smallest n > 1 such that there is the relation

$$du_n = -ah^2 u_{n-1} + \lambda v_n, \quad dv_n = \frac{1}{\lambda} d(ah^2 u_{n-1}), \quad u_n \in V^{-3,*}, \quad v_n \in V^{-2,*},$$

with $h^2 u_n \in \mathcal{Z}_k.$ (3.6)

(The inequality (n + 1)|a| > m guarantees the existence of such a relation, since $h^2 u_i \in \mathcal{D} + K_{\mu}$, while $K^j_{\mu} = 0$ for j > m in the minimal $V \subset RH$.) Then set $l(a) = \tilde{u}_n$ for $h^3 u_n \in \mathcal{Z}_{\Bbbk}$; otherwise, define l(a) as $l(\mathfrak{u}_n)$ for $\mathfrak{u}_n = h^3 u_n|_{V^{0,*}}$.

4. Proof of Theorem 2

The proof of the theorem relies on the two basic propositions below in which the condition that $\tilde{H}(A)$ has at least two algebra generators is treated in two specific cases.

Proposition 5. Let $H_{\mathbb{k}}$ be a finitely generated \mathbb{k} -module with $\mu \ge 2$. If $\tilde{H}_{\mathbb{k}}$ has at least two algebra generators and $\tilde{H}_{\mathbb{Q}}$ is either trivial or has a single algebra generator, there are two sequences of odd degree elements $\mathbf{x}_{\mathbb{k}} = \{x(i)\}_{i\ge 0}$ and $\mathbf{y}_{\mathbb{k}} = \{y(j)\}_{j\ge 0}$ in $V_{\mathbb{k}}$ whose degrees form arithmetic progressions such that all $\bar{x}(i)$, $\bar{y}(j)$ are d_h -cocycles in $\bar{V}_{\mathbb{k}}$ and the classes $\{[s^{-1}(x(i) \smile_1 y(j))]\}_{i,j\ge 0}$ are linearly independent in $H(\bar{V}_{\mathbb{k}}, \bar{d}_h)$.

Proof. The hypotheses of the proposition imply that K_{μ} defined in subsection 3.1 above is non-empty; also by the restriction on $\tilde{H}_{\mathbb{Q}}$, relation (2.5) reduces to

$$da = \lambda b^m, \ \lambda \neq 0, \ m \ge 1, \ (\lambda, m) \neq (1, 1), \ b \in \mathcal{V}$$

for $a \in \mathcal{V}^{-1,*}$ to be of the smallest degree.

In the three cases below, we exhibit two odd dimensional elements $x, y \in V \setminus \mathcal{E}$ that fail to be μ -homologous to zero.

Case I. Let $a \in K_{\mu}$ be of the smallest degree in $K_{\mu} \cup K_0$ with $da = \lambda b$ and let |a|be even. Consider the element l(a). If it is not λ -homologous to zero, set x = l(a); otherwise, we must have relation (2.5) in which $v_i = a$ for some i and $hu \in \mathcal{Z}_k$ with $|u| < |l(a)|, u \in \bigcup_{i \ge 1} \mathcal{V}^{-i,*} \setminus \mathcal{E}$. By (2.5) choose u to be of the smallest degree with $hu \in \mathcal{Z}_k, u \neq u_i, a_1$, where u_i is given by (3.5)–(3.6) and $da_1 = -ab + \lambda b_1, db_1 = b^2$. Set $x = \tilde{u}$ for |u| odd. If |u| is even and $u \in \bigcup_{i>1} \mathcal{V}^{-i,*} \setminus \mathcal{E}$ set $x = \tilde{v}$; if $u \in K_0$ and du contains an odd dimensional $v_i \in V^{0,*}$ with $[v_i] \neq 0 \in H_{\mathbb{Q}}$, set $x = v_i$; otherwise, for each monomial $P_s(v_1, ..., v_{r_s})$ choose a variable v_i with a relation $du_i = \mu_i v_i$ (for example, we can choose v_i to be odd dimensional for all s). Let λ be the smallest integer divisible by all μ_i , and replace v_i by $\frac{\lambda}{\mu_i}u_i$ to detect a new relation in (RH, d)given again by (2.5):

$$dw = \sum_{1 \leqslant s \leqslant n} \frac{\lambda_s \lambda}{\mu_i} P_s(v_1, ..., v_{i-1}, u_i, v_{i+1}..., v_{r_s}) + \lambda u, \quad \lambda_s \in \mathbb{Z}_k, \ w \in \mathcal{V}^{-2,*}.$$

Hence, |w| is odd, and set $x = \widetilde{w}$ for $h^2 w \in \mathcal{Z}_{\Bbbk}$. If $h^2 w \notin \mathcal{Z}_{\Bbbk}$ we have the following two subcases:

(i1) Assume there exists $v \in K_{\mu}$ with $dv = \lambda h^2 w$. If $[\bar{v}]_{\lambda} \neq 0$, set x = v; otherwise we have a relation $d_h u' = v + z + \lambda' v'$, some $u', v' \in V, z \in \mathcal{D}$. Clearly, $h^{tr}v' = -\frac{\lambda}{\lambda'}h^2 w \mod \mathcal{D}$, and set $x = \frac{\lambda}{\lambda'}w + v'$. Note that x is not λ -homologous to zero since the component $\frac{\lambda^2}{\lambda'}u$ in dx.

(i2) Assume $[h^2w] \neq 0 \in H_{\mathbb{Q}}$. When $r_s > 1$ for all s, choose a variable v_j different from v_i in $P_s(v_1, ..., v_{r_s})$ to form w' entirely analogously to w, and then find xsimilarly to the above unless $[h^2w'] \neq 0 \in H_{\mathbb{Q}}$, in which case set $x = \alpha w + \beta w'$, some $\alpha, \beta \in \mathbb{Z}$. When $\mathbf{k} = \{s \in \underline{n} | r_s = 1 \text{ in } du\} \neq \emptyset$, i.e., $P_s(v_1, ..., v_{r_s}) = v_1^{2m_1+1} := v_s^{2m_s+1}, m_s \ge 1, |v_s|$ is odd for $s \in \mathbf{k}$ (in particular, μ_s is even, since $[v_s]^2 = 0 \in H$ for μ_s odd; c.f. (3.2)), then

$$du' = \begin{cases} \sum_{s \in \mathbf{k}} \frac{\lambda_s \lambda}{2} (v_s \smile_1 v_s) v_s^{2m_s - 1} \\ + \sum_{s \in \underline{n} \setminus \mathbf{k}} \frac{\lambda_s \lambda}{\mu_j} P_s(v_1, ..., v_{j-1}, u_j, v_{j+1} ..., v_{r_s}) + \lambda u, & \mathbf{k} \neq \underline{n}, \\ \sum_{s \in \underline{n}} \lambda_s (v_s \smile_1 v_s) v_s^{2m_s - 1} + 2u, & \mathbf{k} = \underline{n} \end{cases}$$

with $u' \in \mathcal{V}^{-2,*}$, and by considering $h^2 u'$ we find x as in item (i1).

To find y, consider b and the associated sequence $\mathbf{b} = \{b_i\}$ given by (3.2) or (3.3). If $hb_i \in \mathbb{Z}_k$ for all i, set y = b and $\mathbf{y} = \{\tilde{b}_i\}_{i \ge 0}$. If $h\mathbf{b} \not\subseteq \mathbb{Z}_k$, consider the smallest p > 0 such that $h^{tr}b_p \notin \mathbb{Z}_k$. Consider $t_p = h^{tr}b_p|_{V^{0,*}}$, and if $\left[\overline{l(t_p)}\right]_{\lambda} \neq 0$, set $y = l(t_p)$; if $\left[\overline{l(t_p)}\right]_{\lambda} = 0$ and $\alpha h^3 u_i + \beta h^{tr} b_p = 0$, $\alpha, \beta \in \mathbb{Z}$, for some u_i from (3.5)–(3.6), set $y = \alpha u_i + \beta b_p$; otherwise, we obtain $l(t_p) \in K_0$ different from l(a)above; consequently, we must have another relation in (RH, d) given by (2.5) in which $v_i = t_p$ for some i and $hu \in \mathbb{Z}_k$ with $|u| < |l(t_p)|$, and then y is found similarly to x.

Case II. Let $a \in K_{\mu}$ be of the smallest degree in $K_{\mu} \cup K_0$ with $da = \lambda b$ and let |a| be odd. Set x = a. Consider $l(b) \in K_0$, and then y is found as in Case I.

Case III. Let $a \in K_0$ be of smallest degree in $K_{\mu} \cup K_0$ with $da = \lambda b^m, m \ge 2$, and $[b] \neq 0 \in H_{\mathbb{O}}$. Set

$$x = \left\{ \begin{array}{ll} b, & |b| & \text{is odd} \\ a, & |b| & \text{is even.} \end{array} \right.$$

To find y consider the following two subcases:

(i) Assume $\lambda \in \mathbb{Z} \setminus \mathbb{Z}_{\mathbb{k}}$. When both |a| and |b| are odd, set y = a; otherwise, either |a| or |b| is even, in which case consider $l(\tilde{a})$ or l(b) respectively, and then y is found as in Case I.

(ii) Assume $\lambda \in \mathbb{Z}_{\mathbb{k}}$. Since $K_{\mu} \neq \emptyset$, this subcase reduces either to Case I or to Case II.

Finally, having found the elements x and y in Cases I-III, consider the f.i.s. \mathbf{x} and \mathbf{y} in V and the induced sequences $\mathbf{x}_{\Bbbk} = \{x(i)\}_{i \ge 0}$ and $\mathbf{y}_{\Bbbk} = \{y(j)\}_{j \ge 0}$ in V_{\Bbbk} . Then the both sequences $\bar{\mathbf{x}}_{\Bbbk}$ and $\bar{\mathbf{y}}_{\Bbbk}$ consist of \bar{d}_h -cocycles in \bar{V}_{\Bbbk} whose degrees form an arithmetic progression respectively. Thus, we obtain that $[\bar{\mathbf{x}}_{\Bbbk}], [\bar{\mathbf{y}}_{\Bbbk}] \subset$ $H(\bar{V}_{\Bbbk}, \bar{d}_h)$ are sequences of non-trivial classes. Moreover, they are linearly independent and $\{[s^{-1}(x(i) \smile_1 y(j))]\}_{i,j\ge 0}$ is the sequence of linearly independent classes in $H(\bar{V}_{\Bbbk}, \bar{d}_h)$ as required.

Before proving the second basic proposition we need the following auxiliary statement. Given a cochain complex (C^*, d) over \mathbb{Q} , let $S_C(T) = \sum_{n \ge 0} (\dim_{\mathbb{Q}} C^n) T^n$ and $S_{H(C)}(T) = \sum_{n \ge 0} (\dim_{\mathbb{Q}} H^n(C)) T^n$ be the Poincaré series. As usual, we write $\sum_{n \ge 0} a_n T^n \leq \sum_{n \ge 0} b_n T^n$ if and only if $a_n \leq b_n$. The following proposition can be thought of as a modification of Propositions 3 and 4 in [12] for the non-commutative case.

Proposition 6. Given an element $y \in V_{\mathbb{Q}}$ of total degree $K_{\mu} \ge 2$ such that $\bar{d}_{h}(\bar{y}) = 0$, let $y\bar{V}_{\mathbb{Q}} \subset \bar{V}_{\mathbb{Q}}$ be a subcomplex (additively) generated by the expressions $\{\bar{y} = s^{-1}y, s^{-1}(y \smile_{1} v)\}_{v \in V_{\mathbb{Q}}}$. Then

$$S_{H(\bar{V}_{0}/y\bar{V}_{0})}(T) \leq (1+T^{k-1})S_{H(\bar{V}_{0})}(T).$$
 (4.1)

Proof. Consider the inclusion of cochain complexes $s^k \bar{V}_{\mathbb{Q}} \xrightarrow{\iota} \bar{V}_{\mathbb{Q}}$ defined for $1 \in \mathbb{Q} = (s^k \bar{V}_{\mathbb{Q}})^k$ by $\iota(1) = \bar{y}$, and for $s^k(\bar{v}) \in (s^k \bar{V}_{\mathbb{Q}})^{>k}$, $v \in V_{\mathbb{Q}}^{>1}$, by $\iota(s^k(\bar{v})) = s^{-1}(y \smile_1 v)$.

Then $\iota(s^k \bar{V}_{\mathbb{Q}}) = y \bar{V}_{\mathbb{Q}}$ and there is the short exact sequence of cochain complexes

$$0 \to s^k \bar{V}_{\mathbb{Q}} \stackrel{\iota}{\to} \bar{V}_{\mathbb{Q}} \to \bar{V}_{\mathbb{Q}} / y \bar{V}_{\mathbb{Q}} \to 0.$$

Consider the induced long exact sequence

$$\cdots \to H^{n-k}(\bar{V}_{\mathbb{Q}}) \xrightarrow{H^n(\iota)} H^n(\bar{V}_{\mathbb{Q}}) \to H^n(\bar{V}_{\mathbb{Q}}/y\bar{V}_{\mathbb{Q}}) \to H^{n-k+1}(\bar{V}_{\mathbb{Q}}) \to \cdots$$

Let $I = \oplus I_n$, where $I_n = \text{Im}(H^n(\iota)), n \ge 0$, and form the exact sequence

$$0 \to I_n \to H^n(V_{\mathbb{Q}}) \to H^n(V_{\mathbb{Q}}/yV_{\mathbb{Q}}) \to H^{n-\kappa+1}(V_{\mathbb{Q}}) \to I_{n+1} \to 0.$$

Since $I_0 = 0$, we have

$$\sum_{n \ge 0} (\dim_{\mathbb{Q}} I_n + \dim_{\mathbb{Q}} I_{n+1}) T^n = \frac{(1+T)S_I(T)}{T}.$$

Now apply the Euler-Poincaré lemma for the above exact sequence to obtain the equality

$$\frac{(1+T)S_I(T)}{T} - S_{H(\bar{V}_Q)}(T) + S_{H(\bar{V}_Q/y\bar{V}_Q)}(T) - T^{k-1}S_{H(\bar{V}_Q)}(T) = 0.$$

Consequently,

$$S_{H(\bar{V}_{\mathbb{Q}}/y\bar{V}_{\mathbb{Q}})}(T) = (1+T^{k-1})S_{H(\bar{V}_{\mathbb{Q}})}(T) - \frac{(1+T)S_{I}(T)}{T},$$

and since $S_I(T) \ge 0$, we get (4.1) as required.

Proposition 7. Let $H_{\mathbb{k}}$ be a finitely generated \mathbb{k} -module. If $\tilde{H}_{\mathbb{Q}}$ has at least two algebra generators and $A_{\mathbb{Q}} = A' \otimes_{\mathbb{Z}} \mathbb{Q}$, the set $\left\{ \tau_i(A_{\mathbb{Q}}) = \dim_{\mathbb{Q}} Tor_i^{A_{\mathbb{Q}}}(\mathbb{Q}, \mathbb{Q}) \right\}$ is unbounded.

Proof. Consider the first two generators $a_i \in V_{\mathbb{Q}}^{-1,*}$ with $da_i \in \mathcal{D}^{0,*}$, i = 1, 2. We have two cases:

(i) Both $|a_1|$ and $|a_2|$ are odd. Set $x = a_1$ and $y = a_2$. Then both \bar{x} and \bar{y} are \bar{d}_h -cocycles and the classes $[\bar{x}]$ and $[\bar{y}]$ are non-trivial in $H(\bar{V}_{\mathbb{Q}}, \bar{d}_h)$. Consequently, the classes

$$\left\{ \left[s^{-1} \left(x^{\smile_1 i} \smile_1 y^{\smile_1 j} \right) \right] \right\}_{i,j \ge 1}$$
(4.2)

are linearly independent in $H(\bar{V}_{o}, \bar{d}_{h})$.

(ii) Either $|a_1|$ or $|a_2|$ is even. Denote the (smallest) even dimensional generator by a and consider da. Then for a, (2.5) reduces to

$$da=uv, \ \ u\in V^{0,2k+1}_{\mathbb{Q}} \ \ \text{and} \ \ v\in R^0H^{2\ell}_{\mathbb{Q}}, \ \text{some} \ k,\ell\geqslant 1.$$

There are the following induced relations in (RH_{\odot}, d) :

$$\begin{array}{ll} db = -u(a+u \smile_1 v) - au, & b \in V_{\mathbb{Q}}^{-2,2(2k+\ell+1)} & \text{and} \\ dc = -u\left(v \smile_1 a + (u \cup_2 v)v + u(v \cup_2 v)\right) - a^2 + bv, & c \in V_{\mathbb{Q}}^{-3,4(k+\ell)+2}. \end{array}$$

Thus we have $hc = h^2c + h^3c$, and in particular, $dh^2c = h^2b \cdot v$. Consider the following two cases:

(1) Assume $hc \in \mathcal{D}$. Set x = u, y = c, and obtain linearly independent classes in $H(\bar{V}_{o}, \bar{d}_{h})$ by formula (4.2).

(2) Assume $hc \notin \mathcal{D}$. Let $(\bar{W}, \bar{d}_W) = (\bar{V}_{\mathbb{Q}}/\bar{C}, \bar{d}_W)$, where $C \subset V_{\mathbb{Q}}$ is a subcomplex (additively) generated by the expressions hc and $hc \smile_1 z$ for $z \in V_{\mathbb{Q}}$. Define x and y as the projections of the elements u and c from $V_{\mathbb{Q}}$ under the quotient map $V_{\mathbb{Q}} \to V_{\mathbb{Q}}/C$, respectively. Then \bar{x} and \bar{y} are \bar{d}_W -cocycles in \bar{W} . Once again apply formula (4.2) to obtain linearly independent classes in $H(\bar{W}, \bar{d}_W)$. Finally, Proposition 6 implies that $S_{H(\bar{W})}(T) \leq S_{H(V_{\mathbb{Q}})}(T)$, and an application of Proposition 1 completes the proof.

4.1. Proof of Theorem 2

In view of Proposition 1, the proof reduces to the examination of the k-module $H(\bar{V}_{\Bbbk}, \bar{d}_h)$. If \tilde{H}_{\Bbbk} has a single algebra generator a, then the set $\{\tau_i(A)\}$ is bounded since $\tau_i(A) = 1$. For example, this can be seen from the fact that $H(\bar{V}_{\Bbbk}, \bar{d}_h)$ is generated by a single sequence induced by (3.2) or by (3.3), where x = a or x = l(a) for |a| odd or even respectively, and by \smile_1 -products of its components. If \tilde{H}_{\Bbbk} has at least two algebra generators, then the proof follows from Propositions 5 and 7.

References

- [1] W. Browder, Torsion in *H*-spaces, Ann. Math., 74 (1961), 24-51.
- [2] Y. Felix, S. Halperin and J.-C. Thomas, Adams' cobar equivalence, Trans. AMS, 329 (1992), 531-549.
- [3] M. Gerstenhaber and A.A. Voronov, Higher operations on the Hochschild complex, Functional Analysis and its Applications, 29 (1995), 1–5.
- [4] E. Getzler and J.D.S. Jones, Operads, homotopy algebra, and iterated integrals for double loop spaces, preprint (1995).
- [5] T. Kadeishvili, On the homology theory of fibre spaces, Russian Math. Survey, 35 (1980), 131-138.
- [6] T. Kadeishvili and S. Saneblidze, A cubical model of a fibration, J. Pure and Applied Algebra, 196 (2005), 203-228.
- [7] D. Kraines, Massey higher products, Trans. AMS, 124 (1966), 431-449.
- [8] J. McCleary, On the mod p Betti numbers of loop spaces, Invent. Math., 87 (1987), 643-654.
- [9] S. Saneblidze, Filtered Hirsch algebras, preprint math.AT/0707.2165.
- [10] J. D. Stasheff, Homotopy Associativity of H-spaces I, II, Trans. AMS, 108 (1963), 275-312.
- [11] D. Sullivan, Diffrential forms and the topology of manifolds, Manifolds-Tokyo 1973, ed. Akio Hattori, Tokyo Univ. Press, 37-51.
- [12] M. Vigué-Poirrier and D. Sullivan, The homology theory of the closed geodesic problem, J. Diff. Geom., 11 (1976), 633-644.

[13] H. Toda, Cohomology mod 3 of the classifying space BF_4 of the exceptional group F_4 , J. Math. Kyoto Univ., 13-1 (1973), 97-115.

This article may be accessed via WWW at http://www.rmi.acnet.ge/jhrs/

Samson Saneblidze sane@rmi.acnet.ge

A. Razmadze Mathematical InstituteDepartment of Geometry and TopologyM. Aleksidze st., 10193 Tbilisi, Georgia