@ Available online at www.sciencedirect.com Transactions of
H H A. Razmadze
CrossMark SClenceDlreCf Mathematical

Institute

Transactions of A. Razmadze Mathematical Institute 170 (2016) 114-136

www.elsevier.com/locate/trmi

Original article
Filtered Hirsch algebras

Samson Saneblidze

A. Razmadze Mathematical Institute 1. Javakhishvili Tbilisi State University 6, Tamarashvili st., Tbilisi 0177, Georgia

Available online 5 April 2016

Abstract

Motivated by the cohomology theory of loop spaces, we consider a special class of higher order homotopy commutative
differential graded algebras and construct the filtered Hirsch model for such an algebra A. When x € H(A) with Z coefficients
and x2 = 0, the symmetric Massey products (x)" with n > 3 have a finite order (whenever defined). However, if k is a field of
characteristic zero, (x)" is defined and vanishes in H (A ® k) for all n. If p is an odd prime, the Kraines formula (x)? = —BP;(x)
lifts to H*(A®Zp). Applications of the existence of polynomial generators in the loop homology and the Hochschild cohomology
with a G-algebra structure are given.
© 2016 Ivane Javakhishvili Tbilisi State University. Published by Elsevier B.V. This is an open access article under the CC
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

In this paper we investigate a special class of homotopy commutative algebras called Hirsch algebras [20]. When
the structural operations of a Hirsch algebra A agree component-wise with those of a homotopy G-algebra (HGA),
the pre-Jacobi axiom can fail [7,8,19,37] and the induced product on the bar construction BA is not necessarily
associative. Indeed, the theory of loop space cohomology suggests that it is impossible in general, to construct a
small model for H* (£2X) in the category of HGAs. The investigation here applies a perturbation theory that extends
the well-developed perturbation theories for differential graded modules and differential graded algebras (dgas)
[3,9,13,11,27,28].

One difficulty encountered when constructing a theory of homological algebra for Hirsch algebras is that the
Steenrod cochain product a — b fails to be a cocycle even for cocycles a and b. Consequently a —; b does not
necessarily lift to cohomology. We control such difficulties by introducing the notion of a filtered Hirsch algebra,
which can be thought of as a specialization of a distinguished resolution in the sense of [10] (see also [14]). On the
other hand, the filtered Hirsch model (RH, d + h) of a Hirsch algebra A is itself a Hirsch algebra whose structural
operations E, , : RH ® @ RH® — RH are completely determined by the commutative graded algebra (cga)
structure of H = H(A, da); furthermore, the perturbation 2 : RH — RH of the resolution differential d is
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determined by the Hirsch algebra structure on A (Theorem 1). Thus by ignoring the operations E, , we obtain a
multiplicative resolution (RH, d) — (H, 0) of the cga H thought of as a non-commutative version of its Tate—Jozefiak
resolution [35,16] and the filtered model of the dga A is the perturbation (RH,d + h) — (A, d4) in [27] (such a
filtered model in the category of cdgas over a field of characteristic zero was constructed by Halperin and Stasheff
in[11]).

A Hirsch resolution always admits a binary operation U, which can be viewed as divided Steenrod —;-operation.
This leads to the notion of a quasi-homotopy commutative Hirsch algebra (QHHA) introduced here. We note that in
general, the construction of a Hirsch map (RH, d + h) — A compatible with a QHHA structure on A is obstructed
by the non-free action of Sg on its cohomology H (A).

Every cdga H can be thought of as a trivial Hirsch algebra in which the operations E, ; = 0 for all p,q > 1.
However, we exhibit an example of a cohomology algebra H = H(A) with a non-trivial Hirsch algebra structure
determined by Sq;.

For a Hirsch algebra A over the integers, we establish some formulas relating the structural operations E, ;, with
syzygies in (RH, d) that arise from a single element x € H(A) with x> = 0. Whereas the n-fold symmetric Massey
product (x)" with n > 3 is defined in H(A) [23,22], our formulas imply that (x)" has finite order. Note that when
A is an algebra over a field k of characteristic zero, (x)" is defined and vanishes for all n > 3 (Theorem 2). As a
consequence we have (compare [4]):

Theorem A. Let X be a simply connected space, let k be a field of characteristic zero and let o, : H (2X; k) —
H.1(X; k) be the suspension map. If y & Ker oy, and y> # 0, then y" # 0 for all n > 2.

Given an odd prime p, consider the Hirsch algebra A ® Z,, let x € H 2m+1 (A ® Zp), and let 8 be the Bockstein
operator. We obtain the formula

(x)? = —pP1(x), (1.1)

which has the same form as Kraines’s formula in [23], however, the cohomology operation Py : H*"T1(A ® Z ) —
H>P 1 (AQZ p) in (1.1) is canonically determined by the iteration of the —1-product on AQZ, (Theorem 3). Dually,
if A is the singular chains on the triple loop space 23 X, we can identify P; with the Dyer—Lashof operation (see [22]).
In fact the validity of (1.1) in a general algebraic framework is conjectured by May [25, Section 6]. Furthermore, when
X = BFy, the classifying space of the exceptional group F4, we exhibit explicit perturbations in the filtered model of
X and recover formula (1.1) in H*(X; Z3).

Although Theorem 1 provides a theoretical model of a Hirsch algebra A endowed with higher order operations
E, 4, in practice one can construct a small multiplicative model for recognizing H*(BA) as an algebra in which the
product is determined only by the binary operation E1,1 = 1. Thus, a (minimal) multiplicative resolution of H*(A)
endowed with a —-product provides an economical way to calculate the algebra H*(B A). We apply this technique
to the Hochschild cochain complex A = C*(P; P) of an associative algebra P over a field k of characteristic zero to
establish the following.

Theorem B. If the Hochschild cohomology H* = H(C®(P; P)) is a free algebra, then the Lie algebra structure on
Torj:‘ (k, k) is completely determined by that of the G-algebra H*. Consequently, the product * on Torf (k, k) is
commutative if and only if the G-product on H* is trivial.

Some applications of filtered Hirsch algebras considered in an earlier version of this paper are also considered
in [31,32] (see also [29,33]).

I wish to thank Jim Stasheff for helpful comments and suggestions. I am also indebted to the referee for a number
of helpful comments and for having suggested many improvements of the exposition.

2. The category of Hirsch algebras

This section defines the generalized notion of a Hirsch algebra applied here, the morphisms between them, and the
notion of a Hirsch resolution.

Let k be a commutative ring with unity 1 and characteristic v; in the applications, k will be the integers Z, a finite
field Z, = Z/ pZ with p prime, or a field of characteristic zero. Graded k-modules A* are assumed to be graded over
7. A module A* is connected if A® = k, and a non-negatively graded, connected module A* is 1-reduced if A' = 0.
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For amodule A, let T (A) = @2, A%, where AY = k, be the tensor module of A. An elementa; ®- - -Qa, € A®"
is denoted by [a;] - - - |a,] when T (A) is viewed as the tensor coalgebra or by a; - - - a, when T (A) is viewed as the
tensor algebra. We denote by s ~' A the desuspension of 4, i.e., (s7'A)! = A/+],

A dga (A, dy) is assumed to be supplemented; in particular, it has the foom A = A @ k. The (reduced)
bar construction BA on A is the tensor coalgebra T(A), A = s~ 'A, with differential d = d| + d» given for
[ai|---las] € T"(A) by

dila| - an] = — Y (=D51[a] - [da@i)] - - |an]
1<i<n
and

dlar] - lad = — > (D@l @@l la).

1<i<n

where € = |x1| + -+ + |x;] + .

Let us generalize (slightly) the definition of a Hirsch algebra [20]. Let A be a dga and consider the dg module
(Hom(BA ® BA, A), V), where V is the canonical Hom differential. Since the tensor product BA ® BA is a dgc
with the standard coalgebra structure, the —-product induces a dga structure on (Hom(BA ® BA, A), V,—).

Definition 1. A Hirsch algebra is an associative dga A equipped with multilinear maps
Epg: A®P@ A% — A, p,g=0, p+q>0,
satisfying the following conditions:
(i) degEp g =1—p—gq;

(ii) E1,0 = 1d = Ep,1 and Ep>1,0 =0= EO,q>1;
(iii)) The homomorphism £ : BA ® BA — A defined by

E(lai]---apl @ [b1]---1bg]) = Epglar, ..., ap; b1, ..., by) 2.1)
is a twisting cochain in the dga (Hom(BA ® BA, A),V,—),ie.,VE = —-FE — E.

A morphism f : A — B between two Hirsch algebras is a dga map f that commutes with E, , for all p, q.

Condition (iii) implies that ug : BA® BA — BA is a chain map; thus BA is a dg bialgebra whose multiplication
W is not necessarily associative (compare [8,37,5,21,26]); in particular, p Eyo+Eoy is the shuffle product on BA, and
a Hirsch algebra with £, ;, = 0 for all p, g > 1is just a cdga (cf. (2.3)). It is useful to express Eq. (2.1) component-
wise:

dE, 4(ai,...,ap; b1, ..., by)
= Y (=DEyga.....da;i.....ap:b1.....by)

l<i<p

a b
+ Y (=DPTHE, (@, ... apiby. ... dbj. ... by)
I=j=q

+ Y (“DTE, 4@ ... a1, .. apiby. . by)

1<i<p

a b
+ D DPYUE, i@ apibi, .. bbby
I<j<q

+ Y (=DEij(a.....ai:bi.....b))  Epigoj(@s1... .. apibjisi..... by), 2.2
0=/,
(@, /)#(0,0)

€ ;=€ —i—eé’%—(ef ~|—6[“,)6§’+ 1.
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In particular, the operation E| ; satisfies conditions similar to Steenrod’s cochain —1-product:

dEj 1(a; b) — E11(da; b) + (=D E| 1 (a; db) = (=1)!"lab — (= 1)l410PIHFDpg; (2.3)

consequently, E1,; measures the non-commutativity of the product - on A. We shall use the notation a —1 b =
E1.1(a; b) interchangeably. The following special cases will also be important for us, so we write them explicitly:
The Hirsch formulas up to homotopy

dEs1(a,b; ¢) = Ex1(da, b; ¢) — (=) Ey 1 (a, db; ¢) + (—=1)1FPLE, | (a, b; de)
— (=Dl @by <1 ¢ + (=DlaHIFPlicl (g _y e)b + (= 1)la(b — ¢)

and

dE12(a;b,¢) = Eip(das b, c) — (=D E| 2(a; db, ) + (=1)“TPIE| 5(a; b, do)
+ (=D g = (be) — (1)@ =1 bye = (=D PTVb@ — o)

tell us that the deviations of the binary operation — from left and right derivation of the - product are measured by
the respective boundaries of the operations E > and E» ; on three variables.

The following definition describes a class of Hirsch algebras in which the —i-product itself is homotopy
commutative (cf. (2.5)).

Definition 2. A quasi-homotopy commutative Hirsch algebra (QHHA) is a Hirsch algebra A equipped with a
binary product U : A ® A — A such that

d(@Usb) =daUyb + (=Da Uy db + (=1)a—1 b+ (=)D, g — g(a; b), (2.4)
where ¢ (a; b) satisfies:

(2.4); Leibniz rule: dg(a; b) = —q(da; b) — (—1)1¥g(a; db);
(2.4), Acyclicity: [g(a,b)] =0¢€ H(A,d) forda =db = 0.

Note that (2.4); follows from the equalities (2.2) and d* = 0. Obviously, discarding the parameter g(a; b), the
above formula just becomes the Steenrod formula for the ——;-cochain product:

dla—2b) =da—b+ (—Da—ydb+ (=D)/a— b+ (—=1)le+DIbl, 4. (2.5)

However, g(—; —) may be non-zero when passing to models constructed via cohomology as below. In the following
four examples, the first is a naturally occurring example of a cochain Hirsch algebra (compare Example 5); in the
second example QHHA structures are considered for certain Hirsch algebras; in the third and fourth examples a
Hirsch algebra structure is lifted to the cohomology level. In fact, the fourth example was the original motivation for
this paper.

Example 1. The primary examples of Hirsch algebras for topological spaces X are their cubical or simplicial cochain
complexes [20,19,21]. In the simplicial case one can choose E, ; = 0 for ¢ > 2 and obtain an HGA structure on the
simplicial cochains C*(X; k) [2] (see also [19]). Furthermore, the product g on BC*(X; k) gives the multiplicative
structure of the loop space cohomology H*(2X; k).

Here the cochain complex C*(X;k) of a space X is l-reduced, since by definition C*(X;k) =
C*(Sing' X; k)/C>%(Sing x ; k) where Sing! X C Sing X is the Eilenberg 1-subcomplex generated by the singular
simplices that send the 1-skeleton of the standard n-simplex A” to the base point x of X. Unlike the cubical cochains,
the Hirsch algebra structure of the simplicial cochains is associative, i.e., the above product p g is associative.

Example 2. First, note that the Hirsch algebras from the previous example are also QHHA’s by setting U, = ~—; and
q(—; —) = 0. Let A be a special Hirsch algebra, i.e., A is an associative Hirsch algebra and B A also admits a Hirsch
algebra structure. Then A is a QHHA since it admits a U,-product satisfying (2.5) (cf. [18]). An important example
of a special Hirsch algebra is A = C*(X; k) from the previous example (cf. [20,34]). Finally, for a QHHA A with v
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to be zero or odd and ~—;-product satisfying (2.5), define the divided —-operation U, as

1
aUsb = Eavza, a=>b

a-—b, otherwise.

Then A with this U,-operation is again a QHHA.

Example 3. Let (H,d = 0) be a free cga H = S(H*) generated by a graded set H*. Then any map of sets
Epg : H*P x H*? — H of degree 1 — p — ¢ extends to a Hirsch algebra structure E, , : H®? ® H® — H
on H. Indeed, using formula (2.2) the construction goes by induction on the sum p + ¢. In particular, if only E 1,118
non-zero then the image of E, 4 for p + g > 3 is into the submodule of H spanned by the monomials of the form
El,l(al; by)--- El,l(ak; by)-xfora;,b; e H,x € H,and k > 1.

Example 4. The argument in Example 3 suggests how to lift a Hirsch Z;-algebra structure from the cochain level
to cohomology. Given a Hirsch algebra A, let H = H*(A). For a cocycle a € A™, one has d4E1 1(a,a) = 0 and
Sq1 : H™ — H?>"~! s defined by

[a]l — [Ey,1(a, a)].

The trick here is to convert the Hirsch formulas up to homotopy on A to the Cartan formula Sq;(ab) = Sqia-Sqob +
Sqoa-Sq1b on H by fixing a set of multiplicative generators H C H. Define the map Sq, | : H x H — H for
a,b € Hby

Sqia, a=b>b,

8q1,1(a: b) = {0, otherwise

and extend to the operation Sq1.1 : H ® H — H as a (two-sided) derivation with respect to the - product; then in
particular, Sq1,1(u; u) = Sqiu for all u € H. Define Sqp 4 = Ep 4 : H®? @ H® — H for p + q > 3 by means
of (2.2). Note that if the multiplicative structure on H is not free, such an extension might not exist. This procedure
gives a Hirsch algebra structure {Sq p,q} on the cohomology algebra H in the following situations:

(1) H has trivial multiplication (e.g. the cohomology of a suspension).
(ii) H is a polynomial algebra.
(iii) H has the following property: If a - b = 0, then Sq1a - b = 0 = Sqia - Sq1b foralla,b € H.

Obviously we have the following proposition:

Proposition 1. A morphism f : A — A’ of Hirsch algebras induces a Hopf dga map of the bar constructions
Bf : BA — BA'.
If the modules A, A’ are k-free and f is a homology isomorphism, so is Bf.

This proposition is useful when applying special models for a Hirsch algebra A to calculate the cohomology
algebra H*(BA) = Tor?(k, k) (see Section 3.4), and consequently, the loop space cohomology H*(£2X; k) when
A = C*(X; k) (see, for example, [31]).

Given a Hirsch algebra A with cohomology H = H(A), let us construct a Hirsch algebra model of A. The

commutative algebra H admits a special multiplicative resolution (R H, d), which is endowed with the Hirsch algebra
structure {E P } The perturbed differential dj, on RH gives the desired Hirsch algebra model (RH, dj) of A.

2.1. Hirsch resolution

Let H* be a graded algebra and recall that a multiplicative resolution (R*H*, d) of H* is the bigraded tensor
algebra T' (V') generated by the bigraded free k-module

v=@g v

J,m=0
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where V~/" < R~/ H™. The total degree of R~/ H™ is the sum — j4-m, d is of bidegree (1,0)and p : (RH,d) — H
is a map of bigraded algebras inducing an isomorphism p* : H*(RH, d) — H* where H* is bigraded via H%* = H*
and H<%* = 0 ([27]; compare [11,13]). In other words,

<(R*H’”, 5 H’") =L R2H" S R L RO B gy

is a usual free (additive) resolution of the k-module H™ for each m, and there is a multiplication on the family
{R*H™},,cz, which is compatible with both d and the bidegree. When each H™ is k-free, 2BH (the cobar—bar
construction of H) is an example of RH with V = BH. In general, the multiplicative structure of H* gives rise to
(additively) non-minimal submodules (R*H™, d) even for H™ to be k-free or H™ = 0. The reason for this is that
a (multiplicative) relation in H involving elements of degree <m can produce an element a € R~'H* with k < m,
say m = kn, some n > 2, and since the multiplication on R* H* respects the bidegree, the non-zero element a”, the
nth power of a, ultimately belongs to R™" H™, the nth component of a k-module resolution of H™ (see the proof of
Proposition 3). Furthermore, even for H to be a free cga over a field k, the non-commutative nature of RH fails to
imply R*H"™ to be a minimal k-module resolution of H™, i.e.,

ROH™ = H™ and RH"™ =0, i>0;

this is quite different from the situation in [11].

For example, consider the polynomial algebra H = Zs[x, y] with x,y € H? and xo, yo € RH? satisfying
pxo = x and pyg = y. Then R-1H* # 0 since there is an element a € R~1H* such that da = X0Yo + Yoxo.
In particular, if H is the cohomology of a dga A with a non-commutative —1-product (and perhaps higher order
operations E, 4; cf. Examples 1 and 5), then the construction of a Hirsch algebra model of A using RH requires to
add another element b in R~ H* with db = x Yo + yoxo. Then denote a = x¢—1 yg and b = yg — xq respectively
(see Theorem 1). Furthermore, if H* is 1-reduced and we wish to have a 1-reduced multiplicative resolution RH, we
must restrict the resolution length of R* H™ so that R~'H™ = 0 fori > m — 1 (e.g. H™ is k-free for all m or H? is
k-free and k is a principal ideal domain). This motivates the following definition:

Definition 3. Let H* be a cga. An absolute Hirsch resolution of H is a multiplicative resolution
p:R*H" - H*, RH =T(V), V=V,

endowed with the Hirsch algebra structural operations
E,,:RH®’ ® RH®! — V C RH

such that V is decomposed as V** = £** @ U** in which £** = 0, U%* = VO* and £** = P 5;2’* is
p.q=1
distinguished by an isomorphism of modules

i 17k ol | S es—p—q+1,t
Epg: @ ( ® R"H r® ® R"H ">_’5p,qp ! cve
ipy+iigy=s \1STSP I=nzq
kpyttg)=t

where x() = x1 + - + x,.

Given a Hirsch algebra (A,{E,,},d), a submodule / C A is a Hirsch ideal of A if it is an ideal with
Epq(ar,....ap;apy1,...,apq) € J whenever a; € J for some i.

Definition 4. Let p, : (R;H,d) — H be an absolute Hirsch resolution and / C R, H be a Hirsch ideal such that
d : J — J and the quotient map g : R,H — R,H/J is a homology isomorphism. A Hirsch resolution of H is the
Hirsch algebra RH = R, H/J withamap p : RH — H such that p, = p o g.

Thus an absolute Hirsch resolution is a Hirsch resolution by taking J = 0.
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Proposition 2. Every cga H* has an (absolute) Hirsch resolution p : R*H* — H*.

Proof. We build a Hirsch resolution of H* by induction on the resolution degree. Let H* C H* be a set of
multiplicative generators. Denote VO* = H*; let VO* = (V*) be the free k-module span of V** and form the
free (tensor) graded algebra ROH* = T(V%*). Obviously, there is a dga epimorphism p° : (RYH*,0) — H*.
Inductively, given n > 0, assume we have constructed a k-module RCMH* = @o<r<n R™"H* with a map
p™  (REMWH* d) — H* with p" (R"H*) =0for1 <r <n, whered : R~"H* — Rt H* is a differential of
bidegree (1, 0) defined for 1 < r < n and acyclic in resolution degrees —r for 1 < r < n; R™"H™* is a component of
bidegree (—r, ) of T(V "% for V* = vO* @ ... @ V~"*, so that

R_rH* — V—}’,* @D—r,* — g—r,* @ U—r,* @ID—}’,*

where £77* = EB] &yt and £, spans the set of (formal) expressions Ep 4(ai, ..., ap; b1, ..., by), aj €
S

R H* b, € RTItH* r = i(p) + jig) + P+ q — 1, while D™"* is the module of decomposables of bidegree
(—r, %) in T(V)*); d is given by formula (2.2) on £"*, while acts as a derivation on D~""*

Let £ 1% = @15;,27]’* where £, "* spans the set of expressions E, ,(ai, ...,ap; by, ..., b,), ar €

P.az

R™H* by € RTIH*, n+1 =i+ jiq)+p+q—1,and let D7"~1* be the module of decomposables of bidegree
(—n—=1,%)inT (V(_”)'* &) 5_"_1’*) ; define d by formula (2.2) on £~ 1* and as a derivation on D"~ 1* 5o that

g—n—l,* @ D—n—l,* _d> R—l’lH* _d) R—}’l+1H*
Define a free k-module U "~ !* and d on it to achieve acyclicity in resolution degree —n, i.e, denoting V~"~1* =
E~L* @ U—~1* we obtain a partial resolution for each m € Z

V—n—l,m ® D—n—l,m _d) R THM i) R—n—HHm _d) . _d) R—le _d) ROHm _,0) g

Define R 'H* = V" L*@D™"L*and p"t! : R™""1H* — H* to be trivial. This completes the inductive step.
Finally, set R*H* = @, R H* with V** = (V*¥), &% = @, 7%, U** = ®, U™, plpoy+ = p° and
plg-npg+ = 0 for n > 0 to obtain the desired resolutionmap p : RH — H. O

Note that in a Hirsch resolution (RH, {E 4}, d), we may have relations among E, ,’s (e.g. E, 4 = 0 for some
p,q > 1; cf. Section 2.6). For example, the Hirsch structure of RH is associative if the product p, on the bar
construction B(RH) is associative and is equivalent to the equalities among E, ;’s as follows.

Given a Hirsch algebra A and an arbitrary triple

(ab;e)=(ai,...,ak;b1,....bg;c1,...,¢;), ai,bj,cs €A,
denote
Rier(@byie)= Y (=D Ep,(Ex e (ar, ... aq: b1, ... by,
kpy=kit(py=t
I<p<k+t
"'7Ekp,zp(ak_kp_'.]v"'sak;bg_(p+]1 abp)ier o ep)
and
. (h- 8 . .
Rier@ (b;0) = > (=D’ Exgar.....ax Ee,py(br.....bej5cr. ... cr),
L =brg)="
I=<g=<t+r
R Elq,rq(bl—iq+l7 ..., by Cripgitr s cq)),
where we use the convention that Eg j(—;a) = Ejo(a; =) = a, Eom(—; a1, ....am) = Enolar,....am; —) =

0,m > 2, and x;) = x1 + --- + x,, while the signs ¢ and ¢ are induced by permutations of symbols a;, b;, ¢,
(cf. [37]). Then the associativity of A is equivalent to the equalities

Rier((@b);¢) =Rier(a (b;e), k, £,r>1.
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Now consider the expression
Rie.r(@ (b; ©)) = Ryer((@:b);¢) € £ 7K

in an absolute Hirsch resolution R H. We have that this expression belongs to £~>* and is a cocycle for (a; b; ¢) =
(a; b;c), a,b,c € RYH (see (2.6) and Fig. 1 in which the boundaries of both hexagons are labeled by the 6
components of dR1 1.1(a; (b;c)) = dRi.1,1((a; b); c)). So there is an element, denoted by s(R1.1,1 (a; (b; ¢)))
€ V~3* guch that ds(Ri1.1(a; (b;¢))) = Rriaala; (b;c)) — Ri1.1((a; b); c). In general, define elements
S(Ri.e.r (@; (b; €))) € V such that

ds(Ri.e.r (a5 (b; ©))) + 5(Ri ¢ (da; (b; ©))) + (—1)®'s(Rye.r (a; (db; €)))
+ (=D (Rie,r (a; (b; dc))) = Ry e,r(a; (b; ©)) — Ry e, ((a; b); ©)
g1 = |a|+k, eop = |a|+ |b| + k+ L.

Consequently, RH = R,H/J,s is an associative Hirsch resolution, where J,5¢ C R, H is a Hirsch ideal generated
by

{Ri.e.r(@; (b; ©)) — R e,r((@:b): €), s(Ree.r (a5 (b; ©)))}.

In particular, for (a; b; ¢) = (a; b; ¢) the associativity of a Hirsch resolution implies the following.

Proposition 3. For a, b, c € RH, there is the equality
(@—1b)—1c+ Exi(a,b;c) + (—D)1HD@HD By 1 a;¢)
=a—1(b—10) + Ei2(a; b,c) + (=D PHVIDE, 5@ ¢, b). (2.6)

A Hirsch resolution (R H, d) is minimal if
du)e E+D+ky-V forallu € U,

where D** C R*H* denotes the submodule of decomposables RHT- RHT (RH™ denotes RH modulo the unital
component) and k, € k is non-invertible. For example, when k = Z we have k, € Z \ {—1, 1}; when k is a field
we have k, = 0O for all u. Note that a minimal Hirsch resolution is not minimal in the category of dgas since the
resolution differential does not send multiplicative generators into D even when k is a field. Furthermore, the notion
of minimality of RH does not depend upon whether some operation E, , is zero (cf. Section 2.6). On the other hand,
in order to define a ——;-operation in a simple way on R H we have to consider a non-minimal Hirsch resolution in the
next subsection.

Such a flexibility of choice of R H is due to the trivial Hirsch structure of H, and, in practice, the choice is suggested
by a Hirsch algebra A that realizes H as the cohomology algebra.

2.2. QHHA structures on Hirsch algebras

First, note that one can introduce a —,-product on a Hirsch resolution that satisfies (2.5). However, such a QHHA
structure on RH in not always satisfactory, and we shall consider a Uj-operation simultaneously for the reasons
explained below. For an even dimensional a, or for any a whenever v = 2, we have that a —1 a is cocycle for da = 0;
hence, there is an element x € RH with dx = a — a. But we cannot identify x with a — a because d(a —2a) =0
according to (2.5). On the other hand, it is helpful to denote x := a U, a since certain formulas are conveniently
expressed in terms of the binary operation U; (see, for example, Proposition 5 or Remark 7). Furthermore, we can
identify a U; a with %a - a for |a| even and 2 invertible in k.

By construction of a Hirsch resolution in Proposition 2, the definition of ~—; mimics that of — . We start with the
consideration of the expression

(=D <1 b+ (=DHUFDly g e £75% for a, b e VO,
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It is a cocycle in (RH,d), and hence, must be killed by a multiplicative generator; denote this generator by
a—ab € U™2*, Inductively, assume that the right-hand side of (2.5) has been defined as an element of U —ntlx
Then it is bounded by a multiplicative generator @ —, b € U~™"*. Thus, a~—, b € U forall a, b € RH. In particular,
if dx =0, thend(x — x) =0 or d(% x—2x) = 0 for |x| to be odd or for both |x| and v to be even respectively in
which case a multiplicative generator y € U with dy = x ~—7 x is denoted by x U3 x.

Now define a U,-operation by

a—2b, a+#b, a,bareinabasis of RH

0, a =b, |a| and v are odd, (2.7)

aU2b={

while, otherwise, define a Uy a € U by

a—i1a-+a—rda+daUsda, la] is even

dlaUra) = {

%(a —i1a+a—rda)+daUsda, |a|isodd,viseven.

Hence,aU, b € U forany a, b € RH, and let
T={aUbeU ]| |a,be RH}.
Thus, we obtain the decomposition U = 7 & M, some M, and, hence, the decomposition
V=EaoU=E0T & M.

In particular, 7 contains elements of the form a; U, - - - Uz a,, @; € RH, obtained by the iteration of the Up-product
for n > 2. In particular, for a; € V%2 we have the following equality

d(ayUy---Uyay) = ZSgﬂ(i; Wi, Ur-- Uy a;) —1(aj, Uz Uz aj,),
((3))

where the summation is over unshuffles (i;j) = (1 < -+ < ix;j1 < -+ < jo) of n with (a;,...,a;) =
(a,»i, R a,-]/() if and only if i = i’ and sgn(i; j) is induced by the permutation sign ¢; U a; = (—1)'“"”“!"(1]- U, a;
(see also Fig. 1 for n = 3); consequently, fora; = --- =a, = a and a2 :=qaU, - -Usa, we get
da" = Y aPF - aPt kL= 1. (2.8)
k+€=n

Note that the above equalities do not depend on the parity of a;’s when v = 2.

Remark 1. 1. The definition of 7" does not depend on the (Hirsch) associativity of RH.
2. In a minimal Hirsch resolution one can also minimize the module 7 as

T={aUbeU]| a,bec M},

while a Uy b for a, b € RH is extended by certain derivation formulas. These formulas are rather complicated, but
they could be written down if necessary.
3. The module M reflects the complexity of the multiplicative relations of the commutative algebra H.

For example, if H is a polynomial algebra and RH is a minimal Hirsch resolution, then M = M%* = V0* and,
consequently, R H is completely determined by the ——1- and U,-operations [31] (see also Theorem 4).

2.3. Some canonical syzygies in the Hirsch resolution

Below we give topological interpretation of some canonical syzygies in the Hirsch resolution RH. In particular
these syzygies reflect the non-associativity of the ——1-product. Remark that higher order canonical syzygies should be
also related with the combinatorics of permutahedra. In practice, such relations are helpful to construct small Hirsch
resolutions RH (cf. [31], see also Remark 1).
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C(avlb) (bvlc)a
Ex(a;c,b) E> (b, a;0)
(a—1c)b av(ch) | (b—ic)a bla—c) (bay<ic | c(a~—1b)
s av-—1(bwqc) > = s (a~1b)—c >
a(bw c) b(a~c) (a~1b)c (av~0)b
e @b o) 1 @ @b |
(a~1b)c a(b~c)
c~(aUsrb)
b—ia
a1 b (aUrc)~1b (bUsc)—1a
*——o
ab ba @ a1 (bUsc) bey(aUze)
a—1b

(aUrb)~c

Fig. 1. Topological interpretation of some canonical syzygies in the Hirsch resolution RH.

The symbol “=" in the figure above assumes equality (2.6); the picture for a U b U; c is in fact 4-dimensional and
must be understood as follows: Whence a U, b corresponds to the 2-ball, the boundary of a Uy b U; ¢ consists of the
six 3-balls each of which is subdivided into four 3-cells by fixing two equators (these cells just correspond to the four
summand components of the differential evaluated on the compositions of the —1- and Up-products). Then given a
3-ball, two cells from these four cells are glued to the ones of the boundary of the (diagonally) opposite 3-ball, and
the other cells are glued to the ones of the boundaries of the neighboring 3-balls according to the relation

x—1(y—1d+@x—1y)—1z=y—1(x—12) + (y—1x)—12

2.4. Filtered Hirsch model

Recall that a dga (A*,d) is multialgebra if it is bigraded A" = & A o< 0, j = 0,and d =
n=i+j

d°4+d" +.. 4 d"+ .. withd" : AP9 — APTma—H1[12] A dga A is bigraded via A%* = A* and A"* = 0 for

i # 0; consequently, A is a multialgebra. A multialgebra A is homological if d° = 0 (hence d'd' = 0) and
Hi(~~~il>Ai'*i]>Ai+1’*i]> N A% =0, i<0.

For a homological multialgebra the sum d>+d>+- - -+d" +- - - is called a perturbation of d'. In the sequel we always

consider homological multialgebras, d' is denoted by d, d” is denoted by i, and the sum h? 4+ h> + - + " + ...

is denoted by i. We sometimes denote d + i by dj,.

A multialgebra morphism { : A — B between two multialgebras A and B is a dga map of total degree zero that
preserves the resolution (column) filtration, so that ¢ has the components { = 0+ . -4¢i4- .., ¢l 1 AS! — BSTHI—E,
A chain homotopy s : A — B between two multiplicative maps f, g : A — B is an (f, g)-derivation homotopy if
s(ab) = s(a)g(b) + (—1)|“|f(a)s(b). A homotopy between two morphisms f, g : A — B of multialgebras is an
(f, g)-derivation homotopy s : A — B of total degree —1 that lowers the column filtration by 1.

A multialgebra is quasi-free if it is a tensor algebra over a bigraded k-module. Given m > 2, the map
™| g-mx 2 A7™* — AD* is referred to as the transgressive component of A and is denoted by 4. A multialgebra A
with a Hirsch algebra structure

. P irk q Jkt s—p—q+1,t
Epg:®,_ A" r®®n:lA "— A
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with (s,1) = (i) + Jig)» kpy + L)) P.g = 1, is called Hirsch multialgebra. A homotopy between two
morphisms f,g : A — A’ of Hirsch (multi)algebras is a homotopy s : A — A’ of underlying (multi)algebras
and

s(Epglai,...,ap;b1,...,by))
a b
= Y (DT CIE, (far, ..., fap; fbi,..., fbi1,sbe, gbesi, ..., gby)
1<t=q
+ Z (—1)61?*1E,,,q(fa1,...,fak_l,sak,gak+1,...,gap;gbl,...,gbq)
I<k=p
- Z (_l)gi’j'in,j(falv~~-7fai;fb17-~'sfbﬁ—th@’gbz-Fl"'-vgbj)
l<i<p
1<t<j<q

X Ep_jg—j(faiv1, ..., fap—1,5ap;8bjt1,...,8bq)
— Z (—1)€i~ka E; j(fai,..., fai;sb1,gba, ..., gbj)

0<i<k<p
I=j=q
X Ep*i,qu(falq“]a R} fakfla sSaj, gak+1’ s gap ; gbj+lﬂ st gbq)7 (29)
b b
€jm =€p1 H e T (€ +eDe), pg=1,

in which the first equality is
s@@—1 b)= (D" oy sb+sa—; gb— (—1)IeFDWHDgp 4.

Denote the homotopy classes of morphisms between two Hirsch (multi)algebras by [—, —].

Definition 5. A quasi-free Hirsch homological multialgebra (A, {E, 4}, d + h) is a filtered Hirsch algebra if it has
the following additional properties:

(1) In A = T (V) a decomposition
YRE = gRF @ UR*

is fixed where £%* = P 1 £ ,f 2’* is distinguished by an isomorphism of modules
Pqz

Epg: A®? @ A®1 —&,,CV, pg=>1;
(ii) The restriction of the perturbation 4 to £ has no transgressive components A", i.e., h'"|¢ = 0.

Given a Hirsch algebra B, a filtered Hirsch model for B is a filtered Hirsch algebra A together with a Hirsch algebra
map A — B that induces an isomorphism on cohomology. Our next proposition, which is a Adams—Hilton type of
statement, exhibits a basic property of filtered Hirsch algebras:

Proposition 4. Let ¢ : B — C be a map of (filtered) Hirsch algebras that induces an isomorphism on cohomology. If
A is a filtered Hirsch algebra, there is a bijection of sets of homotopy classes of (filtered) Hirsch algebra maps

¢, : [A, Bl—>[A, C].

Proof. Discarding Hirsch algebra structures, the proof goes by induction on the resolution grading and is similar to
that of Theorem 2.5 in [12] (see also [28]). The Hirsch algebra structure serves to specify a choice of homotopy s on
the multiplicative generators £ C V. When constructing a chain homotopy s : A — C between two multiplicative
maps f, g : A — C, we can choose an s on £"* that satisfies formula (2.9) in each step of the induction. [J

The basic examples of a filtered Hirsch algebra are provided by the following theorem, which states our main result
on Hirsch algebras:
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Theorem 1. Let H be a cga and let p : (RH,d) — H be an absolute Hirsch resolution. Given a Hirsch algebra A,
assume there exists an isomorphismis : H ~ H(A, d). Then

(i) Existence. There is a pair (h, f) where h : RH — RH is a perturbation of the resolution differential d on RH
and
f:(RH,d+h) > A
is a filtered Hirsch model of A such that (flROH)* = iAleOH :RYH — H(A).
(ii) Uniqueness. If (h, f)and f : (RH,d + h) — A satisfy the conditions of (i), there is an isomorphism of filtered
Hirsch models
¢:(RH,d+h) —>(RH,d + h)
oftheform¢ =1d+¢ '+ +¢" + - with¢" : RSH' — R™Y H'™" such that f is homotopic to f o ¢.
Note that the proof of the theorem uses an induction on resolution grading as it is used by the construction of
filtered model due to Halperin—Stasheff [11] (compare also [27,28]); although in the rational case for the existence
and the uniqueness of a pair (%, f) the zero characteristic of k is essentially involved, the proof below shows that such

arestriction can be simply avoided. Here a technical subtlety is that we have certain canonically chosen multiplicative
generators on which (%, f) must act by a canonical rule.

Proof. Existence. Let RH = T(V) with V = & @ U. We define a perturbation 2 and a Hirsch algebra map
f:(RH,d+h) — (A, d) by induction on resolution (column) grading. First consider ROH = T (V%*) (=T (U%*)).
Define a chain map §° : (V%*,0) — (A, d) by (f)* = iAp|V0,* : VO*  H(A). Extend {° multiplicatively to obtain
adgamap f°: ROH — A. Thereisamap f' : V-1 — A*=! with fOd|,—1. = df'; in particular, choose
fl on £~ (=51j11**) defined by the formula f'(a—1 b) = f%a—1 fOb for a,b € R°H. Then extend {* + f!
multiplicatively to obtain a dga map f;l) : T(VED*) — (A, d); then denote the restriction of f;l) to REVH by
fO(REVH d) — (A, d).

Inductively, assume that a pair (A", £) has been constructed that satisfies the following conditions:
(1) K™ = h? + ... + h" is a derivation on RH,
(2) Equality (2.2) holds on R H for d 4+ h in which

p
h"Epq(ai,...,ap;b1,...,by) = Z(—l)GHE,,,q(al,...,hrai,...,aq;bl,...,bq)

i=1

g a b
+ Y (DPTHE, gar .. api by, by by,
j=1

() dh" +h"d + 3 ipi hihi =0,
4) f™ : RCMH — A is the restriction of a dga map ff;’) : T(V(*")’*) — Ato REMH for fM = fO4...4 fn,
5) fd +h"™y=df®™ on R H, and
(6) f™ is compatible with the maps E, , on £(-)*,
Consider

SO+ Ry s VI g

clearly df ™ (d + h™) = 0. Define a linear map /"' : U="~1* — ROH*~" with ph"*+! = i [ f"(d + h™)] and
extend #"*! on RH as a derivation (denoting by the same symbol) with
d"t 4+ d + Y R =0
i+j=n+2
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and

p
WHE, gar, .. apibi, .. by) =Y (—DSEpg(ar,....h"ag, ... ag:bi, ... by)
i=1

4 a b
+ Y DTTE, @ ap by Wb by).
j=1
Then there is a map ! : V7"~1* — A*=7~1 guch that it is compatible with Ep 4 on £~ and

FDd 4+ DY = df T
Extend j* D := 0 4 ... 4+ §*! multiplicatively to obtain a dga map fy' ™" : T(V(-"=D-*) > A; the restriction of
f;"H) to RC"~D H is denoted by

fO L REDE A,

Thus the construction of the pair (h (D £ (”“)) completes the inductive step. Finally, a perturbation & = h> 4 - - - +
h" 4 --- and a Hirsch algebra map f such that f = f0+4 ... 4+ f" 4 ... are obtained as desired.
Uniqueness. Using Proposition 4 we construct a multialgebra morphism

¢:(RH,d+h)— (RH,d +h),
¢ =¢"4¢' 4+ ..., with f o ¢ ~ f; in addition, it is easy to choose ¢ with (0 = Id. O

2.5. Filtered model for a QHHA

Referring to Section 2.2, this section considers the compatibility of the perturbation 4 and the Hirsch map f with
the Up-product of RH in Theorem 1. Even if A is a QHHA in the theorem, it is impossible to obtain a QHHA map f
which commutes with Up-products because the compatibility of parameters g(—; —) under f is obstructed. When A is
a Z-algebra, for example, the obstruction is caused by the non-free action of Sq; on H. However, when g(—; —) =0
for the Uz-operation in A (cf. Example 2), one can refine the perturbation / in Theorem 1 as it is stated in Proposition 5
(in particular, item (i) of this proposition is an essential detail of the proof of the main result in [33]).

Let T C 7 be a submodule defined by

T=(aUyb €T |a+#binabasis of M).
Forv =2,let Sq; : H"(A) — H?*"=1(A) be the map from Example 4.
Proposition 5. Let A be a QHHA with Uj-operation satisfying (2.5) (e.g. A is a special Hirsch algebra

from Example 2). Then in the filtered Hirsch model f : (RH,dp) — A given by Theorem 1, the perturbation h
can be chosen such that

(i) h'" |y = 0; |
(ii) Let v = 2. Then for z;i = h'" (a“2?") witha € R°H,
pz1 = Sq1(pa) and h(@2?) = Z 7iUp a2 =20 o 7

1<i<n

Proof. (i) First, remark that any element of T satisfies (2.5) (cf. (2.7)). Following the construction of a pair (4, f) in
the proof of Theorem 1, define f for a Uy b € T~2* with a, b € V** by the formula

f(@Usb) = faUs fb. (2.10)

Since (2.5), f is chain with respect to the resolution differential d of RH, so we can set h%(a U, b) = 0. Inductively,
assume that foraUy b € T™"*,2 <r < n, the map f is defined by (2.10), while 4 is defined by

h(a Uy b) = haUy b+ (=D a Uy hb. (2.11)
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Then for a Uy b € T~ * define h again by (2.11). Clearly, fdj,(a U, b) is a cocycle in A and is bounded by fa Uy fb.
Therefore, we can define f on a U, b by (2.10). Consequently, we set h'" (a U, b) = 0 as required.

(ii) Since f is a Hirsch map, it commutes with —-products and the first equality follows from the definition of
Sq1. The verification of the second equality follows immediately from (2.8). [

Remark 2. Whereas S¢q; induces the product on H(BA), the transgressive values z; in item (ii) of Proposition 5
are closely related with the existence of the symmetric Massey products of the element o*(pa) € H(BA) for the
suspension map o* : H*(A) — H*“!(BA) (compare Theorem 3 and Remark 7): When o*(pzx) = 0 for k < i
(e.g. zx € D%*), the cohomology class o*(pz;) is automatically identified with the symmetric Massey product

(0*(pa))?.

Unlike Example 1, the Hirsch algebra A provided by the following example does not have a —»-product. This fact
allows us to lift a combination a —1 b=£b —1 a for cocycles a, b € A to the cohomology level as a non-trivial (binary)
product (see also Section 3.4).

Example S. It is known that the Hochschild cochain complex C®(P; P) of an associative algebra P admits an
HGA structure [17,8], which is a particular Hirsch algebra. Furthermore, whereas the Hochschild cohomology
H = H (C*(P; P)) is acga, H is also endowed with the binary operation x % y defined for x = [a] and y = [b]
byxxy = [aob— (=1)Ia+DUbIHDL 6 4] where o(=—1) is Gerstenhaber’s operation on the Hochschild cochain
complex. The * product on the Hochschild cohomology is referred to as the G-algebra structure. Since H is a cga,
we can apply Theorem 1 for A = C*®(P; P) and obtain the filtered Hirsch model f : (RH,d + h) — C*(P; P).
Givena, b € VO, obviously we have ph*(a Uy b) = pa * pb (since f1(a—1b) = % o fOb). In other words, the
non-triviality of the G-algebra structure on H implies the non-triviality of perturbation A2 restricted to the submodule
T C V. Consequently, the operation a Uy b with g(a, b) satisfying item (2.4), does not exist on the filtered Hirsch
model of C*(P; P) in general.

2.6. A small Hirsch resolution Rc H

Let A be a Hirsch algebra over k. Whereas (RH, dy) = (T(V),dp)ina ﬁltereq Hirsch model f : (RH, dy) — A,
the calculation of H(BA) can be carried out in terms of V' as follows. Denote V = s__l(V>O) @ k and define the
differential dj, on V by the restriction of d + & to V to obtain the cochain complex (V, d,). There are isomorphisms

S Bf*
H*(V,dp) ~ H*(B(RH), dy ) ~ H*(BA,d,,) ~ Tor? (k; k). (2.12)
In particular, for A = C*(X; k) with X simply connected (cf. Example 1),
H*(V,dp) ~ H*(BC*(X; k), d,.) ~ H*(2X; k).

Remark 3. Note that the first isomorphism of (2.12) is a consequence of a general fact about tensor algebras [6],
while the second follows from Proposition 1.

Furthermore, to conveniently involve the multiplicative structure of (2.12), one can reduce V at the costof £ C V
in the manner we shall describe. Let J. C R, H be the Hirsch ideal of an absolute Hirsch resolution R, H generated by

(Epglar,....ap;aps1, ..., apyq), dEp4(ar, ... apiapst, ..., apyq) | p+q = 3}
with
ai,...,ap € RGH, ap 1€V, p>1,g=1
ai,...,apq € RgH, p>1q>1.
Then

R.H = R,H/J,

is a Hirsch resolution of H. Indeed, using (2.2) we see thatd : Jo — J- and H(J.,d) = 0. Thus g, : (R H,d) —
(R:H, d) is a homology isomorphism. We have an obvious projection p. : (RcH,d) — H such that p = p. o gc.
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X3 (=x0~1(X0~1X0)+2E12(X0:%0.%0))
d d
(&) F3((x0~~1X0) X0 +x0(xX0*~1X0))
. — 6m +3

s ‘3 6m + 2
2hby F6I2x) (x)’

X2 (=x0~1X0)
2(=0) dm+2
4m + 1

h%by

o e o o P ..

X0 X 2m+ 1

R73H*‘d> R—ZH*i R*lH* i ROH*L H*

Fig. 2. A fragment of the filtered Hirsch Z-algebra obtained as a perturbed resolution (RH,d 4+ h) of acga H.

Consequently, o, is also a resolution map. Furthermore, we have h : J. — J¢ so that (R. H, dp) is a Hirsch algebra
(in fact an HGA) and g extends to a quasi-isomorphism of filtered Hirsch algebras

8s 1 (RgH, dp) — (RgH, dy). (2.13)

Thus, the Hirsch (HGA) structure of Rc H = T (V) is generated by the —-product and (2.2) is equivalent to the
following two equalities:

1. The (left) Hirsch formula. For a, b,c € R H:
c—1ab = (c—1a)b+ (=)Dl | p).
2. The (right) generalized Hirsch formula. Fora,b € R.H and ¢ € V. with dj,(c) = ey ¢q, Ci € Ve
ab—ic) + (=)D @ — )b, g=1,

ab—ic = Jab—10) + (=DM @ 1) b

+ Y (=Dfcr--cici@—=ici)cigr--cj—i(b—=1cj)cjt1---cq, q =2,
I<i<j=<q

(2.14)

where £ = (la| + 1) (€¢_, +i + 1) — (b + 1) (e;_l +j>.

Remark 4. First, Formula (2.14) can be thought of as a generalization of Adams’ formula for the —-product in the
cobar construction [1, p.36] from ¢ = 2 to any ¢ > 2. Second, the usage of R H shows that the multiplication w7},
on H*(BA) ~ H *(Vg, dy) is in fact determined only by the —-product on V.

Note that for any Hirsch resolution of H considered here, and consequently for any filtered Hirsch model, the first
two columns in Fig. 2 are the same.

3. Some examples and applications
In the discussion that follows we sometimes abuse notation and denote RcH by RH. As we mentioned in the
introduction, certain applications of the above material are given in [31,32]. The applications that appear here are

new.

3.1. Symmetric Massey products

Recall the definition of the n-fold symmetric Massey product (x)” (cf. [23,25]). Let x € H(A) be an element for
adga A, and xo € A be a cocycle with x = [xp]. Given n > 3, consider a sequence (xg, X1, ..., X,—2) in A such
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that

dx; = Z (_1)|Xi|+l-xixj7 l<k<n-—2 3.1
i+j=k—1

in particular, dx; = —(—1)|x0‘x8, ie., x2 = 0. Then Ziﬂzn_z(—l)‘x”“xixj is a cocycle, and a subset of
H (A) formed by the classes of all such cocycles is denoted by (x)"”. (In other words, the existence of a sequence
(x0, X1, ..., Xk, ...) satisfying (3.1) for all k£ implies that ¢ := Zk>0 Xi 1s a twisting element in A whenever this sum
(possibly infinite) has a sense; an element ¢ € A is twisting if dc =4c-c; cf. [3])

When A = C*(X; Z,,) for p to be an odd prime, and x € H 2m+1 (X; Zp) is odd dimensional, the following formula
is established in [23] (for the dual case see [22]):

(x)? = —pP1(x) (3.2)

where Py : H>"1(X; Zp) — H Zmp+l(x, Zp) is the Steenrod cohomology operation. Thus, the formulas in [23]
and [22] involve the connection of the symmetric Massey products with the Steenrod and Dyer—Lashof (co)homology
operations in their respective topological settings (cf. [25]). Below Theorem 3 emphasizes the algebraic content of
these formulas and generalizes them using a filtered Hirsch model over the integers.

3.2. Massey syzygies in the Hirsch resolution

Let (RH, d) be a Hirsch resolution of H. Given a sequence of relations of the form da; = Ab; and
duj = (=D“"Maiai + v, dvi = (=D"bai) + aibiy,
aj,ui,vi € RH, e Z\ {—1,1}, 1 <i <n, (3.3)

in (RH, d), there are elements u,,

,,,,,

ay, € RH,3 <k < n, defined in terms of syzygies that mimic the definition of

k-fold Massey products arising from k-tuples (a;,, ..., a;,) [23]. Precisely, uq, ... 4, is defined by
dual ,,,,, ap = Z (_l)ei Ugy,...a;a;iy,....ay +)\val ..... an>»
0<i<n
dval ----- ap = Z ((_1)61 _Hva] ,,,,, aiua,-_H ..... ap + ua| ,,,,, a; Ua,'_H ..... an)’ (34)
0<i<n

with the convention that u,, = a;, u,, = u; and vy, = b;, vy, = v;. When b; = 0, Eq. (3.4) reduces to

sdit+1 »di41
dual ,,,,, ap, = Z (_l)ei Uay,....aiU8a;4q,....ay
0<i<n
We are interested in the special case of (3.3) obtained by setting a; = --- = a,. More precisely, we consider the

following situation (see also Example 6).

Let A be a torsion free Hirsch algebra over Z and fix a filtered model f : (RH, d,) — A. For a module C over
Z,let Cx := C®zkandlet tx : C — Ck be the standard map; then Ay = A ®zk and RHy = RH ®z k. Also let
Hy := H(Ay). There is the Hirsch model of (A, da,) given by

fu=f®1:(RHy,d, ® 1) — (Ak, da,).

Given an element x € H, let xo be a representative of x in RH so that [#, f(xo)] = x. In particular, xo € ROH*
for B(x) = 0,k > 1,and xo € R~V H* with dxg = Ax, X € ROH*, for B(x) # 0, where 8 denotes the Bockstein
cohomology homomorphism associated with the sequence

0— Zy = Zy» — Z) — 0.

If x € H = H*(A), then obviously xo € ROH*. In any case, assuming x> = 0 we have the corresponding relation in
(RH, d):

dx| = (—1)|X0|+1x(2) + Ax}
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with the convention that xﬁ = 0 whenever xo € RYH*. This equality is a special case of (3.3), so (3.4) gives the
following sequence of relations in (RH, d):

dx, = Z (_1)|xl'|+1xixj +axl, n=1, (3.5)
i+j=n—1
i.j=0

where x/, = 0 for xo € R°H.

We have the following description of Massey symmetric products in terms of the sequence X = {x,},>0 in
(RH,dp). Denote y; = tyx; in (RHy, dp). If hy; = 0 for 0 <i < n, then (3.5) implies dyd(y,) = dd(y,) = 0, and
consequently, [dy,] = —[hyy,]. Therefore

FEldynl = — fifThya] € (x)" . (3.6)

Furthermore, the elements x, appear in a family of relations in (RH, d). For example, these relations can be
deduced from the following observation. For x € H with x> = 0, let ¢t : BH — B(RH, d) be a chain map such
that ¢([x]---|x]) = (—=1)"[x,] for [x]...|x] € B"'H n > 0. Assuming B H is endowed with the shuffle product
shp, the map ¢ will be multiplicative up to a chain homotopy b. Since B(RH) is cofree, we can choose b to be
(L o (t ® 1), t o shy)-coderivation. This observation easily extends to the mod . case when xg € R™VH with
dxo = Ax(). Now let

k £
- _— T . . .
br,e = b([xX]- - |X]Q[X]|---[X]) |o; and ippy =i+ +ip+n;
then the equality up(t ® 1) —toshy = dygy b+ bdyy gy, implies in (RH, d):
For |xo| odd:
k+¢
dby e = (—1)k+€< r )xk+£—1
+ Z (—1)k+e+p+qu,q(xil,...,x,-p;le,...,qu)
i[pJ=k’ j[qJ:l
— Y DD E (g X Xy ) Dk
0<r<k,0=m<t
fs1=" i =m
r+m
+( , )bk—r,f—m xr+m—l) + )&b;(,e 3.7

in which b;{ﬁ .= 0 for xg € RYH, and the first equalities are:

dby 1 = 2x + X0 —1x0 + Ab] |,
dby 1 = —3x2 + E2,1(x0, X0; X0) — X1 ~—1 %0 — Xob1,1 + b1,1x0 + Ab) |,
dby 2 = —3x2 4 E12(x0; X0, X0) — X0 ~—1 X1 — Xoby,1 + by 1x0 + Ab] 5.

For |xg| even:

ke
dbre = (=)o e xpye—1

k+¢ .
+ Z (—l)++p+qu,q(x,-1,...,x,-p,le,...,qu)
ip1=k, jig1=¢
k+r+1)m—+s+r+t .
- Z (_1)( ) ES,l(xilv"'7xi57xj19""-le)bkfr,ffm
0<r<k,0<m<t
is1=" i =m

+ (_1)k+e+”(5+m)ar’mbk—r,[—m x,+m_1> + )»b;(’z, (3.8)
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<(i +j)/2> .
. , i, j are even,
i/2
Oti’jz (i+j_1)/2
i/2
0, i, j are odd,

), i is even, j is odd,

in which b;_, = 0 for xo € R H, and the first equalities are:

dby 1 =x0—1x0+ b}, (e, b1 = x0Uzxo whenxp € RVH™),
dba,1 = —x2 + E2,1(x0, X0; X0) — X1 —1 X0 — Xob1,1 — by 10 + Ab) |,
dby 2 = —x2 + E12(x0: X0, X0) — X0 ~—1x1 + Xx0b1,1 + by 1x0 + Ab] 5.

Of course, for the sake of minimality, one can choose only certain by ¢ above to be nontrivial. For example, let |x| be
even, let byj11 := by 211, and set x2, in (3.5) as

Xon = —X0—1X2—1 + Z (x2i 0241 — b2jr1x2i). (3.9)
i+j=n—1
Thus one can also set by 2, = 0 and eliminate by 2, from (3.8); in particular, by ; can be identified with xo —7 x; for
n=1.
Note that for an HGA A (e.g. A = C*(X; Z)) we have that E, ;, = 0 for all ¢ > 2, that the second Hirsch formula
up to homotopy from Section 2 becomes strict, and consequently, the formulas above are much simpler (see also
Section 2.6).

Theorem 2. Let A be a Hirsch algebra over 7. and let k be a field of characteristic p > 0.

() Let x € H(A) with x> = 0. If (x)" is defined for n > 3, it has a finite order.

(ii) Let x € Hy with x> = 0and p > 0. Then (x)" is defined for 3 < n < p and vanishes whenever 3 < n < p.
(iii) Let x € Hy with x> = 0 and p = 0. Then (x)" is defined and vanishes for all n.

Proof. (i) Observe that the inductive construction of the terms 4", r > 2, of h in (RH, dp,) implies hx; = 0 for
0 <i < n — 2 whenever (x)" is defined. Apply formulas (3.7)—(3.8) to verify that m(x)" = 0 with m = n for |x| odd
(take (k,£) = (1,n — 1) in (3.7)), whilem =r — 1l orm = r forn = 2r orn = 2r + 1 (take (k, £) = 2,n — 2) in
(3.8)) for |x| even.

(i1)—(iii) The proof follows an argument similar to that in (i). O

Remark 5. First, regarding Theorem 2, item (i), note that formula (3.9) implies that (x)"” = 0 whenever |x| and n are
even. Second, if |x| is odd, formulas (3.7) —(3.8) imply that whenever defined, (x)" consists of a single cohomology
class independent of the parity of n (see [23,22]).

3.3. The Kraines formula

Let p := A be an odd prime. Let a e_Az’”Jrl be an element with da = 0 or da = pa’ for some a’._Given n>2,
take (the right most) nth-power of a € A under the . product on BA and consider its component in A. Denote this
component by s~ (a®") for a¥" € A2""*!, The element a®" has the form

a*" =a"" + Ou(a),

where Q) (a) is expressed in terms of Ej j for 1 < k < n (for the relations of small degrees involving this power, see
also Fig. 2). For example, Q2(a) = 0 since a¥?> = a2 and Q3(a) = 2E12(a; a, a). In particular, if A is an HGA,
then obviously a®* = a~1". Thus da®" is divided by an integer p > 2 if and only if p is a prime and n = p’, some
i > 1. Consequently, the homomorphism

Py HZH L g2t 1 (@)] = [tz (@¥P)],  a € A, d(tz. (a) =0, (3.10)
Zp Zp P 14 )4

is well defined.
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Theorem 3. Let A be a Hirsch algebra as in Proposition 5. Let A be torsion free and p be an odd prime. Then
Jormula (3.2) holds in Hz,, for Py given by (3.10).

Proof. Givenn > 1, let b, := by , and set (k, £) = (1, n) in (3.7) to obtain

db, = (=D""" | n + Dx, — Z (—DE1q(x0; xjy, .., xj,) | + Z (=17 (bjx; —x7b;) + pb),. (3.11)
Jig1="n i+j=n—1

I=q=n
By means of the element x( and the sequence {b,},>1, form the sequence {c,},>1 in RH as follows:
ci1=0b; and ¢, =n!b, +xo—1¢p-1, n=>2.

For n = p — 1, relation (3.11) implies a relation of the form

dep1=—p'xp 1 +x3" + pup i, (3.12)
where up,—; € RH* - RH" for f(x) = 0, while u,—1 = wp—1 + (p — 1)! b;;—l with w,—; € RH* - RH™ for
B(x) # 0. Hence, from dz(cp_l) = 0 we get

d(xy") = pldxp 1 — pdup 1 = p((p — D'dxp 1 —dup ).
Obviously, h(x(;ﬂ Py = 0 because h(xp) = 0 (recall that a perturbation 4 annihilates RV H and is a derivation on &).
Consequently,

dn(xy") = p((p = Dldxp—y — dup1).
Taking into account (p — 1)! = —1 mod p, and passing to Hz,, we obtain

BP1(x) = fz*p[_d)’pfl —dv,_1] = —fz*p [dyp-1]— fz*p [dvp—1] forv, 1 =1, (up-1).

Since fZ*p [dyp—1] = (x)? by (3.6), it remains to show that fZ*p [dvp—1] = 0. Indeed, if B(x) = 0, then xg € ROH,
up—1 € RH* - RH™, and hv,—; = 0 by the similar argument as in the proof of Theorem 2 (ii). Consequently,
0= fZ"‘p[—hvp,l] = fZ*p [dvp—1]. If B(x) # O, then xo € R™VH, and let dxy = px(. We have that u,, | contains
b’p_l
(2.13), we have that g, (xgjp) =z, ' " and g, (ht', ) is mod p cohomologous to

as a summand, and hv,_| = —hb/p_l. Denoting zo = g¢(xo) and z, = g¢(x() in (R, dj,) where g is given by

i <1 p—i—1 -
Z zo ' —1zp—1zy """, asummand component of d(z, ' ”).
O<i<p

But this component bounds ZOV‘ i —1(zo U 16) -1 Zov‘ P72 hod p that finishes the proof. [

0<i<p—2

Remark 6. When p = 2 the relation d(xg—1 x9) = —2x§ + 2(x(~1X0 + x0~—1x() implies the Adem relation
Sqo(a) = SqlSql (a) in Hz, thought of as the “Kraines formula” (a)2 =da?= BSqi(a).

Example 6. Fix a Hirsch filtered model f : (RH,d,) — A with RH = T (V). Suppose that we are given a single
relation

da=xb, aecy L2 pecylZktl 550 k>1, (3.13)
and deduce the following relations in (RH, d): First, define ¢ € V by

A .
de — ab + Ebvl b, X iseven (3.14)
2ab + Ab—1 b, X\ 1isodd.

When A is odd, denote (cf. (3.3))

Udah = —C, Up2q = C — 2a ~1 b and Uzpp ‘= 2ab —i—()\ - l)b ~1 b
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and obtain
dugq = —a* + AMgg, Vga=C—a~—1b,
dugopp = —attzpp — ta2ph + Mg 2pp = —2a%b — (b — Da(b—1 b) + cb + Aup 2p p,
dupa,p = buzap — Up2ab + Avp2a,p = bc — (¢ —2a—1 b)b + Aup 25,5,
dugap = —auzg b + U2q,ab + AVa 24,6

where v, 2.5 = Vb.2a.b = Up.2b.p = 2up,p - Keeping in mind the fact that d? = 0, there is the following action of the
perturbation 4 on the relations above:

dh*u, . = —1h’c,

dh2ua,2b’}, = —h2C -b— )»hzu;,,y,,;,,

dh*up2ap = b - h*c + h*c - b — A up 2p p,
dh*ug2ap = —a - h*c —2h%ug 4 - b — Ah*vg 24 0,
dhugpap = =P usaq - b — M3va 20 — B2h*ug 20 p.

Below we shall exploit the third equality in list of relations above. First, we have
d <h2uh,2a,h +b— hzc) = —khzub’z},,h.

Suppose that k is a ring such that v divides A and

[tk (@)1 (b)] = 0. (3.15)

By (3.14) one has [tx(ab)] = —[5ch3c], so that h2¢ = 0 mod v above. Denoting [# f (a)] ;= y and [t f (D)] := x, we
have xy = 0 by (3.15). Thus the triple Massey product (x, y, x) is defined in Hy and contains [fx f (busp — up,qb)]
(= —Itx f (hup 4.)]). Obviously, (x)3 is also defined and

Brlx, y, x) = —(x)°

(here B, denotes the Bockstein map associated with 0 — Z,, — Z,, — Z; — 0). Now let p = A = 3 and consider
(3.12) for x. Then

<13
c2 = 2by + xp 1 by, xg? = x, 17 + 2E1 2(x0; X0, X0), uz = brxo — xobj

and
dey = —6x2 4 x; ! ¥+ 21 2(x0; X0, x0) + 3(b1x0 — Xob1).
Since [x0]2 = 0, one has hzbl = 0 and hence

hey = 2(h% + h)by

(for the relations above, see also Fig. 2). In particular, dh’c; = 6h’x;. Let a = yo, b = X0, upp = X
and uppp = xp and set hzcz = —2h2uxO,y0,xO. Furthermore, if we also have h302 = h3”x0,y0,x0 mod 3, then
[t f (xg*)] = —[tic f (hea)] = —[tic f (hitx,yy.x,)] and, consequently,

Pi(x) € (x, y, x). (3.16)

For example, let A = C*(BFy; Z3), the cochain complex of the classifying space BFy4 of the exceptional group
F4. Then equality (3.15) together with (3.16) holds in H (B Fs; Z3). More precisely, let x; € H'(BF4;Z3) be
multiplicative generators in notation of [36] and recall the following relations among them: xgxg = 0 = x4x21,
dxg = X9, 8xp5 = X26; also 'P?’(xg) = xp1 and Pl(le) = x»5; thus 7)1773()(9) = P1(x9) = x5 by an application
of the Adem relation. Thus the knowledge of both H*(B Fy; Z3) and H*(Fy4; Z3) in low degrees enables us to use
the filtered Hirsch model of B F4 to deduce the following: Let a and b be defined in (3.13) by [t23 f(a)] = xg and

[1,, f (B)] = xo. Then [1,,, f (hea)] = [ty f (hup,a,p)] = —x25 and [t f (h*upp,p)] = x26 50 that

(x9)® = —BPi(x9) with P (x9) = (x9, x3, X9).
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Finally, we remark that the both sides of this formula become trivial under the loop suspension map o*
H*(BFy; 73) — H* Y (F4;73) by a general well-known fact about Massey products [23,24] (compare P (i3) for
i3 € H3(K (Z3; 3); Z3)).

3.4. Hochschild cohomology with the G-algebra structure

In this section we assume that k is a field of characteristic zero. Refer to Example 5 and recall that the HGA
structure £ = {Ep 4} p>0,4=0,1 on the Hochschild cochain complex A = C*(P; P) induces an associative product
wg on the bar construction BA and hence the product uj on H*(BA) = Torf(k, k). Since Torf(]k, k) is an
associative algebra, it can be converted into a Lie algebra in the standard way.

Theorem 4. If the Hochschild cohomology H* = H(C®(P; P)) is a free algebra, then the Lie algebra structure on
Tor;4 (k, k) is completely determined by that of the G-algebra H*. Consequently, the product i}, on Torf (k, k) is
commutative if and only if the G-product on H* is trivial.

Proof. For a free algebra H, the module M C V has simple form in the (minimal) Hirsch resolution (RH, d),
i.e.,, M<0* = 0. Indeed, given an odd dimensional multiplicative generator x € H and a representative xo € RCH
of x, the elements x, in the sequence (3.5) can be defined as x, = ((;Tlf;xov patl and hence x, € & for
n > 1. In particular, there is a map of dg algebras (RH,d) — A and hence an isomorphism of dg coalgebras
H*(BA) ~ H*(BH) for a dga A with H = H™*(A) (a free k-algebra H is intrinsically k-formal). Regarding
the filtered Hirsch model (RH, dp,), the perturbation 4 may be non-zero only on 7. More precisely, according to
Example 5 the cohomology class [h(a U2 b)] € H*(RH, dy) is defined by pa * pb € H fora,b € VvO*_ Since
H*(BH) ~ H*(BA) ~ H*(V,dj) (cf. (2.12)), the multiplication %, on H*(BH) is induced by the —-product on
V (cf. Remark 3). Therefore, the Lie bracket on H*(B H) is determined by the bracket

[a,b] =a—1 b — (_1)(|a\+1)(\b|+l)bv1 a

on V. The observation that s~ ![a, b] is cohomologous to s~ h(@Uyb) in V for all a,b € VO* completes the
proof. [

Remark 7. Note that the transgressive component A'" evaluated on the elements a; U, ---Usya, € 7T for a; €
vO* 5 > 3. determines higher order operations on TorA(lk; k) that extend the Lie algebra structure to an L -
algebra structure.

For example, a polynomial algebra P = k[x1, ..., x,] provides the case of H* in the theorem. Indeed, in general,
to calculate the Hochschild cohomology of an algebra P construct a small complex (Cy,(P), d), which is quasi-
isomorphic to C*(P; P) as follows (compare [15]): Fix an ordinary multiplicative resolution p : RP — P with
RP = T(V), view P as an RP-bimodule via p, and let B(p)® : C*(P; P) — C*(RP; P) be a quasi-isomorphism
induced by B(p) : B(RP) — BP. Set (C},(P),d) = (Hom(V, P), d) in which d is defined for f € C}(P) by
df =g.

g@® = Y (=D'p) - f@) o pu).  dx=Y viue v eV, k=1,

I<i<k

vi = (If1+ D(v1l +--- + |vi—1]), and define a chain map x : C},(P) — C*(RP; P) by xf = f,

f()z)’ X € V,
FO=13 DY) f@) - pn), x= w1 vy, v €V =2,
1<i<n

Isomorphism (2.12) implies that x is a homology isomorphism. On the other hand, the —-product on C*(P; P)
induces a —-product on Cy, (P); more precisely, we have that V is a coalgebra with the coproduct A:V>VEV
induced by the standard coproduct of BP and, consequently, Hom(V, P) is endowed with the standard —-product.
When P is polynomial, the minimal V* can be thought of as generated by the iterations of a (commutative)
—1 product [30]; consequently, (V*, A) is an exterior coalgebra. Dually, Vi is an exterior algebra on generators
X1, . . Furthermore, d = 0 and hence H (Cy(P), d) = Cy,(P). Thus the Hochschild cohomology H * i
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isomorphic to the algebra C§, (P) ~ Vi_1 ® P*, which is the tensor product of an exterior algebra and a polynomial
algebra, as required.

3.5. Symmetric Massey products in C*(X; k) and powers in the loop homology H,(2X; k)

Let A, be a dg coalgebra over a field k and let A* = Hom(Ay k) be a dg algebra so that H(A*) =
Hom(H(A,), k). Let

t: H(BA") - Hom(H(2A,). k)),

be the canonical map, where (2A, denotes the cobar construction of the coalgebra A,. Given the suspension
map o* : H*(A*) — H* Y(BA*), let x € H.(A*) and y € H,_1(f2A,), where y is a basis element with
t(c*x)(y) =1 € k,and t(6*x)(y") = 0 for any basis element y’ # y.

Suppose that (x)" is defined for x. Let {a; }o<i < be a defining system of (x)" with ap € A* arepresentative cocycle
of x. Then ap € BA* is a cocycle with [ag] = o*x and {a; }o<i<n lifts to a cocycle a € BA* so that the cohomology
class [a] € H*(BA*) is represented by the y” (the nth-power of y) in H,({2A,) via the map ¢. Then Theorem 2
immediately implies the following:

Theorem 5. Let X be a simply connected space, let k be a field of characteristic zero, and let o, : H (2X; k) —
H,y1(X; k) be the suspension map. If y € H,(2X; k) such that y ¢ Ker oy and y*> # 0, then y" # 0 in H.(2X; k)
foralln > 2.

Finally, recalling the connection between symmetric Massey products and twisting elements in A*, which arise
from the sequences {a;};>0 above, we remark that the observation above relates the existence of twisting elements in
A* with the existence of polynomial generators in H,({2A,).
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