The loop cohomology of a space with the polynomial cohomology algebra

Samson Saneblidze
A. Razmadze Mathematical Institute, I. Javakhishvili Tbilisi State University 6, Tamarashvili st., Tbilisi 0177, GA, United States

Received 8 February 2017; received in revised form 5 July 2017; accepted 18 July 2017
Available online 3 August 2017
To Jim Stasheff on the occasion of his 80th birthday

Abstract

Given a simply connected space X with polynomial cohomology $H^{*}\left(X ; \mathbb{Z}_{2}\right)$, we calculate the loop cohomology algebra $H^{*}\left(\Omega X ; \mathbb{Z}_{2}\right)$ by means of the action of the Steenrod cohomology operation $S q_{1}$ on $H^{*}\left(X ; \mathbb{Z}_{2}\right)$. This calculation uses an explicit construction of the minimal Hirsch filtered model of the cochain algebra $C^{*}\left(X ; \mathbb{Z}_{2}\right)$. As a consequence we obtain that $H^{*}\left(\Omega X ; \mathbb{Z}_{2}\right)$ is the exterior algebra if and only if $S q_{1}$ is multiplicatively decomposable on $H^{*}\left(X ; \mathbb{Z}_{2}\right)$. The last statement in fact contains a converse of a theorem of A. Borel (Switzer, 1975, Theorem 15.60).

© 2017 Ivane Javakhishvili Tbilisi State University. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Keywords: Loop space; Polynomial cohomology; Hirsch algebra; Multiplicative resolution; Steenrod operation

1. Introduction

Let X denote a simply connected topological space. The cohomology $H^{*}(X)$ is considered with coefficients $\mathbb{Z}_{2}=\mathbb{Z} / 2 \mathbb{Z}$ unless otherwise specified explicitly. A. Borel gave a condition for $H^{*}(X)$ to be polynomial in terms of a simple system of generators of the loop space cohomology $H^{*}(\Omega X)$ that are transgressive [1, Theorem 15.60] , [2, p. 88] (see also [3]). This was one of the first nice applications of Leray-Serre spectral sequences [4], and led in particular to calculations of the cohomology of the Eilenberg-MacLane spaces (see [3]). For the converse direction, that is to determine $H^{*}(\Omega X)$ as an algebra for a given X with $H^{*}(X)$ polynomial, the first step is the existence of an additive isomorphism $H^{*}(\Omega X) \approx H^{*}\left(B H^{*}(X)\right)$ where $B H^{*}(X)$ denotes the bar construction of $H^{*}(X)$ (cf. [5]). The module $B H^{*}(X)$ with the shuffle product is a graded differential algebra, but we get no algebra isomorphism above (cf. [6]). In general, a correct product on $B H^{*}(X)$ is induced by higher order operations on the cochain complex $C^{*}(X)$ (see below), but when $H^{*}(X)$ is polynomial we show that these operations reduce to the \smile_{1}-product on $C^{*}(X)$.

[^0]Consequently, the multiplicative structure of $B H^{*}(X)$ is determined by the Steenrod cohomology operation $S q_{1}$ on $H^{*}(X)$. This reduction is beyond a spectral sequence argument.

In this paper we completely calculate the algebra $H^{*}(\Omega X)$ for $H^{*}(X)$ polynomial by means of $S q_{1}$ on $H^{*}(X)$ (Theorem 1) and then establish the criterion for $H^{*}(\Omega X)$ to be exterior (Corollary 1). Namely, given $H^{*}(X)=$ $H\left(C^{*}(X), d\right)$ with the \smile_{1}-product on $C^{*}(X)$, let

$$
S q_{1}: H^{n}(X) \rightarrow H^{2 n-1}(X) \quad[c] \rightarrow\left[c \smile_{1} c\right], c \in C^{n}(X), d c=0 .
$$

Let now $H^{*}(X)=\mathbb{Z}_{2}\left[y_{1}, \ldots, y_{k}, \ldots\right]$ with $\mathcal{Y}=\left\{y_{k}\right\}$ to be a set of polynomial generators. Define a subset $\mathcal{S} \subseteq \mathcal{Y}$ as

$$
\mathcal{S}=\left\{z_{s} \in \mathcal{Y} \mid z_{s} \notin \operatorname{Im} S q_{1} \bmod H^{+} \cdot H^{+}\right\} .
$$

Thus $\mathcal{S}=\mathcal{Y}$ if and only if $S q_{1}\left(y_{k}\right) \in H^{+} \cdot H^{+}$for all k. Let $0 \leq \nu_{i}<\infty$ be the smallest integer such that $S q_{1}^{\left(v_{i}+1\right)}\left(y_{i}\right) \in H^{+} \cdot H^{+}$, where $S q_{1}^{(m)}$ denotes the m-fold composition $S q_{1} \circ \cdots \circ S q_{1}$. The integer v_{i} is referred to as the weak \smile_{1}-height of y_{i}; when the finite integer v_{i} does not exist, we say that y_{i} has the infinite weak \smile_{1}-height $v_{i}=\infty$. (This notion is motivated by the fact that $S q_{1}$ induces a binary \smile_{1}-product on $\left(H^{*}(X), 0\right)$; cf. Remark 1(a).)

Let $\sigma: H^{*}(X) \rightarrow H^{*-1}(\Omega X)$ be the suspension homomorphism.
Theorem 1. Let X be a simply connected space with $H^{*}(X)=\mathbb{Z}_{2}\left[y_{1}, \ldots, y_{k}, \ldots\right]$ and v_{k} to be the weak \smile_{1}-height of y_{k}. Then the algebra $H^{*}(\Omega X)$ is multiplicatively generated by the elements $\bar{z}_{s}=\sigma z_{s}$ satisfying only the relations $\bar{z}_{s}^{m_{s}}=0$ for $m_{s}=2^{v_{s}+1}$ and $\bar{z}_{s_{1}}^{m_{1}}+\cdots+\bar{z}_{s_{r}}^{m_{r}}=0$ for $S q^{\left(n_{1}\right)}\left(z_{s_{1}}\right)+\cdots+S q^{\left(n_{r}\right)}\left(z_{s_{r}}\right) \in H^{+} \cdot H^{+}, m_{i}=2^{n_{i}+1}, n_{i} \leq$ $\nu_{i}, r \geq 2, z_{s_{i}} \in \mathcal{S}$.

Corollary 1. $H^{*}(\Omega X)=\Lambda\left(\bar{y}_{1}, \ldots, \bar{y}_{k}, \ldots\right)$ is the exterior algebra if and only if y_{k} is of zero weak \smile_{1}-height, i.e., $S q_{1}\left(y_{k}\right) \in H^{+} . H^{+}$for all k.

When \mathcal{Y} is chosen such that y_{i} is uniquely determined by the equality $S q_{1}\left(y_{i}\right)=y_{k} \bmod H^{+} \cdot H^{+}$, we get
Corollary 2. $H^{*}(\Omega X)=\mathbb{Z}_{2}\left[\bar{z}_{1}, \ldots, \bar{z}_{s}, \ldots\right]$ is the polynomial algebra if and only if z_{s} is of the infinite weak \smile_{1} height for all s.

Our method of proving the theorem consists of using the filtered Hirsch model ($\left.R H^{*}, d+h\right) \rightarrow C^{*}(X)$ of X [7] (see Section 2). Note that the underlying differential (bi)graded algebra ($R H^{*}, d$) is a non-commutative version of Tate-Jozefiak resolution of the commutative algebra H^{*} [8,9], while h is a perturbation of d similar to [10]. Furthermore, the tensor algebra $R H^{*}=T(V)$ is endowed with higher order operations $E=\left\{E_{p, q}\right\}$ that extend $\smile_{1}-$ product measuring the non-commutativity of the product on $R H^{*}$; and there also is a binary operation \cup_{2} on $R H^{*}$ measuring the non-commutativity of the \smile_{1}-product. In general, by means of ($R H^{*}, d+h$) one can recognize the cohomology $H\left(B C^{*}(X)\right)$ of the bar construction $B C^{*}(X)$ as an algebra. The case of polynomial H^{*} is distinguished because of H^{*} has no multiplicative relations unless that of the commutativity; furthermore, we can equivalently take a small multiplicative resolution $R_{\tau} H^{*}=T\left(V_{\tau}\right)$ in which the Hirsch algebra structure is completely determined by commutative and associative \smile_{1}-product on V_{τ}. This allows an explicit calculation of the algebra $H\left(B C^{*}(X)\right)$, and, consequently, of the loop space cohomology $H^{*}(\Omega X)$ in question.

Obviously the hypothesis of Corollary 1 is satisfied for an evenly graded polynomial algebra $H^{*}(X)$. Note that our method can be in fact applied to an evenly graded polynomial algebra $H^{*}(X ; \mathbb{k})$ for any coefficient ring \mathbb{k} to establish that $H^{*}(\Omega X ; \mathbb{k})$ is exterior. Though, this fact can be also deduced from the Eilenberg-Moore spectral sequence (see, for example, [3]; for further references of spaces with polynomial cohomology rings see also [11,12]).

I wish to thank Jim Stasheff for helpful comments and suggestions. I am also indebted to the referee for a number of helpful comments to improve the exposition.

2. Hirsch resolutions of polynomial algebras

We adopt the notations and terminology of [7] and briefly recall some facts. A Hirsch algebra ($\left.A, d_{A},\left\{E_{p, q}\right\}\right)$ is an associative dga $\left(A, d_{A}\right)$ equipped with multilinear maps

$$
E_{p, q}: A^{\otimes p} \otimes A^{\otimes q} \rightarrow A, p, q \geq 0, p+q>0
$$

satisfying the following conditions:
(i) $\operatorname{deg} E_{p, q}=1-p-q$;
(ii) $E_{1,0}=I d=E_{0,1}$ and $E_{p>1,0}=0=E_{0, q>1}$;
(iii) The homomorphism $E: B A \otimes B A \rightarrow A$ defined by

$$
E\left(\left[\bar{a}_{1}|\cdots| \bar{a}_{p}\right] \otimes\left[\bar{b}_{1}|\cdots| \bar{b}_{q}\right]\right)=E_{p, q}\left(a_{1}, \ldots, a_{p} ; b_{1}, \ldots, b_{q}\right)
$$

is a twisting cochain in the dga $(\operatorname{Hom}(B A \otimes B A, A), \nabla, \smile)$, i.e., $\nabla E=-E \smile E$.
A morphism $f: A \rightarrow B$ between two Hirsch algebras is a dga map f that commutes with $E_{p, q}$ for all p, q. Condition (iii) implies that $\mu_{E}: B A \otimes B A \rightarrow B A$ is a chain map; thus $B A$ is a dg bialgebra; in particular, $\mu_{E_{10}+E_{01}}$ is the shuffle product on $B A$.

For a topological space X, there are operations $E=\left\{E_{p, q}\right\}$ on the cochain complex $C^{*}(X)$ making it into a Hirsch algebra. Note that in the simplicial case one can choose $E_{p, q}=0$ for $q \geq 2$.

A dga $\left(A^{*}, d\right)$ is multialgebra if it is bigraded $A^{n}=\underset{n=i+j}{\oplus} A^{i, j}, i \leq 0, j \geq 0$, and $d=d^{0}+d^{1}+\cdots+d^{n}+\cdots$ with $d^{n}: A^{p, q} \rightarrow A^{p+n, q-n+1}$. A dga A is bigraded via $A^{0, *}=A^{*}$ and $A^{i, *}=0$ for $i \neq 0$; consequently, A is a multialgebra. A multialgebra A is homological if $d^{0}=0$ (hence $d^{1} d^{1}=0$) and

$$
H^{i}\left(\cdots \xrightarrow{d^{1}} A^{i, *} \xrightarrow{d^{1}} A^{i+1, *} \xrightarrow{d^{1}} \cdots \xrightarrow{d^{1}} A^{0, *}\right)=0, \quad i<0 .
$$

For a homological multialgebra the sum $d^{2}+d^{3}+\cdots+d^{n}+\cdots$ is called a perturbation of d^{1}. Furthermore, d^{1} is denoted by d, d^{r} is denoted by h^{r}, and the sum $h^{2}+h^{3}+\cdots+h^{n}+\cdots$ is denoted by h. We sometimes denote $d+h$ by d_{h}.

A multialgebra is quasi-free if it is a tensor algebra over a bigraded \mathbb{k}-module. Given $m \geq 2$, the map $\left.h^{m}\right|_{A^{-m, *}}: A^{-m, *} \rightarrow A^{0, *}$ is referred to as the transgressive component of h and is denoted by $h^{t r}$. A multialgebra A with a Hirsch algebra structure

$$
E_{p, q}: \otimes_{r=1}^{p} A^{i_{r}, k_{r}} \bigotimes \otimes_{n=1}^{q} A^{j_{k}, \ell_{n}} \longrightarrow A^{s-p-q+1, t}
$$

with $(s, t)=\left(i_{(p)}+j_{(q)}, k_{(p)}+\ell_{(q)}\right), p, q \geq 1$, is called Hirsch multialgebra. A multialgebra is quasi-free if it is a tensor algebra over a bigraded \mathbb{k}-module. A quasi-free Hirsch homological multialgebra $\left(A, d+h,\left\{E_{p, q}\right\}\right)$ is a filtered Hirsch algebra if it has the following additional properties:
(i) In $A=T(V)$ a decomposition

$$
V^{*, *}=\mathcal{E}^{*, *} \oplus U^{*, *}
$$

is fixed where $\mathcal{E}^{*, *}=\underset{p, q \geq 1}{\oplus} \mathcal{E}_{p, q}^{<0, *}$ is distinguished by an isomorphism of modules

$$
E_{p, q}: A^{\otimes p} \otimes A^{\otimes q} \xrightarrow{\approx} \mathcal{E}_{p, q} \subset V, \quad p, q \geq 1 ;
$$

(ii) The restriction of the perturbation h to \mathcal{E} has no transgressive components $h^{t r}$, i.e., $\left.h^{t r}\right|_{\mathcal{E}}=0$.

An important example of a filtered Hirsch algebra is $A=\left(R^{*} H^{*}, d,\left\{E_{p, q}\right\}\right)$, an absolute Hirsch resolution of a graded commutative algebra H^{*}. In particular, $R^{*} H^{*}=T(V)$ with

$$
V=\bigoplus_{j, m \geq 0} V^{-j, m}
$$

where $V^{-j, m} \subset R^{-j} H^{m}$. The total degree of $R^{-j} H^{m}$ is the sum $-j+m, d$ is of bidegree $(1,0)$ and $\rho:\left(R^{*} H^{*}, d\right) \rightarrow$ H^{*} is a map of bigraded algebras inducing an isomorphism $\rho^{*}: H^{*}(R H, d) \xrightarrow{\approx} H^{*}$ where H^{*} is bigraded via $H^{0, *}=H^{*}$ and $H^{<0, *}=0$.

Given a Hirsch algebra $\left(A, d_{A},\left\{E_{p, q}\right\}\right)$, a submodule $J \subset A$ is a Hirsch ideal of A if it is an ideal with $E_{p, q}\left(a_{1}, \ldots, a_{p} ; a_{p+1}, \ldots, a_{p+q}\right) \in J$ whenever $a_{i} \in J$ for some i.

Let $\rho_{a}:\left(R_{a}^{*} H^{*}, d\right) \rightarrow H^{*}$ be an absolute Hirsch resolution and $J \subset R_{a}^{*} H^{*}$ be a Hirsch ideal such that $d: J \rightarrow J$ and the quotient map $g: R_{a}^{*} H^{*} \rightarrow R_{a}^{*} H^{*} / J$ is a homology isomorphism. A Hirsch resolution of H^{*} is the Hirsch algebra $R^{*} H^{*}=R_{a}^{*} H^{*} / J$ with a map $\rho: R^{*} H^{*} \rightarrow H^{*}$ such that $\rho_{a}=\rho \circ g$. Thus an absolute Hirsch resolution is a Hirsch resolution by taking $J=0$.

Given a Hirsch algebra $\left(A, d_{A},\left\{E_{p, q}\right\}\right)$ with $H^{*}=H^{*}\left(A, d_{A}\right)$, there is a filtered Hirsch model

$$
f:\left(R^{*} H^{*}, d_{h}\right) \rightarrow\left(A, d_{A}\right),
$$

where $R^{*} H^{*}$ denotes an absolute Hirsch resolution. There is a (commutative) binary operation $a \cup_{2} b$ on $R^{*} H^{*}$ satisfying for basis elements $a, b \in R^{*} H^{*}$ the equality

$$
d\left(a \cup_{2} b\right)= \begin{cases}a \cup_{2} d a+a \smile_{1} a, & a=b, \\ a \smile_{1} d a+d a \smile_{1} a, & d a=b, \\ d a \cup_{2} b+a \cup_{2} d b+a \smile_{1} b+b \smile_{1} a, & \text { otherwise } .\end{cases}
$$

(Thus, the first two cases differ \cup_{2} from the Steenrod \smile_{2}-operation.) In $U \subset V$ we distinguish a submodule $\mathcal{T} \leq-2, * \subset U$ defined by

$$
\mathcal{T} \leq-2, *=\left\{a \cup_{2} b \in R^{*} H^{*} \mid a \cup_{2} b \in U\right\} .
$$

For the sake of minimality of U one can express certain elements $a \cup_{2} b \in R^{*} H^{*}$ in terms of the \smile and $E_{p, q}$ operations. For example, $d a \cup_{2} d a:=a \smile_{1} d a+a \cdot a$, because $d\left(a \smile_{1} d a+a \cdot a\right)=d a \smile_{1} d a$.

When $H^{*}=\mathbb{Z}_{2}\left[y_{1}, \ldots, y_{k}, \ldots\right]$ is polynomial, the module V is much simplified at the cost of U. Namely,

$$
V^{*, *}=\mathcal{E}^{<0, *} \oplus U^{*, *}=\mathcal{E}^{<0, *} \oplus \mathcal{T}^{\leq-2, *} \oplus V^{0, *}
$$

In particular, we have that $R^{0} H^{*}$ is a graded subalgebra in $R^{*} H^{*}$ and $\operatorname{Ker} \rho \cap R^{0} H^{*}$ is an ideal in $R^{0} H^{*}$. Denoting the elements of $\mathcal{V}^{0, *}$ by x_{k}, i.e., $\rho x_{k}=y_{k}$, this ideal is generated by expressions of the form $x_{i} x_{j}+x_{j} x_{i}$ for $i \neq j$; thus, we get

$$
\begin{aligned}
& V^{-1, *}=\mathcal{E}^{-1, *}=\left\langle x_{i} \smile_{1} x_{j} \mid x_{k} \in \mathcal{V}^{0, *}\right\rangle \text { with } \\
& d\left(x_{i} \smile_{1} x_{j}\right)=d\left(x_{j} \smile_{1} x_{i}\right)=x_{i} x_{j}+x_{j} x_{i} \text { for } i \neq j \text { and } d\left(x_{i} \smile_{1} x_{i}\right)=0,
\end{aligned}
$$

while

$$
\begin{array}{r}
\mathcal{T}^{-2, *}=\left\langle x_{i} \cup_{2} x_{j}\left(=x_{j} \cup_{2} x_{i}\right) \mid x_{k} \in \mathcal{V}^{0, *}\right\rangle \text { with } d\left(x_{i} \cup_{2} x_{j}\right)= \\
x_{i} \smile_{1} x_{j}+x_{j} \smile_{1} x_{i} \text { for } i \neq j, \text { and } d\left(x_{i} \cup_{2} x_{i}\right)=x_{i} \smile_{1} x_{i} .
\end{array}
$$

Here, we can minimize further both an absolute Hirsch resolution $R^{*} H^{*}$ and a small Hirsch resolution $R_{\varsigma}^{*} H^{*}$ in [7] to obtain a minimal Hirsch resolution $R_{\tau}^{*} H^{*}$; moreover, we give an explicit construction of $R_{\tau}^{*} H^{*}$ below. Namely, set

$$
R_{\tau}^{*} H^{*}=R^{*} H^{*} / J_{\tau}
$$

where $J_{\tau} \subset R^{*} H^{*}$ is a Hirsch ideal generated by

$$
\begin{aligned}
& \left\{E_{p, q}\left(a_{1}, \ldots, a_{p} ; a_{p+1}, \ldots, a_{p+q}\right), d E_{p, q}\left(a_{1}, \ldots, a_{p} ; a_{p+1}, \ldots, a_{p+q}\right), a \cup_{2} b, d\left(a \cup_{2} b\right) \mid\right. \\
& \quad p+q \geq 3, a \neq b \text { in } \mathcal{V}\}
\end{aligned}
$$

with

$$
\begin{aligned}
& a_{1}, \ldots, a_{p} \in R^{*} H^{*}, \quad a_{p+1} \in V, \quad \text { for } p \geq 1 \text { and } q=1, \\
& a_{1}, \ldots, a_{p+q} \in R^{*} H^{*}, \quad \text { for } p \geq 1 \text { and } q>1 .
\end{aligned}
$$

Because of $d: J_{\tau} \rightarrow J_{\tau}$, we get a Hirsch algebra map $g_{\tau}:\left(R^{*} H^{*}, d\right) \rightarrow\left(R_{\tau}^{*} H^{*}, d\right)$. Let $\rho_{\tau}: R_{\tau}^{*} H^{*} \rightarrow H^{*}$ denote a map of bigraded algebras so that the resolution map $\rho: R^{*} H^{*} \rightarrow H^{*}$ factors as

$$
\rho:\left(R^{*} H^{*}, d\right) \xrightarrow{g_{\tau}}\left(R_{\tau}^{*} H^{*}, d\right) \xrightarrow{\rho_{\tau}} H^{*} .
$$

By definition we have $h: \mathcal{E} \rightarrow \mathcal{E}$; furthermore, because of the transgressive component $h^{t r}$ of h annihilates $a \cup_{2} b$ for $a \neq b$ in \mathcal{V} (cf. [7, Proposition 5]), we get $h: J_{\tau} \rightarrow J_{\tau}$, too. Thus g_{τ} extends to a quasi-isomorphism of Hirsch algebras

$$
g_{\tau}:\left(R^{*} H^{*}, d_{h}\right) \rightarrow\left(R_{\tau}^{*} H^{*}, d_{h}\right),
$$

and, hence, A and $R_{\tau}^{*} H^{*}$ are connected via the diagram

$$
\left(A, d_{A}\right) \stackrel{f}{\longleftarrow}\left(R^{*} H^{*}, d_{h}\right) \xrightarrow{g_{\tau}}\left(R_{\tau}^{*} H^{*}, d_{h}\right) .
$$

The Hirsch algebra $\left(R_{\tau}^{*} H^{*}, d_{h}\right)$ can be described immediately. Namely, $R_{\tau}^{*} H^{*}=T\left(V_{\tau}^{*, *}\right)$ with $V_{\tau}^{*, *}=\left\langle\mathcal{V}_{\tau}^{*, *}\right\rangle$,

$$
\begin{aligned}
& \mathcal{V}_{\tau}=\left\{x_{i}, x_{j}^{\cup_{2} q}, b_{i_{1} \smile} \smile_{1} \cdots \smile_{1} b_{i_{n}} \mid b_{i_{r}} \in\left\{x_{i}, x_{j}^{\cup_{2} q}\right\}, q=2^{m}, m \geq 1, n \geq 2,\right. \\
& \left.\quad x_{k} \in \mathcal{V}_{\tau}^{0, *}, x^{\cup_{2} q}:=x \cup_{2} \cdots \cup_{2} x\right\} .
\end{aligned}
$$

The \smile_{1}-product is commutative and associative on V_{τ} and extended on $R_{\tau}^{*} H^{*}$ by the (left) Hirsch formula

$$
c \smile_{1} a b=\left(c \smile_{1} a\right) b+a\left(c \smile_{1} b\right), \quad a, b, c \in R_{\tau}^{*} H^{*}
$$

and the (right) generalized Hirsch formula

$$
a b \smile_{1} c=\left\{\begin{array}{llll}
a\left(b \smile_{1} c\right)+\left(a \smile_{1} c\right) b, & a, b \in R_{\tau}^{*} H^{*} & \text { and } & c \in\left\{x_{i}, x_{j}{ }^{\cup_{2} q}\right\} \\
a\left(b \smile_{1} c\right)+\left(a \smile_{1} c\right) b & & & q=2^{m}, m \geq 1 \\
+\left(a \smile_{1} c_{1}\right)\left(b \smile_{1} c_{2}\right) & & & \\
+\left(a \smile_{1} c_{2}\right)\left(b \smile_{1} c_{1}\right), & a, b \in R_{\tau}^{*} H^{*} & \text { and } & c=c_{1} \smile_{1} c_{2} \in V_{\tau}
\end{array}\right.
$$

The differential d on $R_{\tau}^{*} H^{*}$ is defined by

$$
d x_{k}=0, \quad d\left(a \smile_{1} b\right)=d a \smile_{1} b+a \smile_{1} d b+a b+b a \quad \text { and } \quad d\left(a \cup_{2} a\right)=a \smile_{1} a,
$$

while the perturbation h by

$$
h x_{k}=0, \quad h\left(a \smile_{1} b\right)=h a \smile_{1} b+a \smile_{1} h b
$$

and

$$
h\left(x_{k} \cup_{2} x_{k}\right)=h^{t r}\left(x_{k} \cup_{2} x_{k}\right)=b_{k} \quad \text { with } \quad b_{k} \in R_{\tau}^{0} H^{*} \quad \text { defined by } \quad \rho_{\tau} b_{k}=S q_{1}\left(y_{k}\right)
$$

Note that the value of h on $x_{j}{ }^{\cup} 2^{2^{m}}$ for $m>1$ may be non-zero (see Remark 1(b)). In particular, denoting

$$
b_{k, 1}:=b_{k}, \quad b_{k, j+1}:=h\left(b_{k, j} \cup_{2} b_{k, j}\right), j \geq 1,
$$

and

$$
c_{0}=x_{k} \cup_{2} x_{k}, \quad c_{j}=x_{k}^{\smile 1^{2^{j}}} \smile_{1} c_{j-1}+c_{j-1} \smile_{1} b_{k, j}+b_{k, j} \cup_{2} b_{k, j}, j \geq 1,
$$

one gets

$$
\begin{equation*}
d_{h}\left(c_{m-1}\right)=x_{k}^{\breve{-1} 2^{m}}+b_{k, m} \bmod R_{\tau} H^{+} \cdot R_{\tau} H^{+}, m \geq 1, \text { with } \rho_{\tau} b_{k, m}=S q_{1}^{(m)}\left(y_{k}\right) \tag{2.1}
\end{equation*}
$$

To ensure that $\rho_{\tau}:\left(R_{\tau}^{*} H^{*}, d\right) \rightarrow H^{*}$ is a multiplicative resolution of H^{*}, it suffices to verify the following.
Proposition 1. The chain complex $\left(R_{\tau}^{*} H^{*}, d\right)$ is acyclic in the negative resolution degrees, i.e., $H^{i, *}\left(R_{\tau}^{i} H^{*}, d\right)=$ $0, i<0$.

Proof. First observe that as a cochain complex $\operatorname{Ker} \rho_{\tau}$ can be decomposed via $\left(\operatorname{Ker} \rho_{\tau}, d\right)=(A, d) \oplus(B, d)$ in which $(A, d)=\oplus(A(n), d), n \geq 2, A(n)$ has a basis consisting of all monomials formed by the \smile and \smile_{1} products evaluated on generators $x_{i_{1}}, \ldots, x_{i_{n}} \in V_{\tau}^{0, *}$ with distinct x_{i} 's and B has a basis consisting of the other monomials in $\operatorname{Ker} \rho_{\tau}$. In particular, $(A(n), d)$ can be identified with the cellular chains of the permutohedron P_{n} (cf. [13]); thus A is acyclic and a chain contracting homotopy $s_{A}: A \rightarrow A$ can be chosen. To see that B is also acyclic, define a map $s_{B}: B \rightarrow B$ of degree -1 as follows. For $b a, a c, b a c \in B$ with $a \in A$, let $s_{B}(b a)=b s_{A}(a), s_{B}(a c)=s_{A}(a) c, s_{B}(b a c)=b s_{A}(a) c$; otherwise, for $b \smile_{1} b$ and $b \smile_{1} b \smile_{1} c$ with $b, c \in V_{\tau}$, let $s_{B}\left(b \smile_{1} b\right)=b \cup_{2} b$ and $s_{B}\left(b \smile_{1} b \smile_{1} c\right)=b \cup_{2} b \smile_{1} c$, and then for a monomial $u=u_{1} \cdots u_{m} \in B$, set

$$
s_{B}(u)= \begin{cases}u_{1} \cdots u_{i-1} \cdot s_{B}\left(u_{i}\right) \cdot u_{i+1} \cdots u_{m}, & u_{i} \in\left\{b \smile_{1} b, b \smile_{1} b \smile_{1} c\right\} \text { and } \\ 0, & u_{j} \notin\left\{b \smile_{1} b, b \smile_{1} b \smile_{1} c\right\}, 1 \leq j<i, \\ \text { otherwise. }\end{cases}
$$

Then for each element $b \in B$ there is an integer $n(b) \geq 1$ such that $n(b)$ th-iteration of the operator $s_{B} d+d s_{B}+I d$: $B \rightarrow B$ evaluated on b is zero, i.e., $\left(s_{B} d+d s_{B}+I d\right)^{\overline{(n}(b))}(b)=0$ as desired.

3. Proof of Theorem 1

Given the Hirsch algebra $\left(C^{*}(X), d_{C},\left\{E_{p, q}\right\}\right)$, there is an algebra isomorphism [14,15]

$$
H^{*}(\Omega X) \approx H\left(B C^{*}(X), d_{B C}, \mu_{E}\right)
$$

(We assume $C^{*}(X)=C^{*}\left(\operatorname{Sing}^{1} X\right) / C^{>0}(\operatorname{Sing} x)$, in which $\operatorname{Sing}^{1} X \subset \operatorname{Sing} X$ is the Eilenberg 1 -subcomplex generated by the singular simplices that send the 1 -skeleton of the standard n-simplex Δ^{n} to the base point x of X.)

Proposition 2. A morphism $g: A \rightarrow A^{\prime}$ of Hirsch algebras induces a Hopf dga map of the bar constructions

$$
B g: B A \rightarrow B A^{\prime}
$$

and if g is a homology isomorphism, so is $B g$.
Proof. The proof is standard by using a spectral sequence comparison argument.
Denote $\bar{V}_{\tau}=s^{-1}\left(V_{\tau}^{>0}\right) \oplus \mathbb{Z}_{2}$ and define the differential $\bar{d}_{h}:=\bar{d}+\bar{h}$ on \bar{V}_{τ} by the restriction of $d+h$ to V_{τ} to obtain the cochain complex $\left(\bar{V}_{\tau}, \bar{d}_{h}\right)$. Let $\psi: B\left(R_{\tau} H\right) \rightarrow \overline{R_{\tau} H} \rightarrow \bar{V}_{\tau}$ be the standard projection of cochain complexes. We introduce a product on \bar{V}_{τ} so that ψ becomes a map of dga's. Namely, for $\bar{a}, \bar{b} \in \bar{V}_{\tau}$ define

$$
\bar{a} \bar{b}=\overline{a \smile_{1} b} \text { with } \bar{a} 1=1 \bar{a}=\bar{a}
$$

Then we get the following sequence of algebra isomorphisms

$$
H\left(B C^{*}(X), d_{B C}, \mu_{E}\right) \underset{\approx}{B f^{*}} H\left(B\left(R H^{*}\right), d_{B(R H)}, \mu_{E}\right) \xrightarrow[\approx]{B B_{\tau}^{*}} H\left(B\left(R_{\tau} H^{*}\right), d_{B\left(R_{\tau} H\right)}, \mu_{E_{\tau}}\right) \xrightarrow[\approx]{\psi^{*}} H\left(\bar{V}_{\tau}, \bar{d}_{h}\right),
$$

where the first two isomorphisms are by Proposition 2, while the third isomorphism (additively) is a consequence of a general fact about tensor algebras [16] (see also [5]). Thus the calculation of the algebra $H^{*}(\Omega X)$ reduces to that of $H^{*}\left(\bar{V}_{\tau}, \bar{d}_{h}\right)$. In particular, $\left[\bar{x}_{k}\right]=\sigma\left(y_{k}\right) \in H^{*}(\Omega X)$. We have that \bar{h} may be non-trivial only on a basis element of the form

$$
s^{-1}\left(x_{k} \cup_{2 q}\right) \text { and } s^{-1}\left(x_{k} \cup_{2 q} \smile_{1} a\right), \text { some } a \in V_{\tau}, q=2^{m}, m \geq 1 .
$$

By definition $\bar{x}_{k}^{q}=s^{-1}\left(x_{k}^{\checkmark}{ }^{\sim} q\right), q=2^{m}$, and taking into account (2.1), the cohomology algebra $H^{*}\left(\bar{V}_{\tau}, \bar{d}_{h}\right)$ is as desired.

Remark 1. (a) Refer to Example 4 from [7] and recall that there is a canonical Hirsch algebra structure $S q=\left\{S q_{p, q}\right\}$ on $H^{*}(X)$ determined by $S q_{1}$. The isomorphism $H^{*}(\Omega X) \approx H^{*}\left(B H^{*}(X)\right)$ from the introduction converts into an algebra one when $B H^{*}(X)$ is endowed with the product $\mu_{S q}$. Details are left to the interested reader.
(b) In $\left(\bar{V}_{\tau}, \bar{d}_{h}\right)$ the transgressive terms $\bar{h}^{t r} s^{-1}\left(x_{i}^{U}{ }^{U}\right)$ detect the Symmetric Massey products $\left\langle\sigma\left(y_{i}\right)\right\rangle^{q} \in H^{*}(\Omega X)$ for $q=2^{m}, y_{i} \in H^{*}(X)$, or, in general, Stasheff's A_{∞}-algebra structure on $H^{*}(\Omega X)$ (cf. [17]). A question arises what else other than the action of $S q_{1}$ on $H^{*}(X)$ is needed to calculate this structure.

Acknowledgments

This research described in this publication was made possible in part by the grant GNF/ST06/3-007 of the Georgian National Science Foundation.

References

[1] R.M. Switzer, Algebraic Topology -Homotopy and Homology, Springer-Verlag, 1975.
[2] R.E. Mosher, M.C. Tangora, Cohomology Operations and Applications in Homotopy Theory, Harper and Row Publ, 1968.
[3] J. McCleary, A User'S Guide To Spectral Sequences, second ed., Cambridge University Press, 2001.
[4] J.-P. Serre, Homologie singulière des espaces fibrés. Applications, Ann. of Math. 54 (1951) 425-505.
[5] D. Husemoller, J.C. Moore, J. Stasheff, Differential homological algebra and homogeneous spaces, J. Pure Appl. Algebra 5 (1974) 113-185.
[6] A. Prouté, Un contre-example à la géométricité du shuffle-coproduit de la cobar-construction, C. R. Acad. Sci. Paris I 298 (1984) 31-34.
[7] S. Saneblidze, Filtered Hirsch algebras, Trans. R.M.I. 170 (2016) 114-136.
[8] J. Tate, Homology of noetherian rings and local rings, Illinois J. Math. 1 (1957) 14-27.
[9] J.T. Jozefiak, Tate resolutions for commutative graded algebras over a local ring, Fund. Math. 74 (1972) 209-231.
[10] S. Halperin, J. Stasheff, Obstructions to homotopy equivalences, Adv. Math. 32 (1979) 233-279.
[11] D. Notbohm, in: I.M. James (Ed.), Classifying Spaces of Compact Lie Groups and Finite Loop Spaces, in: Handbook of Algebraic Topology, North-Holland, 1995 (Chapter 21).
[12] K.K.S. Andersen, J. Grodal, The steenrod problem of realizing polynomial cohomology rings, J. Topol. 1 (2008) $460-747$.
[13] S. Saneblidze, On the homotopy classification of maps, J. Homotopy Relat. Struct. 4 (2009) 347-357.
[14] H.J. Baues, The cobar construction as a Hopf algebra, Invent. Math. 132 (1998) 467-489.
[15] T. Kadeishvili, S. Saneblidze, A cubical model of a fibration, J. Pure Appl. Algebra 196 (2005) 203-228.
[16] Y. Felix, S. Halperin, J.-C. Thomas, Adams' cobar equivalence, Trans. Amer. Math. Soc. 329 (1992) 531-549.
[17] T. Kadeishvili, On the homology theory of fibre spaces, Russian Math. Surveys 35 (1980) 131-138.

[^0]: E-mail address: sane@rmi.ge.
 Peer review under responsibility of Journal Transactions of A. Razmadze Mathematical Institute.

