

Available online at www.sciencedirect.com

Transactions of A. Razmadze Mathematical Institute

Transactions of A. Razmadze Mathematical Institute 171 (2017) 389-395

www.elsevier.com/locate/trmi

Original article

The loop cohomology of a space with the polynomial cohomology algebra

Samson Saneblidze

A. Razmadze Mathematical Institute, I. Javakhishvili Tbilisi State University 6, Tamarashvili st., Tbilisi 0177, GA, United States

Received 8 February 2017; received in revised form 5 July 2017; accepted 18 July 2017 Available online 3 August 2017 To Jim Stasheff on the occasion of his 80th birthday

Abstract

Given a simply connected space X with polynomial cohomology $H^*(X; \mathbb{Z}_2)$, we calculate the loop cohomology algebra $H^*(\Omega X; \mathbb{Z}_2)$ by means of the action of the Steenrod cohomology operation Sq_1 on $H^*(X; \mathbb{Z}_2)$. This calculation uses an explicit construction of the minimal Hirsch filtered model of the cochain algebra $C^*(X; \mathbb{Z}_2)$. As a consequence we obtain that $H^*(\Omega X; \mathbb{Z}_2)$ is the exterior algebra if and only if Sq_1 is multiplicatively decomposable on $H^*(X; \mathbb{Z}_2)$. The last statement in fact contains a converse of a theorem of A. Borel (Switzer, 1975, Theorem 15.60).

© 2017 Ivane Javakhishvili Tbilisi State University. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Keywords: Loop space; Polynomial cohomology; Hirsch algebra; Multiplicative resolution; Steenrod operation

1. Introduction

Let X denote a simply connected topological space. The cohomology $H^*(X)$ is considered with coefficients $\mathbb{Z}_2 = \mathbb{Z}/2\mathbb{Z}$ unless otherwise specified explicitly. A. Borel gave a condition for $H^*(X)$ to be polynomial in terms of *a simple system of generators* of the loop space cohomology $H^*(\Omega X)$ that are transgressive [1, Theorem 15.60], [2, p. 88] (see also [3]). This was one of the first nice applications of Leray–Serre spectral sequences [4], and led in particular to calculations of the cohomology of the Eilenberg–MacLane spaces (see [3]). For the converse direction, that is to determine $H^*(\Omega X)$ as an algebra for a given X with $H^*(X)$ polynomial, the first step is the existence of an additive isomorphism $H^*(\Omega X) \approx H^*(BH^*(X))$ where $BH^*(X)$ denotes the bar construction of $H^*(X)$ (cf. [5]). The module $BH^*(X)$ with the shuffle product is a graded differential algebra, but we get no algebra isomorphism above (cf. [6]). In general, a correct product on $BH^*(X)$ is induced by higher order operations on the cochain complex $C^*(X)$ (see below), but when $H^*(X)$ is polynomial we show that these operations reduce to the \smile_1 -product on $C^*(X)$.

E-mail address: sane@rmi.ge.

Peer review under responsibility of Journal Transactions of A. Razmadze Mathematical Institute.

http://dx.doi.org/10.1016/j.trmi.2017.07.002

^{2346-8092/© 2017} Ivane Javakhishvili Tbilisi State University. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Consequently, the multiplicative structure of $BH^*(X)$ is determined by the Steenrod cohomology operation Sq_1 on $H^*(X)$. This reduction is beyond a spectral sequence argument.

In this paper we completely calculate the algebra $H^*(\Omega X)$ for $H^*(X)$ polynomial by means of Sq_1 on $H^*(X)$ (Theorem 1) and then establish the criterion for $H^*(\Omega X)$ to be exterior (Corollary 1). Namely, given $H^*(X) = H(C^*(X), d)$ with the \smile_1 -product on $C^*(X)$, let

$$Sq_1: H^n(X) \to H^{2n-1}(X) \ [c] \to [c \smile_1 c], \ c \in C^n(X), dc = 0.$$

Let now $H^*(X) = \mathbb{Z}_2[y_1, \dots, y_k, \dots]$ with $\mathcal{Y} = \{y_k\}$ to be a set of polynomial generators. Define a subset $S \subseteq \mathcal{Y}$ as

$$\mathcal{S} = \{ z_s \in \mathcal{Y} \mid z_s \notin \operatorname{Im} Sq_1 \mod H^+ \cdot H^+ \}.$$

Thus $S = \mathcal{Y}$ if and only if $Sq_1(y_k) \in H^+ \cdot H^+$ for all k. Let $0 \le v_i < \infty$ be the smallest integer such that $Sq_1^{(v_i+1)}(y_i) \in H^+ \cdot H^+$, where $Sq_1^{(m)}$ denotes the *m*-fold composition $Sq_1 \circ \cdots \circ Sq_1$. The integer v_i is referred to as the *weak* \smile_1 -height of y_i ; when the finite integer v_i does not exist, we say that y_i has the infinite weak \smile_1 -height $v_i = \infty$. (This notion is motivated by the fact that Sq_1 induces a binary \smile_1 -product on $(H^*(X), 0)$; cf. Remark 1(a).)

Let $\sigma : H^*(X) \to H^{*-1}(\Omega X)$ be the suspension homomorphism.

Theorem 1. Let X be a simply connected space with $H^*(X) = \mathbb{Z}_2[y_1, \ldots, y_k, \ldots]$ and v_k to be the weak \smile_1 -height of y_k . Then the algebra $H^*(\Omega X)$ is multiplicatively generated by the elements $\overline{z}_s = \sigma z_s$ satisfying only the relations $\overline{z}_{ss}^{m_s} = 0$ for $m_s = 2^{v_s+1}$ and $\overline{z}_{s_1}^{m_1} + \cdots + \overline{z}_{s_r}^{m_r} = 0$ for $Sq^{(n_1)}(z_{s_1}) + \cdots + Sq^{(n_r)}(z_{s_r}) \in H^+ \cdot H^+$, $m_i = 2^{n_i+1}$, $n_i \leq v_i$, $r \geq 2$, $z_{s_i} \in S$.

Corollary 1. $H^*(\Omega X) = \Lambda(\bar{y}_1, \dots, \bar{y}_k, \dots)$ is the exterior algebra if and only if y_k is of zero weak \smile_1 -height, *i.e.*, $Sq_1(y_k) \in H^+ \cdot H^+$ for all k.

When \mathcal{Y} is chosen such that y_i is uniquely determined by the equality $Sq_1(y_i) = y_k \mod H^+ \cdot H^+$, we get

Corollary 2. $H^*(\Omega X) = \mathbb{Z}_2[\bar{z}_1, \ldots, \bar{z}_s, \ldots]$ is the polynomial algebra if and only if z_s is of the infinite weak \smile_1 -height for all s.

Our method of proving the theorem consists of using the *filtered Hirsch* model $(RH^*, d + h) \rightarrow C^*(X)$ of X [7] (see Section 2). Note that the underlying differential (bi)graded algebra (RH^*, d) is a non-commutative version of Tate–Jozefiak resolution of the commutative algebra H^* [8,9], while *h* is a perturbation of *d* similar to [10]. Furthermore, the tensor algebra $RH^* = T(V)$ is endowed with higher order operations $E = \{E_{p,q}\}$ that extend \smile_1 product measuring the non-commutativity of the product on RH^* ; and there also is a binary operation \cup_2 on RH^* measuring the non-commutativity of the \smile_1 -product. In general, by means of $(RH^*, d + h)$ one can recognize the cohomology $H(BC^*(X))$ of the bar construction $BC^*(X)$ as an algebra. The case of polynomial H^* is distinguished because of H^* has no multiplicative relations unless that of the commutativity; furthermore, we can equivalently take a small multiplicative resolution $R_{\tau}H^* = T(V_{\tau})$ in which the Hirsch algebra structure is completely determined by commutative and associative \smile_1 -product on V_{τ} . This allows an explicit calculation of the algebra $H(BC^*(X))$, and, consequently, of the loop space cohomology $H^*(\Omega X)$ in question.

Obviously the hypothesis of Corollary 1 is satisfied for an evenly graded polynomial algebra $H^*(X)$. Note that our method can be in fact applied to an evenly graded polynomial algebra $H^*(X; \Bbbk)$ for any coefficient ring \Bbbk to establish that $H^*(\Omega X; \Bbbk)$ is exterior. Though, this fact can be also deduced from the Eilenberg–Moore spectral sequence (see, for example, [3]; for further references of spaces with polynomial cohomology rings see also [11,12]).

I wish to thank Jim Stasheff for helpful comments and suggestions. I am also indebted to the referee for a number of helpful comments to improve the exposition.

2. Hirsch resolutions of polynomial algebras

We adopt the notations and terminology of [7] and briefly recall some facts. A Hirsch algebra $(A, d_A, \{E_{p,q}\})$ is an associative dga (A, d_A) equipped with multilinear maps

$$E_{p,q}: A^{\otimes p} \otimes A^{\otimes q} \to A, \ p,q \ge 0, \ p+q > 0,$$

satisfying the following conditions:

- (i) $\deg E_{p,q} = 1 p q;$
- (ii) $E_{1,0} = Id = E_{0,1}$ and $E_{p>1,0} = 0 = E_{0,q>1}$;
- (iii) The homomorphism $E: BA \otimes BA \rightarrow A$ defined by

$$E\left(\left[\bar{a}_{1}|\cdots|\bar{a}_{p}\right]\otimes\left[\bar{b}_{1}|\cdots|\bar{b}_{q}\right]\right)=E_{p,q}(a_{1},\ldots,a_{p};b_{1},\ldots,b_{q})$$

is a twisting cochain in the dga $(Hom(BA \otimes BA, A), \nabla, \smile)$, i.e., $\nabla E = -E \smile E$.

A morphism $f: A \to B$ between two Hirsch algebras is a dga map f that commutes with $E_{p,q}$ for all p,q. Condition (iii) implies that $\mu_E : BA \otimes BA \to BA$ is a chain map; thus BA is a dg bialgebra; in particular, $\mu_{E_{10}+E_{01}}$ is the shuffle product on BA.

For a topological space X, there are operations $E = \{E_{p,q}\}$ on the cochain complex $C^*(X)$ making it into a Hirsch

algebra. Note that in the simplicial case one can choose $E_{p,q} = 0$ for $q \ge 2$. A dga (A^*, d) is multialgebra if it is bigraded $A^n = \bigoplus_{\substack{n=i+j \\ n=i+j}} A^{i,j}$, $i \le 0$, $j \ge 0$, and $d = d^0 + d^1 + \dots + d^n + \dots$ with $d^n : A^{p,q} \to A^{p+n,q-n+1}$. A dga A is bigraded via $A^{0,*} = A^*$ and $A^{i,*} = 0$ for $i \ne 0$; consequently, A is a multialgebra. A multialgebra A is homological if $d^0 = 0$ (hence $d^1d^1 = 0$) and

$$H^{i}(\cdots \xrightarrow{d^{1}} A^{i,*} \xrightarrow{d^{1}} A^{i+1,*} \xrightarrow{d^{1}} \cdots \xrightarrow{d^{1}} A^{0,*}) = 0, \quad i < 0.$$

For a homological multialgebra the sum $d^2 + d^3 + \cdots + d^n + \cdots$ is called a perturbation of d^1 . Furthermore, d^1 is denoted by d, d^r is denoted by h^r, and the sum $h^2 + h^3 + \cdots + h^n + \cdots$ is denoted by h. We sometimes denote d + hby d_h .

A multialgebra is quasi-free if it is a tensor algebra over a bigraded k-module. Given $m \ge 2$, the map $h^m|_{A^{-m,*}}: A^{-m,*} \to A^{0,*}$ is referred to as the transgressive component of h and is denoted by h^{tr} . A multialgebra \overline{A} with a Hirsch algebra structure

$$E_{p,q}: \otimes_{r=1}^p A^{i_r,k_r} \bigotimes \otimes_{n=1}^q A^{j_k,\ell_n} \longrightarrow A^{s-p-q+1,t}$$

with $(s, t) = (i_{(p)} + j_{(q)}, k_{(p)} + \ell_{(q)}), p, q \ge 1$, is called Hirsch multialgebra. A multialgebra is quasi-free if it is a tensor algebra over a bigraded k-module. A quasi-free Hirsch homological multialgebra $(A, d+h, \{E_{p,q}\})$ is a filtered Hirsch algebra if it has the following additional properties:

(i) In A = T(V) a decomposition

$$V^{*,*} = \mathcal{E}^{*,*} \oplus U^{*,*}$$

is fixed where $\mathcal{E}^{*,*} = \bigoplus_{p,q \ge 1} \mathcal{E}_{p,q}^{<0,*}$ is distinguished by an isomorphism of modules

$$E_{p,q}: A^{\otimes p} \otimes A^{\otimes q} \xrightarrow{\approx} \mathcal{E}_{p,q} \subset V, \ p,q \ge 1;$$

(ii) The restriction of the perturbation h to \mathcal{E} has no transgressive components h^{tr} , i.e., $h^{tr}|_{\mathcal{E}} = 0$.

An important example of a filtered Hirsch algebra is $A = (R^*H^*, d, \{E_{p,q}\})$, an absolute Hirsch resolution of a graded commutative algebra H^* . In particular, $R^*H^* = T(V)$ with

$$V = \bigoplus_{j,m \ge 0} V^{-j,m}$$

where $V^{-j,m} \subset R^{-j}H^m$. The total degree of $R^{-j}H^m$ is the sum -j+m, d is of bidegree (1, 0) and $\rho: (R^*H^*, d) \rightarrow (R^*H^*, d)$ H^* is a map of bigraded algebras inducing an isomorphism ρ^* : $H^*(RH, d) \xrightarrow{\approx} H^*$ where H^* is bigraded via $H^{0,*} = H^*$ and $H^{<0,*} = 0$.

Given a Hirsch algebra $(A, d_A, \{E_{p,q}\})$, a submodule $J \subset A$ is a *Hirsch ideal* of A if it is an ideal with $E_{p,q}(a_1, \ldots, a_p; a_{p+1}, \ldots, a_{p+q}) \in J$ whenever $a_i \in J$ for some *i*.

Let $\rho_a: (R_a^*H^*, d) \to H^*$ be an absolute Hirsch resolution and $J \subset R_a^*H^*$ be a Hirsch ideal such that $d: J \to J$ and the quotient map $g: R_a^* H^* \to R_a^* H^*/J$ is a homology isomorphism. A Hirsch resolution of H^* is the Hirsch algebra $R^*H^* = R_a^*H^*/J$ with a map $\rho: R^*H^* \to H^*$ such that $\rho_a = \rho \circ g$. Thus an absolute Hirsch resolution is a Hirsch resolution by taking J = 0.

Given a Hirsch algebra $(A, d_A, \{E_{p,q}\})$ with $H^* = H^*(A, d_A)$, there is a filtered Hirsch model

$$f: (R^*H^*, d_h) \to (A, d_A),$$

where R^*H^* denotes an absolute Hirsch resolution. There is a (commutative) binary operation $a \cup_2 b$ on R^*H^* satisfying for basis elements $a, b \in R^*H^*$ the equality

$$d(a\cup_{2}b) = \begin{cases} a \cup_{2} da + a \smile_{1} a, & a = b, \\ a \smile_{1} da + da \smile_{1} a, & da = b, \\ da \cup_{2} b + a \cup_{2} db + a \smile_{1} b + b \smile_{1} a, & \text{otherwise} \end{cases}$$

(Thus, the first two cases differ \cup_2 from the Steenrod \sim_2 -operation.) In $U \subset V$ we distinguish a submodule $\mathcal{T}^{\leq -2,*} \subset U$ defined by

$$\mathcal{T}^{\leq -2,*} = \{ a \cup_2 b \in R^* H^* \, | \, a \cup_2 b \in U \}.$$

For the sake of minimality of U one can express certain elements $a \cup_2 b \in R^*H^*$ in terms of the \smile and $E_{p,q}$ operations. For example, $da \cup_2 da := a \smile_1 da + a \cdot a$, because $d(a \smile_1 da + a \cdot a) = da \smile_1 da$.

When $H^* = \mathbb{Z}_2[y_1, \ldots, y_k, \ldots]$ is polynomial, the module V is much simplified at the cost of U. Namely,

$$V^{*,*} = \mathcal{E}^{<0,*} \oplus U^{*,*} = \mathcal{E}^{<0,*} \oplus \mathcal{T}^{\le -2,*} \oplus V^{0,*}.$$

In particular, we have that R^0H^* is a graded subalgebra in R^*H^* and Ker $\rho \cap R^0H^*$ is an ideal in R^0H^* . Denoting the elements of $\mathcal{V}^{0,*}$ by x_k , i.e., $\rho x_k = y_k$, this ideal is generated by expressions of the form $x_i x_j + x_j x_i$ for $i \neq j$; thus, we get

$$V^{-1,*} = \mathcal{E}^{-1,*} = \langle x_i \smile_1 x_j | x_k \in \mathcal{V}^{0,*} \rangle \text{ with} d(x_i \smile_1 x_j) = d(x_j \smile_1 x_i) = x_i x_j + x_j x_i \text{ for } i \neq j \text{ and } d(x_i \smile_1 x_i) = 0,$$

while

$$\mathcal{T}^{-2,*} = \langle x_i \cup_2 x_j \ (= x_j \cup_2 x_i) \ | \ x_k \in \mathcal{V}^{0,*} \rangle \text{ with } d(x_i \cup_2 x_j) = x_i \smile_1 x_j + x_j \smile_1 x_i \text{ for } i \neq j, \text{ and } d(x_i \cup_2 x_i) = x_i \smile_1 x_i.$$

Here, we can minimize further both an absolute Hirsch resolution R^*H^* and a small Hirsch resolution $R^*_{5}H^*$ in [7] to obtain a *minimal* Hirsch resolution $R^*_{\tau}H^*$; moreover, we give an explicit construction of $R^*_{\tau}H^*$ below. Namely, set

$$R^*_{\tau}H^* = R^*H^*/J_{\tau}$$

where $J_{\tau} \subset R^* H^*$ is a Hirsch ideal generated by

$$\left\{ E_{p,q}(a_1, \dots, a_p; a_{p+1}, \dots, a_{p+q}), \, dE_{p,q}(a_1, \dots, a_p; a_{p+1}, \dots, a_{p+q}), \, a \cup_2 b, \, d(a \cup_2 b) | \\ p+q \ge 3, \, a \ne b \text{ in } \mathcal{V} \right\}$$

with

$$a_1, \dots, a_p \in R^*H^*, \quad a_{p+1} \in V, \text{ for } p \ge 1 \text{ and } q = 1, a_1, \dots, a_{p+q} \in R^*H^*, \quad \text{for } p \ge 1 \text{ and } q > 1.$$

Because of $d: J_{\tau} \to J_{\tau}$, we get a Hirsch algebra map $g_{\tau}: (R^*H^*, d) \to (R^*_{\tau}H^*, d)$. Let $\rho_{\tau}: R^*_{\tau}H^* \to H^*$ denote a map of bigraded algebras so that the resolution map $\rho: R^*H^* \to H^*$ factors as

$$\rho: (R^*H^*, d) \xrightarrow{g_{\tau}} (R^*_{\tau}H^*, d) \xrightarrow{\rho_{\tau}} H^*$$

By definition we have $h : \mathcal{E} \to \mathcal{E}$; furthermore, because of the transgressive component h^{tr} of h annihilates $a \cup_2 b$ for $a \neq b$ in \mathcal{V} (cf. [7, Proposition 5]), we get $h : J_{\tau} \to J_{\tau}$, too. Thus g_{τ} extends to a quasi-isomorphism of Hirsch algebras

$$g_{\tau}: (R^*H^*, d_h) \rightarrow (R^*_{\tau}H^*, d_h),$$

and, hence, A and $R^*_{\tau}H^*$ are connected via the diagram

$$(A, d_A) \xleftarrow{f} (R^*H^*, d_h) \xrightarrow{g_{\tau}} (R^*_{\tau}H^*, d_h).$$

392

The Hirsch algebra $(R_{\tau}^*H^*, d_h)$ can be described immediately. Namely, $R_{\tau}^*H^* = T(V_{\tau}^{*,*})$ with $V_{\tau}^{*,*} = \langle \mathcal{V}_{\tau}^{*,*} \rangle$,

$$\mathcal{V}_{\tau} = \left\{ x_i, \ x_j^{\cup_2 q}, \ b_{i_1} \smile_1 \cdots \smile_l b_{i_n} \mid b_{i_r} \in \{x_i, \ x_j^{\cup_2 q}\}, \ q = 2^m, \ m \ge 1, \ n \ge 2, \\ x_k \in \mathcal{V}_{\tau}^{0,*}, \ x^{\cup_2 q} := x \cup_2 \cdots \cup_2 x \right\}.$$

The \sim_1 -product is commutative and associative on V_τ and extended on $R^+_\tau H^*$ by the (left) Hirsch formula

$$c \sim_1 ab = (c \sim_1 a)b + a(c \sim_1 b),$$
 $a, b, c \in R^*_{\tau} H^*$

and the (right) generalized Hirsch formula

$$ab \sim_1 c = \begin{cases} a(b \sim_1 c) + (a \sim_1 c)b, & a, b \in R_\tau^* H^* \text{ and } c \in \{x_i, x_j^{\cup 2q}\}, \\ q = 2^m, m \ge 1, \end{cases}$$
$$a(b \sim_1 c) + (a \sim_1 c)b \\ + (a \sim_1 c_1)(b \sim_1 c_2) \\ + (a \sim_1 c_2)(b \sim_1 c_1), & a, b \in R_\tau^* H^* \text{ and } c = c_1 \sim_1 c_2 \in V_\tau$$

The differential d on $R^*_{\tau}H^*$ is defined by

$$dx_k = 0$$
, $d(a \sim b) = da \sim b + a \sim db + ab + ba$ and $d(a \cup a) = a \sim a$

while the perturbation *h* by

$$hx_k = 0$$
, $h(a \smile_1 b) = ha \smile_1 b + a \smile_1 hb$

and

 $h(x_k \cup_2 x_k) = h^{tr}(x_k \cup_2 x_k) = b_k$ with $b_k \in R^0_\tau H^*$ defined by $\rho_\tau b_k = Sq_1(y_k)$.

Note that the value of h on $x_i^{(U_2^{2m})}$ for m > 1 may be non-zero (see Remark 1(b)). In particular, denoting

$$b_{k,1} := b_k, \ b_{k,j+1} := h(b_{k,j} \cup_2 b_{k,j}), \ j \ge 1,$$

and

$$c_0 = x_k \cup_2 x_k, \ c_j = x_k^{\smile_1 2^j} \smile_1 c_{j-1} + c_{j-1} \smile_1 b_{k,j} + b_{k,j} \cup_2 b_{k,j}, \ j \ge 1$$

one gets

$$d_h(c_{m-1}) = x_k^{(m)} + b_{k,m} \mod R_\tau H^+ \cdot R_\tau H^+, m \ge 1, \text{ with } \rho_\tau b_{k,m} = Sq_1^{(m)}(y_k).$$
(2.1)

To ensure that $\rho_{\tau} : (R_{\tau}^*H^*, d) \to H^*$ is a multiplicative resolution of H^* , it suffices to verify the following.

Proposition 1. The chain complex $(R^*_{\tau}H^*, d)$ is acyclic in the negative resolution degrees, i.e., $H^{i,*}(R^i_{\tau}H^*, d) = 0, i < 0.$

Proof. First observe that as a cochain complex Ker ρ_{τ} can be decomposed via (Ker ρ_{τ}, d) = $(A, d) \oplus (B, d)$ in which $(A, d) = \oplus(A(n), d), n \ge 2$, A(n) has a basis consisting of all monomials formed by the \smile and \smile_1 products evaluated on generators $x_{i_1}, \ldots, x_{i_n} \in V_{\tau}^{0,*}$ with distinct x_i 's and B has a basis consisting of the other monomials in Ker ρ_{τ} . In particular, (A(n), d) can be identified with the cellular chains of the permutohedron P_n (cf. [13]); thus A is acyclic and a chain contracting homotopy $s_A : A \to A$ can be chosen. To see that B is also acyclic, define a map $s_B : B \to B$ of degree -1 as follows. For $ba, ac, bac \in B$ with $a \in A$, let $s_B(ba) = bs_A(a), s_B(ac) = s_A(a)c, s_B(bac) = bs_A(a)c$; otherwise, for $b \smile_1 b$ and $b \smile_1 b \smile_1 c$ with $b, c \in V_{\tau}$, let $s_B(b \smile_1 b) = b \cup_2 b$ and $s_B(b \smile_1 b \smile_1 c) = b \cup_2 b \smile_1 c$, and then for a monomial $u = u_1 \cdots u_m \in B$, set

$$s_{B}(u) = \begin{cases} u_{1} \cdots u_{i-1} \cdot s_{B}(u_{i}) \cdot u_{i+1} \cdots u_{m}, & u_{i} \in \{b \smile_{1}b, b \smile_{1}b \smile_{1}c\} \text{ and} \\ u_{j} \notin \{b \smile_{1}b, b \smile_{1}b \smile_{1}c\}, 1 \le j < i, \\ 0, & \text{otherwise.} \end{cases}$$

Then for each element $b \in B$ there is an integer $n(b) \ge 1$ such that n(b)th-iteration of the operator $s_Bd + ds_B + Id$: $B \to B$ evaluated on b is zero, i.e., $(s_Bd + ds_B + Id)^{(n(b))}(b) = 0$ as desired. \Box

3. Proof of Theorem 1

Given the Hirsch algebra $(C^*(X), d_C, \{E_{p,q}\})$, there is an algebra isomorphism [14,15]

 $H^*(\Omega X) \approx H(BC^*(X), d_{BC}, \mu_E).$

(We assume $C^*(X) = C^*(\operatorname{Sing}^1 X)/C^{>0}(\operatorname{Sing} x)$, in which $\operatorname{Sing}^1 X \subset \operatorname{Sing} X$ is the Eilenberg 1-subcomplex generated by the singular simplices that send the 1-skeleton of the standard *n*-simplex Δ^n to the base point *x* of *X*.)

Proposition 2. A morphism $g: A \to A'$ of Hirsch algebras induces a Hopf dga map of the bar constructions

 $Bg: BA \rightarrow BA'$

and if g is a homology isomorphism, so is Bg.

Proof. The proof is standard by using a spectral sequence comparison argument. \Box

Denote $\bar{V}_{\tau} = s^{-1}(V_{\tau}^{>0}) \oplus \mathbb{Z}_2$ and define the differential $\bar{d}_h := \bar{d} + \bar{h}$ on \bar{V}_{τ} by the restriction of d + h to V_{τ} to obtain the cochain complex $(\bar{V}_{\tau}, \bar{d}_h)$. Let $\psi : B(R_{\tau}H) \to \overline{R_{\tau}H} \to \bar{V}_{\tau}$ be the standard projection of cochain complexes. We introduce a product on \bar{V}_{τ} so that ψ becomes a map of dga's. Namely, for $\bar{a}, \bar{b} \in \bar{V}_{\tau}$ define

 $\bar{a}\bar{b} = \overline{a \smile_1 b}$ with $\bar{a}1 = 1\bar{a} = \bar{a}$.

Then we get the following sequence of algebra isomorphisms

$$H\big(BC^*(X), d_{BC}, \mu_E\big) \stackrel{Bf^*}{\underset{\approx}{\leftarrow}} H\big(B(RH^*), d_{B(RH)}, \mu_E\big) \stackrel{Bg^*_{\tau}}{\underset{\approx}{\rightarrow}} H\big(B(R_{\tau}H^*), d_{B(R_{\tau}H)}, \mu_{E_{\tau}}\big) \stackrel{\psi^*}{\underset{\approx}{\rightarrow}} H\left(\bar{V}_{\tau}, \bar{d}_h\right),$$

where the first two isomorphisms are by Proposition 2, while the third isomorphism (additively) is a consequence of a general fact about tensor algebras [16] (see also [5]). Thus the calculation of the algebra $H^*(\Omega X)$ reduces to that of $H^*(\bar{V}_{\tau}, \bar{d}_h)$. In particular, $[\bar{x}_k] = \sigma(y_k) \in H^*(\Omega X)$. We have that \bar{h} may be non-trivial only on a basis element of the form

$$s^{-1}(x_k^{\cup_2 q})$$
 and $s^{-1}(x_k^{\cup_2 q} - a)$, some $a \in V_{\tau}, q = 2^m, m \ge 1$.

By definition $\bar{x}_k^q = s^{-1}(x_k^{\sim 1^q}), q = 2^m$, and taking into account (2.1), the cohomology algebra $H^*(\bar{V}_{\tau}, \bar{d}_h)$ is as desired.

Remark 1. (a) Refer to Example 4 from [7] and recall that there is a canonical Hirsch algebra structure $Sq = \{Sq_{p,q}\}$ on $H^*(X)$ determined by Sq_1 . The isomorphism $H^*(\Omega X) \approx H^*(BH^*(X))$ from the introduction converts into an algebra one when $BH^*(X)$ is endowed with the product μ_{Sq} . Details are left to the interested reader.

(b) In $(\bar{V}_{\tau}, \bar{d}_h)$ the transgressive terms $\bar{h}^{tr}s^{-1}(x_i^{\cup_2 q})$ detect the Symmetric Massey products $\langle \sigma(y_i) \rangle^q \in H^*(\Omega X)$ for $q = 2^m$, $y_i \in H^*(X)$, or, in general, Stasheff's A_{∞} -algebra structure on $H^*(\Omega X)$ (cf. [17]). A question arises what else other than the action of Sq_1 on $H^*(X)$ is needed to calculate this structure.

Acknowledgments

This research described in this publication was made possible in part by the grant GNF/ST06/3-007 of the Georgian National Science Foundation.

References

- [1] R.M. Switzer, Algebraic Topology -Homotopy and Homology, Springer-Verlag, 1975.
- [2] R.E. Mosher, M.C. Tangora, Cohomology Operations and Applications in Homotopy Theory, Harper and Row Publ, 1968.
- [3] J. McCleary, A User'S Guide To Spectral Sequences, second ed., Cambridge University Press, 2001.
- [4] J.-P. Serre, Homologie singulière des espaces fibrés. Applications, Ann. of Math. 54 (1951) 425-505.
- [5] D. Husemoller, J.C. Moore, J. Stasheff, Differential homological algebra and homogeneous spaces, J. Pure Appl. Algebra 5 (1974) 113–185.
- [6] A. Prouté, Un contre-example à la géométricité du shuffle-coproduit de la cobar-construction, C. R. Acad. Sci. Paris I 298 (1984) 31-34.
- [7] S. Saneblidze, Filtered Hirsch algebras, Trans. R.M.I. 170 (2016) 114–136.
- [8] J. Tate, Homology of noetherian rings and local rings, Illinois J. Math. 1 (1957) 14-27.
- [9] J.T. Jozefiak, Tate resolutions for commutative graded algebras over a local ring, Fund. Math. 74 (1972) 209–231.

- [10] S. Halperin, J. Stasheff, Obstructions to homotopy equivalences, Adv. Math. 32 (1979) 233-279.
- [11] D. Notbohm, in: I.M. James (Ed.), Classifying Spaces of Compact Lie Groups and Finite Loop Spaces, in: Handbook of Algebraic Topology, North-Holland, 1995 (Chapter 21).
- [12] K.K.S. Andersen, J. Grodal, The steenrod problem of realizing polynomial cohomology rings, J. Topol. 1 (2008) 460-747.
- [13] S. Saneblidze, On the homotopy classification of maps, J. Homotopy Relat. Struct. 4 (2009) 347–357.
- [14] H.J. Baues, The cobar construction as a Hopf algebra, Invent. Math. 132 (1998) 467-489.
- [15] T. Kadeishvili, S. Saneblidze, A cubical model of a fibration, J. Pure Appl. Algebra 196 (2005) 203–228.
- [16] Y. Felix, S. Halperin, J.-C. Thomas, Adams' cobar equivalence, Trans. Amer. Math. Soc. 329 (1992) 531-549.
- [17] T. Kadeishvili, On the homology theory of fibre spaces, Russian Math. Surveys 35 (1980) 131–138.