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Abstract

Given a simply connected space X with polynomial cohomology H*(X; Z,), we calculate the loop cohomology algebra
H*(£2X; Z5) by means of the action of the Steenrod cohomology operation Sq; on H*(X; Z5). This calculation uses an explicit
construction of the minimal Hirsch filtered model of the cochain algebra C*(X; Z5). As a consequence we obtain that H*(2X; Z5)
is the exterior algebra if and only if Sqgq is multiplicatively decomposable on H*(X; Z;). The last statement in fact contains a
converse of a theorem of A. Borel (Switzer, 1975, Theorem 15.60).
© 2017 Ivane Javakhishvili Tbilisi State University. Published by Elsevier B.V. This is an open access article under the CC
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Let X denote a simply connected topological space. The cohomology H*(X) is considered with coefficients
Z, = Z/2Z unless otherwise specified explicitly. A. Borel gave a condition for H*(X) to be polynomial in terms
of a simple system of generators of the loop space cohomology H™*(f2X) that are transgressive [1, Theorem 15.60]
, [2, p. 88] (see also [3]). This was one of the first nice applications of Leray—Serre spectral sequences [4], and led in
particular to calculations of the cohomology of the Eilenberg—MacLane spaces (see [3]). For the converse direction,
that is to determine H*({2X) as an algebra for a given X with H*(X) polynomial, the first step is the existence of an
additive isomorphism H*(£2X) ~ H*(BH*(X)) where BH*(X) denotes the bar construction of H*(X) (cf. [5]). The
module B H*(X) with the shuffle product is a graded differential algebra, but we get no algebra isomorphism above
(cf. [6]). In general, a correct product on BH*(X) is induced by higher order operations on the cochain complex
C*(X) (see below), but when H*(X) is polynomial we show that these operations reduce to the —-product on C*(X).
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Consequently, the multiplicative structure of B H*(X) is determined by the Steenrod cohomology operation Sg; on
H*(X). This reduction is beyond a spectral sequence argument.

In this paper we completely calculate the algebra H*({2X) for H*(X) polynomial by means of Sg; on H*(X)
(Theorem 1) and then establish the criterion for H*(£2X) to be exterior (Corollary 1). Namely, given H*(X) =
H(C*(X), d) with the —-product on C*(X), let

Sqi : H'(X) —» H” Y(X) [c] = [c—1¢], ceC"(X),dc=0.
Let now H*(X) = Z3[y1,- ., Yk,--. ] with ) = {y;} to be a set of polynomial generators. Define a subset S C ) as
S={z, €Y |z, ¢ImSq mod H-H*}.

Thus § = Y if and only if Sq;(y,) € H' - HY for all k. Let 0 < v; < oo be the smallest integer such that
Sqi""ﬂ)(yi) € HY - HT, where Sqf'") denotes the m-fold composition Sq; o --- o Sg;. The integer v; is referred to
as the weak —-height of y;; when the finite integer v; does not exist, we say that y; has the infinite weak —-height
v; = 00. (This notion is motivated by the fact that Sq; induces a binary —-product on (H*(X), 0); cf. Remark 1(a).)

Leto : H*(X) — H* '(£2X) be the suspension homomorphism.

Theorem 1. Let X be a simply connected space with H*(X) = Zs[y1, ..., Yk, ... ]| and vy to be the weak ~—-height
of k. Then the algebra H*((2X) is multiplicatively generated by the elements 7, = oz, satisfying only the relations
7" = 0 for my = 2vs+l and zs’"ll + .+ gzr = 0 for Sq(’”)(zsl) 4+t Sl](n’)(Zs,.) e HY-HT, m; =2+ n, <
vi, r>2, z, €S.

Corollary 1. H*(2X) = A(y1,..., Yk, ..) is the exterior algebra if and only if yi is of zero weak ~—-height,
i.e, Sq1(yx) € HT-H™ for all k.

When ) is chosen such that y; is uniquely determined by the equality Sq;(y;) = yymod H*-H™, we get

Corollary 2. H*(2X) = Z5[z1,. .., Zs,- - - ]| is the polynomial algebra if and only if z; is of the infinite weak — -
height for all s.

Our method of proving the theorem consists of using the filtered Hirsch model (RH*,d + h) — C*(X) of X [7]
(see Section 2). Note that the underlying differential (bi)graded algebra (RH*, d) is a non-commutative version
of Tate—Jozefiak resolution of the commutative algebra H* [8,9], while & is a perturbation of d similar to [10].
Furthermore, the tensor algebra RH* = T (V) is endowed with higher order operations £ = {E, ;} that extend —1-
product measuring the non-commutativity of the product on RH*; and there also is a binary operation U, on RH*
measuring the non-commutativity of the -—-product. In general, by means of (RH*, d + h) one can recognize the
cohomology H(BC*(X)) of the bar construction BC*(X) as an algebra. The case of polynomial H* is distinguished
because of H* has no multiplicative relations unless that of the commutativity; furthermore, we can equivalently take
a small multiplicative resolution R, H* = T(V;) in which the Hirsch algebra structure is completely determined by
commutative and associative —-product on V;. This allows an explicit calculation of the algebra H(BC*(X)), and,
consequently, of the loop space cohomology H*({2X) in question.

Obviously the hypothesis of Corollary 1 is satisfied for an evenly graded polynomial algebra H*(X). Note that our
method can be in fact applied to an evenly graded polynomial algebra H*(X; k) for any coefficient ring K to establish
that H*(£2X; K) is exterior. Though, this fact can be also deduced from the Eilenberg—Moore spectral sequence (see,
for example, [3]; for further references of spaces with polynomial cohomology rings see also [11,12]).

I wish to thank Jim Stasheff for helpful comments and suggestions. I am also indebted to the referee for a number
of helpful comments to improve the exposition.

2. Hirsch resolutions of polynomial algebras

We adopt the notations and terminology of [7] and briefly recall some facts. A Hirsch algebra (A, da, {E, 4}) is an
associative dga (A, d,) equipped with multilinear maps

Epg: AP @ A% — A, p,g >0, p+q >0,
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satisfying the following conditions:

(i) degEpy=1—-p—gq;
(i) Eyo=1d =Epjand E,.10=0= Eq4-1;
(iii) The homomorphism E : BA @ BA — A defined by

E([ai]--la,] ® [by]---lbg]) = Epqlar, ... ap; by, ..., by)
is a twisting cochain in the dga (Hom(BA ® BA, A), V,—),ie., VE = —E — E.

A morphism f : A — B between two Hirsch algebras is a dga map f that commutes with E, , for all p, g.
Condition (iii) implies that £ : BA ® BA — BA is a chain map; thus BA is a dg bialgebra; in particular, u Eqo+Eo;
is the shuffle product on BA.

For a topological space X, there are operations £ = {E, ;} on the cochain complex C*(X) making it into a Hirsch
algebra. Note that in the simplicial case one can choose E|, , = 0 for g > 2.

A dga (A*, d) is multialgebra if it is bigraded A” = @ A"/ ,i <0, j>0,andd =d°+d' +---+d" +---

n=i+j
with d" : AP4 — AP+ma—m+1 A dga A is bigraded via A%* = A* and A™* = 0 fori # 0; consequently, A is a
multialgebra. A multialgebra A is homological if d° = 0 (hence d'd' = 0) and
. 1 . 1 . 1 1

Hl(.'.gAl,*LAl-l—l,*i).'.i)AO,*):O’ i <0.
For a homological multialgebra the sum d?> +d> + --- +d" + - - - is called a perturbation of d'. Furthermore, d' is
denoted by d, d” is denoted by A", and the sum h? + A%+ .- - +h" +- - is denoted by 1. We sometimes denote d + h
by dh .

A multialgebra is quasi-free if it is a tensor algebra over a bigraded k-module. Given m > 2, the map
h™| g=ms : A7™* — A% is referred to as the transgressive component of 4 and is denoted by 4"". A multialgebra A
with a Hirsch algebra structure

Ep q . ®p_lAir»kr ® ®(/ Ajkszn N As_P_(I‘H S

n=1

with (s, 1) = (i(» + Jig)» kp) + ) » P-g = 1, is called Hirsch multialgebra. A multialgebra is quasi-free if it is a
tensor algebra over a bigraded k-module. A quasi-free Hirsch homological multialgebra (A, d +h, {E, 4}) is a filtered
Hirsch algebra if it has the following additional properties:

(i) In A = T(V) a decomposition

is fixed where £%* = & 5;2’* is distinguished by an isomorphism of modules
pqzl 7’

L A® ®q _~ .
Ep’q.A P®A q_)gp,qcva pa‘]Zl,
(ii) The restriction of the perturbation 4 to £ has no transgressive components 4'", i.e., h'"|¢ = 0.

An important example of a filtered Hirsch algebrais A = (R*H*,d, {E, 4}), an absolute Hirsch resolution of a
graded commutative algebra H*. In particular, R*H* = T (V) with

V= 69i m>OV_j’m’

where V /" R~/ H™. The total degree of R~/ H™ is the sum —j +m, d is of bidegree (1,0) and p : (R*H*, d) —
H* is a map of bigraded algebras inducing an isomorphism p* : H*(RH, d) S H* where H* is bigraded via
H%* = H* and H<%* = 0.

Given a Hirsch algebra (A, d4,{E,}), a submodule J C A is a Hirsch ideal of A if it is an ideal with
E,q(ai,...,ap apy1, ..., apyq) € J whenever a; € J for some i.

Let p, : (R¥H*,d) — H* be an absolute Hirsch resolution and J C R} H* be a Hirsch ideal such thatd : J — J
and the quotient map g : RYH* — R*H*/J is a homology isomorphism. A Hirsch resolution of H* is the Hirsch
algebra R*H* = R}H*/J withamap p : R*H* — H* such that p, = p o g. Thus an absolute Hirsch resolution is
a Hirsch resolution by taking J = 0.
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Given a Hirsch algebra (A, d4, {E,, 4}) with H* = H*(A, d,), there is a filtered Hirsch model
f 1 (R*H", dy) — (A, dy),

where R*H* denotes an absolute Hirsch resolution. There is a (commutative) binary operation alU,b on R*H*
satisfying for basis elements a, b € R* H* the equality

aUyda+a— a, a=2>b,
d(aUb) = {a —da+da— a, da =0b,
daU, b+ alydb+a —1 b+ b—a, otherwise.

(Thus, the first two cases differ U, from the Steenrod —-operation.) In U C V we distinguish a submodule
T="%* C U defined by

T=2 — (aUsh € R*H" | aUsb € U},

For the sake of minimality of U one can express certain elements alU,b € R*H* in terms of the — and E, , operations.
For example, daU,da := a—da + a - a, because d(a —| da + a - a) = da — da.
When H* = Z,[y1, ..., Y, - - - ] is polynomial, the module V is much simplified at the cost of U. Namely,

V*’* — 5<0’* @ U*,* — 5<0,* @ T§72,* @ VO’*.

In particular, we have that RH* is a graded subalgebra in R* H* and Ker p N R°H* is an ideal in R®H*. Denoting
the elements of V** by xy, i.e., pxi = Y, this ideal is generated by expressions of the form x;x; + x;x; fori # j;
thus, we get

VI =7 = (x; < x; | ;€ V') with
d(xi—1xj) =d(xj~—1x;) = x;x; + x;x; fori # j and d(x;—1x;) =0,
while
T2 = (xiUsxj (= x;Upx;) | xg € V0*) with d(xiUxxj) =
Xp—1Xj +xj ~—1 x; fori # j, and d(x;Usx;) = x;~1%;.

Here, we can minimize further both an absolute Hirsch resolution R* H* and a small Hirsch resolution R;H *1in [7]
to obtain a minimal Hirsch resolution R} H*; moreover, we give an explicit construction of R} H* below. Namely, set

R'H* = R*H*/J,
where J; C R*H* is a Hirsch ideal generated by
{Ep,q(al, e QpsApit, -y Oprg), dE, J(ay, ..., ap; Apyt, - .., Apeg), aUab, d(aUsb))
p+q>3, a;ébinV}
with

ai,...,a, € R*"H*, ap,1 €V, for p>1 and ¢g=1,
ai,...,ap4q € R"H", for p>1 and ¢ > 1.

Because of d : J; — J;, we get a Hirsch algebramap g, : (R*H*,d) — (R¥H*,d). Let p, : R;H* — H* denote a
map of bigraded algebras so that the resolution map p : R*H* — H* factors as

p: (R*H*,d) %5 (R*H*, d) 2> H*.

By definition we have 4 : £ — &; furthermore, because of the transgressive component A'" of & annihilates aU,b
fora # b in V (cf. [7, Proposition 5]), we get h : J, — J;, too. Thus g, extends to a quasi-isomorphism of Hirsch
algebras

g 1 (R"H*, dy) — (R;H*, dy),
and, hence, A and R} H* are connected via the diagram

(A, dp) <— (R*H*, dy) 55> (R*H* . dy).
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The Hirsch algebra (R¥ H*, dj,) can be described immediately. Namely, R} H* = T'(V*) with V** = (V*),
V. = {xi, x99 by ooy, | by € (i, x;2), g=2",m > 1, n > 2,
X € V?‘*, x4 = xU,y - sz} .
The —-product is commutative and associative on V; and extended on R} H* by the (left) Hirsch formula
c—1ab = (¢ —1 a)b + a(c—1b), a,b,c e RIH",
and the (right) generalized Hirsch formula

ab—1¢)+(@—1c)b, a,beRH* and ce{x;,x;"27},
g=2",m>1,
ab—1c=3ab—1c)+(a—c)b
+(a —1 c)(b —1 c2)
+(a —1 c2)(b—icy), a,be RiH* and c¢=ci—c € V;.

The differential d on R} H* is defined by
dx; =0, d(a—b)=da—1b+a—db+ab+ba and d(aU,a)=a — a,
while the perturbation / by
hx; =0, h(a—b)=ha — b+a—hb
and
h(xeUaxy) = h" (xpUaxy) = by with by € RO H*  defined by  p.by = Sq1 ().
Note that the value of 4 on x juzz’" for m > 1 may be non-zero (see Remark 1(b)). In particular, denoting

b1 = by, by jy1 = h(by jUaby ), j =1,

and
co = x Uaxy, ¢j = xkvlzjvlcj—l +cjr—1brj + by jUsby . j = 1,
one gets
dy(cm1) = x4 b uwmod R, HY - Ry HY m > 1, with pobym = Sq™ (). 2.1)

To ensure that p, : (R¥H*, d) — H* is a multiplicative resolution of H*, it suffices to verify the following.

Proposition 1. The chain complex (R*H*, d) is acyclic in the negative resolution degrees, i.e., H"*(RLH*,d) =
0,i <O.

Proof. First observe that as a cochain complex Ker p, can be decomposed via (Kerp,,d) = (A,d) & (B,d) in
which (A,d) = ®(A(n),d), n > 2, A(n) has a basis consisting of all monomials formed by the — and —
products evaluated on generators x;,, ..., X;, € VTO** with distinct x;’s and B has a basis consisting of the other
monomials in Ker p;. In particular, (A(n), d) can be identified with the cellular chains of the permutohedron P,
(cf. [13]); thus A is acyclic and a chain contracting homotopy s4 : A — A can be chosen. To see that B
is also acyclic, define a map s : B — B of degree —1 as follows. For ba, ac,bac € B with a € A, let

sg(ba) = bs,(a),sz(ac) = s,(a)c, sy(bac) = bs,(a)c; otherwise, for b — b and b—1b—c with b,c € V,,

let sp(b—1b) = bU,b and sg(b — b~ c) = bU,b — ¢, and then for a monomial u = u; ---u,, € B, set
wy i8S, Ui) Uiy Uy, U € {b—b,b—1b—c}and
sp(u)= uj ¢ {b—b,b—b—c}, 1 <j<i,
0, otherwise.

Then for each element b € B there is an integer n(b) > 1 such that n(b)th-iteration of the operator sgd + dsp + Id :
B — B evaluated on b is zero, i.e., (sgd + dsg + [d)"®)(b) = 0 as desired. O
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3. Proof of Theorem 1
Given the Hirsch algebra (C*(X), dc, {E, 4}), there is an algebra isomorphism [14,15]
H*(2X) ~ H(BC*(X). dye. 1,).

(We assume C*(X) = C*(Sing'X)/C>(Sing x), in which Sing!X < Sing X is the Eilenberg 1-subcomplex
generated by the singular simplices that send the 1-skeleton of the standard n-simplex A" to the base point x of X.)

Proposition 2. A morphism g : A — A’ of Hirsch algebras induces a Hopf dga map of the bar constructions
Bg: BA — BA’

and if g is a homology isomorphism, so is Bg.

Proof. The proof is standard by using a spectral sequence comparison argument. [

Denote V, = s~! (V>0) @ Z» and define the differential dj, := d 4/ on V. by the restriction of d + h to V; to obtain
the cochain complex (V,, dy).Let Y : B(R,H) — R.H — V, be the standard projection of cochain complexes. We
introduce a product on V; so that { becomes a map of dga’s. Namely, for a, b € V, define

ab=a—| b with al =1a=a.

Then we get the following sequence of algebra isomorphisms
" Bf* Bg¥ y* - -

H(BC (X)7 dBC’ I“LE) (? H(B(RH*)y dB(RH)’ I“LE) T) H(B(RTH*)’ dB(RzH)’ I‘LEI) — H (st dh) )
where the first two isomorphisms are by Proposition 2, while the third isomorphism (additively) is a consequence of
a genergl fa_ct about tensor algebras [16] (see also [5]). Thus the calc_ulation of the algebra H*({2X) reduces to that
of H*(V;, d,). In particular, [x;] = o(y;) € H*({2X). We have that 2 may be non-trivial only on a basis element of
the form

s 729 and sT(x 2% ), some a €V, g =2", m> 1.

By definition X! = s7!(x,'?), ¢ = 2™, and taking into account (2.1), the cohomology algebra H “(Ve,dy) is as
desired.

Remark 1. (a) Refer to Example 4 from [7] and recall that there is a canonical Hirsch algebra structure Sq = {Sq, ,}
on H*(X) determined by Sgq;. The isomorphism H*(2X) ~ H*(BH*(X)) from the introduction converts into an
algebra one when B H*(X) is endowed with the product p sq . Details are left to the interested reader.

(b) In (Vy, dy) the transgressive terms h's *l(xuzq) detect the Symmetric Massey products (o (y;))? € H*(£2X) for
qg =2", y; € H*(X), or, in general, Stasheff’s A, -algebra structure on H*({2X) ( cf. [17]). A question arises what
else other than the action of S¢g; on H*(X) is needed to calculate this structure.
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