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Abstract

Given a simply connected space X with polynomial cohomology H∗(X;Z2), we calculate the loop cohomology algebra
H∗(ΩX;Z2) by means of the action of the Steenrod cohomology operation Sq1 on H∗(X;Z2). This calculation uses an explicit
construction of the minimal Hirsch filtered model of the cochain algebra C∗(X;Z2).As a consequence we obtain that H∗(ΩX;Z2)
is the exterior algebra if and only if Sq1 is multiplicatively decomposable on H∗(X;Z2). The last statement in fact contains a
converse of a theorem of A. Borel (Switzer, 1975, Theorem 15.60).
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1. Introduction

Let X denote a simply connected topological space. The cohomology H∗(X ) is considered with coefficients
Z2 = Z/2Z unless otherwise specified explicitly. A. Borel gave a condition for H∗(X ) to be polynomial in terms
of a simple system of generators of the loop space cohomology H∗(ΩX ) that are transgressive [1, Theorem 15.60]
, [2, p. 88] (see also [3]). This was one of the first nice applications of Leray–Serre spectral sequences [4], and led in
particular to calculations of the cohomology of the Eilenberg–MacLane spaces (see [3]). For the converse direction,
that is to determine H∗(ΩX ) as an algebra for a given X with H∗(X ) polynomial, the first step is the existence of an
additive isomorphism H∗(ΩX ) ≈ H∗(B H∗(X )) where B H∗(X ) denotes the bar construction of H∗(X ) (cf. [5]). The
module B H∗(X ) with the shuffle product is a graded differential algebra, but we get no algebra isomorphism above
(cf. [6]). In general, a correct product on B H∗(X ) is induced by higher order operations on the cochain complex
C∗(X ) (see below), but when H∗(X ) is polynomial we show that these operations reduce to the⌣1-product on C∗(X ).

E-mail address: sane@rmi.ge.
Peer review under responsibility of Journal Transactions of A. Razmadze Mathematical Institute.

http://dx.doi.org/10.1016/j.trmi.2017.07.002
2346-8092/ c⃝ 2017 Ivane Javakhishvili Tbilisi State University. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

http://crossmark.crossref.org/dialog/?doi=10.1016/j.trmi.2017.07.002&domain=pdf
http://www.elsevier.com/locate/trmi
http://dx.doi.org/10.1016/j.trmi.2017.07.002
http://www.elsevier.com/locate/trmi
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:sane@rmi.ge
http://dx.doi.org/10.1016/j.trmi.2017.07.002
http://creativecommons.org/licenses/by-nc-nd/4.0/


390 S. Saneblidze / Transactions of A. Razmadze Mathematical Institute 171 (2017) 389–395

Consequently, the multiplicative structure of B H∗(X ) is determined by the Steenrod cohomology operation Sq1 on
H∗(X ). This reduction is beyond a spectral sequence argument.

In this paper we completely calculate the algebra H∗(ΩX ) for H∗(X ) polynomial by means of Sq1 on H∗(X )
(Theorem 1) and then establish the criterion for H∗(ΩX ) to be exterior (Corollary 1). Namely, given H∗(X ) =
H (C∗(X ), d) with the ⌣1-product on C∗(X ), let

Sq1 : H n(X )→ H 2n−1(X ) [c]→ [c ⌣1 c], c ∈ Cn(X ), dc = 0.

Let now H∗(X ) = Z2[y1,. . . , yk,. . . ] with Y = {yk} to be a set of polynomial generators. Define a subset S ⊆ Y as

S = {zs ∈ Y | zs ̸∈ Im Sq1 mod H+ ·H+}.

Thus S = Y if and only if Sq1(yk) ∈ H+ · H+ for all k. Let 0 ≤ νi < ∞ be the smallest integer such that
Sq (νi+1)

1 (yi ) ∈ H+ · H+, where Sq (m)
1 denotes the m-fold composition Sq1 ◦ · · · ◦ Sq1. The integer νi is referred to

as the weak ⌣1-height of yi ; when the finite integer νi does not exist, we say that yi has the infinite weak ⌣1-height
νi = ∞. (This notion is motivated by the fact that Sq1 induces a binary ⌣1-product on (H∗(X ), 0); cf. Remark 1(a).)

Let σ : H∗(X )→ H∗−1(ΩX ) be the suspension homomorphism.

Theorem 1. Let X be a simply connected space with H∗(X ) = Z2[y1, . . . , yk, . . . ] and νk to be the weak ⌣1-height
of yk . Then the algebra H∗(ΩX ) is multiplicatively generated by the elements z̄s = σ zs satisfying only the relations
z̄ms

s = 0 for ms = 2νs+1 and z̄m1
s1 + · · · + z̄mr

sr
= 0 for Sq (n1)(zs1 ) + · · · + Sq (nr )(zsr ) ∈ H+ ·H+, mi = 2ni+1, ni ≤

νi , r ≥ 2, zsi ∈ S.

Corollary 1. H∗(ΩX ) = Λ(ȳ1,. . . , ȳk,. . . ) is the exterior algebra if and only if yk is of zero weak ⌣1-height,
i.e., Sq1(yk) ∈ H+ ·H+ for all k.

When Y is chosen such that yi is uniquely determined by the equality Sq1(yi ) = ykmod H+ ·H+, we get

Corollary 2. H∗(ΩX ) = Z2[z̄1,. . . , z̄s,. . . ] is the polynomial algebra if and only if zs is of the infinite weak ⌣1-
height for all s.

Our method of proving the theorem consists of using the filtered Hirsch model (RH∗, d + h)→ C∗(X ) of X [7]
(see Section 2). Note that the underlying differential (bi)graded algebra (RH∗, d) is a non-commutative version
of Tate–Jozefiak resolution of the commutative algebra H∗ [8,9], while h is a perturbation of d similar to [10].
Furthermore, the tensor algebra RH∗ = T (V ) is endowed with higher order operations E = {E p,q} that extend ⌣1-
product measuring the non-commutativity of the product on RH∗; and there also is a binary operation ∪2 on RH∗

measuring the non-commutativity of the ⌣1-product. In general, by means of (RH∗, d + h) one can recognize the
cohomology H (BC∗(X )) of the bar construction BC∗(X ) as an algebra. The case of polynomial H∗ is distinguished
because of H∗ has no multiplicative relations unless that of the commutativity; furthermore, we can equivalently take
a small multiplicative resolution Rτ H∗ = T (Vτ ) in which the Hirsch algebra structure is completely determined by
commutative and associative ⌣1-product on Vτ . This allows an explicit calculation of the algebra H (BC∗(X )), and,
consequently, of the loop space cohomology H∗(ΩX ) in question.

Obviously the hypothesis of Corollary 1 is satisfied for an evenly graded polynomial algebra H∗(X ). Note that our
method can be in fact applied to an evenly graded polynomial algebra H∗(X; k) for any coefficient ring k to establish
that H∗(ΩX; k) is exterior. Though, this fact can be also deduced from the Eilenberg–Moore spectral sequence (see,
for example, [3]; for further references of spaces with polynomial cohomology rings see also [11,12]).

I wish to thank Jim Stasheff for helpful comments and suggestions. I am also indebted to the referee for a number
of helpful comments to improve the exposition.

2. Hirsch resolutions of polynomial algebras

We adopt the notations and terminology of [7] and briefly recall some facts. A Hirsch algebra (A, dA, {E p,q}) is an
associative dga (A, dA) equipped with multilinear maps

E p,q : A⊗p
⊗ A⊗q

→ A, p, q ≥ 0, p + q > 0,
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satisfying the following conditions:

(i) deg E p,q = 1− p − q;
(ii) E1,0 = I d = E0,1 and E p>1,0 = 0 = E0,q>1;

(iii) The homomorphism E : B A ⊗ B A→ A defined by

E
(
[ ā1|· · ·|āp]⊗ [ b̄1|· · ·|b̄q ]

)
= E p,q (a1, . . . , ap; b1, . . . , bq )

is a twisting cochain in the dga (Hom(B A ⊗ B A, A),∇,⌣), i.e., ∇E = −E ⌣ E .

A morphism f : A → B between two Hirsch algebras is a dga map f that commutes with E p,q for all p, q.
Condition (iii) implies that µE : B A ⊗ B A→ B A is a chain map; thus B A is a dg bialgebra; in particular, µE10+E01
is the shuffle product on B A.

For a topological space X, there are operations E = {E p,q} on the cochain complex C∗(X ) making it into a Hirsch
algebra. Note that in the simplicial case one can choose E p,q = 0 for q ≥ 2.

A dga (A∗, d) is multialgebra if it is bigraded An
= ⊕

n=i+ j
Ai, j , i ≤ 0, j ≥ 0, and d = d0

+ d1
+ · · · + dn

+ · · ·

with dn
: Ap,q

→ Ap+n,q−n+1. A dga A is bigraded via A0,∗
= A∗ and Ai,∗

= 0 for i ̸= 0; consequently, A is a
multialgebra. A multialgebra A is homological if d0

= 0 (hence d1d1
= 0) and

H i (· · ·
d1
→ Ai,∗ d1

→ Ai+1,∗ d1
→ · · ·

d1
→ A0,∗) = 0, i < 0.

For a homological multialgebra the sum d2
+ d3

+ · · · + dn
+ · · · is called a perturbation of d1. Furthermore, d1 is

denoted by d, dr is denoted by hr , and the sum h2
+ h3
+· · ·+ hn

+· · · is denoted by h.We sometimes denote d+ h
by dh .

A multialgebra is quasi-free if it is a tensor algebra over a bigraded k-module. Given m ≥ 2, the map
hm
|A−m,∗ : A−m,∗

→ A0,∗ is referred to as the transgressive component of h and is denoted by htr . A multialgebra A
with a Hirsch algebra structure

E p,q : ⊗
p
r=1 Air ,kr

⨂
⊗

q
n=1 A jk ,ℓn −→ As−p−q+1 , t

with (s, t) =
(
i(p) + j(q) , k(p) + ℓ(q)

)
, p, q ≥ 1, is called Hirsch multialgebra. A multialgebra is quasi-free if it is a

tensor algebra over a bigraded k-module. A quasi-free Hirsch homological multialgebra (A, d+h, {E p,q}) is a filtered
Hirsch algebra if it has the following additional properties:

(i) In A = T (V ) a decomposition

V ∗,∗ = E∗,∗ ⊕U ∗,∗

is fixed where E∗,∗ = ⊕
p,q≥1

E<0 ,∗
p,q is distinguished by an isomorphism of modules

E p,q : A⊗p
⊗ A⊗q ≈

−→ Ep,q ⊂ V, p, q ≥ 1;

(ii) The restriction of the perturbation h to E has no transgressive components htr , i.e., htr
|E = 0.

An important example of a filtered Hirsch algebra is A = (R∗H∗, d, {E p,q}), an absolute Hirsch resolution of a
graded commutative algebra H∗. In particular, R∗H∗ = T (V ) with

V =
⨁

j,m≥0
V− j,m,

where V− j,m
⊂ R− j H m . The total degree of R− j H m is the sum− j+m, d is of bidegree (1, 0) and ρ : (R∗H∗, d)→

H∗ is a map of bigraded algebras inducing an isomorphism ρ∗ : H∗(RH, d)
≈
→ H∗ where H∗ is bigraded via

H 0,∗
= H∗ and H<0,∗

= 0.
Given a Hirsch algebra (A, dA, {E p,q}), a submodule J ⊂ A is a Hirsch ideal of A if it is an ideal with

E p,q (a1, . . . , ap; ap+1, . . . , ap+q ) ∈ J whenever ai ∈ J for some i.
Let ρa : (R∗a H∗, d)→ H∗ be an absolute Hirsch resolution and J ⊂ R∗a H∗ be a Hirsch ideal such that d : J → J

and the quotient map g : R∗a H∗ → R∗a H∗/J is a homology isomorphism. A Hirsch resolution of H∗ is the Hirsch
algebra R∗H∗ = R∗a H∗/J with a map ρ : R∗H∗ → H∗ such that ρa = ρ ◦ g. Thus an absolute Hirsch resolution is
a Hirsch resolution by taking J = 0.
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Given a Hirsch algebra (A, dA, {E p,q}) with H∗ = H∗(A, dA), there is a filtered Hirsch model

f : (R∗H∗, dh)→ (A, dA),

where R∗H∗ denotes an absolute Hirsch resolution. There is a (commutative) binary operation a∪2b on R∗H∗

satisfying for basis elements a, b ∈ R∗H∗ the equality

d(a∪2b) =

⎧⎨⎩a ∪2 da + a ⌣1 a, a = b,
a ⌣1 da + da ⌣1 a, da = b,
da ∪2 b + a∪2db + a ⌣1 b + b ⌣1 a, otherwise.

(Thus, the first two cases differ ∪2 from the Steenrod ⌣2-operation.) In U ⊂ V we distinguish a submodule
T ≤−2,∗

⊂ U defined by

T ≤−2,∗
= {a∪2b ∈ R∗H∗ | a∪2b ∈ U }.

For the sake of minimality of U one can express certain elements a∪2b ∈ R∗H∗ in terms of the⌣ and E p,q operations.
For example, da∪2da := a⌣1da + a · a, because d(a ⌣1 da + a · a) = da ⌣1 da.

When H∗ = Z2[y1, . . . , yk, . . . ] is polynomial, the module V is much simplified at the cost of U. Namely,

V ∗,∗ = E<0,∗
⊕U ∗,∗ = E<0,∗

⊕ T ≤−2,∗
⊕ V 0,∗.

In particular, we have that R0 H∗ is a graded subalgebra in R∗H∗ and Ker ρ ∩ R0 H∗ is an ideal in R0 H∗. Denoting
the elements of V0,∗ by xk, i.e., ρxk = yk, this ideal is generated by expressions of the form xi x j + x j xi for i ̸= j;
thus, we get

V−1,∗
= E−1,∗

= ⟨xi ⌣1 x j | xk ∈ V0,∗
⟩ with

d(xi⌣1x j ) = d(x j⌣1xi ) = xi x j + x j xi for i ̸= j and d(xi⌣1xi ) = 0,

while

T −2,∗
= ⟨xi∪2x j (= x j∪2xi ) | xk ∈ V0,∗

⟩ with d(xi∪2x j ) =
xi⌣1x j + x j ⌣1 xi for i ̸= j, and d(xi∪2xi ) = xi⌣1xi .

Here, we can minimize further both an absolute Hirsch resolution R∗H∗ and a small Hirsch resolution R∗ς H∗ in [7]
to obtain a minimal Hirsch resolution R∗τ H∗; moreover, we give an explicit construction of R∗τ H∗ below. Namely, set

R∗τ H∗ = R∗H∗/Jτ

where Jτ ⊂ R∗H∗ is a Hirsch ideal generated by{
E p,q (a1, . . . , ap; ap+1, . . . , ap+q ), d E p,q (a1, . . . , ap; ap+1, . . . , ap+q ), a∪2b, d(a∪2b)|

p + q ≥ 3, a ̸= b in V
}

with
a1, . . . , ap ∈ R∗H∗, ap+1 ∈ V, for p ≥ 1 and q = 1,

a1, . . . , ap+q ∈ R∗H∗, for p ≥ 1 and q > 1.

Because of d : Jτ → Jτ , we get a Hirsch algebra map gτ : (R∗H∗, d)→ (R∗τ H∗, d). Let ρτ : R∗τ H∗ → H∗ denote a
map of bigraded algebras so that the resolution map ρ : R∗H∗→ H∗ factors as

ρ : (R∗H∗, d)
gτ
−→ (R∗τ H∗, d)

ρτ
−→ H∗.

By definition we have h : E → E; furthermore, because of the transgressive component htr of h annihilates a∪2b
for a ̸= b in V (cf. [7, Proposition 5]), we get h : Jτ → Jτ , too. Thus gτ extends to a quasi-isomorphism of Hirsch
algebras

gτ : (R∗H∗, dh)→ (R∗τ H∗, dh),

and, hence, A and R∗τ H∗ are connected via the diagram

(A, dA)
f
←− (R∗H∗, dh)

gτ
−→ (R∗τ H∗, dh).
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The Hirsch algebra (R∗τ H∗, dh) can be described immediately. Namely, R∗τ H∗ = T (V ∗,∗τ ) with V ∗,∗τ = ⟨V∗,∗τ ⟩,

Vτ =
{

xi , x j
∪2q , bi1⌣1 · · ·⌣1bin | bir ∈ {xi , x j

∪2q
}, q = 2m, m ≥ 1, n ≥ 2,

xk ∈ V0,∗
τ , x∪2q

:= x∪2 · · · ∪2x
}
.

The ⌣1-product is commutative and associative on Vτ and extended on R∗τ H∗ by the (left) Hirsch formula

c⌣1ab = (c ⌣1 a)b + a(c⌣1b), a, b, c ∈ R∗τ H∗,

and the (right) generalized Hirsch formula

ab ⌣1 c =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
a(b ⌣1 c)+ (a ⌣1 c)b, a, b ∈ R∗τ H∗ and c ∈{xi , x j

∪2q
},

q = 2m,m ≥ 1,
a(b ⌣1 c)+ (a ⌣1 c)b
+(a ⌣1 c1)(b ⌣1 c2)
+(a ⌣1 c2)(b⌣1c1), a, b ∈ R∗τ H∗ and c = c1⌣1c2 ∈ Vτ .

The differential d on R∗τ H∗ is defined by

dxk = 0, d(a⌣1b) = da⌣1 b + a⌣1db + ab + ba and d(a∪2a) = a ⌣1 a,

while the perturbation h by

hxk = 0, h(a⌣1b) = ha ⌣1 b + a⌣1hb

and

h(xk∪2xk) = htr (xk∪2xk) = bk with bk ∈ R0
τ H∗ defined by ρτbk = Sq1(yk).

Note that the value of h on x j
∪22m

for m > 1 may be non-zero (see Remark 1(b)). In particular, denoting

bk,1 := bk, bk, j+1 := h(bk, j∪2bk, j ), j ≥ 1,

and

c0 = xk∪2xk, c j = x⌣12 j

k ⌣1c j−1 + c j−1⌣1bk, j + bk, j∪2bk, j , j ≥ 1,

one gets

dh(cm−1) = x⌣12m

k + bk,m mod Rτ H+ · Rτ H+,m ≥ 1, with ρτbk,m = Sq (m)
1 (yk). (2.1)

To ensure that ρτ : (R∗τ H∗, d)→ H∗ is a multiplicative resolution of H∗, it suffices to verify the following.

Proposition 1. The chain complex (R∗τ H∗, d) is acyclic in the negative resolution degrees, i.e., H i,∗(Ri
τ H∗, d) =

0, i < 0.

Proof. First observe that as a cochain complex Ker ρτ can be decomposed via (Ker ρτ , d) = (A, d) ⊕ (B, d) in
which (A, d) = ⊕(A(n), d), n ≥ 2, A(n) has a basis consisting of all monomials formed by the ⌣ and ⌣1

products evaluated on generators xi1 , . . . , xin ∈ V 0,∗
τ with distinct xi ’s and B has a basis consisting of the other

monomials in Ker ρτ . In particular, (A(n), d) can be identified with the cellular chains of the permutohedron Pn

(cf. [13]); thus A is acyclic and a chain contracting homotopy sA : A → A can be chosen. To see that B
is also acyclic, define a map sB : B → B of degree −1 as follows. For ba, ac, bac ∈ B with a ∈ A, let
sB (ba) = bsA (a), sB (ac) = sA (a)c, sB (bac) = bsA (a)c; otherwise, for b ⌣1 b and b⌣1b⌣1c with b, c ∈ Vτ ,
let sB(b⌣1b) = b∪2b and sB(b ⌣1 b⌣1c) = b∪2b ⌣1 c, and then for a monomial u = u1 · · · um ∈ B, set

sB(u)=

⎧⎨⎩u1 · · · ui−1 ·sB (ui )·ui+1 · · · um, ui ∈ {b⌣1b , b ⌣1 b ⌣1 c} and
u j ̸∈ {b⌣1b , b⌣1b ⌣1 c}, 1 ≤ j < i,

0, otherwise.

Then for each element b ∈ B there is an integer n(b) ≥ 1 such that n(b)th-iteration of the operator sBd + dsB + I d :
B → B evaluated on b is zero, i.e., (sBd + dsB + I d)(n(b))(b) = 0 as desired. □
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3. Proof of Theorem 1

Given the Hirsch algebra (C∗(X ), dC , {E p,q}), there is an algebra isomorphism [14,15]

H∗(ΩX ) ≈ H (BC∗(X ), dBC , µE ).

(We assume C∗(X ) = C∗(Sing1 X )/C>0(Sing x), in which Sing1 X ⊂ Sing X is the Eilenberg 1-subcomplex
generated by the singular simplices that send the 1-skeleton of the standard n-simplex ∆n to the base point x of X.)

Proposition 2. A morphism g : A→ A′ of Hirsch algebras induces a Hopf dga map of the bar constructions

Bg : B A→ B A′

and if g is a homology isomorphism, so is Bg.

Proof. The proof is standard by using a spectral sequence comparison argument. □

Denote V̄τ = s−1(V>0
τ )⊕Z2 and define the differential d̄h := d̄+ h̄ on V̄τ by the restriction of d+h to Vτ to obtain

the cochain complex (V̄τ , d̄h). Let ψ : B(Rτ H )→ Rτ H → V̄τ be the standard projection of cochain complexes. We
introduce a product on V̄τ so that ψ becomes a map of dga’s. Namely, for ā, b̄ ∈ V̄τ define

āb̄ = a ⌣1 b with ā1 = 1ā = ā.

Then we get the following sequence of algebra isomorphisms

H
(
BC∗(X ), dBC , µE

) B f ∗
←−
≈

H
(
B(RH∗), dB(RH ) , µE

) Bg∗τ
−→
≈

H
(
B(Rτ H∗), dB(Rτ H ) , µEτ

) ψ∗

−→
≈

H
(
V̄τ , d̄h

)
,

where the first two isomorphisms are by Proposition 2, while the third isomorphism (additively) is a consequence of
a general fact about tensor algebras [16] (see also [5]). Thus the calculation of the algebra H∗(ΩX ) reduces to that
of H∗(V̄τ , d̄h). In particular, [x̄k] = σ (yk) ∈ H∗(ΩX ). We have that h̄ may be non-trivial only on a basis element of
the form

s−1(xk
∪2q ) and s−1(xk

∪2q⌣1a), some a ∈ Vτ , q = 2m, m ≥ 1.

By definition x̄q
k = s−1(x⌣1q

k ), q = 2m, and taking into account (2.1), the cohomology algebra H∗(V̄τ , d̄h) is as
desired.

Remark 1. (a) Refer to Example 4 from [7] and recall that there is a canonical Hirsch algebra structure Sq = {Sqp,q}

on H∗(X ) determined by Sq1. The isomorphism H∗(ΩX ) ≈ H∗(B H∗(X )) from the introduction converts into an
algebra one when B H∗(X ) is endowed with the product µSq . Details are left to the interested reader.

(b) In (V̄τ , d̄h) the transgressive terms h̄trs−1(x∪2q
i ) detect the Symmetric Massey products ⟨σ (yi )⟩q ∈ H∗(ΩX ) for

q = 2m, yi ∈ H∗(X ), or, in general, Stasheff’s A∞-algebra structure on H∗(ΩX ) ( cf. [17]). A question arises what
else other than the action of Sq1 on H∗(X ) is needed to calculate this structure.
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