THE BIDERIVATIVE AND A_{∞}-BIALGEBRAS

SAMSON SANEBLIDZE and RONALD UMBLE

(communicated by James Stasheff)

Abstract
An A_{∞}-bialgebra is a DGM H equipped with structurally compatible operations $\left\{\omega^{j, i}: H^{\otimes i} \rightarrow H^{\otimes j}\right\}$ such that $\left(H, \omega^{1, i}\right)$ is an A_{∞}-algebra and $\left(H, \omega^{j, 1}\right)$ is an A_{∞}-coalgebra. Structural compatibility is controlled by the biderivative operator $B d$, defined in terms of two kinds of cup products on certain cochain algebras of pemutahedra over the universal PROP $U=\operatorname{End}(T H)$.

To Jim Stasheff on the occasion of his 68th birthday.

1. Introduction

In his seminal papers of 1963, J. Stasheff [22] introduced the notion of an $A_{\infty^{-}}$ algebra, which is (roughly speaking) a DGA in which the associative law holds up to homotopy. Since then, A_{∞}-algebras have assumed their rightful place as fundamental structures in algebra [12], [19], topology [5], [10], [23], and mathematical physics $[\mathbf{6}],[\mathbf{7}],[\mathbf{1 3}],[\mathbf{1 4}],[\mathbf{2 7}],[\mathbf{2 8}]$. Furthermore, his idea carries over to homotopy versions of coalgebras $[\mathbf{1 5}],[\mathbf{2 1}],[\mathbf{2 5}]$ and Lie algebras $[\mathbf{9}]$, and one can deform a classical DG algebra, coalgebra or Lie algebra to the corresponding homotopy version in a standard way.

This paper introduces the notion of an A_{∞}-bialgebra, which is a DGM H equipped with "structurally compatible" operations $\left\{\omega^{j, i}: H^{\otimes i} \rightarrow H^{\otimes j}\right\}_{i, j \geqslant 1}$ such that $\left(H, \omega^{1, i}\right)_{i \geqslant 1}$ is an A_{∞}-algebra and $\left(H, \omega^{j, 1}\right)_{j \geqslant 1}$ is an A_{∞}-coalgebra. The main result of this project, the proof of which appears in the sequel [18], is the fact that over a field, the homology of every A_{∞}-bialgebra inherits an A_{∞}-bialgebra structure. In particular, the Hopf algebra structure on a classical Hopf algebra extends to an A_{∞}-bialgebra structure and the A_{∞}-bialgebra structure on the homology of a loop space specializes to the A_{∞} (co)algebra structures observed by Gugenheim [4] and Kadeishvili [5]. Thus loop space homology provides a primary family of examples. In

[^0]fact, one can introduce an A_{∞}-bialgebra structure on the double cobar construction of H.-J. Baues [1].

The problem that motivated this project was to classify rational loop spaces that share a fixed Pontryagin algebra. This problem was considered by the second author in the mid 1990's as a deformation problem in some large (but unknown) rational category containing DG Hopf algebras. And it was immediately clear that if such a category exists, it contains objects with rich higher order structure that specializes to simultaneous A_{∞}-algebra and A_{∞}-coalgebra structures. Evidence of this was presented by the second author at Jim Stasheff's schriftfest (June 1996) in a talk entitled, "In search of higher homotopy Hopf algebras" [26]. Given the perspective of this project, we conjecture that there exists a deformation theory for A_{∞}-bialgebras in which the infinitesimal deformations of classical DG bialgebra's observed in that talk approximate A_{∞}-bialgebras to first order. Shortly thereafter, the first author used perturbation methods to solve this classification problem [15]. The fact that A_{∞}-bialgebras appear implicitly in this solution led to the collaboration in this project.

Given a DGM H, let $U=\operatorname{End}(T H)$ be the associated universal PROP. We construct internal and external cup products on $C^{*}(P ; \mathbf{U})$, the cellular chains of permutahedra $P=\sqcup_{n \geqslant 1} P_{n}$ with coefficients in a certain submodule $\mathbf{U} \subset T T U$. The first is defined for every polytope and in particular for each P_{n}; the second is defined globally on $C^{*}(P ; \mathbf{U})$ and depends heavily on the representation of faces of permutahedra as leveled trees (see our prequel [17], for example). These cup products give rise to a biderivative operator $B d$ on \mathbf{U} with the following property: Given $\omega \in \mathbf{U}$, there is a unique element $d_{\omega} \in \mathbf{U}$ fixed by the action of $B d$ that bimultiplicatively extends ω. We define a (non-bilinear) operation \odot on \mathbf{U} in terms of $B d$ and use it to define the notion of an A_{∞}-bialgebra. The paper is organized as follows: Cup products are constructed in Section 2, the biderivative is defined in Section 3 and A_{∞}-bialgebras are defined in Section 4.

2. Cochain Algebras Over the Universal PROP

Let R be a commutative ring with identity and let H be an R-free DGM of finite type. For $x, y \in \mathbb{N}$, let $U_{y, x}=\operatorname{Hom}\left(H^{\otimes x}, H^{\otimes y}\right)$ and view $U_{H}=\operatorname{End}(T H)$ as the bigraded module

$$
U_{*, *}=\bigoplus_{x, y \in \mathbb{N}} U_{y, x} .
$$

Given matrices $X=\left[x_{i j}\right]$ and $Y=\left[y_{i j}\right] \in \mathbb{N}^{q \times p}$, consider the module

$$
\begin{aligned}
U_{Y, X} & =\left(U_{y_{11}, x_{11}} \otimes \cdots \otimes U_{y_{1 p}, x_{1 p}}\right) \otimes \cdots \otimes\left(U_{y_{q 1}, x_{q 1}} \otimes \cdots \otimes U_{y_{q p}, x_{q p}}\right) \\
& \subset\left(U^{\otimes p}\right)^{\otimes q} \subset T T U .
\end{aligned}
$$

Represent a monomial $A \in U_{Y, X}$ as the $q \times p$ matrix $[A]=\left[\theta_{y_{i j}, x_{i j}}\right]$ with rows thought of as elements of $U^{\otimes p} \subset T U$. We refer to A as a $q \times p$ monomial; we often
abuse notation and write A when we mean $[A]$. Note that

$$
\bigoplus_{X, Y \in \mathbb{N}^{q} \times p} U_{Y, X}=\left(U^{\otimes p}\right)^{\otimes q}
$$

in Subsection 2.1 below we construct the "upsilon product" on the module

$$
M=\bigoplus_{\substack{X, Y \in \mathbb{N}^{q \times p} \\ p, q \geqslant 1}} U_{Y, X}=\bigoplus_{p, q \geqslant 1}\left(U^{\otimes p}\right)^{\otimes q}
$$

In particular, given $\mathbf{x}=\left(x_{1}, \ldots, x_{p}\right) \in \mathbb{N}^{p}$ and $\mathbf{y}=\left(y_{1}, \ldots, y_{q}\right) \in \mathbb{N}^{q}$, set $X=$ $\left(x_{i j}=x_{j}\right)_{1 \leqslant i \leqslant q}, Y=\left(y_{i j}=y_{i}\right)_{1 \leqslant j \leqslant p}$ and $\mathbf{U}_{\mathbf{x}}^{\mathbf{Y}}=U_{Y, X}$. A monomial $A \in \mathbf{U}_{\mathbf{x}}^{\mathbf{Y}}$ is represented by a $q \times p$ matrix

$$
A=\left[\begin{array}{ccc}
\theta_{y_{1}, x_{1}} & \cdots & \theta_{y_{1}, x_{p}} \\
\vdots & & \vdots \\
\theta_{y_{q}, x_{1}} & \cdots & \theta_{y_{q}, x_{p}}
\end{array}\right] .
$$

We refer to the vectors \mathbf{x} and \mathbf{y} as the coderivation and derivation leaf sequences of A, respectively (see Subsection 2.3). Note that for $a, b \in \mathbb{N}$, monomials in $\mathbf{U}_{a}^{\mathbf{y}}$ and $\mathbf{U}_{\mathbf{x}}^{b}$ appear as $q \times 1$ and $1 \times p$ matrices. Let

$$
\mathbf{U}=\bigoplus_{\substack{\mathbf{x} \times \mathbf{y} \in \mathbb{N}^{p} \times \mathbb{N}^{q} \\ p, q \geqslant 1}} \mathbf{U}_{\mathbf{x}}^{\mathbf{y}} .
$$

We graphically represent a monomial $A=\left[\theta_{y_{j}, x_{i}}\right] \in \mathbf{U}_{\mathbf{x}}^{\mathbf{y}}$ two ways. First as a matrix of "double corollas" in which entry $\theta_{y_{j}, x_{i}}$ is pictured as two corollas joined at the root-one opening downward with x_{i} inputs and one opening upward with y_{j} outputs-and second as an arrow in the positive integer lattice \mathbb{N}^{2} (see Figure 1). The arrow representation is motivated by the fact that A can be thought of as an operator on \mathbb{N}^{2}. Since H has finite type, A admits a representation as a map

$$
A:\left(H^{\otimes x_{1}} \otimes \cdots \otimes H^{\otimes x_{p}}\right)^{\otimes q} \rightarrow\left(H^{\otimes y_{1}}\right)^{\otimes p} \otimes \cdots \otimes\left(H^{\otimes y_{q}}\right)^{\otimes p} .
$$

For $\mathbf{u}=\left(u_{1}, \ldots, u_{k}\right) \in \mathbb{N}^{k}$, let $|\mathbf{u}|=u_{1}+\cdots+u_{k}$ and identify $(s, t) \in \mathbb{N}^{2}$ with the module $\left(H^{\otimes s}\right)^{\otimes t}$. Let $\sigma_{s, t}:\left(H^{\otimes s}\right)^{\otimes t} \underset{\sim}{\approx}\left(H^{\otimes t}\right)^{\otimes s}$ be the canonical permutation of tensor factors and identify a $q \times p$ monomial $A \in \mathbf{U}_{\mathbf{x}}^{\mathbf{y}}$ with the operator $\left(\sigma_{y_{1}, p} \otimes \cdots \otimes \sigma_{y_{q}, p}\right) \circ A$ on \mathbb{N}^{2}, i.e., the composition

$$
\begin{gathered}
\left(H^{\otimes|\mathbf{x}|}\right)^{\otimes q} \approx\left(H^{\otimes x_{1}} \otimes \cdots \otimes H^{\otimes x_{p}}\right)^{\otimes q} \xrightarrow{A}\left(H^{\otimes y_{1}}\right)^{\otimes p} \otimes \cdots \otimes\left(H^{\otimes y_{q}}\right)^{\otimes p} \\
\sigma_{y_{1}, p} \otimes \cdots \otimes \sigma_{y_{q}, p} \\
\left(H^{\otimes p}\right)^{\otimes y_{1}} \otimes \cdots \otimes\left(H^{\otimes p}\right)^{\otimes y_{q}} \approx\left(H^{\otimes p}\right)^{\otimes|\mathbf{y}|},
\end{gathered}
$$

where \approx denotes the canonical isomorphism that changes filtration. Thus we represent A as an arrow from $(|\mathbf{x}|, q)$ to $(p,|\mathbf{y}|)$. In particular, a monomial $A \in \mathbf{U}_{a}^{b}$ "transgresses" from $(a, 1)$ to $(1, b)$.

Figure 1. Graphical representations of a typical monomial.

2.1. Products on \mathbf{U}

We begin by defining dual associative cross products on \mathbf{U}. Given a pair of monomials $A \otimes B \in \mathbf{U}_{\mathbf{v}}^{\mathbf{y}} \otimes \mathbf{U}_{\mathbf{x}}^{\mathbf{u}}$, define the wedge and cech cross products by

$$
A \hat{\times} B=\left\{\begin{array}{ll}
A \otimes B, & \text { if } \mathbf{v}=\mathbf{x}, \\
0, & \text { otherwise },
\end{array} \quad \text { and } A \stackrel{\vee}{\times} B= \begin{cases}A \otimes B, & \text { if } \mathbf{u}=\mathbf{y} \\
0, & \text { otherwise }\end{cases}\right.
$$

Then $\mathbf{U}_{\mathbf{x}}^{\mathbf{y}} \hat{\times} \mathbf{U}_{\mathbf{x}}^{\mathbf{u}} \subseteq \mathbf{U}_{\mathbf{x}}^{\mathbf{y}, \mathbf{u}}$ and $\mathbf{U}_{\mathbf{v}}^{\mathbf{y}} \stackrel{\vee}{\times} \mathbf{U}_{\mathbf{x}}^{\mathbf{y}} \subseteq \mathbf{U}_{\mathbf{v}, \mathbf{x}}^{\mathbf{y}} ;$ denote $\hat{\mathbf{U}}=(\mathbf{U}, \hat{\times})$ and $\stackrel{\vee}{\mathbf{U}}=(\mathbf{U}, \stackrel{\vee}{\times})$.
Non-zero cross products create block matrices:

$$
A \hat{\times} B=\left[\begin{array}{l}
A \\
B
\end{array}\right] \text { and } A \stackrel{\vee}{\times} B=\left[\begin{array}{ll}
A & B
\end{array}\right]
$$

In terms of arrows, $A \hat{\times} B \in \mathbf{U}_{\mathbf{x}}^{\mathbf{y}, \mathbf{u}}$ runs from the vertical $x=|\mathbf{x}|$ to vertical $x=p$ in \mathbb{N}^{2} and $A \stackrel{\vee}{\times} B \in \mathbf{U}_{\mathbf{v}, \mathbf{x}}^{\mathbf{y}}$ runs from horizontal $y=q$ to $y=|\mathbf{y}|$. Thus an $n \times 1$ monomial $A^{\hat{\times} n} \in \mathbf{U}_{a}^{b \cdots b}$ initiates at (a, n) and terminates at $(1, n b)$; a $1 \times n$ monomial $A^{\check{\times} n} \in \mathbf{U}_{a \cdots a}^{b}$ initiates at $(n a, 1)$ and terminates at (n, b).

We also define a composition product on \mathbf{U}.
Definition 1. A monomial pair $A^{q \times s} \otimes B^{t \times p}=\left[\theta_{y_{k \ell}, v_{k \ell}}\right] \otimes\left[\eta_{u_{i j}, x_{i j}}\right] \in M \otimes M$ is a
(i) Transverse Pair (TP) if $s=t=1, u_{1, j}=q$ and $v_{k, 1}=p$ for all j, k, i.e., setting $x_{j}=x_{1, j}$ and $y_{k}=y_{k, 1}$ gives

$$
A \otimes B=\left[\begin{array}{c}
\theta_{y_{1}, p} \\
\vdots \\
\theta_{y_{q}, p}
\end{array}\right] \otimes\left[\begin{array}{lll}
\eta_{q, x_{1}} & \cdots & \eta_{q, x_{p}}
\end{array}\right] \in \mathbf{U}_{p}^{\mathbf{y}} \otimes \mathbf{U}_{\mathbf{x}}^{q}
$$

(ii) Block Transverse Pair (BTP) if there exist $t \times s$ block decompositions $A=$ $\left[A_{k^{\prime} \ell}^{\prime}\right]$ and $B=\left[B_{i j^{\prime}}^{\prime}\right]$ such that $A_{i \ell}^{\prime} \otimes B_{i \ell}^{\prime}$ is a TP for all i, ℓ.

Note that BTP block decomposition is unique; furthermore, $A \otimes B \in \mathbf{U}_{\mathbf{v}}^{\mathbf{y}} \otimes \mathbf{U}_{\mathbf{x}}^{\mathbf{u}}$ is a BTP if and only if $\mathbf{y} \in \mathbb{N}^{|\mathbf{u}|}$ and $\mathbf{x} \in \mathbb{N}^{|\mathbf{v}|}$ if and only if the initial point of arrow A and the terminal point of arrow B coincide.

Example 1. A pairing of monomials $A^{4 \times 2} \otimes B^{2 \times 3} \in \mathbf{U}_{2,1}^{1,5,4,3} \otimes \mathbf{U}_{1,2,3}^{3,1}$ is a 2×2 BTP per the block decompositions

As arrows, A initializes at $(6,2)$ and terminates at $(3,4) ; B$ initializes at $(3,4)$ and terminates at $(2,13)$.

When $\mathbf{x} \times \mathbf{y} \in \mathbb{N}^{p} \times \mathbb{N}^{q}$, every pair of monomials $A \otimes B \in \mathbf{U}_{p}^{\mathbf{y}} \otimes \mathbf{U}_{\mathbf{x}}^{q}$ is a TP. Define a mapping

$$
\gamma: \mathbf{U}_{p}^{\mathbf{y}} \otimes \mathbf{U}_{\mathbf{x}}^{q} \rightarrow \mathbf{U}_{|\mathbf{x}|}^{|\mathbf{y}|}
$$

by the composition

$$
\mathbf{U}_{p}^{\mathbf{y}} \otimes \mathbf{U}_{\mathbf{x}}^{q} \xrightarrow{\iota_{q} \otimes \iota_{p}} \mathbf{U}_{p q}^{|\mathbf{y}|} \otimes \mathbf{U}_{|\mathbf{x}|}^{q p} \xrightarrow{1 \otimes \sigma_{q, p}^{*}} \mathbf{U}_{p q}^{|\mathbf{y}|} \otimes \mathbf{U}_{|\mathbf{x}|}^{p q} \xrightarrow{\circ} \mathbf{U}_{|\mathbf{x}|}^{|\mathbf{y}|},
$$

where ι_{p} and ι_{q} are the canonical isomorphisms. Then for $A=\left[\theta_{y_{k}, p}\right] \in \mathbf{U}_{p}^{\mathbf{y}}$ and $B=\left[\eta_{q, x_{j}}\right] \in \mathbf{U}_{\mathbf{x}}^{q}$, we have

$$
\gamma(A \otimes B)=\left(\theta_{y_{1}, p} \otimes \cdots \otimes \theta_{y_{q}, p}\right) \sigma_{q, p}\left(\eta_{q, x_{1}} \otimes \cdots \otimes \eta_{q, x_{p}}\right)
$$

denote this expression either by $A \cdot B$ or $\gamma\left(\theta_{y_{1}, p}, \ldots, \theta_{y_{q}, p} ; \eta_{q, x_{1}}, \ldots, \eta_{q, x_{p}}\right)$. The $\gamma-$ product on matrices of double corollas is typically a matrix of non-planar graphs (see Figure 2). Note that γ agrees with the composition product on the universal preCROC [20].

More generally, if $A \otimes B$ is a BTP with block decompositions $A=\left[A_{i \ell}^{\prime}\right]$ and $B=\left[B_{i \ell}^{\prime}\right]$, define $\gamma(A \otimes B)_{i \ell}=\gamma\left(A_{i \ell}^{\prime} \otimes B_{i \ell}^{\prime}\right)$. Then γ sends $A^{q \times s} \otimes B^{t \times p} \in \mathbf{U}_{\mathbf{v}}^{\mathbf{y}} \otimes \mathbf{U}_{\mathbf{x}}^{\mathbf{u}}$ to a $t \times s$ monomial in $\mathbf{U}_{\mathbf{x}^{\prime}}^{\mathbf{y}^{\prime}}$, where \mathbf{x}^{\prime} and \mathbf{y}^{\prime} are obtained from \mathbf{x} and \mathbf{y} by summing s and t successive coordinate substrings: The length of the $i^{t h}$ substring of \mathbf{x} is the length of the row matrices in the $i^{t h}$ column of B^{\prime}; the length of the $\ell^{t h}$ substring of \mathbf{y} is the length of the column matrices in the $\ell^{t h}$ row of A^{\prime}. In any case, $\gamma(A \otimes B)$ is expressed as an arrow from the initial point of B to the terminal point of A.

Figure 2. The γ-product as a non-planar graph.

Define the upsilon product $\Upsilon: M \otimes M \rightarrow M$ on matrices $A, B \in M$ by

$$
\Upsilon(A \otimes B)_{i \ell}= \begin{cases}\gamma\left(A_{i \ell}^{\prime} \otimes B_{i \ell}^{\prime}\right), & \text { if } A \otimes B \text { is a BTP } \\ 0, & \text { otherwise }\end{cases}
$$

and let $A \cdot B=\Upsilon(A \otimes B)$. Note that Υ restricts to an associative product on \mathbf{U}.
Example 2. The γ-product of the $2 \times 2 B T P A^{4 \times 2} \otimes B^{2 \times 3}$ in Example 1 is the following 2×2 monomial in $\mathbf{U}_{3,3}^{10,3}$:

The row matrices in successive columns of the block decomposition of B have respective lengths 2 and 1 ; thus $\mathbf{x}^{\prime}=(3,3)$ is obtained from $\mathbf{x}=(1,2,3)$. Similarly, the column matrices in successive rows of the block decomposition of A have respective lengths 3 and 1 ; thus $\mathbf{y}^{\prime}=(10,3)$ is obtained from $\mathbf{y}=(1,5,4,3)$. Finally, the map $A \cdot B:\left(H^{\otimes 3} \otimes H^{\otimes 3}\right)^{\otimes 2} \rightarrow\left(H^{\otimes 10}\right)^{\otimes 2} \otimes\left(H^{\otimes 3}\right)^{\otimes 2}$ is expressed as an arrow initializing at $(6,2)$ and terminating at $(2,13)$.

2.2. Cup products on $C^{*}(P, \mathbf{U})$

Let $C_{*}(X)$ denote the cellular chains on a polytope X and assume that $C_{*}(X)$ comes equipped with a diagonal $\Delta_{X}: C_{*}(X) \rightarrow C_{*}(X) \otimes C_{*}(X)$. Let G be a module (graded or ungraded); if G is graded, ignore the grading and view G as a graded module concentrated in degree zero. The cellular k-cochains on X with
coefficients in G is the graded module

$$
C^{k}(X ; G)=\operatorname{Hom}^{-k}\left(C_{*}(X), G\right)
$$

When G is a DGA with multiplication μ, the diagonal Δ_{X} induces a DGA structure on $C^{*}(X ; G)$ with cup product

$$
f \smile g=\mu(f \otimes g) \Delta_{X}
$$

Unless explicitly indicated otherwise, non-associative cup products with multiple factors are parenthesized on the extreme left, i.e., $f \smile g \smile h=(f \smile g) \smile h$.

In our prequel $[\mathbf{1 7}]$ we constructed an explicit non-coassociative non-cocommutative diagonal Δ_{P} on the cellular chains of permutahedra $C_{*}\left(P_{n}\right)$ for each $n \geqslant 1$. Thus we immediately obtain non-associative, non-commutative DGA's $C^{*}\left(P_{n} ; \hat{\mathbf{U}}\right)$ and $C^{*}\left(P_{n} ; \stackrel{\vee}{\mathbf{U}}\right)$ with respective wedge and cech cup products \wedge and \vee. Of course, summing over all n gives wedge and cech cup products on $C^{*}(P ; \mathbf{U})$.

The modules $C^{*}(P ; \hat{\mathbf{U}})$ and $C^{*}(P ; \stackrel{\vee}{\mathbf{U}})$ are equipped with second cup products \wedge_{ℓ} and \vee_{ℓ}, which arise from the Υ-product on \mathbf{U} together with the "level coproduct." Recall that m-faces of P_{n+1} are indexed by PLT's with $n+2$ leaves, $n-m+1$ levels and root in level $n-m+1$ (see [11] or [17], for example). The level coproduct

$$
\Delta_{\ell}: C_{*}(P) \rightarrow C_{*}(P) \otimes C_{*}(P)
$$

vanishes on $e^{n} \subset P_{n+1}$ and is defined on proper m-faces e^{m} as follows: For each k, prune the tree of e^{m} between levels k and $k+1$ and sequentially number the stalks or trees removed from left-to-right. Let e_{k}^{\prime} denote the pruned tree; let $e_{k}^{\prime \prime}$ denote the tree obtained by attaching all stalks and trees removed during pruning to a common root (see Figure 4). Then

$$
\Delta_{\ell}\left(e^{m}\right)=\sum_{1 \leqslant k \leqslant n-m} e_{k}^{\prime} \otimes e_{k}^{\prime \prime}
$$

Figure 3: $\Delta_{\ell}(24|1| 3)=1|2 \otimes 24| 13+1 \otimes 24|1| 3$.

Obviously, Δ_{ℓ} is non-counital, non-cocommutative and non-coassociative; in fact, it fails to be a chain map. Fortunately this is not an obstruction to lifting the γ product on \mathbf{U} to a \smile_{ℓ}-product on $C^{*}(P ; \mathbf{U})$ since we restrict to certain canonically associative subalgebras of \mathbf{U}. For $\varphi, \varphi^{\prime} \in C^{*}(P ; \hat{\mathbf{M}})$ define $\varphi \wedge_{\ell} \varphi^{\prime}=\varphi \smile_{\ell} \varphi^{\prime}$ and for $\psi, \psi^{\prime} \in C^{*}(P ; \stackrel{\mathbf{M}}{\wedge})$ define $\psi \vee_{\ell} \psi^{\prime}=\psi^{\prime} \smile_{\ell} \psi$. Some typical \wedge_{ℓ}-products appear in Example 3 below.

2.3. Leaf sequences

Let T be a PLT with at least 2 leaves. Prune T immediately below the first level, trimming off k stalks and corollas. Number them sequentially from left-to-right and let n_{j} denote the number of leaves in the $j^{\text {th }}$ corolla (if T is a corolla, $k=1$ and the pruned tree is a stalk). The leaf sequence of T is the vector $\left(n_{1}, \ldots, n_{k}\right) \in \mathbb{N}^{k}$.

Given integers n and k with $1 \leqslant k \leqslant n+1$, let $\mathbf{n}=\left(n_{1}, \ldots, n_{k}\right) \in\left\{\mathbf{x} \in \mathbb{N}^{k} \mid\right.$ $|\mathbf{x}|=n+2\}$. When $k=1$, $e_{\mathbf{n}}$ denotes the $(n+2)$-leaf corolla. Otherwise, $e_{\mathbf{n}}$ denotes the 2-levelled tree with leaf sequence \mathbf{n}. Now consider the DGA \mathbf{U} with its γ-product. Given a codim 0 or 1 face $e_{\mathbf{n}} \subset P$ and a cochain $\varphi \in C^{*}(P ; \mathbf{U})$, let $\varphi_{\mathbf{n}}=\varphi\left(e_{\mathbf{n}}\right)$.

Example 3. Let $\varphi \in C^{0}(P ; \hat{\mathbf{U}})$ and $\bar{\varphi} \in C^{1}(P ; \hat{\mathbf{U}})$. When $n=1$, the proper faces of P_{2} are its vertices $1 \mid 2$ and $2 \mid 1$ with $\Delta_{\ell}(1 \mid 2)=1 \otimes 1 \mid 2$ and $\Delta_{\ell}(2 \mid 1)=1 \otimes 2 \mid 1$. Evaluating \wedge_{ℓ}-squares on vertices gives the compositions

$$
\varphi^{2}(1 \mid 2)=\varphi_{2} \varphi_{21} \quad \varphi^{2}(2 \mid 1)=\varphi_{2} \varphi_{12}
$$

When $n=2$, the proper faces of P_{3} are its edges and vertices (see Figure 4). Evaluating quadratic and cubic \wedge_{ℓ}-products on edges and vertices gives

$$
\begin{array}{rlll}
\bar{\varphi}^{2}(1 \mid 23) & =\bar{\varphi}_{3} \bar{\varphi}_{211} & \varphi^{2} \bar{\varphi}(1|2| 3) & =\varphi_{2} \varphi_{21} \bar{\varphi}_{211} \\
\bar{\varphi}^{2}(2 \mid 13) & =\bar{\varphi}_{3} \bar{\varphi}_{121} & \varphi^{2} \bar{\varphi}(1|3| 2) & =\varphi_{2} \varphi_{12} \bar{\varphi}_{211} \\
\bar{\varphi}^{2}(3 \mid 12) & =\bar{\varphi}_{3} \bar{\varphi}_{112} & \varphi^{2} \bar{\varphi}(2|1| 3) & =\varphi_{2} \varphi_{21} \bar{\varphi}_{121} \\
\varphi \bar{\varphi}(12 \mid 3) & =\varphi_{2} \bar{\varphi}_{31} & \varphi^{2} \bar{\varphi}(2|3| 1) & =\varphi_{2} \varphi_{12} \bar{\varphi}_{121} \\
\varphi \bar{\varphi}(13 \mid 2) & =\varphi_{2} \bar{\varphi}_{22} & \varphi^{2} \bar{\varphi}(3|1| 2) & =\varphi_{2} \varphi_{21} \bar{\varphi}_{112} \\
\varphi \bar{\varphi}(23 \mid 1) & =\varphi_{2} \bar{\varphi}_{13} & \varphi^{2} \bar{\varphi}(3|2| 1) & =\varphi_{2} \varphi_{12} \bar{\varphi}_{112} .
\end{array}
$$

Figure 4: The permutahedron P_{3}.

3. The biderivative

The definition of the biderivative operator $B d: \mathbf{U} \rightarrow \mathbf{U}$ requires some notational preliminaries. Let $\mathbf{x}_{i}(r)=(1, \ldots, r, \ldots, 1)$ with $r \geqslant 1$ in the $i^{t h}$ position; the subscript i will be suppressed unless we need its precise value; in particular, let $\mathbf{1}^{k}=\mathbf{x}(1) \in \mathbb{N}^{k}$. Again, we often suppress the superscript and write $\mathbf{1}$ when the
context is clear. Let

$$
\mathbf{U}_{0}=\bigoplus_{\mathbf{x}, \mathbf{y}=\mathbf{1}} \mathbf{U}_{\mathbf{x}}^{\mathbf{y}} \quad \text { and } \quad \mathbf{U}_{+}=\mathbf{U} / \mathbf{U}_{0}=\bigoplus_{\mathbf{x} \neq \mathbf{1}} \text { or } \mathbf{y} \neq \mathbf{1}
$$

also denote the submodules

$$
\begin{aligned}
\mathbf{U}_{u_{0}} & =\bigoplus_{\mathbf{x} \in \mathbb{N}^{p} ;|\mathbf{x}|>p \geqslant 1} \mathbf{U}_{\mathbf{x}}^{1} & \mathbf{U}_{v_{0}} & =\bigoplus_{\mathbf{y} \in \mathbb{N}^{q} ;|\mathbf{y}|>q \geqslant 1} \mathbf{U}_{1}^{\mathbf{y}} \\
\mathbf{U}_{u} & =\bigoplus_{\substack{\mathbf{x} \in \mathbb{N}^{p} ;|\mathbf{x}|>1 \\
p, q \geqslant 1}} \mathbf{U}_{\mathbf{x}}^{q} & \mathbf{U}_{v} & =\bigoplus_{\substack{\mathbf{y} \in \mathbb{N}^{q} ;|\mathbf{y}|>1 \\
p, q \geqslant 1}} \mathbf{U}_{p}^{\mathbf{y}}
\end{aligned}
$$

and note that

$$
\mathbf{U}_{u \cap v}=\mathbf{U}_{u} \cap \mathbf{U}_{v}=\bigoplus_{p, q \geqslant 2} \mathbf{U}_{p}^{q}
$$

Monomials in \mathbf{U}_{u} and \mathbf{U}_{v} are respectively row and column matrices. In terms of arrows, \mathbf{U}_{0} consists of all arrows of length zero; \mathbf{U}_{+}consists of all arrows of positive length. Arrows in \mathbf{U}_{u} initiate on the x-axis at $(|\mathbf{x}|, 1),|\mathbf{x}|>1$, and terminate in the region $x \leqslant|\mathbf{x}|$; in particular, arrows in $\mathbf{U}_{u_{0}}$ lie on the x-axis and terminate at $(p, 1)$. Arrows in \mathbf{U}_{v} initiate in the region $y \leqslant|\mathbf{y}|$ and terminate at $(1,|\mathbf{y}|),|\mathbf{y}|>1$; in particular, arrows in $\mathbf{U}_{v_{0}}$ lie on the y-axis and initiate at $(1, q)$. Thus arrows in $\mathbf{U}_{u \cap v}$ "transgress" from the x to the y axis.

3.1. The non-linear operator $B D$

Recall that \mathbf{n} is a leaf sequence if and only if $\mathbf{n} \neq \mathbf{1}$; when this occurs, $e_{\mathbf{n}}$ is a face of $P_{|\mathbf{n}|-1}$ in dimension $|\mathbf{n}|-2$ or $|\mathbf{n}|-3$. Let

$$
\hat{T} o p\left(\mathbf{U}_{+}\right) \subset C^{*}\left(P ; \bigoplus_{\mathbf{x} \neq \mathbf{1} \text { or } \mathbf{y} \neq \mathbf{1}} \mathbf{U}_{\mathbf{x}}^{\mathbf{y}}\right)
$$

be the submodule supported on $e_{\mathbf{x}}$ when $\mathbf{x} \neq \mathbf{1}$ or on $e_{\mathbf{y}}$ otherwise. Dually, let

$$
\stackrel{\vee}{T} o p\left(\mathbf{U}_{+}\right) \subset C^{*}\left(P ; \bigoplus_{\mathbf{x} \neq \mathbf{1} \text { or } \mathbf{y} \neq \mathbf{1}} \mathbf{U}_{\mathbf{x}}^{\mathbf{y}}\right)
$$

be the submodule supported on $e_{\mathbf{y}}$ when $\mathbf{y} \neq \mathbf{1}$ or on $e_{\mathbf{x}}$ otherwise. When $\mathbf{x}, \mathbf{y} \neq \mathbf{1}$, a monomial $A \in \mathbf{U}_{\mathbf{x}}^{\mathbf{y}}$ is identified with the cochains $\varphi_{A} \in \hat{T} o p\left(\mathbf{U}_{+}\right)$and $\psi_{A} \in \check{T} o p\left(\mathbf{U}_{+}\right)$ respectively supported on the codim 0 or 1 faces of P with leaf sequences \mathbf{x} and \mathbf{y} (see Figure 5). Let

$$
\hat{\pi}: C^{*}\left(P ; \mathbf{U}_{+}\right) \rightarrow \hat{T} o p\left(\mathbf{U}_{+}\right) \text {and } \check{\pi}: C^{*}\left(P ; \mathbf{U}_{+}\right) \rightarrow \check{T} o p\left(\mathbf{U}_{+}\right)
$$

be the canonical projections.

Figure 5: The monomial A is identified with φ_{A} and ψ_{A}.

For $\mathbf{x}_{i}(n), \mathbf{y}_{i}(n) \in \mathbb{N}^{q}$, let

$$
\left[\theta_{1, n}\right]_{i}^{\vee}=\left[I d \cdots \theta_{1, n} \cdots I d\right] \in \mathbf{U}_{\mathbf{x}_{i}(n)}^{1} \subset \mathbf{U}_{u_{0}}
$$

and

$$
\left[\theta_{n, 1}\right]_{i}^{\wedge}=\left[\begin{array}{c}
I d \\
\vdots \\
\theta_{n, 1} \\
\vdots \\
I d
\end{array}\right] \in \mathbf{U}_{1}^{\mathbf{y}_{i}(n)} \subset \mathbf{U}_{v_{0}}
$$

Given $\phi \in C^{*}\left(P ; \mathbf{U}_{+}\right)$and $n \geqslant 2$, consider the top dimensional cell $e_{n} \subseteq P_{n-1}$ and components $\phi_{1, n}\left(e_{n}\right) \in \mathbf{U}_{n}^{1} \subset \mathbf{U}_{u_{0}}$ and $\phi_{n, 1}\left(e_{n}\right) \in \mathbf{U}_{1}^{n} \subset \mathbf{U}_{v_{0}}$ of $\phi\left(e_{n}\right)$. The coderivation cochain of ϕ is the global cochain $\phi^{c} \in \hat{T} o p\left(\mathbf{U}_{+}\right)$given by

$$
\phi^{c}\left(e_{\mathbf{x}}\right)= \begin{cases}{\left[\phi_{1, n}\left(e_{n}\right)\right]_{i}^{\vee},} & \text { if } \mathbf{x}=\mathbf{x}_{i}(n), 1 \leqslant i \leqslant q, n \geqslant 2 \\ 0, & \text { otherwise }\end{cases}
$$

Dually, the derivation cochain of ϕ is the cochain $\phi^{a} \in \operatorname{Top}\left(\mathbf{U}_{+}\right)$given by

$$
\phi^{a}\left(e_{\mathbf{y}}\right)= \begin{cases}{\left[\phi_{n, 1}\left(e_{n}\right)\right]_{i}^{\wedge},} & \text { if } \mathbf{y}=\mathbf{y}_{i}(n), 1 \leqslant i \leqslant q, n \geqslant 2 \\ 0, & \text { otherwise }\end{cases}
$$

Thus ϕ^{c} is supported on the union of the $e_{\mathbf{x}_{i}(n)}$'s and takes the value

$$
\phi^{c} C_{*}(P)=\sum_{\substack{1 \leqslant i \leqslant q \\ q \geqslant 1}}[I d \cdots \underbrace{\phi_{u_{0}}\left(e_{n}\right)}_{i^{t h}} \cdots I d]^{1 \times q} \in \mathbf{U}_{u_{0}}
$$

and dually for ϕ^{a}.
Finally, define an operator $\tau: C^{*}\left(P ; \mathbf{U}_{+}\right) \rightarrow C^{*}\left(P ; \mathbf{U}_{+}\right)$on a cochain $\xi \in$ $C^{*}\left(P ; \mathbf{U}_{\mathbf{x}}^{\mathbf{y}}\right)$ by

$$
\tau(\xi)(e)= \begin{cases}\xi\left(e_{\mathbf{x}}\right), & \text { if } e=e_{\mathbf{y}} ; \mathbf{x}, \mathbf{y} \neq \mathbf{1}, \\ \xi\left(e_{\mathbf{y}}\right), & \text { if } e=e_{\mathbf{x}} ; \mathbf{x}, \mathbf{y} \neq \mathbf{1}, \\ 0, & \text { otherwise. }\end{cases}
$$

Note that τ is involutory on $\hat{T o p}\left(\mathbf{U}_{+}\right) \cap \check{T} o p\left(\mathbf{U}_{+}\right)$.
We are ready to define the non-linear operator $B D$. First define operators

$$
\hat{B} D: C^{*}\left(P ; \hat{\mathbf{U}}_{+}\right) \rightarrow C^{*}\left(P ; \hat{\mathbf{U}}_{+}\right) \text {and } \stackrel{B}{B} D: C^{*}(P ; \stackrel{\grave{\mathbf{U}}}{+}) \rightarrow C^{*}\left(P ; \check{\mathbf{U}}_{+}\right)
$$

by

$$
\hat{B} D(\varphi)=\hat{\varphi} \text { and } \check{B} D(\psi)=\check{\psi},
$$

where

$$
\begin{array}{ll}
\hat{\varphi}=\xi_{u}+\xi_{u} \wedge \xi_{u}+\cdots+\xi_{u}^{n}+\cdots \\
\xi=\varphi+\varphi \wedge_{\ell} \varphi+\cdots+\varphi^{n}+\cdots
\end{array} \quad \text { and } \quad \begin{aligned}
& \stackrel{\psi}{\psi}=\zeta_{v}+\zeta_{v} \vee \zeta_{v}+\cdots+\zeta_{v}^{n}+\cdots \\
& \zeta=\psi+\psi \vee_{\ell} \psi+\cdots+\psi^{n}+\cdots .
\end{aligned}
$$

Then define

$$
B D: C^{*}\left(P ; \mathbf{U}_{+}\right) \times C^{*}\left(P ; \mathbf{U}_{+}\right) \rightarrow C^{*}\left(P ; \mathbf{U}_{+}\right) \times C^{*}\left(P ; \mathbf{U}_{+}\right)
$$

on a pair $\varphi \times \psi$ by

$$
B D(\varphi \times \psi)=(\hat{\pi} \circ \hat{B} D)\left(\varphi^{c}+\tau \psi\right) \times(\check{\pi} \circ \check{B} D)\left(\psi^{a}+\tau \varphi\right) .
$$

Theorem 1. Given $\sum_{(m, n) \in \mathbb{N}^{2} \backslash \mathbf{1}} \theta_{n, m} \in U$, there is a unique fixed point

$$
\begin{equation*}
\varphi \times \psi=B D(\varphi \times \psi) \tag{3.1}
\end{equation*}
$$

such that

$$
\begin{align*}
\varphi_{u_{0}}\left(e_{m}\right) & =\theta_{1, m}, & & m \geqslant 2 \\
\varphi_{u \cap v}\left(e_{m}\right) & =\sum_{n \geqslant 2} \theta_{n, m}, & & m \geqslant 2 \tag{3.2}\\
\psi_{v_{0}}\left(e_{n}\right) & =\theta_{n, 1}, & & n \geqslant 2 \\
\psi_{u n v}\left(e_{n}\right) & =\sum_{m \geqslant 2} \theta_{n, m}, & & n \geqslant 2 .
\end{align*}
$$

Before proving this theorem, we remark that the existence of a fixed point $\varphi \times \psi$ for $B D$ is a deep generalization of the following classical fact: If a map h is (co)multiplicative (or a (co)derivation), restricting h to generators and (co)extending as a (co)algebra map (or as a (co)derivation) recovers h. These classical (co)multiplicative or (f, g)-(co)derivation extension procedures appear here as restrictions (3.1) to P_{1} (a point) or to P_{2} (an interval). Restricting (3.1) to a general permutahedron P_{n} gives a new extension procedure whose connection with the classical ones is maintained by the compatibility of the canonical cellular projection $P_{n} \rightarrow I^{n-1}$ with diagonals. Let us proceed with a proof of Theorem 1.

Proof. Define $B D^{(1)}=B D$ and $B D^{(n+1)}=B D \circ B D^{(n)}, n \geqslant 1$. Let

$$
\hat{F}_{n} \mathbf{U}=\bigoplus_{n<|\mathbf{x}|} \mathbf{U}_{\mathbf{x}}^{\mathrm{y}} \text { and } \stackrel{\vee}{F}_{n} \mathbf{U}=\bigoplus_{n<|\mathbf{y}|} \mathbf{U}_{\mathbf{x}}^{\mathbf{y}}
$$

A straightforward check shows that for each $n \geqslant 1$,

$$
B D^{(n+1)}=B D^{(n)} \text { modulo } \hat{F}_{n} C^{*}(P ; \mathbf{U}) \times \stackrel{\vee}{F}_{n} C^{*}(P ; \mathbf{U})
$$

So define

$$
D=\lim _{\longrightarrow} B D^{(n)} .
$$

Clearly, $B D \circ D=D$.
Let $\varphi_{u \cap v} \in \hat{T} o p\left(\mathbf{U}_{+}\right)$and $\psi_{u \cap v} \in \stackrel{\vee}{T} o p\left(\mathbf{U}_{+}\right)$be the two cochains uniquely defined by (3.2) and supported on the appropriate faces. Then

$$
\varphi \times \psi=D\left(\left(\varphi^{c}+\varphi_{u \cap v}\right) \times\left(\psi^{a}+\psi_{u \cap v}\right)\right)
$$

is the (unique) solution of (3.1).

3.2. The biderivative operator on U

Let $\widetilde{B d}: \mathbf{U}_{+} \times \mathbf{U}_{+} \rightarrow \mathbf{U}_{+} \times \mathbf{U}_{+}$be the operator given by the composition

$$
\begin{array}{ccc}
\mathbf{U}_{+} \times \mathbf{U}_{+} & \xrightarrow{\widetilde{B d}} & \mathbf{U}_{+} \times \mathbf{U}_{+} \\
\| & \| & \stackrel{\vee}{T} o p\left(\mathbf{U}_{+}\right) \times \stackrel{\vee}{T} o p\left(\mathbf{U}_{+}\right) \\
\underset{B D}{\longrightarrow} & \hat{T} o p\left(\mathbf{U}_{+}\right) \times \stackrel{\rightharpoonup}{T} o p\left(\mathbf{U}_{+}\right),
\end{array}
$$

where the vertical maps are canonical identification bijections and $B D$ is its restriction to $\hat{T} o p\left(\mathbf{U}_{+}\right) \times \stackrel{\vee}{T} o p\left(\mathbf{U}_{+}\right)$. For $A \in \mathbf{U}_{+}$, let $A_{1} \times A_{2}=\widetilde{B d}(A \times A)$ and define operators $\hat{B} d, \stackrel{B}{B} d: \mathbf{U}_{+} \rightarrow \mathbf{U}_{+}$by

$$
\hat{B} d(A)=A_{1} \text { and } \stackrel{\vee}{B} d(A)=A_{2}
$$

Given an operator $F: \mathbf{U} \rightarrow \mathbf{U}$ and a submodule $\mathbf{U}_{\epsilon} \subset \mathbf{U}$, denote the composition of F with the projection $\mathbf{U} \rightarrow \mathbf{U}_{\epsilon}$ by F_{ϵ}. Define the operator $B d_{+}: \mathbf{U}_{+} \rightarrow \mathbf{U}_{+}$as the sum

$$
B d_{+}=I d_{u \cap v}+\hat{B} d_{u_{0} \oplus v}+\stackrel{\vee}{B} d_{u \oplus v_{0}}
$$

Note that $\hat{B} d_{u_{0}}(\theta)$ is the cofree coextension of $\theta \in U_{1, *}$ as a coderivation of $T^{c} H$; dually, $\stackrel{\vee}{B} d_{v_{0}}(\eta)$ is the free extension of $\eta \in U_{*, 1}$ as a derivation of $T^{a} H$.

On the other hand, observe that $U \cap \mathbf{U}_{0}=U_{1,1}$. Given $A \in U_{1,1}, 1 \leqslant i \leqslant q$ and $1 \leqslant j \leqslant p$, let $A_{i j}^{q \times p}=\left(a_{k \ell}\right) \in \mathbf{U}_{\mathbf{1}^{p}}^{1^{q}}$ be the $q \times p$ monomial such that

$$
a_{k \ell}= \begin{cases}A, & \text { if }(k, \ell)=(i, j) \\ I d, & \text { otherwise }\end{cases}
$$

Define $B d_{0}: U_{1,1} \rightarrow T T U_{1,1}$ by

$$
B d_{0}(A)=\sum_{\substack{1 \leqslant i \leqslant q, 1 \leqslant j \leqslant p \\ p, q \geqslant 1}} A_{i j}^{q \times p}
$$

Then $B d_{0}(A)$ is the free linear extension of A as a (co)derivation of $T T H$.
We establish the following fundamental notion:
Definition 2. The biderivative operator

$$
B d: \mathbf{U} \rightarrow \mathbf{U}
$$

associated with the universal $\operatorname{PROP} U$ is the sum

$$
B d=B d_{0}+B d_{+}: \mathbf{U}_{0} \oplus \mathbf{U}_{+} \rightarrow \mathbf{U}_{0} \oplus \mathbf{U}_{+}
$$

An element $A \in \mathbf{U}$ is a biderivative if $A=B d(A)$.
Restating Theorem 1 in these terms we have:
Proposition 1. Every element $\omega=\sum_{i, j \geqslant 1} \omega_{j, i} \in U$ has a unique biderivative $d_{\omega} \in T T U$.

Thus the biderivative can be viewed as a non-linear map $d_{-}: U \rightarrow T T U$.

3.3. The ©-product on U

The biderivative operator allows us to extend Gerstenhaber's (co)operation [3] $\circ: U_{*, 1} \oplus U_{1, *} \rightarrow U$ to a (non-bilinear) operation

$$
\begin{equation*}
\text { © : } U \times U \rightarrow U \tag{3.3}
\end{equation*}
$$

defined for $\theta \times \eta \in U \times U$ by the composition

$$
\bigcirc: U \times U \xrightarrow{d_{\theta} \times d_{\eta}} \mathbf{U} \times \mathbf{U} \xrightarrow{\Upsilon} \mathbf{U} \xrightarrow{p r} U
$$

where the last map is the canonical projection. The following is now obvious:
Proposition 2. The © operation (3.3) acts bilinearly only on the submodule $U_{*, 1} \oplus$ $U_{1, *}$.

Remark 1. The bilinear part of the © operation, i.e., its restriction to $U_{*, 1} \oplus U_{1, *}$, is completely determined by the associahedra K (rather than the permutahedra) and induces the cellular projection $P_{n} \rightarrow K_{n+1}$ due to A. Tonks [24].
Example 4. Throughout this example the symbol " 1 " denotes the identity. Consider a $D G M(H, d)$ together with maps $\mu=\theta_{1,2}, \theta=\theta_{2,2}, \Delta=\theta_{2,1} \in \operatorname{End}(T H)$. Let us compute the biderivative of $\omega=d+\mu+\theta+\Delta$ and its ©-square. Consider the pair of cochains $\varphi \times \psi \in \stackrel{\wedge}{\operatorname{Top}}\left(\mathbf{U}_{+}\right) \times \stackrel{\vee}{\operatorname{Top}}\left(\mathbf{U}_{+}\right)$supported on $e_{2} \times e_{2}$ such that $\varphi\left(e_{2}\right)=\mu+\theta$ and $\psi\left(e_{2}\right)=\theta+\Delta$. Then

$$
\begin{aligned}
& \varphi^{c}\left(e_{2}+e_{21}+e_{12}+\cdots\right)=\mu+[\mu 1]+\left[\begin{array}{ll}
1 & \mu
\end{array}\right]+\cdots \in \mathbf{U}_{u_{0}} \\
& \psi^{a}\left(e_{2}+e_{21}+e_{12}+\cdots\right)=\Delta+\left[\begin{array}{l}
\Delta \\
1
\end{array}\right]+\left[\begin{array}{l}
1 \\
\Delta
\end{array}\right]+\cdots \in \mathbf{U}_{v_{0}} \text { and } \\
& \tau(\varphi)\left(e_{2}\right)=\varphi_{u \cap v}\left(e_{2}\right)=\theta=\psi_{u \cap v}\left(e_{2}\right)=\tau(\psi)\left(e_{2}\right)
\end{aligned}
$$

Set $\alpha=\varphi^{c}+\tau \psi$ and $\beta=\psi^{a}+\tau \varphi$; then

$$
\begin{aligned}
& \left(\alpha \wedge_{\ell} \alpha\right)\left(C_{*} P\right)=(\mu+\theta)(\mu \otimes 1+1 \otimes \mu)+\cdots \quad \text { and } \\
& \left(\beta \vee_{\ell} \beta\right)\left(C_{*} P\right)=(\Delta \otimes 1+1 \otimes \Delta)(\theta+\Delta)+\cdots
\end{aligned}
$$

Furthermore, the projections $\alpha_{u}=\alpha$ and $\beta_{v}=\beta$ so that

$$
\xi_{u}=\alpha+\alpha \wedge_{\ell} \alpha+\cdots \quad \text { and } \quad \zeta_{v}=\beta+\beta \vee_{\ell} \beta+\cdots
$$

Then $B D(\varphi \times \psi)=\hat{\varphi} \times \check{\psi}$, where

$$
\hat{\varphi}=\xi_{u}+\xi_{u} \wedge \xi_{u}+\cdots \quad \text { and } \check{\psi}=\zeta_{v}+\zeta_{v} \vee \zeta_{v}+\cdots
$$

Now $\hat{\varphi}_{u_{0} \oplus v}\left(C_{*} P\right)=\mu+\mu(\mu \otimes 1+1 \otimes \mu)+\theta+\left[\begin{array}{l}\theta \\ \theta\end{array}\right]+\left[\begin{array}{l}\theta \\ \mu\end{array}\right]+\left[\begin{array}{l}\mu \\ \theta\end{array}\right]+\left[\begin{array}{l}\mu \\ \mu\end{array}\right]+\cdots \quad$ and $\check{\psi}_{u \oplus v_{0}}\left(C_{*} P\right)=\theta+[\theta \theta]+[\Delta \theta]+[\theta \Delta]+[\Delta \Delta]+\Delta+(\Delta \otimes 1+1 \otimes \Delta) \Delta+\cdots$ so that $B d_{+}(\omega)=\theta+\left(\hat{\varphi}_{u_{0} \oplus v}+\check{\psi}_{u \oplus v_{0}}\right)\left(C_{*} P\right)$. Finally, we adjoin the linear extension of the differential d in $T T U_{1,1}$ and obtain

$$
\begin{aligned}
d_{\omega}= & d+\left[\begin{array}{ll}
d & 1
\end{array}\right]+\left[\begin{array}{ll}
1 & d
\end{array}\right]+\cdots+\left[\begin{array}{l}
d \\
1
\end{array}\right]+\left[\begin{array}{l}
1 \\
d
\end{array}\right]+\cdots+\mu+\Delta+\cdots \\
& +\theta+\mu(\mu \otimes 1+1 \otimes \mu)+\cdots+(\Delta \otimes 1+1 \otimes \Delta) \Delta+\cdots \\
& +\left[\begin{array}{l}
\theta \\
\theta
\end{array}\right]+\left[\begin{array}{l}
\theta \\
\mu
\end{array}\right]+\left[\begin{array}{l}
\mu \\
\theta
\end{array}\right]+\left[\begin{array}{l}
\mu \\
\mu
\end{array}\right]+\cdots+[\theta \theta]+\left[\begin{array}{ll}
\Delta & \theta
\end{array}\right]+\left[\begin{array}{ll}
\theta & \Delta
\end{array}\right]+\left[\begin{array}{ll}
\Delta & \Delta
\end{array}\right]+\cdots .
\end{aligned}
$$

Then (up to sign),

$$
\begin{aligned}
& \omega \odot \omega=\left(\left[\begin{array}{l}
d \\
1
\end{array}\right]+\left[\begin{array}{l}
1 \\
d
\end{array}\right]\right) \cdot \theta+\theta \cdot\left(\left[\begin{array}{ll}
d & 1
\end{array}\right]+\left[\begin{array}{ll}
1 & d
\end{array}\right]\right)+\Delta \cdot \mu+\left[\begin{array}{l}
\mu \\
\mu
\end{array}\right] \cdot\left[\begin{array}{ll}
\Delta & \Delta
\end{array}\right]+ \\
& +\left[\begin{array}{l}
\mu \\
\mu
\end{array}\right] \cdot\left(\left[\begin{array}{ll}
\Delta & \theta
\end{array}\right]+\left[\begin{array}{ll}
\theta & \Delta
\end{array}\right]\right)+\theta \cdot\left(\left[\begin{array}{ll}
1 & \mu
\end{array}\right]+\left[\begin{array}{ll}
\mu & 1
\end{array}\right]\right)+ \\
& +\left(\left[\begin{array}{c}
\theta \\
\mu
\end{array}\right]+\left[\begin{array}{c}
\mu \\
\theta
\end{array}\right]\right) \cdot\left[\begin{array}{ll}
\Delta & \Delta
\end{array}\right]+\left(\left[\begin{array}{c}
\Delta \\
1
\end{array}\right]+\left[\begin{array}{l}
1 \\
\Delta
\end{array}\right]\right) \cdot \theta+\cdots .
\end{aligned}
$$

Some low dimensional relations implied by $\omega \odot \omega=0$ are (up to sign):

$$
\begin{aligned}
(d \otimes 1+1 \otimes d) \theta+\theta(d \otimes 1+1 \otimes d) & =\Delta \mu-(\mu \otimes \mu) \sigma_{2,2}(\Delta \otimes \Delta) \\
(\mu \otimes \mu) \sigma_{2,2}(\Delta \otimes \theta+\theta \otimes \Delta) & =\theta(\mu \otimes 1+1 \otimes \mu) \\
(\mu \otimes \theta+\theta \otimes \mu) \sigma_{2,2}(\Delta \otimes \Delta) & =(\Delta \otimes 1+1 \otimes \Delta) \theta
\end{aligned}
$$

In fact, if $\omega \odot \omega=0$ then (H, ω) is an " A_{∞}-bialgebra."

4. A_{∞}-bialgebras

In this section we define the notion of an A_{∞}-bialgebra. Our approach extends the definition of an $A_{\infty^{-}}$(co) algebra in terms of Gerstenhaber's (co)operation. Roughly speaking, an A_{∞}-bialgebra is a graded R-module H equipped with compatible $A_{\infty^{-}}$ algebra and A_{∞}-coalgebra structures. Structural compatibility of the operations in an A_{∞}-bialgebra is determined by the © operation (3.3). Before stating the definition, we mention three natural settings in which A_{∞}-bialgebras appear (details appear in the sequel [18]).
(1) Let X be a space and let $C_{*}(X)$ denote the simplicial singular chain complex of X. Although Adams' cobar construction $\Omega C_{*}(X)$ is a (strictly coassociative) DG

Hopf algebra [1], [2], [8], it seems impossible to introduce a strictly coassociative coproduct on the double cobar construction $\Omega^{2} C_{*}(X)$. Instead there is an $A_{\infty^{-}}$ coalgebra structure on $\Omega^{2} C_{*}(X)$ that is compatible with the product and endows $\Omega^{2} C_{*}(X)$ with an A_{∞}-bialgebra structure.
(2) If H is a graded bialgebra and $\rho: R H \longrightarrow H$ is a (bigraded) multiplicative resolution, it is difficult to introduce a strictly coassociative coproduct on $R H$ in such a way that ρ is a map of bialgebras. However, there exists an A_{∞}-bialgebra structure on $R H$ such that ρ is a morphism of A_{∞}-bialgebras.
(3) If A is any DG bialgebra, its homology $H(A)$ has a canonical A_{∞}-bialgebra structure.

The definition of an A_{∞}-bialgebra H uses the ©-operation on U_{H} to mimic the definition of an A_{∞}-algebra.

Definition 3. An A_{∞}-bialgebra is a graded R-module H equipped with operations

$$
\left\{\omega^{j, i} \in \operatorname{Hom}^{i+j-3}\left(H^{\otimes i}, H^{\otimes j}\right)\right\}_{i, j \geqslant 1}
$$

such that $\omega=\sum_{i, j \geqslant 1} \omega^{j, i} \in U$ satisfies $\omega \odot \omega=0$.
Here are some of the first structural relations among the operations in an $A_{\infty^{-}}$ bialgebra:

$$
\begin{aligned}
d \omega^{2,2}= & \omega^{2,1} \omega^{1,2}-\left(\omega^{1,2} \otimes \omega^{1,2}\right) \sigma_{2,2}\left(\omega^{2,1} \otimes \omega^{2,1}\right) \\
d \omega^{3,2}= & \omega^{3,1} \omega^{1,2}+\left(\omega^{2,1} \otimes 1-1 \otimes \omega^{2,1}\right) \omega^{2,2} \\
& -\left(\omega^{1,2} \otimes \omega^{1,2} \otimes \omega^{1,2}\right) \sigma_{3,2}\left[\omega^{3,1} \otimes\left(1 \otimes \omega^{2,1}\right) \omega^{2,1}+\left(\omega^{2,1} \otimes 1\right) \omega^{2,1} \otimes \omega^{3,1}\right] \\
& +\left[\left(\omega^{2,2} \otimes \omega^{1,2}-\omega^{1,2} \otimes \omega^{2,2}\right)\right] \sigma_{2,2}\left(\omega^{2,1} \otimes \omega^{2,1}\right) \\
d \omega^{2,3}= & -\omega^{2,1} \omega^{1,3}+\omega^{2,2}\left(1 \otimes \omega^{1,2}-\omega^{1,2} \otimes 1\right) \\
& +\left[\omega^{1,3} \otimes \omega^{1,3}\left(1 \otimes \omega^{1,3}\right)+\omega^{1,3}\left(\omega^{1,2} \otimes 1\right) \otimes \omega^{1,3}\right] \sigma_{2,3}\left(\omega^{2,1} \otimes \omega^{2,1} \otimes \omega^{2,1}\right) \\
& +\left(\omega^{1,2} \otimes \omega^{1,2}\right) \sigma_{2,2}\left(\omega^{2,1} \otimes \omega^{2,2}-\omega^{2,2} \otimes \omega^{2,1}\right) .
\end{aligned}
$$

Example 5. The structure of an A_{∞}-bialgebra whose initial data consists of a strictly coassociative coproduct $\Delta: H \rightarrow H^{\otimes 2}$ together with A_{∞}-algebra operations $m_{i}: H^{\otimes i} \rightarrow H, i \geqslant 2$, is determined as in Example 4 but with $\varphi\left(e_{i}\right)=m_{i}$, $\psi\left(e_{2}\right)=\Delta$. This time the action of τ is trivial since all initial maps lie in $\mathbf{U}_{u_{0} \oplus v_{0}}$ and we obtain the following structure relation for each $i \geqslant 2$:

$$
\left(\xi_{u} \wedge \xi_{u}\right)\left(e_{i}\right) \cdot[\Delta \cdots \Delta \Delta]=\Delta \cdot m_{i}
$$

Indeed, the classical bialgebra relation appears when $i=2$.
We conclude with a statement of our main theorem (the definition of an $A_{\infty^{-}}$ bialgebra morphism appears in the sequel [18]).
Theorem 2. Let A be an A_{∞}-bialgebra; if the ground ring R is not a field, assume that the homology $H=H(A)$ is torsion-free. Then H inherits a canonical bialgebra structure that extends to an A_{∞}-bialgebra structure $\left\{\omega^{j, i}\right\}_{i, j \geqslant 1}$ with $\omega^{1,1}=0$.

Furthermore, there is a map of A_{∞}-bialgebras

$$
\digamma=\left\{\digamma^{j, i}\right\}_{i, j \geqslant 1}: H \Longrightarrow A
$$

with $\digamma^{j, i} \in \operatorname{Hom}^{i+j-2}\left(H^{\otimes i}, A^{\otimes j}\right)$, such that $\digamma^{1,1}: H \rightarrow A$ is a map of $D G M$'s inducing an isomorphism on homology.

References

[1] H. J. Baues, The cobar construction as a Hopf algebra and the Lie differential, Invent. Math. 132 (1998) 467-489.
[2] G. Carlsson and R. J. Milgram, Stable homotopy and iterated loop spaces, Handbook of Algebraic Topology (I. M. James, ed.), North-Holland (1995), 505-583.
[3] M. Gerstenhaber and S. D. Schack, Algebras, bialgebras, quantum groups, and algebraic deformations, Contemporary Math. 134, A. M. S., Providence (1992), 51-92.
[4] V.K.A.M. Gugenheim, On a perturbation theory for the homology of the loop space, J. Pure Appl. Algebra, 25 (1982), 197-205.
[5] T. Kadeishvili, On the homology theory of fibre spaces, Russian Math. Survey, 35 (1980), 131-138.
[6] T. Kimura, J. Stasheff and A. Voronov, On operad structures of moduli spaces and string theory, Comm. Math. Physics, 171 (1995), 1-25.
[7] T. Kimura, A. Voronov and G. Zuckerman, Homotopy Gerstenhaber algebras and topological field theory, Operads: Proceedings of Renaissance Conferences (J.-L. Loday, J. Stasheff and A. Voronov, eds.), A. M. S. Contemp. Math. 202 (1997), 305-334.
[8] T. Kadeishvili and S. Saneblidze, A cubical model of a fibration, J. Pure Appl. Algebra, 196 (2005), 203-228.
[9] T. Lada and M. Markl, Strongly homotopy Lie algebras, Communications in Algebra, 23 (1995), 2147-2161.
[10] J. P. Lin, H-spaces with finiteness conditions, Handbook of Algebraic Topology (I. M. James, ed.), North Holland, Amsterdam (1995), 1095-1141.
[11] J.-L. Loday and M. Ronco, Hopf algebra of the planar binary trees, Adv. in Math. 139, No. 2 (1998), 293-309.
[12] M. Markl, A cohomology theory for $A(m)$-algebras and applications, J. Pure and Appl. Algebra, 83 (1992), 141-175.
[13] M. Penkava and A. Schwarz, On some algebraic structures arising in string theory, "Conf. Proc. Lecture Notes Math. Phys., III, Perspectives in Math. Physics," International Press, Cambridge (1994), 219-227.
[14] $\longrightarrow A_{\infty}$ algebras and the cohomology of moduli spaces, "Lie Groups and Lie Algebras: E. B. Dykin's Seminar," A. M. S. Transl. Ser. 2169 (1995), 91-107.
[15] S. Saneblidze, On the homotopy classification of spaces by the fixed loop space homology, Proc. A. Razmadze Math. Inst., 119 (1999), 155-164.
[16] S. Saneblidze and R. Umble, A Diagonal on the associahedra, preprint AT/0011065, November 2000.
[17] , Diagonals on the permutahedra, multiplihedra and associahedra, J. Homology, Homotopy and Appl., 6 (1) (2004), 363-411.
[18] , Matrons and the category of A_{∞}-bialgebras, in preparation.
[19] S. Shnider and S. Sternberg, "Quantum Groups: From Coalgebras to Drinfeld Algebras," International Press, Boston (1993).
[20] B. Shoikhet, The CROCs, non-commutative deformations, and (co)associative bialgebras, preprint QA/0306143.
[21] J. R. Smith, "Iterating the Cobar Construction," Memoirs of the A. M. S. 109, Number 524 (1994).
[22] J. D. Stasheff, Homotopy associativity of H-spaces I, II, Trans. A. M. S. 108 (1963), 275-312.
[23] \quad, H-spaces from a Homotopy Point of View," SLNM 161, Springer, Berlin (1970).
[24] A. Tonks, Relating the associahedron and the permutohedron, "Operads: Proceedings of the Renaissance Conferences (Hartford CT / Luminy Fr 1995)," Contemporary Mathematics 202 (1997), pp.33-36 .
[25] R. N. Umble, The deformation complex for differential graded Hopf algebras, J. Pure Appl. Algebra, 106 (1996), 199-222.
[26] , In Search of higher homotopy Hopf algebras, lecture notes.
[27] H. W. Wiesbrock, A Note on the construction of the C^{*}-Algebra of bosonic strings, J. Math. Phys. 33 (1992), 1837-1840.
[28] B. Zwiebach, Closed string field theory; quantum action and the BatalinVilkovisky master equation, Nucl. Phys. B. 390 (1993), 33-152.

This article may be accessed via WWW at http://www.rmi.acnet.ge/hha/ or by anonymous ftp at
ftp://ftp.rmi.acnet.ge/pub/hha/volumes/2005/n2a9/v7n2a9.(dvi,ps,pdf)
Samson Saneblidze sane@rmi.acnet.ge
A. Razmadze Mathematical Institute

Georgian Academy of Sciences
M. Aleksidze st., 1

0193 Tbilisi, Georgia
Ronald Umble ron.umble@millersville.edu
Department of Mathematics
Millersville University of Pennsylvania
Millersville, PA. 17551

[^0]: This research described in this publication was made possible in part by Award No. GM1-2083 of the U.S. Civilian Research and Development Foundation for the Independent States of the Former Soviet Union (CRDF) and by Award No. 99-00817 of INTAS
 This research funded in part by a Millersville University faculty research grant. Received June 23, 2004, revised August 16, 2004; published on April 22, 2005.
 2000 Mathematics Subject Classification: Primary 55P35, 55P99; Secondary 52B05.
 Key words and phrases: A_{∞}-algebra, A_{∞}-coalgebra, biderivative, Hopf algebra, permutahedron, universal PROP.
 (c) 2005, Samson Saneblidze and Ronald Umble. Permission to copy for private use granted.

