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We consider the time-harmonic acoustic wave scattering by a bounded
anisotropic inhomogeneity embedded in an unbounded anisotropic homoge-
neous medium. The material parameters may have discontinuities across
the interface between the inhomogeneous interior and homogeneous exterior
regions. The corresponding mathematical problem is formulated as a trans-
mission problems for a second-order elliptic partial differential equation of
Helmholtz type with discontinuous variable coefficients. Using a localised
quasi-parametrix based on the harmonic fundamental solution, the transmis-
sion problem for arbitrary values of the frequency parameter is reduced equiv-
alently to a system of singular localised boundary-domain integral equations.
Fredholm properties of the corresponding localised boundary-domain inte-
gral operator are studied and its invertibility is established in appropriate
Sobolev-Slobodetskii (Bessel potential) spaces, which implies existence and
uniqueness results for the localised boundary-domain integral equations system
and the corresponding acoustic scattering transmission problem.
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1 INTRODUCTION

We consider the time-harmonic acoustic wave scattering by a bounded anisotropic inhomogeneous obstacle embedded in
an unbounded anisotropic homogeneous medium. We assume that the material parameters and speed of sound are func-
tions of position within the inhomogeneous bounded obstacle. The physical model problem with a frequency parameter
𝜔 ∈ R is formulated mathematically as a transmission problem for a second-order elliptic partial differential equation
with variable coefficients A2(x, 𝜕x)u(x) ≡ 𝜕xk (a

(2)
k𝑗 (x)𝜕x𝑗u(x))+𝜔

2𝜅2(x)u(x) = 𝑓2 in the inhomogeneous anisotropic bounded
region Ω+ ⊂ R3 and for a Helmholtz type equation with constant coefficients A1(𝜕x)u(x) ≡ a(1)

k𝑗 𝜕xk𝜕x𝑗u(x) +𝜔
2𝜅1 u(x) = 𝑓1

in the homogeneous anisotropic unbounded region Ω− = R3∖Ω+. The material parameters a(q)
k𝑗 and 𝜅q are not assumed
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to be continuous across the interface S = 𝜕Ω− = 𝜕Ω+ between the inhomogeneous interior and homogeneous exterior
regions. The transmission conditions are assumed on the interface, relating the interior and exterior traces of the wave
amplitude u and its co-normal derivative on S.

The transmission problems for the Helmholtz equation, ie, when A2(x, 𝜕) = A1(𝜕) = Δ + 𝜔2, which corresponds to a
homogeneous isotropic media, are well studied in the case of smooth and Lipschitz interface (see Costabel and Stephan,1

Kleinman and Martin,2 Kress and Roach,3 Torres and Welland,4 and the references therein).
The special isotropic transmission problems when A2(x, 𝜕x) = Δ + 𝜔2𝜅2(x) and A1(𝜕x) = Δ + 𝜔2 is the Helmholtz oper-

ator are also well presented in the literature (see Colton and Kress,5 Nédélec,6 and the references therein). The acoustic
scattering problem in the whole space corresponding to a more general isotropic case, when a(2)

k𝑗 (x) = a(x)𝛿k𝑗 , where 𝛿kj

is Kronecker delta and A1(𝜕x) = Δ + 𝜔2, was analysed by the indirect boundary-domain integral equation method by
Werner.7,8 Applying the potential method based on the Helmholtz fundamental solution, Werner reduced the problem
to the Fredholm-Riesz type integral equations system and proved its unique solvability. The same problem by the direct
method was considered by Martin,9 where the problem was reduced to a singular integro-differential equation in the
inhomogeneous bounded region Ω+. Using the uniqueness and existence results obtained by Werner,7,8 the equivalence
of the integro-differential equation to the initial transmission problem and its unique solvability were shown for special
type right-hand side functions associated with Green's third formula.

Note that the wave scattering problems for the general inhomogeneous anisotropic case described above can be studied
by the variational method incorporated with the nonlocal approach and also by the classical potential method when the
corresponding fundamental solution is available in an explicit form. However, fundamental solutions for second-order
elliptic partial differential equations with variable coefficients are not available in explicit form, in general. Application
of the potential method based on the corresponding Levi function, which always can be constructed explicitly, leads to
Fredholm-Riesz type integral equations but invertibility of the corresponding integral operators can be proved only for
particular cases (see Miranda 10).

Our goal here is to show that the acoustic transmission problems for anisotropic heterogeneous structures can be
equivalently reformulated as systems of singular localised boundary-domain integral equations (LBDIEs) with the help
of a localised harmonic parametrix based on the harmonic fundamental solution, which is a quasi-parametrix for the
considered PDEs of acoustics, and to prove that the corresponding singular localised boundary-domain integral opera-
tors (LBDIO) are invertible for an arbitrary value of the frequency parameter. Beside a pure mathematical interest, these
results seem to be important from the point of view of applications, since LBDIE system can be applied in constructing
convenient numerical algorithms (cf Mikhailov11, Zhu et al12,13 and Sladek et al14). The main novelty of the paper is in
application of the singular localised boundary-domain integral equations method to the problem of acoustic transmission
through a penetrable, anisotropic, inhomogeneous obstacle.

The paper is organised as follows. First, after mathematical formulation of the problem, we introduce layer and volume
potentials based on a localised harmonic parametrix and derive basic integral relations in bounded inhomogeneous and
unbounded homogeneous anisotropic regions. Then we reduce the transmission problem under consideration to the
localised boundary-domain singular integral equations system and prove the equivalence theorem for arbitrary values
of the frequency parameter, which plays a crucial role in our analysis. Afterwards, applying the Vishik-Eskin approach,
we investigate Fredholm properties of the corresponding matrix LBDIO, containing singular integral operators over the
interface surface and the bounded region occupied by the inhomogeneous obstacle, and prove invertibility of the LBDIO in
appropriate Sobolev-Slobodetskii (Bessel potential spaces). This invertibility property implies then, in particular, existence
and uniqueness results for the LBDIE system and the corresponding original transmission problem.

Next, we analyse also an alternative nonlocal approach based on coupling of variational and boundary integral equation
methods, which reduces the transmission problem for unbounded composite structure to the variational equation con-
taining a coercive sesquilinear form, which lives on the bounded inhomogeneous region and the interface manifold. Both
approaches presented in the paper can be applied in the study of similar wave scattering problems for multilayer piecewise
inhomogeneous anisotropic structures.

Finally, for the readers convenience, we collected necessary auxiliary material related to classes of localising functions,
properties of localised potentials and anisotropic radiating potentials in three brief appendices.
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2 FORMULATION OF THE TRANSMISSION PROBLEM

Let Ω+ = Ω2 be a bounded domain in R3 with a simply connected boundary 𝜕Ω2 = S, and Ω− = Ω1 ∶= R3∖Ω2. For
simplicity, we assume that S ∈ C∞ if not otherwise stated. Throughout the paper, n = (n1,n2,n3) denotes the unit
normal vector to S directed outward the domain Ω2.

We assume that the propagation region of a time harmonic acoustic wave utot is the whole space R3 that consists of an
inhomogeneous part Ω2 and a homogeneous part Ω1. Acoustic wave propagation is governed by the uniformly elliptic
second-order scalar partial differential equation

Autot(x) ≡ 𝜕k (ak𝑗(x)𝜕𝑗utot(x)) + 𝜔2𝜅(x)utot(x) = 𝑓 (x), x ∈ Ω2 ∪ Ω1, (1)

where 𝜕x = (𝜕1, 𝜕2, 𝜕3), 𝜕𝑗 = 𝜕x𝑗 = 𝜕∕𝜕x𝑗 , akj(x) = ajk(x), and 𝜅(x) are real-valued functions, 𝜔 ∈ R is a frequency
parameter, while 𝑓 ∈ L2,comp(R3) is the volume force amplitude. Here and in what follows, the Einstein summation by
repeated indices from 1 to 3 is assumed.

Note that in the mathematical model of an inhomogeneous absorbing medium, the function 𝜅 is complex valued, with
nonzero real and imaginary parts, in general (see, eg, Colton and Kress,5 chapter 8). Here, we treat only the case when
the 𝜅 is a real-valued function, but it should be mentioned that the complex-valued case can be also considered by the
approach developed here.

In our further analysis, it is assumed that the real-valued variable coefficients akj and 𝜅 are constant in the homogeneous
unbounded region Ω1 and the following relations hold:

ak𝑗(x) = a𝑗k(x) =

{
a(1)

k𝑗 for x ∈ Ω1,

a(2)
k𝑗 (x) for x ∈ Ω2,

𝜅(x) =
{
𝜅1 > 0 for x ∈ Ω1,
𝜅2(x) > 0 for x ∈ Ω2,

(2)

where a(1)
k𝑗 and 𝜅1 are constants, while a(2)

k𝑗 and 𝜅2 are smooth function in Ω2,

a(2)
k𝑗 , 𝜅2 ∈ C 2(Ω2), 𝑗, k = 1, 2, 3. (3)

Moreover, the matrices aq = [a(q)
k𝑗 ]

3
k,𝑗=1 are uniformly positive definite, ie, there are positive constants c1 and c2 such that

c1 |𝜉|2 ≤ a(q)
k𝑗 (x)𝜉k 𝜉𝑗 ≤ c2 |𝜉|2 ∀ x ∈ Ωq, ∀ 𝜉 ∈ R

3, q = 1, 2. (4)

We do not assume that the coefficients akj and 𝜅 are continuous across S in general, ie, the case a(2)
k𝑗 (x) ≠ a(1)

k𝑗 and 𝜅2(x) ≠
𝜅1 for x ∈ S is covered by our analysis. Further, let us denote

A1v(x) ∶= a(1)
k𝑗 𝜕xk𝜕x𝑗 v(x) + 𝜔

2𝜅1 v(x) for x ∈ Ω1, (5)

A2v(x) ∶= 𝜕xk (a
(2)
k𝑗 (x)𝜕x𝑗 v(x)) + 𝜔

2𝜅2(x)v(x) for x ∈ Ω2.

For a function v sufficiently smooth in Ω1 and Ω2, the classical co-normal derivative operators, T±cq are well defined as

T±cq v(x) ∶= a(q)
k𝑗 nk(x)𝛾±(𝜕x𝑗 v(x)), x ∈ S, q = 1, 2; (6)

here, the symbols 𝛾+ and 𝛾− denote one-sided boundary trace operators on S from the interior and exterior domains,
respectively. Their continuous right inverse operators, which are nonuniquely defined, are denoted by symbols (𝛾±)−1.

By Hs(Ω) = Hs
2(Ω), Hs

loc(Ω) = Hs
2, loc(Ω), Hs

comp(Ω) = Hs
2, comp(Ω), and Hs(S) = Hs

2(S), s ∈ R, we denote the L2-based
Bessel potential spaces on an open domain Ω ⊂ R3 and on a closed manifold S without boundary, while (Ω) stands
for the space of infinitely differentiable test functions with support in Ω. Recall that H0(Ω) = L2(Ω) is a space of square
integrable functions in Ω. Let the symbol rΩ denote the restriction operator onto Ω.

Since the boundary traces of gradients, 𝛾±(𝜕xj v(x)) are generally not well defined on functions from H1(Ωq), the classical
co-normal derivatives (6) are not well defined on such functions either, cf Mikhailov,14 Appendix A, where an example
of such function, for which the classical co-normal derivative exists at no boundary point. Let us introduce the follow-
ing subspaces of H1(Ω2) and H1

loc(Ω1) to which the classical co-normal derivatives can be continuously extended, cf, eg,
Grisvard,15 Costabel,16 and Mikhailov17:

H1,0(Ω2;A2) ∶= {v ∈ H1(Ω2) ∶ A2v ∈ H0(Ω2)}, H1,0
loc (Ω1;A1) ∶= {v ∈ H1

loc(Ω1) ∶ A1v ∈ H0
loc(Ω1)} .

We will also use the corresponding spaces with the Laplace operator Δ instead of Aq.
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Motivated by the first Green identity well known for smooth functions, the classical co-normal derivative operators (6)
can be extended by continuity to functions from the spaces H1,0

loc (Ω1;A1) and H1,0(Ω2;A2) giving the canonical co-normal
derivative operators, T±1 and T+

2 , defined in the weak form as

⟨T+
q u , g⟩S ∶= ∫

Ω2

[a(q)
k𝑗 (x) [𝜕𝑗u(x)]𝜕k(𝛾+)−1g(x) − 𝜔2𝜅q(x)u(x) (𝛾+)−1g(x)]dx

+ ∫
Ωq

[Aqu(x)] (𝛾+)−1g(x)dx, u ∈ H1,0(Ω2;Aq), ∀ g ∈ H
1
2 (S), (7)

⟨T−
1 u , g⟩S ∶= − ∫

Ω1

[a(1)
k𝑗 [𝜕𝑗u(x)] 𝜕k(𝛾−)−1g(x) − 𝜔2𝜅1u(x) (𝛾−)−1g(x)]dx

− ∫
Ω1

[A1u(x)] (𝛾−)−1g(x)dx, u ∈ H1,0
loc (Ω1;A1), ∀ g ∈ H

1
2 (S), (8)

where (𝛾+)−1 ∶ H
1
2 (S) → H1(Ω2) and (𝛾−)−1 ∶ H

1
2 (S) → H1

comp(Ω1) are the right inverse operators to the trace operators
𝛾±, and the angular brackets ⟨·, ·⟩S should be understood as duality pairing of H− 1

2 (S) with H
1
2 (S), which extends the usual

bilinear L2(S) inner product.
The canonical co-normal derivatives T−

2 u and T+
1 u can be defined analogously for functions from the spaces H1,0

loc (Ω1;A2)
and H1,0(Ω2;A1), respectively, provided that the variable coefficients a(2)

k𝑗 (x) and 𝜅2(x) are continuously extended from Ω2

to the whole space R3 preserving the smoothness. It is evident that for functions from the space H2(Ω2) and H2
loc(Ω1),

the classical and canonical co-normal derivative operators coincide. Concerning the canonical and generalised co-normal
derivatives in wider functional spaces, see Mikhailov.17

For two times continuously differentiable function w in a neighbourhood of S, we employ also the notation Tq(x, 𝜕x)w ∶=
a(q)

k𝑗 nk(x) (𝜕x𝑗w(x)), x ∈ S, to denote both the classical and the canonical co-normal derivatives.
Recall that the definitions of the co-normal derivatives T±q do not depend on the choice of the right inverse operators

(𝛾±)−1, and the following Green's first and second identities hold (cf Mikhailov,17 Theorem 3.9),

⟨T+
q u , 𝛾+v⟩S = ∫

Ω2

[a(q)
k𝑗 𝜕𝑗u 𝜕kv − 𝜔2𝜅quv]dx + ∫

Ω2

vAqudx, u ∈ H1,0(Ω2;Aq), v ∈ H1(Ω2), q = 1, 2, (9)

⟨T+
2 u , 𝛾+v⟩S − ⟨T+

2 v , 𝛾+u⟩S = ∫
Ω2

[vA2u − uA2v]dx, u, v ∈ H1,0(Ω2;A2),

⟨T−
1 u , 𝛾−v⟩S = −∫

Ω1

[a(1)
k𝑗 𝜕𝑗u𝜕kv − 𝜔2𝜅1uv]dx − ∫

Ω1

vA1udx, u ∈ H1,0
loc (Ω1;A1), v ∈ H1

comp(Ω1). (10)

By Z(Ω1), we denote a subclass of complex-valued functions from H1
loc(Ω1) satisfying the Sommerfeld radiation

conditions at infinity (see Vekua18 and Colton and Kress5 for the Helmholtz operator and Vainberg19 and Jentsch et al20

for the “anisotropic” operator A1 defined by (5)). Denote by S𝜔 the characteristic surface (ellipsoid) associated with the
operator A1,

a(1)
k𝑗 𝜉k 𝜉𝑗 − 𝜔2𝜅1 = 0, 𝜉 ∈ R

3.

For an arbitrary vector 𝜂 ∈ R3 with |𝜂| = 1, there exists only one point 𝜉(𝜂) ∈ S𝜔 such that the outward unit normal
vector n(𝜉(𝜂)) to S𝜔 at the point 𝜉(𝜂) has the same direction as 𝜂, ie, n(𝜉(𝜂)) = 𝜂. Note that 𝜉( − 𝜂) = −𝜉(𝜂) ∈ S𝜔 and
n( − 𝜉(𝜂)) = −𝜂. It can easily be verified that

𝜉(𝜂) = 𝜔𝜅
1∕2
1 (a−1

1 𝜂 · 𝜂)−1∕2 a−1
1 𝜂, (11)

where a−1
1 is the matrix inverse to a1 ∶=

[
a(1)

k𝑗

]3

k,𝑗=1
.
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Definition 1. A complex-valued function v belongs to the class Z(Ω1) if there exists a ball B(R) of radius R centred at
the origin such that v ∈ C1(Ω1∖B(R)) and v satisfies the Sommerfeld radiation conditions associated with the operator
A1(𝜕) for sufficiently large |x|,

v(x) = (|x|−1), 𝜕kv(x) − i𝜉k(𝜂)v(x) = (|x|−2), k = 1, 2, 3, (12)

where 𝜉(𝜂) ∈ S𝜔 corresponds to the vector 𝜂 = x∕|x| (ie, 𝜉(𝜂) is given by (11) with 𝜂 = x∕|x|).
Note that due to the ellipticity of the operator A1(𝜕x), any solution to the constant coefficient homogeneous equation

A1(𝜕x)v(x) = 0 in an open region Ω ⊂ R3 is a real analytic function of x in Ω.
Conditions (12) are equivalent to the classical Sommerfeld radiation conditions for the Helmholtz equation if A1(𝜕) =

Δ(𝜕) + 𝜔2, ie, if 𝜅1 = 1 and a(1)
k𝑗 = 𝛿k𝑗 , where 𝛿kj is the Kronecker delta. There holds the following analogue of the classical

Rellich-Vekua lemma (for details, see Jentsch et al20 and Natroshvili et al21).

Lemma 1. Let v ∈ Z(Ω1) be a solution of the equation A1(𝜕x)v = 0 in Ω1 and let

lim
R→+∞

Im
{

∫
ΣR

v(x) T1v(x)dΣR

}
= 0, (13)

where ΣR is the sphere with radius R centred at the origin. Then v = 0 in Ω1.

Remark 1. For x ∈ ΣR and 𝜂 = x∕|x|, we have n(x) = 𝜂, and in view of (6) and (12) for a function v ∈ Z(Ω1), we get

T1(x, 𝜕x)v(x) = a(1)
k𝑗 nk(x) [ i𝜉𝑗(𝜂)v(x)] + (|x|−2) = ia(1)

k𝑗 𝜂k 𝜉𝑗(𝜂)v(x) + (|x|−2) .

Therefore, by (11) and the symmetry condition akj = ajk, we arrive at the relation

v(x)T1v(x) = i𝜔𝜅1∕2
1 |v(x)|2 (a−1

1 𝜂 · 𝜂)−1∕2 a1𝜂 · a−1𝜂 + (|x|−3) = i𝜔𝜅1∕2
1 (a−1

1 𝜂 · 𝜂)−1∕2 |v(x)|2 + (|x|−3),

On the other hand, matrix a1 is positive definite, cf (4), which implies positive definiteness of the inverse matrix a−1
1 .

Hence, there are positive constants 𝛿0 and 𝛿1 such that the inequality 0 < 𝛿0 ⩽ (a−1
1 𝜂 · 𝜂)−

1
2 ⩽ 𝛿1 < ∞ holds for all

𝜂 ∈ Σ1. Consequently, (13) for 𝜔 ≠ 0 is equivalent to the condition in the well-known Rellich-Vekua lemma in the
theory of the Helmholtz equation, Vekua,18 Rellich,22 and Colton and Kress,5

lim
R→+∞∫

ΣR

|v(x)|2 dΣR = 0.

In the unbounded region Ω1, we have a total wave field utot = uinc + usc, where uinc is a wave motion initiating known
incident field and usc is a radiating unknown scattered field. It is often assumed that the incident field is defined in the
whole of R3, being, for example, a corresponding plane wave that solves the homogeneous equation A1uinc = 0 in R3 but
does not satisfy the Sommerfeld radiation conditions at infinity. Motivated by relations (2), let us set u1(x) ∶ = usc(x) for
x ∈ Ω1 and u2(x) ∶ = utot(x) for x ∈ Ω2.

Now we formulate the transmission problem associated with the time-harmonic acoustic wave scattering by a bounded
anisotropic inhomogeneity embedded in an unbounded anisotropic homogeneous medium:

Find complex-valued functions u1 ∈ H1,0
loc (Ω1,A1) ∩ Z(Ω1) and u2 ∈ H1,0(Ω2,A2) satisfying the differential equations

A1u1(x) = 𝑓1(x) for x ∈ Ω1, (14)

A2u2(x) = 𝑓2(x) for x ∈ Ω2, (15)

and the transmission conditions on the interface S,

𝛾+u2 − 𝛾−u1 = 𝜑0 on S, (16)

T+
2 u2 − T−

1 u1 = 𝜓0 on S, (17)
where

𝑓2 ∶= rΩ2𝑓 ∈ H0(Ω2), 𝑓1 ∶= rΩ1𝑓 ∈ H0
comp(Ω1), 𝑓 ∈ H0

comp(R3), 𝜑0 ∈ H
1
2 (S), 𝜓0 ∈ H− 1

2 (S). (18)
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In the above setting, Equations (14) and (15) are understood in the distributional sense, the Dirichlet type transmission
condition (16) is understood in the usual trace sense, while the Neumann type transmission condition (16) is understood
in the canonical co-normal derivative sense defined by the relations (7) and (8).

If the interface continuity of utot and its co-normal derivatives is assumed, then 𝜑0 = 𝛾−uinc, 𝜓0 = T−
1 uinc.

Remark 2. If the variable coefficients akj and the function 𝜅 in (1) and (2) belong to C2(R3) and uinc ∈ H2
loc(R

3),
then conditions (16) and (17) can be reduced to the homogeneous ones by introducing a new unknown function
ũ ∶= utot − uinc in R3, since T−

1 uinc = T+
2 uinc on S. For the function ũ, the above formulated transmission problem is

reduced then to the following one:
Find a solution ũ ∈ H2

loc(R
3) ∩ Z(R3) to the differential equation

Aũ(x) ≡ 𝜕xk (ak𝑗(x)𝜕x𝑗 ũ(x)) + 𝜔
2𝜅(x) ũ(x) = 𝑓 (x), x ∈ R

3, (19)

where 𝑓 ∶= 𝑓 − Auinc ∈ H0
comp(R3) due to the inclusions 𝑓 ∈ H0

comp(R3) and Auinc = A1uinc = 0 in Ω1.
If A ≡ Δ + 𝜔2𝜅(x) inR3 with 𝜅 as in (2), then Equation (19) can be equivalently reduced to the Lippmann-Schwinger

type integral equation (see, eg, Colton and Kress,5 chapter 8).
In our analysis, even for C2(R3)-smooth coefficients, we always will keep the transmission conditions (16) and

(17), which allow us to reduce the problem under consideration to the system of localised boundary-domain integral
equations that live on the bounded domain Ω2 and its boundary S (cf Nédélec,6 chapter 2).

Let us prove the uniqueness theorem for the transmission problem.

Theorem 1. The homogeneous transmission problem (14) - (17) (with f1 = 0, f2 = 0, 𝜑0 = 𝜓0 = 0) possesses only
the trivial solution.
Proof. Denote by B(R) a ball centred at the origin and having radius R,ΣR ∶= 𝜕B(R). We assume that R is a sufficiently
large such that Ω2 ⊂ B(R). Let a pair (u1,u2) be a solution to the homogeneous transmission problem (14) - (17). Note
that u1 ∈ C∞(Ω1) due to ellipticity of the constant coefficient operator A1. We can write the first Green identities for
the domains Ω2 and Ω1(R) ∶= Ω1 ∩ B(R) (see (9) and (10)),

∫
Ω2

[a(2)
k𝑗 (x)𝜕𝑗u2(x) 𝜕ku2(x) − 𝜔2𝜅2(x)|u2(x)|2]dx = ⟨T+

2 u2 , 𝛾+u2⟩S, (20)

∫
Ω1(R)

[a(1)
k𝑗 𝜕𝑗u1(x) 𝜕ku1(x) − 𝜔2𝜅1|u1(x)|2]dx = −⟨T−

1 u1 , 𝛾−u1⟩S + ⟨T+
1 u1 , 𝛾−u1⟩Σ(R). (21)

Since the matrices aq = [a(q)
k𝑗 ]

3
k,𝑗=1 are symmetric and positive definite, in view of the homogeneous transmission

conditions (16) and (17), after adding (20) and (21) and taking the imaginary part, we get

Im
{
∫
ΣR

u1(x)T1u1(x)dΣR} = 0.

Whence by Lemma 1 we deduce that u1 = 0 in Ω1. In view of (16) and (17) then we see that the function u2 solves the
homogeneous Cauchy problem in Ω2 for the elliptic partial differential equation A2u2 = 0 with variable coefficients
a(2)

k𝑗 and 𝜅2 being C2(Ω2)-smooth functions, see (3). By the interior and boundary regularity properties of solutions to
elliptic problems, we have u2 ∈ C2(Ω2) and therefore u2 = 0 in Ω2 due to the well-known uniqueness theorem for
the Cauchy problem (see, eg, Landis,23 Theorem 3; Calderon,24 Theorem 6).

Remark 3. Due to the recent results concerning the Cauchy problem for scalar elliptic operators, one can reduce
the smoothness of coefficients a(2)

k𝑗 and 𝜅2 to the Lipschitz continuity and require that Ω2 is a Dini domain, see, eg,
Theorem 2.9 in Tao et al.25

3 REDUCTION TO LBDIE SYSTEM AND EQUIVALENCE THEOREM

3.1 Integral relations in the nonhomogeneous bounded domain
As it has already been mentioned, our goal is to reduce the above-stated transmission problem to the corresponding
system of localised boundary-domain integral equations. To this end, let us define a localised parametrix associated with
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the fundamental solution −(4𝜋|x|)−1 of the Laplace operator,

P𝜒 (x) ∶= −
𝜒(x)

4𝜋 |x| ,
where 𝜒 is a cut-off function 𝜒 ∈ X4

+, see Appendix A. Throughout the paper, we assume that this condition is satisfied
and 𝜒 has a compact support if not otherwise stated.

Let us consider Green's second identity for functions u2, v2 ∈ H1,0(Ω2;A2),

∫
Ω2(𝑦,𝜖)

(v2A2u2 − u2A2v2)dx = ⟨T+
2 u2, 𝛾

+v2⟩𝜕Ω2(𝑦,𝜖) − ⟨𝛾+u2,T+
2 v2⟩𝜕Ω2(𝑦,𝜖),

where Ω2(y, 𝜖) ∶ = Ω2∖B(y, 𝜖) with B(y, 𝜖) being a ball centred at the point y ∈ Ω2 with radius 𝜖 > 0. Substituting
for v2(x) the parametrix P𝜒 (x − y), by standard limiting arguments as 𝜖 → 0, one can derive Green's third identity for
u ∈ H1,0(Ω2,A2) (cf Chkadua et al26),

𝛽u2 +𝜒 u2 − V𝜒T+
2 u2 + W𝜒𝛾

+u2 = 𝜒A2u2 in Ω2, (22)

where

𝛽(𝑦) = 1
3

[
a(2)

11 (𝑦) + a(2)
22 (𝑦) + a(2)

33 (𝑦)
]
, (23)

𝜒 is a singular localised integral operator that is understood in the Cauchy principal value sense,

𝜒 u2(𝑦) ∶= v.p.∫
Ω2

[A2(x, 𝜕x)P𝜒 (x − 𝑦)]u2(x)dx = lim
𝜖→0 ∫

Ω2(𝑦,𝜖)

[A2(x, 𝜕x)P𝜒 (x − 𝑦)]u2(x)dx, 𝑦 ∈ R
3, (24)

V𝜒 , W𝜒 , and 𝜒 are the localised single layer, double layer, and Newtonian volume potentials, respectively,

V𝜒 g(𝑦) ∶= −∫
S

P𝜒 (x − 𝑦)g(x)dSx, W𝜒 g(𝑦) ∶= −∫
S

[T2(x, 𝜕x)P𝜒 (x − 𝑦) ] g(x)dSx, 𝑦 ∈ R
3∖S, (25)

𝜒 h(𝑦) ∶= ∫
Ω2

P𝜒 (x − 𝑦)h(x)dx, 𝑦 ∈ R
3. (26)

Note that if P𝜒 is replaced with the corresponding fundamental solution, then 𝜒u2 = 0, 𝛽 = 1, and the third Green
identity reduces to the familiar integral representation formula.

If the domain of integration in (24) and (26) is the whole space R3, we employ the notation

N𝜒 h(𝑦) ∶= v.p.∫
R3

[A2(x, 𝜕x)P𝜒 (x − 𝑦) ]h(x)dx , P𝜒 h(𝑦) ∶= ∫
R3

P𝜒 (x − 𝑦)h(x)dx, (27)

where the operator A2(x, 𝜕x) in the first integral in (27) is assumed to be extended to the whole R3. Some mapping
properties of the above potentials needed in our analysis are collected in Appendix B.

In view of the following distributional equality,

𝜕2

𝜕xk 𝜕x𝑗
1|x − 𝑦| = −

4𝜋𝛿k𝑗

3
𝛿(x − 𝑦) + v.p. 𝜕2

𝜕xk 𝜕x𝑗
1|x − 𝑦| ,

where 𝛿kj is the Kronecker delta and 𝛿(·) is the Dirac distribution, we have (again in the distributional sense)
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A2(x, 𝜕x)P𝜒 (x − 𝑦) = a(2)
k𝑗 (x)

𝜕2P𝜒 (x − 𝑦)
𝜕xk 𝜕x𝑗

+
a(2)

k𝑗 (x)

𝜕xk

𝜕P𝜒 (x − 𝑦)
𝜕x𝑗

+ 𝜔2𝜅2(x)P𝜒 (x − 𝑦)

= 𝛽(x) 𝛿(x − 𝑦) + v.p. A2(x, 𝜕x)P𝜒 (x − 𝑦), (28)

where

v.p.A2(x, 𝜕x)P𝜒 (x − 𝑦) = v.p.
[
−

a(2)
k𝑗 (x)

4𝜋
𝜕2

𝜕xk 𝜕x𝑗
1|x − 𝑦| ] + R(x, 𝑦) = v.p.

[
−

a(2)
k𝑗 (𝑦)

4𝜋
𝜕2

𝜕xk 𝜕x𝑗
1|x − 𝑦| ] + R̃(x, 𝑦), (29)

R(x, 𝑦) ∶ = − 1
4𝜋

{
𝜕

𝜕xk

⎡⎢⎢⎣
𝜕𝜒(x − 𝑦)
𝜕x𝑗

a(2)
k𝑗 (x)|x − 𝑦| ⎤⎥⎥⎦ +

𝜕
[

a(2)
k𝑗 (x)𝜒(x − 𝑦)

]
𝜕xk

𝜕

𝜕x𝑗
1|x − 𝑦|

+ a(2)
k𝑗 (x) [𝜒(x − 𝑦) − 1] 𝜕2

𝜕xk𝜕x𝑗
1|x − 𝑦|} + 𝜔2𝜅2(x)P𝜒 (x − 𝑦) ,

R̃(x, 𝑦) ∶ = R(x, 𝑦) −
a(2)

k𝑗 (x) − a(2)
k𝑗 (𝑦)

4𝜋
𝜕2

𝜕xk 𝜕x𝑗
1|x − 𝑦| .

Since 𝜒(0) = 1, the functions R(x, y) and R̃(x, 𝑦) possess weak singularities of type (|x − 𝑦|−2) as x → y. However, the
whole term v.p. A2(x, 𝜕x)P𝜒 (x − y) possesses the strong Cauchy singularity as x → y. Thus, although P𝜒 is a parametrix
for the Laplace operator, it is not a parametrix for the operator A2, and we will call it instead a quasi-parametrix for A2.

It is evident that if a(2)
k𝑗 (x) = a2(x)𝛿k𝑗 , then the terms in square brackets in formula (29) vanish and v.p. A2(x, 𝜕x)P𝜒 (x − y)

becomes a weakly singular kernel.
Using the integration by parts formula in (24), one can easily derive the following relation for u2 ∈ H1(Ω2)

𝜒 u2 = −𝛽u2 − W𝜒𝛾
+u2 +𝜒 u2 in Ω2, (30)

where

𝜒 u2(𝑦) ∶= −∫
Ω2

a(2)
kl (x)

𝜕P𝜒 (x − 𝑦)
𝜕xl

𝜕u2(x)
𝜕xk

dx = 𝜕𝑦l 𝜒 (a(2)
kl 𝜕ku2)(𝑦) , ∀𝑦 ∈ Ω2. (31)

From Green's third identity (22) and Theorem 8, we deduce

𝛽u2 +𝜒 u2 ∈ H1,0(Ω2,Δ) for u2 ∈ H1,0(Ω2,A2), (32)

which, in turn, along with relations (30) and (31) implies

𝜒 u2 = 𝜕𝑦l 𝜒 (a(2)
kl 𝜕ku2) ∈ H1,0(Ω2,Δ) for u ∈ H1,0(Ω2,A2).

In what follows, in our analysis, we need the explicit expression of the principal homogeneous symbol 𝔖0(N𝜒 ; 𝑦, 𝜉) of the
singular integral operator N𝜒 , which due to (28) and (29) reads as

𝔖0(N𝜒 ; 𝑦, 𝜉) = z→𝜉

(
−v.p.

[
a(2)

kl (𝑦)
4𝜋

𝜕2

𝜕zk 𝜕zl

1|z|
])

= −
a(2)

kl (𝑦)
4𝜋

z→𝜉

(
v.p.

[
𝜕2

𝜕zk 𝜕zl

1|z|
])

= −
a(2)

kl (𝑦)
4𝜋

z→𝜉

[4𝜋𝛿kl

3
𝛿(z) + 𝜕2

𝜕zk 𝜕zl

1|z| ] = −𝛽(𝑦) − a(2)
kl (𝑦)(−i𝜉k)(−i𝜉l) z→𝜉

[ 1
4𝜋|z| ]

= −𝛽(𝑦) +
a(2)

kl (𝑦)𝜉k 𝜉l|𝜉|2 = A2(𝑦, 𝜉)|𝜉|2 − 𝛽(𝑦) , 𝑦 ∈ Ω2, 𝜉 ∈ R
3, (33)

where A2(𝑦, 𝜉) = a(2)
kl (𝑦)𝜉k 𝜉l. Here and in what follows,  and −1 denote the distributional direct and inverse Fourier

transform operators that for a summable function g read as

z→𝜉[g ] = ∫
Rn

g(z)ei z·𝜉 dz, 𝜉→z[g ] = 1
(2𝜋)n ∫

Rn

g(𝜉)e−i z·𝜉 d𝜉.

In derivation of formula (33), we employed that z→𝜉[(4𝜋|z|)−1] = |𝜉|−2 and z→𝜉[𝜕𝑗g] = −i𝜉𝑗z→𝜉[g] for n = 3.
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Note that the principal homogeneous symbol 𝔖0(N𝜒 ; 𝑦, 𝜉) is a rational homogeneous even function of order zero in 𝜉.
In view of Theorem 9 in the Appendix, the interior trace of equality (22) on S reads as

 +
𝜒 u2 − 𝜒T+

2 u2 + [(𝛽 − 𝜇)I +𝜒 ]𝛾+u2 = +
𝜒 A2u2 on S, (34)

where the functions 𝛽 and 𝜇 are defined by (23) and (B2),  +
𝜒 = 𝛾+𝜒 , +

𝜒 = 𝛾+𝜒 , while the operators 𝜒 and 𝜒 ,
generated by the direct values of the single and double layer potentials, are given by formulas (B1).

Finally, we formulate a technical lemma that follows from formulas (30), (31), and Theorem 8.

Lemma 2. Let𝛷 ∈ H1,0(Ω2; Δ), 𝜓 ∈ H− 1
2 (S), 𝜑 ∈ H

1
2 (S), 𝜒 ∈ X3, and the function 𝛽 be defined by (23). Moreover, let

u2 ∈ H1(Ω2) and the following equation hold,

𝛽u2 +𝜒 u2 − V𝜒 𝜓 + W𝜒 𝜑 = Φ in Ω2.

Then u2 ∈ H1,0(Ω2;A2) and the following estimate holds for some constant C > 0,||u2||H1,0(Ω2;A2) ≤ C (||u2||H1(Ω2) + ||𝜓||H− 1
2 (S)

+ ||𝜑||
H

1
2 (S)

+ ||Φ||H1, 0(Ω2;Δ)).

3.2 Integral relations in the homogeneous unbounded domain
For any radiating solution u1 ∈ H1,0

loc (Ω1,A1)∩Z(Ω1) with A1u1 ∈ H0
comp(Ω1), there holds Green's third identity (for details,

see the references Colton and Kress,5 Vekua,18 Jentsch et al,20 and Natroshvili et al21)

u1 + V𝜔T−
1 u1 − W𝜔𝛾

−u1 = 𝜔A1u1 in Ω1, (35)

where
V𝜔 g(𝑦) ∶= −∫

S

Γ(x − 𝑦, 𝜔)g(x)dSx, W𝜔 g(𝑦) ∶= −∫
S

[T1(x, 𝜕x)Γ(x − 𝑦, 𝜔)]g(x)dSx, 𝑦 ∈ R
3∖S, (36)

𝜔𝑓 (𝑦) ∶= ∫
Ω1

Γ(x − 𝑦, 𝜔)𝑓 (x)dx, 𝑦 ∈ R
3. (37)

Here, T1(x, 𝜕x) = a(1)
k𝑗 nk(x)𝜕x𝑗 , n(x) is the outward unit normal vector to S at the point x ∈ S, and

Γ(x, 𝜔) = −
exp

{
i𝜔𝜅1∕2

1 (a−1
1 x · x)1∕2

}
4𝜋(det a1)1∕2(a−1

1 x · x)1∕2
(38)

is a radiating fundamental solution of the operator A1 (see, eg, Lemma 1.1 in Jentsch et al20). If x belongs to a bounded
subset of R3, then for sufficiently large |y|, we have the following asymptotic formula

Γ(𝑦 − x, 𝜔) = c(𝜉)
exp{i𝜉 · (𝑦 − x)}|𝑦| + (|𝑦|−2), c(𝜉) = − |a1 𝜉|

4𝜋𝜔𝜅1∕2
1 (det a1)1∕2

, (39)

where 𝜉 = 𝜉(𝜂) ∈ S𝜔 corresponds to the direction 𝜂 = y∕|y| and is given by (11). The asymptotic formula (39) can be
differentiated arbitrarily many times with respect to x and y.

The mapping properties of these potentials and the boundary operators generated by them are collected in Appendix C.
Evidently, the layer potentials V𝜔g and W𝜔g solve the homogeneous differential Equation (14), ie,

A1V𝜔 g = A1W𝜔 g = 0 in R
3∖S, (40)

while for 𝑓1 ∈ H0
comp(Ω1), the volume potential 𝜔𝑓1 ∈ H2

loc(R
3) solves the following nonhomogeneous equation (see

Lemma 5(i))

A1𝜔𝑓1 =
{
𝑓1 in Ω1,
0 in Ω2.

(41)

The exterior trace and co-normal derivative of the third Green identity (35) on S read as (see Lemma 5(ii))

𝜔T−
1 u1 +

(1
2

I −𝜔

)
𝛾−u1 = 𝛾−𝜔A1u1 on S, (42)(1

2
I + ′

𝜔

)
T−

1 u1 − 𝜔𝛾−u1 = T−
1 𝜔A1u1 on S, (43)
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where the integral operators 𝜔, 𝜔,  ′
𝜔, and 𝜔 are defined in Appendix C by formulas (C1) - (C4). Note that the

operators𝜔, 2−1I−𝜔, 2−1I+ ′
𝜔, and𝜔 involved in (42) and (43) are not invertible for resonant values of the frequency

parameter 𝜔. The set of these resonant values is countable and consists of eigenfrequencies of the interior Dirichlet and
Neumann boundary value problems for the operator A1 in the bounded domain Ω2 (see Vekua18 section 4; Colton and
Kress27 chapter 3 Chen and Zhou28 section 7.7). Therefore, to obtain Dirichlet-to-Neumann or Neumann-to-Dirichlet
mappings for arbitrary values of the frequency parameter 𝜔, we apply the ideas of the so-called combined-field integral
equations, cf Burton and Miller,29 Brakhage and Werner,30 Colton and Kress,5,27 Leis,31 and Panich.32

Multiply Equation (42) by −i𝛼 with some fixed positive 𝛼 and add to Equation (43) to obtain

𝜔T−
1 u1 −𝜔𝛾

−u1 = Ψ𝜔A1u1 on S, (44)

where

𝜔g ∶= (1
2

I + ′
𝜔 − i𝛼𝜔)g = (T+

1 − i𝛼𝛾+)V𝜔 g on S, (45)

𝜔h ∶=
[𝜔 − i𝛼

(
−1

2
I +𝜔

)]
h = (T+

1 − i𝛼𝛾+)W𝜔h on S, (46)

Ψ𝜔𝑓1 ∶= (T−
1 − i𝛼𝛾−)𝜔𝑓1 = (T+

1 − i𝛼𝛾+)𝜔𝑓1 on S, (47)

for 𝑓1 ∈ H0
comp(Ω1), g ∈ H− 1

2 (S), and h ∈ H
1
2 (S).

In view of Lemma 6, from (44) we derive the following analogue of the Steklov-Poincaré type relation for arbitrary
u1 ∈ H1,0

loc (Ω1;A1) ∩ Z(Ω1)

T−
1 u1 = −1

𝜔 (𝜔 𝛾
−u1 + Ψ𝜔A1u1) on S, (48)

where −1
𝜔 ∶ H− 1

2 (S) → H− 1
2 (S) is the inverse to the operator 𝜔 ∶ H− 1

2 (S) → H− 1
2 (S).

3.3 Equivalent reduction to a system of integral equations
Let us set

𝜑1 = 𝛾−u1, 𝜑2 ∶= 𝛾+u2, 𝜓1 = T−
1 u1, 𝜓2 ∶= T+

2 u2. (49)

If a pair (u1,u2) solves the transmission problem (14) - (17), then by notation (49) and relations (22), (34), (44), and (35),
the following equations hold true:

𝛽u2 +𝜒 u2 − V𝜒 𝜓2 + W𝜒 𝜑2 = 𝜒 𝑓2 in Ω2, (50)

 +
𝜒 u2 − 𝜒𝜓2 + [(𝛽 − 𝜇)I +𝜒 ]𝜑2 = +

𝜒 𝑓2 on S, (51)

𝜔𝜓2 −𝜔𝜑2 = Ψ𝜔𝑓1 +𝜔𝜓0 −𝜔𝜑0 on S, (52)

𝜓2 − 𝜓1 = 𝜓0 on S, (53)

𝜑2 − 𝜑1 = 𝜑0 on S, (54)

u1 + V𝜔𝜓1 − W𝜔𝜑1 = 𝜔𝑓1 in Ω1. (55)

Let us consider relations (50) - (55) as a LBDIE system with respect to the unknowns (u2, 𝜓2, 𝜑2, 𝜓1, 𝜑1,u1) ∈ H, where

H ∶= H1,0(Ω2;A2) × H− 1
2 (S) × H

1
2 (S) × H− 1

2 (S) × H
1
2 (S) × (H1,0

loc (Ω1;A1) ∩ Z(Ω1)). (56)

Note that if P𝜒 would be replaced with the corresponding fundamental solution, then we would have 𝜒u2 = 0,  +
𝜒 u2 =

0, 𝛽 = 1, and 𝜇 = 1∕2 in (50) and (51). Thus, the system could be split to the boundary integral equation system (51) -
(54) and the representation formulas (50), (55) for the functions u1 and u2 in the domains Ω1 and Ω2, respectively.
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Let us prove the following equivalence theorem.

Theorem 2. Let conditions (18) hold.

(i) If a pair (u2,u1) ∈ H1,0(Ω2;A2) × (H1,0
loc (Ω1;A1) ∩ Z(Ω1)) solves transmission problem (14) - (17), then the vector

(u2, 𝜓2, 𝜑2, 𝜓1, 𝜑1,u1) ∈ H with 𝜓q and 𝜑q, q = 1, 2, defined by (49), solves LBDIE system (50) - (55).
(ii) Vice versa, if a vector (u2, 𝜓2, 𝜑2, 𝜓1, 𝜑1,u1) ∈ H solves LBDIE system (50) - (55), then the pair (u2,u1) ∈

H1,0(Ω1;A1) × (H1,0
loc (Ω1;A1) ∩ Z(Ω1)) solves transmission problem (14) - (17) and relations (49) hold true.

Proof.

(i) The first part of the theorem directly follows from the formulation of the transmission problem (14) - (17) and
relations (22), (34), (35), and (44).

(ii) Now let a vector (u2, 𝜓2, 𝜑2, 𝜓1, 𝜑1,u1) ∈ H solve system (50) - (55). Taking the trace of (50) on S and
comparing with (51) lead to the equation

𝛾+u2 = 𝜑2 on S. (57)

Further, since u2 ∈ H1,0(Ω2;A2), we can write Green's third identity (22), which in view of (57) can be
rewritten as

𝛽u2 +𝜒 u2 − V𝜒T+u2 + W𝜒𝜑2 = 𝜒A2u2 in Ω2. (58)

From (50) and (58), it follows that

V𝜒 (T+u2 − 𝜓2) + 𝜒
(

A2u2 − 𝑓2

)
= 0 in Ω2.

Whence by Lemma 6.3 in Chkadua et al,33 we deduce

A2u2 = 𝑓2 in Ω2, T+u2 = 𝜓2 on S. (59)

From Equation (55), it follows that

A1u1 = 𝑓1 in Ω1. (60)

From (52), (54), and (53), we derive

𝜔𝜓1 −𝜔𝜑2 − Ψ𝜔𝑓1 = 0 on S. (61)

Now, let us consider the function

w ∶= V𝜔𝜓1 − W𝜔𝜑1 − 𝜔𝑓1 in Ω2. (62)

In view of the inclusion 𝜔𝑓1 ∈ H2
loc(R

3) it follows that 𝛾+𝜔𝑓1 = 𝛾−𝜔𝑓1 and T+
1 𝜔𝑓1 = T−

1 𝜔𝑓1 on S.
Whence due to (45) - (47), (61), and Lemma 5, we have w ∈ H1,0(Ω2;A1) and

(T+
1 − i𝛼𝛾+)w =

(1
2

I + ′
𝜔 − i𝛼𝜔

)
𝜓1 −

[𝜔 − i𝛼
(
− 1

2
I +𝜔

)]
𝜑1 − (T− − i𝛼𝛾−)𝜔𝑓1

= 𝜔𝜓1 −𝜔𝜑1 − Ψ𝜔𝑓1 = 0 on S.

Consequently, in view of (40) and (41), we see that the function w solves the homogeneous Robin type interior
boundary value problem,

A1w = 0 in Ω2, T+
1 w − i𝛼𝛾+w = 0 on S.

By Green's first identity (9) for the operator A1, we have

∫
Ω2

w(x)A1w(x) dx = −∫
Ω2

[
a(1)

k𝑗 𝜕𝑗w(x) 𝜕kw(x) − 𝜔2𝜅1|w(x)|2 ] dx + ⟨T+
1 w , 𝛾+w⟩S,

and since for the real symmetric matrix a(1)
k𝑗 the function a(1)

k𝑗 𝜕𝑗w(x) 𝜕kw(x) is also real-valued, it follows that
𝛾+w = 0 and T+

1 w = 0 on S for real 𝛼 ≠ 0. Consequently, the function w defined in (62) vanishes identically
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in Ω2 in view of the corresponding Green's third identity. Due to the jump relations for the layer potentials
presented in Lemma 5(ii) and since 𝜔𝑓1 ∈ H2

loc(R
3), we have from (55) and (62) the following relations:

𝛾−u1 = 𝛾−u1 + 𝛾+w = 𝜑1, T−
1 u1 = T−

1 u1 + T+
1 w = 𝜓1. (63)

From Equations (53) and (54) and relations (57), (59), (60), and (63), it follows that the pair (u2,u1) solves the
transmission problem (14) and relations (49) hold true.

From uniqueness Theorem 1 and the equivalence Theorem 2, the following assertion follows directly.

Corollary 1. Let conditions (18) be fulfilled. Then the LBDIE system (50) - (55) possesses at most one solution in the
space H defined in (56).

4 ANALYSIS OF THE LBDIO

Let us rewrite the LBDIE system (50) - (55) in a more convenient form for our further purposes

(𝛽 I + N𝜒 )E̊ u2 − V𝜒 𝜓2 + W𝜒 𝜑2 = 𝜒𝑓2 in Ω2, (64)

N+
𝜒 Ë u2 − 𝜒𝜓2 + [(𝛽 − 𝜇)I +𝜒 ]𝜑2 = +

𝜒 𝑓2 on S, (65)

𝜔𝜓2 −𝜔𝜑2 = Ψ𝜔𝑓1 +𝜔𝜓0 −𝜔𝜑0 on S, (66)

𝜓2 − 𝜓1 = 𝜓0 on S, (67)

𝜑2 − 𝜑1 = 𝜑0 on S, (68)

u1 + V𝜔𝜓1 − W𝜔𝜑1 = 𝜔𝑓1 in Ω1, (69)

where E̊ = E̊Ω2 denotes the extension operator by zero from Ω2 onto Ω1, N𝜒 is a pseudodifferential operator given in (27),
N+
𝜒 = 𝛾+N𝜒 , and +

𝜒 = 𝛾+𝜒 . Note that for a function u2 ∈ H1(Ω2), we have 𝛽u2 +𝜒 u2 = (𝛽 I + N𝜒 )E̊u2 in Ω2.

It can easily be seen that if the unknowns (u2, 𝜓2, 𝜑2) are determined from the first three equations of system (64) - (69),
then the unknowns (𝜓1, 𝜑1,u1) are determined explicitly from the last three equations of the same system. Therefore, the
main task is to investigate the matrix integral operator generated by the left hand side expressions in (64) - (66).

Let us rewrite the first three equations of the LBDIE system (64) - (69) in matrix form

MU = F,

where U ∶= (u2, 𝜓2, 𝜑2)⊤, F ∶= (F1,F2,F3)⊤, F1 ∶= 𝜒𝑓2, F2 ∶= +
𝜒 𝑓2, F3 ∶= Ψ𝜔𝑓1 +𝜔𝜓0 −𝜔𝜑0,

M ∶=
⎡⎢⎢⎣

rΩ2 (𝛽 I + N𝜒 )E̊ −rΩ2 V𝜒 rΩ2 W𝜒

N+
𝜒 E̊ −𝜒 (𝛽 − 𝜇)I +𝜒

0 𝜔 −𝜔

⎤⎥⎥⎦ . (70)

Let us introduce the spaces

H ∶= H1,0(Ω2;A2) × H− 1
2 (S) × H

1
2 (S), F ∶= H1,0(Ω2; Δ) × H

1
2 (S) × H− 1

2 (S),

X ∶= H1(Ω2) × H− 1
2 (S) × H

1
2 (S), Y ∶= H1(Ω2) × H

1
2 (S) × H− 1

2 (S).

Recall that for 𝜒 ∈ X4
+, the principal homogeneous symbol 𝔖0(N𝜒 ; 𝑦, 𝜉) of the operator N𝜒 given by (33) is a rational

homogeneous function of order zero in 𝜉. Therefore, applying the inclusion (32) and the mapping properties of the pseu-
dodifferential operators with rational type symbols (see, eg, Hsiao and Wendland,34 Theorem 8.4.13) and using Theorems 8
and 10 we deduce that the operators

M ∶ H → F, (71)

M ∶ X → Y (72)

are continuous for 𝜒 ∈ X4
+. Now, we prove the main theorem of this section.
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Theorem 3. Let 𝜒 ∈ X4
+. Operator (72) is invertible.

Proof. Using Lemma 6, we can represent the matrix operator M defined in (70) as a composition of two operators

M = BC,

where

B ∶=
⎡⎢⎢⎣

rΩ2 (𝛽 I + N𝜒 ) E̊ rΩ2 [−V𝜒 + W𝜒−1
𝜔 𝜔] rΩ2 W𝜒

N+
𝜒 E̊ −𝜒 + [(𝛽 − 𝜇)I +𝜒 ]−1

𝜔 𝜔 (𝛽 − 𝜇)I +𝜒

0 0 −𝜔

⎤⎥⎥⎦ , C ∶=

[ I 0 0
0 I 0

0 −−1
𝜔 𝜔 I

]
. (73)

Evidently, the triangular matrix operator

C ∶ H1(Ω2) × H− 1
2 (S) × H

1
2 (S) → H1(Ω2) × H− 1

2 (S) × H
1
2 (S)

is invertible. Since the operator 𝜔 ∶ H
1
2 (S) → H− 1

2 (S) is also invertible due to Lemma 6, from (73), it follows that
the block-triangular matrix operator

B ∶ H1(Ω2) × H− 1
2 (S) × H

1
2 (S) → H1(Ω2) × H

1
2 (S) × H− 1

2 (S),

and consequently, operator (72) is invertible if and only if the following operator is invertible

D ∶ H1(Ω2) × H− 1
2 (S) → H1(Ω2) × H

1
2 (S), (74)

D = [Dk𝑗]2
k,𝑗=1 ∶=

[
rΩ2(𝛽 I + N𝜒 ) E̊ rΩ2 [−V𝜒 + W𝜒−1

𝜔 𝜔]
N+
𝜒 E̊ −𝜒 + [(𝛽 − 𝜇)I +𝜒 ]−1

𝜔 𝜔

]
. (75)

Further, we apply the Vishik-Eskin approach, developed in Eskin,35 and establish that operator (74) is invertible.
The proof is performed in four steps.

Step 1. Here, we show that the operator

D11 = rΩ2
(𝛽 I + N𝜒 ) E̊ ∶ H1(Ω2) → H1(Ω2) (76)

is Fredholm with zero index.
In view of (33), the principal homogeneous symbol of the operator 𝛽I + N𝜒 can be written as

𝔖0(D11; 𝑦, 𝜉) = 𝔖0(𝛽 I + N𝜒 ; 𝑦, 𝜉) =
A2(𝑦, 𝜉)
Δ(𝜉)

=
a(2)

kl (𝑦)𝜉k𝜉l|𝜉|2 > 0, Δ(𝜉) ∶= |𝜉|2, 𝑦 ∈ Ω2, 𝜉 ∈ R
3∖{0}. (77)

Since the symbol 𝔖0(D11; 𝑦, 𝜉) given by (77) is an even rational homogeneous function of order 0 in 𝜉 it follows that
its factorisation index 𝜘 equals to zero (see Eskin,35§6 ). Moreover, the operator 𝛽I + N𝜒 possesses the transmission
property. Therefore, we can apply the theory of pseudodifferential operators satisfying the transmission property to
deduce that operator (76) is Fredholm (see Eskin,35 Theorem 11.1 and Lemma 23.9; Boutet de Monvel36).

To show that IndD11 = 0, we use the fact that the operators D11 and D11,t, where

D11,t = rΩ2
[ (1 − t)I + t (𝛽 I + N+

𝜒 ) ] E̊, t ∈ [0, 1],

are homotopic. Evidently D11,0 = I and D11,1 = D11. In view of (33) and (77),

𝔖0(D11,t; 𝑦, 𝜉) =
(1 − t)Δ(𝜉) + t A2(𝑦, 𝜉)

Δ(𝜉)
> 0

for all t ∈ [0, 1], for all 𝑦 ∈ Ω2, and for all 𝜉 ∈ R3∖{0}, and consequently the operator D11,t is elliptic.
Since 𝔖0(D11,t; 𝑦, 𝜉) is rational, even, and homogeneous of order zero in 𝜉, we conclude that the operator D11,t ∶
H1(Ω2) → H1(Ω2) is continuous Fredholm operator for all t ∈ [0, 1]. Therefore IndD11,t is the same for all t ∈ [0, 1].
On the other hand, due to the equality D11,0 = I, we get IndD11 = IndD11,1 = IndD11,t = IndD11,0 = 0.
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Step 2.Now we show that the operator D defined by (74) and (75) is Fredholm. To this end, we apply the local
principle (see, eg, Eskin,35§19 and §22).

Let Uj be an open neighbourhood of a fixed point �̃� ∈ R3 and let𝜓 ( 𝑗)
0 , 𝜑

( 𝑗)
0 ∈ (U𝑗) be such that supp𝜓 ( 𝑗)

0 ∩supp𝜑( 𝑗)
0 ≠

∅ contains some open neighbourhood U′
𝑗
⊂ U𝑗 of the point y0. Consider the operator 𝜓 ( 𝑗)

0 D𝜑( 𝑗)
0 .We separate two

possible cases: (1) �̃� ∈ Ω2 and (2) �̃� ∈ S.
In the first case, when �̃� ∈ Ω2, we can choose a neighbourhood U𝑗 of the point �̃� such that U𝑗 ⊂ Ω2. Then the operator
𝜓

( 𝑗)
0 D𝜑( 𝑗)

0 is equivalent to the operator 𝜓 ( 𝑗)
0 D11𝜑

( 𝑗)
0 , where D11 is defined by (76). As we have already shown in Step

1, this operator is Fredholm with zero index.
In the second case, when �̃� ∈ S, we need to check that the Šapiro-Lopatinskiĭ type condition for the operator D
is fulfilled, ie, we have to show that the so-called boundary symbol that is constructed by means of the principal
homogeneous symbols of the pseudodifferential operators involved in (75) is nonsingular (see Eskin,35§12). To write
the boundary symbol function explicitly, we assume that the symbols are “frozen” at the point �̃� ∈ S considered as the
origin O′ of some local coordinate system. Denote by ã(2)

kl (�̃�) the corresponding “frozen” coefficients of the principal
part of the differential operator A2(y, 𝜕y) subjected to a translation and an orthogonal transformation related to the
local co-ordinate system. If the matrix of the transformation of the original co-ordinate system Oy1y2y3 to the new
one O′

𝜂1𝜂2𝜂3 with O ′ = �̃� is an orthogonal matrix Λ(�̃�) ∶= [𝜆kl(�̃�)]3×3, which transforms the outward unit normal
vector n⊤(�̃�) into the vector e3 = (0, 0, − 1)⊤ (the outward unit normal vector to R

3
+), ie, n⊤(�̃�) = Λ(�̃�)e3, then

𝑦 = �̃� + Λ(�̃�)𝜂, ∇𝑦 = Λ(�̃�)∇𝜂 , and

𝜆k3(�̃�) = −nk(�̃�), ã(2)
kl (�̃�) = 𝜆pk(�̃�)a(2)

pq (�̃�)𝜆ql(�̃�) = {Λ⊤(�̃�)a2(�̃�)Λ(�̃�)}kl, k, l = 1, 2, 3. (78)

Evidently, the matrix ã2(�̃�) = [ã(2)
kl (�̃�)]

3
k,𝑗=1 ∶= Λ⊤(�̃�)a2(�̃�)Λ(�̃�) is positive definite, since a2(�̃�) is positive definite and

for arbitrary �̃� ∈ S, we have

𝛽(�̃�) = 1
3

[
ã(2)

11 (�̃�) + ã(2)
22 (�̃�) + ã(2)

33 (�̃�)
]
> 0, ã(2)

33 (�̃�) = 𝜆p3 a(2)
pq (�̃�)𝜆q3 = a(2)

pq (�̃�)np(�̃�)nq(�̃�) = 2 �̃�(�̃�) > 0,

T2(�̃�, 𝜕𝑦) = a(2)
pl (�̃�)np(�̃�)𝜕𝑦l = np(�̃�)a(2)

pl (�̃�)𝜆 lq(�̃�)𝜕𝜂q = −𝜆p3(�̃�)a(2)
pl (�̃�)𝜆 lq(�̃�)𝜕𝜂q = −ã(2)

3q (�̃�)𝜕𝜂q ,

due to (78) and (B2).
Further, let us note that the layer potentials can be represented by means of the volume potential (see, eg, Chkadua
et al26)

V𝜒 𝜓(𝑦) = −P𝜒 (𝛾∗𝜓)(𝑦), 𝑦 ∈ R
3∖S, (79)

W𝜒 𝜑(𝑦) = −𝜕𝑦𝑗 V𝜒 (a(2)
k𝑗 nk𝜑) = 𝜕𝑦𝑗 P𝜒 (𝛾∗(a(2)

k𝑗 nk𝜑))(𝑦) , 𝑦 ∈ R
3∖S, (80)

where 𝛾∗ ∶ H
1
2
−t(S) → H−t

S , t > 1∕2 is the adjoint operator to the trace operator 𝛾 , ie, ⟨𝛾∗𝜓 , h⟩R3 ∶= ⟨𝜓 , 𝛾 h⟩S for all
h ∈ (R3). Here, H−t

S ∶= {𝑓 ∈ H−t(R3) ∶ supp𝑓 ⊂ S}, and H−t
S does not contain nonzero elements, when t ⩽ 1

2
(see

Lemma 3.39 in McLean,37 Theorem 2.10(i) in Mikhailov17).
In view of (79) and (80), the operator D12 in (75) can be represented as

D12 = −V𝜒 (𝜓2) + W𝜒 (−1
𝜔 𝜔𝜓2) = P𝜒 (𝛾∗𝜓2) + 𝜕𝑦𝑗 P𝜒 (𝛾∗(a(2)

k𝑗 nk−1
𝜔 𝜔𝜓2)), (81)

and its principal homogeneous symbol due to the above formulas and Remark 6 in Appendix C can be written as

𝔖(D12; �̃�, 𝜉) ≡ R12(�̃�, 𝜉) ∶= − 1|𝜉|2 +
i𝜉lã(2)

3l (�̃�)|𝜉|2 2𝔖0(𝜔; �̃�, 𝜉′), 𝜉 = (𝜉′, 𝜉3), 𝜉′ = (𝜉1, 𝜉2) ∈ R
2∖{0}, (82)

since the principal homogeneous symbol of the operator P𝜒 reads as 𝔖0(P; 𝜉) = −z→𝜉[(4𝜋|z|)−1] = −|𝜉|−2.

Due to the Vishik-Eskin approach, now we have to construct the following matrix associated with the principal
homogeneous symbols of the operators involved in D at the local co-ordinate system introduced above

R(�̃�, 𝜉) ∶=
[

R11(�̃�, 𝜉) R12(�̃�, 𝜉)
R21(�̃�, 𝜉) R22(�̃�, 𝜉′)

]
, (83)
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where R11(�̃�, 𝜉) is the principal homogeneous symbol of the operator D11 = 𝛽I + N𝜒 ,

R11(�̃�, 𝜉) = 𝔖0(D11; �̃�, 𝜉) ≡ 𝔖0(𝛽 I + N𝜒 ; �̃�, 𝜉) =
A2(𝜉)
Δ(𝜉)

=
ã(2)

kl (�̃�)𝜉k𝜉l|𝜉|2 > 0, 𝜉 ∈ R
3∖{0}, (84)

R12(�̃�, 𝜉) is the principal homogeneous symbol of operator (81) and is given by (82), R21(�̃�, 𝜉) is the principal
homogeneous symbol of the operator N𝜒 ,

R21(�̃�, 𝜉) ∶= 𝔖0(N𝜒 ; �̃�, 𝜉) =
A2(�̃�, 𝜉)
Δ(𝜉)

− 𝛽(�̃�) =
ã(2)

kl (�̃�)𝜉k𝜉l − 𝛽(�̃�) |𝜉|2|𝜉|2 , (85)

R22(�̃�, 𝜉) is the principal homogeneous symbol of the boundary operator D22, which due to (75), (B4), (B5), and (C5)
is written as

R22(�̃�, 𝜉′) ∶= 𝔖0(−𝜒 + [(𝛽 − 𝜇)I +𝜒 ]−1
𝜔 𝜔; �̃�, 𝜉′)

= −𝔖0(𝜒 ; �̃�, 𝜉′) + 1
2
𝔖0((𝛽 − 𝜇)I +𝜒 ; �̃�, 𝜉′)𝔖0(−1

𝜔 ; �̃�, 𝜉′)

= − 1
2 |𝜉′| − [2𝛽(�̃�) − ã(2)

33 (�̃�) − i
2∑

l=1
ã(2)

3l (�̃�)
𝜉l|𝜉′| ]𝔖0(𝜔; �̃�, 𝜉′). (86)

Below, we drop the arguments �̃� and 𝜉 when it does not lead to misunderstanding.
Now, we show that the Šapiro-Lopatinskiĭ type condition for the operator D is satisfied, ie, the boundary symbol (see
Eskin,35§12, formulas (12.25), (12.27))

SD(𝜉′) = −Π′[ R21

R(+)

11

Π+(R12

R(−)

11

)](𝜉′) + R22(𝜉′) (87)

associated with the operator D does not vanish for 𝜉′ ≠ 0. Here, R(+)

11(𝜉
′, 𝜉3) and R(−)

11(𝜉
′, 𝜉3) denote the “plus” and

“minus” factors, respectively, in the factorisation of the symbol R11(𝜉
′
, 𝜉3) with respect to the variable 𝜉3 in the

complex 𝜉3 plane, while Π+ is a Cauchy type integral operator

Π+(h)(𝜉) = i
2𝜋

lim
t→0+

+∞

∫
−∞

h(𝜉′, 𝜂3)d𝜂3

𝜉3 + i t − 𝜂3
,

and Π′ is the operator defined on the set of rational functions

Π′(g)(𝜉′) = − 1
2𝜋 ∫

𝓁−

g(𝜉′, 𝜉3)d𝜉3,

where 𝓁− is a contour in the lower complex half-plane orientated counterclockwise and enclosing all poles of the
rational function g with respect to 𝜉3.

Denote the roots of the equation A2(𝜉) ≡ ã(2)
kl 𝜉k𝜉l = 0 with respect to 𝜉3 by 𝜏(𝜉′ ) = 𝛼1 − i𝛼2 and 𝜏(𝜉′) = 𝛼1 + i𝛼2,

where we assume that 𝛼2 > 0. Then

A2(𝜉) = ã(2)
kl 𝜉k𝜉l = ã(2)

33 [𝜉3 − 𝜏(𝜉′)] [𝜉3 − 𝜏(𝜉′)] = A(+)

2 (𝜉)A(−)

2 (𝜉), (88)

A(+)

2 (𝜉) ∶= ã(2)
33 [𝜉3 − 𝜏(𝜉′)], A(−)

2 (𝜉) ∶= 𝜉3 − 𝜏(𝜉′), (89)

𝜏(𝜉′) = 𝛼1(𝜉′) + i𝛼2(𝜉′), 𝛼2(𝜉′) > 0, 𝜉′ ∈ R
2∖{0}. (90)

Since Δ(𝜉) = |𝜉|2 = Δ(+) (𝜉)Δ(−) (𝜉) with Δ(±)(𝜉) ∶= 𝜉3±i |𝜉′|, we get the following factorisation of the symbol R11(𝜉),

R11(𝜉) = R(+)

11(𝜉)R(−)

11(𝜉), R(+)

11(𝜉) ∶=
A(+)

2 (𝜉)
Δ(+) (𝜉)

, R(−)

11(𝜉) ∶=
A(−)

2 (𝜉)
Δ(−) (𝜉)

. (91)
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Using formulas (84) - (86) and (88) - (91), we rewrite (87) as

SD(𝜉′) = − Π′
{(A2(𝜉)

Δ(𝜉)
− 𝛽

)Δ(+) (𝜉)
A(+)

2 (𝜉)
Π+
[(

− 1
Δ(𝜉)

−
i 𝜉lã(2)

3l

Δ(𝜉)
[−2𝔖0(𝜔; 𝜉′)]

)Δ(−) (𝜉)
A(−)

2 (𝜉)

]}
− 1

2 |𝜉′| + 1
2

(
[2𝛽 − ã(2)

33 ] − i
2∑

l=1
ã(2)

3l (�̃�)
𝜉l|𝜉′|)[−2𝔖0(𝜔; 𝜉′)] = S(1)

D (𝜉′) + S(2)
D (𝜉′) [−2𝔖0(𝜔; 𝜉′)], (92)

where

S(1)
D (𝜉′) ∶= − Π′

[(A2(𝜉)
Δ(𝜉)

− 𝛽
)Δ(+) (𝜉)

A(+)

2 (𝜉)
Π+
(
− 1

Δ(𝜉)
Δ(−) (𝜉)
A(−)

2 (𝜉)

)]
− 1

2 |𝜉′|
=Π′

[(A(−)

2 (𝜉)
Δ(−) (𝜉)

− 𝛽Δ
(+) (𝜉)

A(+)

2 (𝜉)

)
Π+
( 1
Δ(+) (𝜉)A(−)

2 (𝜉)

)]
− 1

2 |𝜉′| , (93)

S(2)
D (𝜉′) ∶= −Π′

[(A2(𝜉)
Δ(𝜉)

− 𝛽
)Δ(+) (𝜉)

A(+)

2 (𝜉)
Π+
(
−

i 𝜉lã(2)
3l

Δ(𝜉)
Δ(−) (𝜉)
A(−)

2 (𝜉)

)]
+ 1

2

[(
2𝛽 − ã(2)

33

)
− i

2∑
l=1

ã(2)
3l

𝜉l|𝜉′| ]
=Π′

[(A(−)

2 (𝜉)
Δ(−) (𝜉)

− 𝛽Δ
(+) (𝜉)

A(+)

2 (𝜉)

)
Π+
( i 𝜉lã(2)

3l

Δ(+) (𝜉)A(−)

2 (𝜉)

)]
+ 1

2

[
(2𝛽 − ã(2)

33 ) − i
2∑

l=1
ã(2)

3l
𝜉l|𝜉′| ]. (94)

With the help of residue theorem, by direct calculations, we find

Π+( 1
Δ(+) A(−)

2

)(𝜉) = i
2𝜋

lim
t→0+

+∞

∫
−∞

d𝜂3

Δ(+) (𝜉′, 𝜂3)A
(−)

2 (𝜉′, 𝜂3)(𝜉3 + i t − 𝜂3)
= i

2𝜋
lim

t→0+

+∞

∫
−∞

d𝜂3

(𝜂3 + i|𝜉′|) (𝜂3 − 𝜏(𝜉′))(𝜉3 + i t − 𝜂3)

= − i
2𝜋

lim
t→0+∫

𝓁−

d𝜁
(𝜁 + i |𝜉′|)(𝜁 − 𝜏(𝜉′)) (𝜉3 + i t − 𝜁 )

= − i
2𝜋

lim
t→0+

2𝜋i
(−i |𝜉′| − 𝜏(𝜉′))(𝜉3 + i t + i |𝜉′|)

= − 1
(i |𝜉′| + 𝜏(𝜉′)) (𝜉3 + i |𝜉′|) ; (95)

Π′
[(A(−)

2

Δ(−)

)
Π+
( 1
Δ(+) A(−)

2

)]
(𝜉′) = 1

2𝜋 ∫
𝓁−

𝜉3 − 𝜏(𝜉′)
𝜉3 − i |𝜉′| d𝜉3

(i |𝜉′| + 𝜏(𝜉′)) (𝜉3 + i |𝜉′|) = 1
2𝜋 [i |𝜉′| + 𝜏(𝜉′)] ∫

𝓁−

𝜉3 − 𝜏(𝜉′)
𝜉2

3 + |𝜉′|2 d𝜉3

= 1
2𝜋 [i |𝜉′| + 𝜏(𝜉′)] ∫

𝓁−

[ 1
𝜉3 − i |𝜉′| − i |𝜉′|

𝜉2
3 + |𝜉′|2 − 𝜏(𝜉′)

𝜉2
3 + |𝜉′|2 ]d𝜉3 = − 1

2𝜋 ∫
𝓁−

d𝜉3

𝜉2
3 + |𝜉′|2 = 1

2 |𝜉′| , (96)

𝛽Π′
[(Δ(+)

A(+)

2

)Π+( 1
Δ(+)A(−)

2

)]
(𝜉′) = 𝛽

2𝜋 ∫
𝓁−

𝜉3 + i |𝜉′|
ã(2)

33 [𝜉3 − 𝜏(𝜉′)]
d𝜉3

(i|𝜉′| + 𝜏(𝜉′)) (𝜉3 + i |𝜉′|) = 𝛽

2𝜋ã(2)
33 [i|𝜉′| + 𝜏(𝜉′)] ∫𝓁−

d𝜉3

𝜉3 − 𝜏(𝜉′)

= 𝛽

2𝜋 ã(2)
33 [i |𝜉′| + 𝜏(𝜉′)] ∫𝓁−

[ 1
𝜉3 + 𝜏(𝜉′)

+ 2𝜏(𝜉′)
𝜉2

3 − 𝜏2(𝜉′)

]
d𝜉3 = 𝛽

2𝜋 ã(2)
33 [i |𝜉′| + 𝜏(𝜉′)] ∫𝓁−

2𝛽 𝜏(𝜉′)
𝜉2

3 − 𝜏2(𝜉′)
d𝜉3

= 2 𝛽 𝜏(𝜉′)
2𝜋 ã(2)

33 [i |𝜉′| + 𝜏(𝜉′)] 2𝜋 i
2𝜏(𝜉′)

= i𝛽
ã(2)

33 [i |𝜉′| + 𝜏(𝜉′)] . (97)

Therefore, from (93) in view of (95) - (97) and (90), we get

S(1)
D (𝜉′) = − i 𝛽

ã(2)
33 [i |𝜉′| + 𝜏(𝜉′)] = − 𝛽 (𝛼2 + |𝜉′|) + i𝛼1 𝛽

ã(2)
33 [𝛼

2
1 + (𝛼2 + |𝜉′|)2]

for 𝜉′ ≠ 0 . (98)



CHKADUA ET AL. 8049

Now, we evaluate the function S(2)
D . Let 𝜗(𝜉′) ∶=

2∑
l=1

ã(2)
3l 𝜉l . Since 𝜏 and 𝜏 are roots of the quadratic equation

A2(𝜉) ≡
3∑

k,l=1
ã(2)

kl 𝜉k𝜉l = ã(2)
33 𝜉

2
3 + 2𝜗(𝜉′)𝜉3 +

2∑
k,l=1

ã(2)
kl 𝜉k𝜉l = 0,

we have
2𝜗(𝜉′) = −ã(2)

33 (𝜏 + 𝜏). (99)

Again by direct calculations, we find

Π+
( i 𝜉lã(2)

3l

Δ(+) (𝜉)A(−)

2 (𝜉)

)]
= Π+

( i ã(2)
3l 𝜉l

𝜉3 + i |𝜉′| 1
𝜉3 − 𝜏

)
(𝜉′) = i

2𝜋
lim

t→0+

+∞

∫
−∞

[i𝜗(𝜉′) + i ã(2)
33 𝜂3]d𝜂3

(𝜂3 + i |𝜉′|) (𝜂3 − 𝜏) (𝜉3 + i t − 𝜂3)

= −
i𝜗(𝜉′) + ã(2)

33 |𝜉′|
(𝜏 + i |𝜉′|) (𝜉3 + i |𝜉′|) .

Further, we have

Π′
[(A(−)

2 (𝜉)
Δ(−) (𝜉)

− 𝛽Δ
(+) (𝜉)

A(+)

2 (𝜉)

)
Π+
( i 𝜉lã(2)

3l

Δ(+) (𝜉)A(−)

2 (𝜉)

)]
= 1

2𝜋 ∫
𝓁−

(A(−)

2 (𝜉)
Δ(−) (𝜉)

− 𝛽Δ
(+) (𝜉)

A(+)

2 (𝜉)

) i𝜗(𝜉′) + ã(2)
33 |𝜉′|

(𝜏 + i |𝜉′|) (𝜉3 + i |𝜉′|) d𝜉3

= 1
2𝜋

i𝜗(𝜉′) + ã(2)
33 |𝜉′|

𝜏 + i |𝜉′| ∫
𝓁−

[ 𝜉3 − 𝜏
𝜉2

3 + |𝜉′|2 − 𝛽

ã(2)
33 (𝜉3 − 𝜏)

]
d𝜉3 =

i𝜗(𝜉′) + ã(2)
33 |𝜉′|

2 |𝜉′| − i𝛽
ã(2)

33

i𝜗(𝜉′) + ã(2)
33 |𝜉′|

𝜏 + i |𝜉′| . (100)

Now, from (94), (99), and (100), we get

S(2)
D (𝜉′) =

i𝜗(𝜉′) + ã(2)
33 |𝜉′|

2 |𝜉′| − i𝛽
ã(2)

33

i𝜗(𝜉′) + ã(2)
33 |𝜉′|

𝜏 + i |𝜉′| + 1
2

[
2𝛽 − ã(2)

33 − i 𝜗(𝜉
′)|𝜉′| ]

=
𝛽(𝜗(𝜉′) + ã(2)

33 𝜏)

ã(2)
33 (𝜏 + i |𝜉′|) = 𝛽(𝜏 − 𝜏)

2 (𝜏 + i |𝜉′|) = i𝛽 𝛼2

𝜏 + i |𝜉′| for 𝜉′ ≠ 0 . (101)

Finally, from (92) in view of (98) and (101), we have

SD(𝜉′) = − 𝛽 (𝛼2 + |𝜉′|) + i𝛼1 𝛽

ã(2)
33 [𝛼

2
1 + (𝛼2 + |𝜉′|)2]

+ i𝛽 𝛼2

𝜏 + i |𝜉′| [−2𝔖0(𝜔; 𝜉′)]

= −
𝛽 (𝛼2 + |𝜉′|)[1 + 2𝛼2 ã(2)

33 𝔖0(𝜔; 𝜉′)] + i𝛼1 𝛽 [1 − 2𝛼2 ã(2)
33 𝔖0(𝜔; 𝜉′)]

ã(2)
33 [𝛼

2
1 + (𝛼2 + |𝜉′|)2]

,

whence the following inequality follows:

Re SD(𝜉′) = −
𝛽 (𝛼2 + |𝜉′|) [1 + 2𝛼2 ã(2)

33 𝔖0(𝜔; 𝜉′)]
ã(2)

33 [𝛼
2
1 + (𝛼2 + |𝜉′|)2]

< 0 for 𝜉′ ≠ 0 (102)

due to the relations (see (C5))

𝛽 > 0, ã(2)
33 > 0, |𝜉′| > 0, 𝛼2 > 0, 𝔖0(𝜔; 𝜉′) > 0 ∀𝜉′ ≠ 0. (103)

Thus, the Šapiro-Lopatinskiĭ type condition for the “boundary symbol” SD defined by (87) is satisfied and the operator
D in (74) and (75) is Fredholm.

Step 3. Here, we prove that the index of the operator D equals to zero. To this end, let us consider the operator

Dt ∶=
[

rΩ2
(𝛽 I + N𝜒 )E̊ rΩ2

[−V𝜒 + W𝜒−1
𝜔 𝜔]

t N+
𝜒 E̊ (t − 1)𝛽 I + t{−𝜒 + [(𝛽 − 𝜇)I +𝜒 ]−1

𝜔 𝜔}

]
, (104)

with t ∈ [0, 1], and establish that it is homotopic to the operator D.
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Evidently, D1 = D and Dt∶H1(Ω2) × H− 1
2 (S) → H1(Ω2) × H

1
2 (S) is continuous. First, we show that for the operator

Dt, the Šapiro-Lopatinskiĭ condition is satisfied for all t ∈ [0, 1]. The counterpart of the matrix (83) now reads as

Rt(�̃�, 𝜉) ∶=
[

R11(�̃�, 𝜉) R12(�̃�, 𝜉)
t R21(�̃�, 𝜉) R22,t(�̃�, 𝜉′)

]
,

where R11, R12, and R21 are defined by formulas (84), (82), and (85), respectively, while in accordance with (104)
and (86),

R22,t(�̃�, 𝜉′) ∶= 𝔖0((t − 1)𝛽 I + t{−𝜒 + [(𝛽 − 𝜇)I +𝜒 ]−1
𝜔 𝜔}; �̃�, 𝜉′) = t R22(�̃�, 𝜉′) + (t − 1)𝛽 .

The corresponding boundary symbol associated with the Šapiro-Lopatinskiĭ condition, the counterpart of (87), has
the form

SD,t(𝜉′) = −Π′
[ t R21

R(+)

11

Π+
(R12

R(−)

11

)]
(𝜉′) + R(t)

22(𝜉
′) = −tΠ′

[ R21

R(+)

11

Π+
(R12

R(−)

11

)]
(𝜉′) + tR22(�̃�, 𝜉′) − (1 − t)𝛽

= tSD(𝜉′) − (1 − t)𝛽,

and due to the inequalities (102) and (103), we have

Re SD, t(𝜉′) = t Re SD(𝜉′) − (1 − t)𝛽 < 0 ∀𝜉′ ≠ 0 ∀ t ∈ [0, 1].

Thus, the Šapiro-Lopatinskiĭ condition for the operator Dt is satisfied for all t ∈ [0, 1]. Therefore, as in the case of
the operator D, it follows that the operator Dt ∶ H1(Ω2) × H− 1

2 (S) → H1(Ω2) × H
1
2 (S) is Fredholm and has the same

index for all t ∈ [0, 1].
On the other hand, the upper triangular matrix operator D0 has zero index since one of the operators in the main
diagonal, −𝛽 I ∶ H− 1

2 (S) → H− 1
2 (S) is invertible, while the second operator, D11 = rΩ2

(𝛽 I+N𝜒 )E̊ ∶ H1(Ω2) → H1(Ω2)
is Fredholm with zero index as it has been shown in Step 1. Consequently, IndD = IndD1 = IndDt = IndD0 = 0.

Step 4. Now, we show that the operator D is injective, which will imply its invertibility.
Let Ũ = (ũ2, �̃�2)⊤ ∈ H1(Ω2) × H− 1

2 (S) be a solution to the homogeneous equation

DŨ = 0. (105)

Since the operator D is Fredholm with zero index, there exists a left regulariser ℜD such that

ℜD ∶ H1(Ω2) × H
1
2 (S) → H1(Ω2) × H− 1

2 (S)

and ℜD D = I +𝔗D , where 𝔗D is the operator of order −1 (cf, eg, the proof of Theorems 22.1 and 23.1 in Eskin35),

𝔗D ∶ H1(Ω2) × H− 1
2 (S) → H2(Ω2) × H

1
2 (S). (106)

Therefore, for Ũ = (ũ2, �̃�2)⊤ ∈ H1(Ω2) × H− 1
2 (S) from (105), we have

ℜD DŨ = Ũ +𝔗DŨ = 0, (107)

and in view of (106) and (107), we deduce

Ũ = (ũ2, �̃�2)⊤ ∈ H2(Ω2) × H
1
2 (S).

Clearly, by ũ2 and �̃�2 we can construct the vector U (0) = (ũ2, �̃�2, �̃�2, �̃�1, �̃�1, ũ1) ∈ H, a solution to the homogeneous
system (64)-(69). Here H is defined in (56).

Therefore by equivalence Theorem 2 and uniqueness Theorem 1, we conclude that U(0) is a zero vector. Thus, the null
space of the operator D is trivial in the class H1(Ω2) × H− 1

2 (S). Consequently, the operator D ∶ H1(Ω2) × H− 1
2 (S) →

H1(Ω2) × H
1
2 (S) is invertible, implying that the operator (72) is invertible as well, which completes the proof.
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For a cut-off function 𝜒 of infinite smoothness, we have the following result.

Corollary 2. Let a cut-off function 𝜒 ∈ X∞
+ . Then the operators

D ∶ Hr+1(Ω2) × Hr− 1
2 (S) → Hr+1(Ω2) × Hr+ 1

2 (S), (108)

M ∶ Hr+1(Ω2) × Hr− 1
2 (S) × Hr+ 1

2 (S) → Hr+1(Ω2) × Hr+ 1
2 (S) × Hr− 1

2 (S), (109)

where the D and M are defined by (75) and (70), respectively, are invertible for all r > − 1
2

.

Proof. It can be carried out by the word for word arguments applied in the proof of Theorem 3 and using the counter-
parts of Theorems 8 and 10 describing the mapping and smoothness properties of the localised potentials for a cut-off
function of infinite smoothness, which actually coincide with the properties of usual potentials without localisation.

In the final part, Step 4, one needs to apply the fact that the operator (108) possesses a common regulariser for all
r > − 1

2
(see, eg, Agranovich38) implying that the null space of the operator D is trivial for all r > − 1

2
, which yields that

the operators (108) and (109) are invertible for all r > − 1
2
.

From Theorem 3 and Lemma 2, we derive also the invertibility result for operator (71).

Corollary 3. Let a cut-off function 𝜒 ∈ X4
+. Then the operator M ∶ H → F is invertible.

Summarising the above-obtained results, we can make the following conclusions.Consider LBDIE system (50) - (55)
with arbitrary right hand sides,

𝛽u2 +𝜒 u2 − V𝜒 𝜓2 + W𝜒 𝜑2 = h1 in Ω2, (110)

 +
𝜒 u2 − 𝜒𝜓2 + [(𝛽 − 𝜇)I +𝜒 ]𝜑2 = h2 on S, (111)

𝜔𝜓2 −𝜔𝜑2 = h3 on S, (112)

𝜓2 − 𝜓1 = h4 on S, (113)

𝜑2 − 𝜑1 = h5 on S, (114)

u1 + V𝜔𝜓1 − W𝜔𝜑1 = h6 in Ω1. (115)

Theorem 3 and Corollaries 2 and 3 imply the following assertion.

Corollary 4.

(i) LBDIE system (110) - (115) with arbitrary right hand side data

(h1, · · · , h6) ∈ Y ∶= H1(Ω2) × H
1
2 (S) × H− 1

2 (S) × H− 1
2 (S) × H

1
2 (S) × H1

comp(Ω1) (116)

is uniquely solvable in the space

X ∶= H1(Ω2) × H− 1
2 (S) × H

1
2 (S) × H− 1

2 (S) × H
1
2 (S) × (H1

loc(Ω1) ∩ Z(Ω1)). (117)

(ii) LBDIE system (110) - (115) with arbitrary right hand side data

(h1, · · · , h6) ∈ F ∶= H1,0(Ω2; Δ) × H
1
2 (S) × H− 1

2 (S) × H− 1
2 (S) × H

1
2 (S) × H1,0

comp(Ω1;A1)

is uniquely solvable in the space H defined in (56),

H = H1,0(Ω2;A2) × H− 1
2 (S) × H

1
2 (S) × H− 1

2 (S) × H
1
2 (S) × (H1,0

loc (Ω1;A1) ∩ Z(Ω1)).

In particular, under conditions (18), system (50) - (55) is uniquely solvable in the space H.

In both cases, (i) and (ii), the solution continuously depends on the right hand side data provided supph6 ⊂ Ω0, where
Ω0 is a fixed compact subset of Ω1.

Finally, Corollary 4(ii), equivalence Theorem 2, and uniqueness Theorem 1 lead to the following assertion.

Theorem 4. Let conditions (18) hold. Transmission problem (14) - (17) is uniquely solvable, and the solution continu-
ously depends on the right hand side data provided supp𝑓1 ⊂ Ω0, where Ω0 is a fixed compact subset of Ω1.
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5 COUPLING OF VARIATIONAL AND NONLOCAL BIE APPROACH

Here, we present an alternative approach for investigation of transmission problem (14) - (18). We apply the nonlocal
approach and reformulate the transmission problem in variational form. To this end, we recall the first Green identity (9)
in Ω2,

∫
Ω2

[
a(2)

k𝑗 𝜕𝑗u2 𝜕kv − 𝜔2𝜅2u2v
]

dx − ⟨T+
2 u2 , 𝛾+v⟩S = −∫

Ω2

(A2u2) vdx, ∀ u2 ∈ H1,0(Ω2;A2), v ∈ H1(Ω2). (118)

Assuming that a pair (u2,u1) ∈ H1,0(Ω2;A2) × (H1,0
loc (Ω1;A1) ∩ Z(Ω1)) solves transmission problem (14) - (18) and

implementing the Steklov-Poincaré type relation (48), we reduce (118) to equation

𝔅(u2, v) = 𝔉(v) ∀ v ∈ H1(Ω2), (119)

where 𝔅 is a sesquilinear form and 𝔉 is an antilinear functional defined, respectively, as

𝔅(u2, v) ∶= ∫
Ω2

[
a(2)

k𝑗 (x)𝜕𝑗u2(x) 𝜕kv(x) − 𝜔2𝜅2(x)u2(x)v(x)
]

dx − ⟨−1
𝜔 𝜔(𝛾+u2) , 𝛾+v⟩S, (120)

𝔉(v) ∶= −∫
Ω2

𝑓2(x)v(x)dx + ⟨Φ𝜔 , 𝛾+v⟩S, (121)

with Φ𝜔 ∶= 𝜔
−1 [Ψ𝜔𝑓1 −𝜔𝜑0]+𝜓0 ∈ H− 1

2 (S).Here, the operators 𝜔, 𝜔, and𝛹𝜔 are defined by relations (45) - (47).
We associate with Equation 119 the following variational problem (in a wider space):

• Find a function u2 ∈ H1(Ω2) satisfying (119).

Let us first prove the following equivalence theorem.

Theorem 5. Let conditions (18) be fulfilled.

(i) If a pair (u2,u1) ∈ H1,0(Ω2;A2) × (H1,0
loc (Ω1;A1) ∩ Z(Ω1)) solves transmission problem (14) - (18), then the function

u2 solves variational Equation (119).
(ii) Vice versa, if a function u2 ∈ H1(Ω2) solves variational Equation 119, then the pair (u2,u1), where

u1(𝑦) = 𝜔𝑓1(𝑦) − V𝜔(T+
2 u2 − 𝜓0)(𝑦) + W𝜔(𝛾+u2 − 𝜑0)(𝑦), 𝑦 ∈ Ω1, (122)

belongs to the class H1,0(Ω2;A2) × (H1,0
loc (Ω1;A1) ∩ Z(Ω1)) and solves transmission problem (14) - (18).

Proof.

(i) The first part of the theorem follows from the derivation of variational Equation (119).
(ii) To prove the second part, we proceed as follows. If u2 solves (119), then the equation particularly holds for

v ∈ (Ω2), which implies that u2 is a solution of Equation (15) in the sense of distributions and evidently u2 ∈
H1,0(Ω2;A2) since f2 ∈ H0(Ω2) in view of (18). Therefore, the canonical co-normal derivative T+

2 u2 ∈ H− 1
2 (S) is

well defined in the sense of (7).
Further, it is easy to see that function (122) is well defined, solves the differential Equation (14) due to (40) and
(41), and belongs to the space H1,0

loc (Ω1;A1)∩Z(Ω1) in view of (18). Therefore, the canonical co-normal derivative
T−

1 u1 ∈ H− 1
2 (S) is well defined in the sense of (8) as well.

In order to show that transmission conditions (16) and (17) are also satisfied, we write Green's identity (118) for
u2 and arbitrary v ∈ H1(Ω2) and subtract it from (119) to obtain

⟨T+
2 u2 −−1

𝜔 𝜔(𝛾+u2) − Φ𝜔 , 𝛾+v⟩S = 0.

Whence T+
2 u2 −−1

𝜔 𝜔(𝛾+u2) − Φ𝜔 = 0 on S, ie, T+
2 u2 − 𝜓0 −−1

𝜔 𝜔(𝛾+u2) −−1
𝜔 (Ψ𝜔𝑓1 −𝜔𝜑0) = 0 on S,

which is equivalent to the condition

𝜔(T+
2 u2 − 𝜓0) − 𝜔(𝛾+u2 − 𝜑0) − Ψ𝜔𝑓1 = 0 on S.
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In turn, in view of (45) - (47), the latter implies

T+
1 w − i𝛼𝛾+w = 0 on S, (123)

where

w ∶= V𝜔(T+
2 u2 − 𝜓0) − W𝜔(𝛾+u2 − 𝜑0) − 𝜔𝑓1 in Ω2. (124)

The function w satisfies the homogeneous equation A1w = 0 inΩ2 in view of (124) and the homogeneous Robin
condition (123). As in the proof of Theorem 2, we can deduce that 𝛾+w = 0 and T+

1 w = 0 on S for real 𝛼 ≠ 0,
implying w = 0 in Ω2. Therefore, for the function u1 defined in (122) by Lemma 5, we have

𝛾−u1 = 𝛾−u1 + 𝛾+w = 𝛾+u2 − 𝜑0, T−
1 u1 = T−

1 u1 + T+
1 w = T+u2 − 𝜓0,

which completes the proof.

Corollary 5. The homogeneous variational problem (119) (with 𝔉 = 0) possesses only the trivial solution.

Proof. It follows from the uniqueness and equivalence Theorems 1 and 5, respectively.

Further, we analyse the coercivity properties of the sesquilinear form 𝔅.

Lemma 3. For the sesquilinear form 𝔅 defined in (120), there are real constants C∗
1 > 0, C∗

2 > 0, and C∗
3 such that

|𝔅(u, v)| ≤ C∗
1 ||u||H1 (Ω2)

||v||
H1 (Ω2)

∀u, v ∈ H1(Ω2),

Re𝔅(u,u) ≥ C∗
2 ||u||2H1(Ω2)

− C∗
3 ||u||2H0 (Ω2)

∀u ∈ H1(Ω2).

Proof. The first equality follows from (120) by the Cauchy-Schwartz inequality and the trace theorem. To prove the
second inequality, we use the positive definiteness of the matrix a2 = [a(2)

k𝑗 ]
3
k,𝑗=1, Remark 7, and the trace theorem to

obtain

Re𝔅(u,u) ≥ c1 ||u||2H1 (Ω2)
− c2 ||u||2H0 (Ω2)

+ C1||𝛾+u||2
H

1
2 (S)

− C2||𝛾+u||2H0(S)

≥ c1 ||u||2H1 (Ω2)
− c2 ||u||2H0 (Ω2)

− C2 ||𝛾+u||2
H𝛿 (S)

≥ c1 ||u||2H1(Ω2)
− c2 ||u||2H0 (Ω2)

− c3 ||u||2
H

1
2 +𝛿 (Ω2)

,

where c1 > 0, c2 = 𝜔2 max
Ω2

𝜅2(x), C1 > 0 and C2 ⩾ 0 are the constants involved in (C8), c3 > 0, and 𝛿 is an arbitrarily

small positive number. Now, by Ehrling's lemma, cf, eg, Theorem 7.30 in Renardy et al,39 for arbitrarily small positive
number 𝜖, there is a positive constant C(𝜖), such that

||u||
H

1
2 +𝛿 (Ω2)

≤ 𝜖||u||
H1 (Ω2)

+ C(𝜖)||u||
H0 (Ω2)

,

which completes the proof.

Now, we prove the following existence results.

Theorem 6. Let 𝔉 be a bounded linear functional on H1(Ω2). Then variational Equation (119) is uniquely solvable in
the space H1(Ω2).

Proof. By Lemma 3, the sesquilinear functional 𝔅𝜆(u, v) ∶= 𝔅(u, v) + 𝜆⟨u, v⟩Ω2 with 𝜆 > |C∗
3| is positive and

bounded below on the space H1(Ω2) × H1(Ω2). Due to the Lax-Milgram lemma, 𝔅𝜆 defines an invertible linear
operator T𝜆 ∶ H1(Ω2) → H̃−1(Ω2) for 𝜆 > |C∗

3|. Therefore, for arbitrary 𝜆, the operator T𝜆 is Fredholm with zero
index (see, eg, Theorem 2.33 in McLean37), since the sesquilinear form 𝜆⟨u, v⟩Ω2 defines a compact imbedding oper-
ator 𝜆I ∶ H1(Ω2) → H̃−1(Ω2), where I is the identity operator. By Corollary 5, the operator T0 defined by the
sesquilinear form 𝔅(u, v) = 𝔅0(u, v) possesses the trivial null-space and consequently is invertible, which completes
the proof.
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Theorem 7. Let conditions (18) be fulfilled. Then transmission problem (14) - (18) is uniquely solvable in the space
H1,0(Ω2;A2) × (H1,0

loc (Ω1;A1) ∩ Z(Ω1)).

Proof. If conditions (18) are satisfied, then the linear functional 𝔉 given by (121) is bounded,|𝔉(v)| ≤ C ||v||
H1 (Ω2)

∀v ∈ H1(Ω2),

which follows from the Cauchy-Schwartz inequality, trace theorem, and properties of the operators 𝜔, 𝜔, and 𝛹𝜔
defined by relations (45) - (47).

Therefore, by equivalence Theorem 5 and existence Theorem 6 along with uniqueness Theorem 1, we conclude that
the transmission problem (14) - (18) is uniquely solvable.

Remark 4. From the equivalence Theorem 2 and existence Theorem 7, it follows that the LBDIE system (50) - (55)
possesses a unique solution in the space H defined by (56). However, this does not imply the results obtained in Section
4 concerning neither the invertibility of the localised boundary-domain matrix integral operator generated by the left
hand side expressions in (50) - (55) nor the solvability in the space X of system (110) - (115) with arbitrary right hand
side functions from the space Y (see (116) and (117)). The case is that Theorems 2 and 7 yield unique solvability of
system (50) - (55) with only special form right hand side functions represented by volume and surface integrals (see
the right hand side functions in (50) - (55)).
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APPENDIX A: CLASSES OF CUT- OFF FUNCTIONS

Here, we present some classes of localising cut-off functions (for details, see Chkadua et al 33).

Definition 2. We say 𝜒 ∈ Xk for integer k ≥ 0 if 𝜒(x) = �̆�(|x|), �̆� ∈ W k
1 (0,∞) and 𝜚�̆�(𝜚) ∈ L1(0,∞).

We say 𝜒 ∈ Xk
+ for integer k ≥ 1 if 𝜒 ∈ Xk, 𝜒(0) = 1, and 𝜎𝜒 (𝜔) > 0 for all 𝜔 ∈ R, where

𝜎𝜒 (𝜔) ∶=

⎧⎪⎪⎨⎪⎪⎩

�̂�s(𝜔)
𝜔

> 0 for 𝜔 ∈ R∖{0} ,
∞

∫
0

𝜚�̆� (𝜚)d𝜚 for 𝜔 = 0 ,
�̂�s(𝜔) ∶=

∞

∫
0

�̆� (𝜚) sin(𝜚𝜔)d𝜚.

https://doi.org/10.1002/mma.5268
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The following lemma provides an easily verifiable sufficient condition for nonnegative nonincreasing functions to
belong to the class Xk

+.

Lemma 4. (Chkadua et al,33 Lemma 3.2). Let k ≥ 1. If 𝜒 ∈ Xk, �̆�(0) = 1, �̆�(𝜚) ≥ 0 for all 𝜚 ∈ (0,∞), and �̆� is a
nonincreasing function on [0, +∞), then 𝜒 ∈ Xk

+.

Here are some particular examples of cut-off functions:

𝜒1k(x) =

{[
1 − |x|

𝜖

]k
for |x| < 𝜖,

0 for |x| ≥ 𝜖,
𝜒2k(x) =

{[
1 − |x|2

𝜖2

]k
for |x| < 𝜖,

0 for |x| ≥ 𝜖,
𝜒3(x) =

{
exp

[ |x|2|x|2−𝜖2

]
for |x| < 𝜖,

0 for |x| ≥ 𝜖.

Due to Lemma 4, we have 𝜒1k ∈ Xk
+, 𝜒2k ∈ Xk

+ ∩ Ck−1(R3), and 𝜒3 ∈ X∞
+ ∩ C∞(R3).

APPENDIX B: PROPERTIES OF LOCALISED POTENTIALS

Here, we collect some theorems describing mapping properties of the localised potentials (25) and (26), and the localised
boundary operators generated by them

𝜒 g(𝑦) ∶= −∫
S

P𝜒 (x − 𝑦)g(x)dSx, 𝜒 g(𝑦) ∶= −∫
S

[T2(x, 𝜕x)P𝜒 (x − 𝑦) ] g(x)dSx, 𝑦 ∈ S. (B1)

Note that 𝜒 is a weakly singular integral operator (pseudodifferential operator of order −1), while 𝜒 is a singular
integral operator (pseudodifferential operator of order 0).

Remark that if S ∈ C∞ and a cut-off function 𝜒 is infinitely differentiable, then the localised potentials and the cor-
responding boundary operators have the same mapping properties as the corresponding harmonic potentials (see, eg,
Miranda 10 and Hsiao and Wendland34). However, for cut-off functions of finite smoothness, the localised potential oper-
ators possess quite different properties, in particular, their smoothness is reduced and the smoothness exponents depend
on the smoothness of a cut-off function 𝜒 . Properties of the localised potentials needed in our analysis in the main text
are presented below (detailed proofs can be found in Chkadua et al26,33).

Theorem 8. (Chkadua et al,33 Theorems 5.6 and 5.10). The following operators are continuous

𝜒 ∶ Hs(Ω2) → Hs+2,s(Ω2; Δ),−
1
2
< s < 1

2
, 𝜒 ∈ X1.

V𝜒 ∶ Hs− 3
2 (S) → Hs(Ω2),

1
2
< s < k + 1

2
, if 𝜒 ∈ Xk, k = 1, 2, ...

∶ Hs− 3
2 (S) → Hs,s−1(Ω2; Δ),

1
2
< s < 3

2
, if 𝜒 ∈ X2,

W𝜒 ∶ Hs− 1
2 (S) → Hs(Ω2),

1
2
< s < k − 1

2
, if 𝜒 ∈ Xk, k = 2, 3, ...

∶ Hs− 1
2 (S) → Hs,s−1(Ω2; Δ),

1
2
< s < 3

2
, if 𝜒 ∈ X3,

where Ht,r(Ω2; Δ) ∶= {u ∈ Ht(Ω2) ∶ Δu ∈ Hr(Ω2)}.

Theorem 9. (Chkadua et al,33 Corollary 5.12 and Theorem 5.13). Let 𝜒 ∈ X2, 𝜓 ∈ H− 1
2 (S), and 𝜑 ∈ H

1
2 (S). Then

there hold the following relations on S

𝛾+V𝜒𝜓 = 𝜒𝜓, 𝛾+W𝜒𝜑 = −𝜇𝜑 +𝜒𝜑 with 𝜇(𝑦) ∶= 1
2

a(2)
k𝑗 (𝑦)nk(𝑦)n𝑗(𝑦) > 0, 𝑦 ∈ S. (B2)

Theorem 10. (Chkadua et al,33 Theorem 5.14). Let − 1
2
< s < 1

2
. The following operators are continuous,

𝜒 ∶ Hs− 1
2 (S) → Hs+ 1

2 (S), 𝜒 ∈ X1, (B3)

𝜒 ∶ Hs+ 1
2 (S) → Hs+ 1

2 (S), 𝜒 ∈ X2.

Moreover, operator (B3) is Fredholm with zero index.
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Remark 5. The principal homogeneous symbols of the boundary pseudodifferential operators 𝜒 , −𝜇 I + 𝜒 , and
(𝛽 − 𝜇)I +𝜒 , calculated in a local coordinate system with the origin at a point �̃� ∈ S and the third axis coinciding
with the normal vector at the point �̃� ∈ S, read as

𝔖0(𝜒 ; �̃�, 𝜉′) = 1
2 |𝜉′| , 𝔖0(−𝜇 I +𝜒 ; �̃�, 𝜉′) = −1

2
ã(2)

33 (�̃�) −
i
2

2∑
l=1

ã(2)
3l (�̃�)

𝜉l|𝜉′| , (B4)

𝔖0((𝛽 − 𝜇)I +𝜒 ; �̃�, 𝜉′) =
1
2

[
2𝛽 − ã(2)

33 (�̃�) − i
2∑

l=1
ã(2)

3l (�̃�)
𝜉l|𝜉′| ] , 𝜉′ ∈ R

2∖{0}, (B5)

where [ã(2)
k𝑗 (�̃�) ]

3
k,𝑗=1 = [𝜆pk(�̃�)a(2)

pq (�̃�)𝜆q𝑗(�̃�) ]3
k,𝑗=1 = Λ(�̃�)⊤a2(�̃�)Λ(�̃�) is a positive definite matrix and

𝛽(�̃�) = 1
3
[ ã(2)

11 (�̃�) + ã(2)
22 (�̃�) + ã(2)

33 (�̃�) ] > 0 .

Here, a2(�̃�) = [a(2)
k𝑗 (�̃�)]

3
k,𝑗=1 and Λ(�̃�) = [𝜆k𝑗(�̃�)]3×3 is an orthogonal matrix with the property Λ(�̃�)⊤n(�̃�) = (0, 0,−1)⊤,

where n(�̃�) is the outward unit normal vector at the point �̃� ∈ S. Therefore 𝜆p3(�̃�) = −np(�̃�), p = 1, 2, 3. In view of
(B2), it is evident that 1

2
ã(2)

33 (�̃�) =
1
2
𝜆p3(�̃�)a(2)

pq (�̃�)𝜆q3(�̃�) = 𝜇(�̃�) > 0 .

APPENDIX C: PROPERTIES OF RADIATING POTENTIALS

The layer potentials defined by (36) and the volume potential (cf (37))

P𝜔𝑓 (𝑦) ∶= ∫
R3

Γ(x − 𝑦, 𝜔)𝑓 (x)dx, 𝑦 ∈ R
3,

have the following properties (for details see Jentsch et al20).

Lemma 5.

(i) The following operators are continuous

V𝜔 ∶ H− 1
2 (S) → H1(Ω2,A1) [H− 1

2 (S) → H1
loc(Ω1,A1) ∩ Z(Ω1) ],

W𝜔 ∶ H
1
2 (S) → H1(Ω2,A1) [H

1
2 (S) → H1

loc(Ω1,A1) ∩ Z(Ω1) ],
P𝜔 ∶ H0

comp(R3) → H2
loc(R

3) ∩ Z(R3).

Moreover,
A1P𝜔𝑓 = 𝑓 in R

3 for 𝑓 ∈ H0
comp(R3).

(ii) For h ∈ H− 1
2 (S) and g ∈ H

1
2 (S), the following jump relations hold true

𝛾+V𝜔h = 𝛾−V𝜔(h) = 𝜔(h), T±1 V𝜔h = (± 1
2

I + ′
𝜔)h on S,

𝛾±W𝜔 g = (∓1
2

I +𝜔)g, T+
1 W𝜔 g = T−

1 W𝜔 g =∶ 𝜔 g on S, (C1)

where I stands for the identity operator, and

𝜔h(𝑦) ∶= −∫
S

Γ(x − 𝑦, 𝜔)h(x)dSx, 𝑦 ∈ S, (C2)

𝜔 g(𝑦) ∶= −∫
S

[T1(x, 𝜕x)Γ(x − 𝑦, 𝜔))]g(x)dSx, 𝑦 ∈ S, (C3)

 ′
𝜔h(𝑦) ∶= −∫

S

[T1(𝑦, 𝜕𝑦)Γ(x − 𝑦, 𝜔))]h(x)dSx, 𝑦 ∈ S, (C4)

Γ(x, 𝜔) is the radiating fundamental solution defined by (38).
(iii) The following operators are continuous,

𝜔 ∶ H− 1
2 (S) → H

1
2 (S), 𝜔 ∶ H

1
2 (S) → H

1
2 (S),  ′

𝜔 ∶ H− 1
2 (S) → H− 1

2 (S), 𝜔 ∶ H
1
2 (S) → H− 1

2 (S).
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(iv) The operators 𝜔, and  ′
𝜔 are compact, since they have weakly singular kernel-functions of the type O(|x − y|−1),

𝜔 is a pseudodifferential operator of order −1 with positive principal homogeneous symbol, 𝔖0(𝜔; 𝑦, 𝜉′) > 0,
and 𝜔 is a singular integro-differential operator (pseudodifferential operator of order 1) with negative principal
homogeneous symbol, 𝔖0(𝜔; 𝑦, 𝜉′) < 0; moreover,

𝔖0(𝜔; 𝑦, 𝜉′) = −[4𝔖0(𝜔; 𝑦, 𝜉′)]−1 < 0, 𝜉′ ∈ R
2∖{0}, 𝑦 ∈ S.

Lemma 6. Let 𝜔 and 𝜔 be defined by (45) and (46) with 𝛼 > 0. The following operators are invertible

𝜔 ∶ H− 1
2 (S) → H− 1

2 (S), 𝜔 ∶ H
1
2 (S) → H− 1

2 (S).

Remark 6. The principal homogeneous symbols of the pseudodifferential operators 𝜔, 𝜔, −1
𝜔 𝜔, and −1

𝜔 𝜔

calculated in a local coordinate system described in Remark 5 satisfy the relations

𝔖0(𝜔; 𝑦, 𝜉′) = 1∕2, 𝔖0(𝜔; 𝑦, 𝜉′) = −[4𝔖0(𝜔; 𝑦, 𝜉′)]−1 < 0, (C5)

𝔖0(−1
𝜔 𝜔; 𝑦, 𝜉′) = −2𝔖0(𝜔; 𝑦, 𝜉′) < 0, (C6)

𝔖0(−1
𝜔 𝜔; 𝑦, 𝜉′) = −[2𝔖0(𝜔; 𝑦, 𝜉′)]−1 < 0, 𝜉′ ∈ R

2∖{0}, 𝑦 ∈ S. (C7)

Remark 7. The principal homogenous symbols of the operators𝜔,𝜔, and−𝜔
−1𝜔 are positive in view of Lemma

5(iv) and Remark 6. Therefore, it can be shown that there are constants C1 > 0 and C2 ⩾ 0 such that the following
inequalities hold (cf, eg, Theorem 6.2.7 in Hsiao and Wendland34)

⟨𝜓,𝜔𝜓⟩S ≥ C1||𝜓||2
H− 1

2 (S)
− C2||𝜓||2

H− 3
2 (S)

∀𝜓 ∈ H− 1
2 (S),

⟨𝜔𝜓 , 𝜓⟩S ≥ C1||𝜓||2
H

1
2 (S)

− C2||𝜓||2
H− 1

2 (S)
∀𝜓 ∈ H

1
2 (S),

⟨−−1
𝜔 𝜔𝜓 , 𝜓⟩S ≥ C1||𝜓||2

H
1
2 (S)

− C2||𝜓||2
H− 1

2 (S)
∀𝜓 ∈ H

1
2 (S). (C8)
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