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Abstract

Some segregated direct boundary-domain integral equation (BDIE) systems associated with mixed,
Dirichlet and Neumann boundary value problems (BVPs) for a scalar ”Laplace” PDE with variable
coefficient are formulated and analysed for domains with interior cuts (cracks). The main results
established in the paper are the BDIE equivalence to the original BVPs and invertibility of the
BDIE operators in the corresponding Sobolev space.

1 Introduction

Partial Differential Equations (PDEs) with variable coefficients arise naturally in mathematical
modelling of non-homogeneous media (e.g. functionally graded materials or materials with dam-
age induced inhomogeneity) in solid mechanics, electro-magnetics, thermo-conductivity, fluid flows
trough porous media, and other areas of physics and engineering.

The Boundary Integral Equation Method (Boundary Element Method) is a well established tool
for solution Boundary Value Problems (BVPs) with constant coefficients. The main ingredient
for reducing a BVP for a PDE to a BIE is a fundamental solution to the original PDE. However,
it is generally not available in an analytical and/or cheaply calculated form for PDEs with variable
coefficients. Following Levi and Hilbert, one can use in this case a parametrix (Levi function)
as a substitute for the fundamental solution. Parametrix is usually much wider available than a
fundamental solution and correctly describes the main part of the fundamental solution although
does not have to satisfy the original PDE. This reduces the problem not to a boundary integral
equation but to a Boundary-Domain Integral Equation (BDIE) system, see e.g. [12, 13].

In this paper, extending approach of [2], we develop analysis of some direct segregated BDIEs
for the Dirichlet, Neumann and mixed variable-coefficient BVPs in domains with interior cuts
(cracks), whose faces are subject to the Neumann conditions. Our main goal is to prove
(i) equivalence of the BDIE to the original crack type BVPs and
(ii) invertibility of the corresponding boundary-domain integral operators in appropriate Sobolev
(Bessel potential) spaces.
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2 Formulation of the boundary value problems

Let Ω = Ω+ be a bounded open three–dimensional region of R3 and Ω− := R3 \ Ω. For
simplicity, we assume that the boundary ∂Ω is a simply connected, closed, infinitely smooth
surface. Moreover, ∂Ω = SD∪SN where SD and SN are nonintersecting (SD∩SN = ∅), simply
connected sub-manifolds of ∂Ω with infinitely smooth boundary curve ` := ∂SD = ∂SN ∈ C∞.
If either SD = ∅ or SN = ∅, then ` = ∅. Further, we assume that the region Ω contains
an interior crack. We define the crack as a two-dimensional, two-sided open manifold Σ with
the crack edge ∂Σ. We assume that Σ is a sub-manifold of a simply connected closed infinitely
smooth surface ∂Ω0 ⊂ Ω which is the boundary of a domain Ω0 ⊂ Ω. Denote ΩΣ := Ω \ Σ.
Throughout the paper n = (n1, n2, n3) stands for the unit normal vector to ∂Ω exterior to Ω and
for the unit normal vector to ∂Ω0 exterior to Ω0. This agreement defines the positive direction
of the normal vector on the crack surface Σ.

Further, let a ∈ C∞(Ω), a(x) > 0 for x ∈ Ω. Let also ∂j = ∂xj := ∂/∂xj (j = 1, 2, 3), ∂x =
(∂x1 , ∂x2 , ∂x3). We consider boundary-domain integral equations associated with the following
scalar elliptic differential equation

Lu(x) := L(x, ∂x) u(x) :=
3∑

i=1

∂xi

(
a(x) ∂xiu(x)

)
= f(x), x ∈ ΩΣ , (2.1)

where u is an unknown function and f is a given function in ΩΣ .

In what follows Hs(Ω) = Hs
2(Ω), Hs(ΩΣ) = Hs

2(ΩΣ), Hs(∂Ω) = Hs
2(∂Ω), Hs(∂Ω0) =

Hs
2(∂Ω0), s ∈ R, denote the Sobolev–Slobodetski (the Bessel potential) spaces. For S ⊂ ∂Ω, we

will use the space H̃s(S) = {g : g ∈ Hs(∂Ω), supp g ⊂ S}, and the space Hs(S) = {rSg : g ∈
Hs(∂Ω)} of restriction on S of functions from Hs(∂Ω), where rS denotes the restriction operator
on S. Similar spaces are defined also on Σ ⊂ ∂Ω0.

From the trace theorem (see, e.g., [7]) it follows that γ+ u ∈ H
1
2 (∂Ω), γ± u ∈ H

1
2 (Σ) for

u ∈ H1(ΩΣ), where γ± is the trace operator.

For u ∈ H2(ΩΣ), we denote by T± the corresponding co-normal derivative operator on ∂Ω and
Σ in the trace sense,

T±u(x) := a(x) ∂±n u(x) :=
3∑

i=1

a(x)ni(x) γ±[∂iu(x)], (2.2)

where ∂n denotes the corresponding normal derivative operator. If T+u = T−u, we will write
Tu.

For the linear operator L, we introduce the following subspace of Hs(ΩΣ), c.f. [6, 4, 10],

Hs,0(ΩΣ ;L) := {g : g ∈ Hs(ΩΣ), Lg ∈ L2(ΩΣ)}

endowed with the norm

‖g‖Hs,0(Ω
Σ

;L) := ‖g‖Hs(Ω
Σ

) + ‖Lg‖L2(Ω
Σ

).

For a couple of functions (g+, g−) defined on a surface S, we denote their difference (jump) as
[g]S = g+−g−, their average as g0

S
= (g++g−)/2, and introduce the space Hs(S) := {(g+, g−) :

g0
S
∈ Hs(S), [g]S ∈ H̃s(S)}.
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For u ∈ H1(ΩΣ) the co–normal derivative operators on ∂Ω and Σ do not generally exist in the
trace sense. However if u ∈ H1,0(ΩΣ ; L), one can correctly define the generalized (canonical)

co–normal derivatives T±u ∈ H− 1
2 (Σ), T+u ∈ H− 1

2 (∂Ω), similar to [6, Theorem 1.5.3.10], [4,
Lemma 3.2], [11, Definition 3], as

T±u := T 0
Σ
u± 1

2
[T ]Σu on Σ, (2.3)

〈
T+u , w

∂Ω

〉
∂Ω

+
〈
[T ]Σu , w0

Σ

〉
Σ

+
〈
T 0

Σ
u , [wΣ ]Σ

〉
Σ

:=
∫

Ω
Σ

[
γ−1w Lu + E(u, γ−1w)

]
dx

∀ w = (w
∂Ω

, w±
Σ

) ∈ H
1
2 (∂Ω)×H 1

2 (Σ). (2.4)

If µu ∈ H1,0(Ω−; L) for any µ ∈ C∞
comp(Ω−), then

〈
T−u , w

∂Ω

〉
∂Ω

:= −
∫

Ω−

[
γ−−1w Lu + E(u, γ−−1w)

]
dx ∀ w = w

∂Ω
∈ H

1
2 (∂Ω). (2.5)

Here γ−1 : H
1
2 (∂Ω)×H 1

2 (Σ) → H1(ΩΣ) and γ−−1 : H
1
2 (∂Ω) → H1

com(Ω−) are continuous right
inverse operators to the trace operators,

E(u, v) :=
3∑

i=1

a(x) ∂iu(x) ∂iv(x),

〈 · , · 〉∂Ω denotes the duality brackets between the spaces H−s(∂Ω) and Hs(∂Ω), 〈 · , · 〉Σ the
duality brackets between the spaces H−s(Σ) and H̃s(Σ), s ∈ R, which extend the usual L2(∂Ω)
and L2(Σ) inner products. Further on, we will also use the notation

〈
T+u , w+

Σ

〉
Σ
− 〈

T−u , w−
Σ

〉
Σ

:=
〈
[T ]Σu , w0

Σ

〉
Σ

+
〈
T 0

Σ
u , [wΣ ]Σ

〉
Σ

,

which is well defined for T±u ∈ H−s(Σ), w±
Σ
∈ Hs(Σ), s ∈ R.

Similar to [6, Theorem 1.5.3.11], [4, Lemma 3.4], [11, Definition 3], one can prove that the
co-normal derivatives do not depend on the choice of the operator γ−1, the first Green identity

∫

Ω
Σ

[
v Lu + E(u, v)

]
dx =

〈
T+u , γ+v

〉
S

+
〈
T+u , γ+v

〉
Σ
− 〈

T−u , γ−v
〉

Σ
, (2.6)

holds for any functions u ∈ H1,0(ΩΣ ; L), v ∈ H1(ΩΣ), while the second Green identity

∫

Ω
Σ

[
v Lu− Lv u

]
dx =

〈
T+u , γ+v

〉
∂Ω
− 〈

T+v , γ+u
〉

∂Ω

+
〈
T+u , γ+v

〉
Σ
− 〈

T−u , γ−v
〉

Σ
+

〈
T+v , γ+u

〉
Σ
− 〈

T−v , γ−u
〉

Σ
(2.7)

holds for any functions u, v ∈ H1,0(ΩΣ ; L).

We will consider the BDIE approach for the following three crack type boundary value problems.

Mixed BVP with crack, or Problem (MC): Find a function u ∈ H1(ΩΣ) satisfying the conditions

L u = f in ΩΣ , (2.8)
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rSD
γ+u = ϕ0 on SD, (2.9)

rSN
T+u = ψ0 on SN , (2.10)

T+u = ψ+
Σ

, T−u = ψ−
Σ

on Σ. (2.11)

where
ϕ0 ∈ H

1
2 (SD), ψ0 ∈ H− 1

2 (SN ), ψ±
Σ
∈ H− 1

2 (Σ), f ∈ H0(ΩΣ). (2.12)

Note that we can replace the crack conditions (2.11) by the equivalent ones,

[T ]Σu = [ψΣ ]Σ , T 0
Σ
u = ψ0

Σ
on Σ. (2.13)

Equation (2.8) is understood in the distributional sense, condition (2.9) in the trace sense, while
equality (2.10) and (2.11) in the functional sense (2.3)-(2.4).

Clearly, if SN = ∅ in (2.8)-(2.11), we arrive at the Dirichlet problem with crack, or Problem
(DC): Find u ∈ H1(ΩΣ) such that

L u = f in ΩΣ , (2.14)

γ+u = ϕ0 on ∂Ω, (2.15)

T+u = ψ+
Σ

, T−u = ψ−
Σ

on Σ. (2.16)

where
ϕ0 ∈ H

1
2 (∂Ω), ψ±

Σ
∈ H− 1

2 (Σ), f ∈ H0(ΩΣ). (2.17)

If SD = ∅ in (2.8)-(2.11), we have the Neumann problem with crack, or Problem (NC): Find
u ∈ H1(ΩΣ) such that

L u = f in ΩΣ , (2.18)

T+u = ψ0 on ∂Ω, (2.19)

T+u = ψ+
Σ

, T−u = ψ−
Σ

on Σ. (2.20)

where
ψ0 ∈ H− 1

2 (∂Ω), ψ±
Σ
∈ H− 1

2 (Σ), f ∈ H0(ΩΣ). (2.21)

We have (similar e.g. to [7]) the following well-known uniqueness and existence result.

THEOREM 2.1 (i) The homogeneous Dirichlet and mixed BVPs with crack have only the trivial
solution, while the homogeneous Neumann crack problem admits a constant as a general solution.

(ii) The nonhomogeneous problem (DC) under condition (2.17), and the nonhomogeneous prob-
lem (MC) under condition (2.12) are uniquely solvable.

(iii) Let the inclusions (2.21) be satisfied. Then the problem (NC) is solvable if and only if

∫

Ω
Σ

f(x) dx =
∫

∂Ω

ψ0(x) dS +
∫

Σ

[ψ+
Σ

(x)− ψ−
Σ

(x)] dS, (2.22)

and the solution u is defined modulo constant summand.
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Proof. The uniqueness results immediately follow from the first Green identity (2.6) with v = u
as a solution of the corresponding homogeneous boundary value problem. The existence results
directly follow from the Lax-Milgram theorem applied to the weak variational formulation of the
above problems. ¤

In the subsequent sections our main goal is to reduce the above BVPs to the equivalent boundary-
domain integral (pseudodifferential) equations and prove invertibility of the corresponding non-
standard integral operators in appropriate function spaces.

3 Some segregated boundary-domain integral equations

The function

P (x, y) = − 1
4π a(y) |x− y| , x, y ∈ R3, x 6= y, (3.1)

is a parametrix (Levi function) of the operator L(x, ∂x) with the property

L(x, ∂x) P (x, y) = δ(x− y) + R(x, y), (3.2)

where δ(·) is the Dirac distribution and the remainder

R(x, y) =
3∑

i=1

xi − yi

4π a(y) |x− y|3
∂a(x)
∂xi

, x, y ∈ R3, x 6= y, (3.3)

possesses a weak singularity of type O(|x− y|−2) for small |x− y|, see [8, 2].

Further we introduce parametrix based surface potential operators

V
∂Ω

g(y) := −
∫

∂Ω

P (x, y) g(x) dSx, y ∈ R3\∂Ω (3.4)

W
∂Ω

g(y) := −
∫

∂Ω

[
Tx P (x, y)

]
g(x) dSx, y ∈ R3\∂Ω (3.5)

VΣ g(y) := −
∫

Σ

P (x, y) g(x) dSx, y ∈ R3\Σ (3.6)

WΣ g(y) := −
∫

Σ

[
Tx P (x, y)

]
g(x) dSx, y ∈ R3\Σ (3.7)

and volume potential operators

P g(y) :=
∫

Ω
Σ

P (x, y) g(x) dx, R g(y) :=
∫

Ω
Σ

R(x, y) g(x) dx, y ∈ R3. (3.8)

The corresponding direct values of the surface potentials are denoted as

V
∂Ω

g(y) := −
∫

∂Ω

P (x, y) g(x) dSx, W
∂Ω

g(y) := −
∫

∂Ω

[
Tx P (x, y)

]
g(x) dSx, y ∈ ∂Ω,

VΣ g(y) := −
∫

Σ

P (x, y) g(x) dSx, WΣ g(y) := −
∫

Σ

[
Tx P (x, y)

]
g(x) dSx, y ∈ Σ,

(3.9)
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and the co-normal derivatives of the surface potentials as

W ′
∂Ω

g(y) := −
∫

∂Ω

[
Ty P (x, y)

]
g(x) dSx, L±

∂Ω
g(y) := T±W

∂Ω
g(y), y ∈ ∂Ω,

W ′
Σ g(y) := −

∫

Σ

[
Ty P (x, y)

]
g(x) dSx, L±Σ g(y) := T±WΣg(y), y ∈ Σ,

[L]Σ g(y) := L+
Σ

g(y)− L−
Σ

g(y), L0
Σ

g(y) :=
1
2
{L+

Σ
g(y) + L−

Σ
g(y)}, y ∈ Σ.

(3.10)

Mapping and jump properties of the left hand side operators in (3.4)-(3.10) in Sobolev spaces are
given in [2] (see also the Appendix below).

Taking, as in [8, 2], v(x) := P (x, y) and u ∈ H1,0(ΩΣ ;L) in (2.7), we obtain by the standard
limiting procedures (see e.g. [12]),

u +Ru− V
∂Ω

(T+u) + W
∂Ω

(γ+u)− VΣ([T ]Σu) + WΣ([u]Σ) = PLu in ΩΣ , (3.11)

where [u]Σ := γ+u− γ−u on Σ.

3.1 BDIEs for the problem (MC)

To get a segregated boundary domain integral formulation for the problem (MC), we replace the
unknown traces, co-normal derivatives and jumps of u on SN , SD and Σ with new unknown
functions that will be treated as independent of u. First of all, we denote ϕ∗ := [u]Σ ∈ H̃

1
2 (Σ).

Let now Φ0 ∈ H
1
2 (∂Ω) be a fixed extension of the given right hand side of the Dirichlet condition

(2.9), ϕ0 ∈ H
1
2 (SD), onto the whole of ∂Ω. Then γ+u = Φ0 + ϕ on ∂Ω, where the unknown

function ϕ belongs to H̃
1
2 (SN ) due to (2.9). Analogously, let Ψ0 ∈ H− 1

2 (∂Ω) be a fixed extension

of the given right hand side of the Neumann condition (2.10), ψ0 ∈ H− 1
2 (SD), onto the whole of

∂Ω. Then T+u = Ψ0 + ψ, where the unknown function ψ belongs to H̃− 1
2 (SD) due to (2.10).

If ϕ0 = 0 or ψ0 = 0 then we can take the canonical extensions Φ0 = 0 or Ψ0 = 0, respectively,
on ∂Ω.

As shown in Theorems A.3, B.1 of the Appendix, for f ∈ H0(ΩΣ), u ∈ H1(ΩΣ), ϕ∗ ∈ H̃
1
2 (Σ)

we have,

[Pf ]Σ = 0, [T ]ΣPf = 0, [Ru]Σ = 0, [T ]ΣRu = −(∂na) [u]Σ ,

L+
Σ
(ϕ∗)− L−

Σ
(ϕ∗) = (∂na) ϕ∗ on Σ. (3.12)

Let now u ∈ H1,0(ΩΣ ; L) be a solution of the problem (MC). Taking (3.11) in the domain, its trace
on SD, its co-normal derivative on SN , the average of its co-normal derivatives, T 0

Σ
= 1

2(T++T−),
on Σ, and employing the relations

ψ = T+u−Ψ0 ∈ H̃− 1
2 (SD), ϕ = γ+u− Φ0 ∈ H̃

1
2 (SN ), ϕ∗ = [u]Σ ∈ H̃

1
2 (Σ), (3.13)

we derive the boundary-domain integral equation system (MC11),

u +Ru− V
∂Ω

ψ + W
∂Ω

ϕ + WΣϕ∗ = Pf + VΣ([ψΣ ]Σ) + V
∂Ω

Ψ0 −W
∂Ω

Φ0 in ΩΣ , (3.14)

rSD

{
γ+Ru− V

∂Ω
ψ +W

∂Ω
ϕ + γ+WΣϕ∗

}
=
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rSD

{
γ+Pf + γ+VΣ([ψΣ ]Σ)− 1

2
ϕ0 + V

∂Ω
Ψ0 −W∂Ω

Φ0

}
on SD, (3.15)

rSN

{
T+Ru−W ′

∂Ω
ψ + L+

∂Ω
ϕ + T+WΣϕ∗

}
=

rSN

{
T+Pf + T+VΣ([ψΣ ]Σ)− 1

2
ψ0 +W ′

∂Ω
Ψ0 − L+

∂Ω
Φ0

}
on SN , (3.16)

T 0
Σ
Ru− T 0

Σ
V

∂Ω
ψ + T 0

Σ
W

∂Ω
ϕ + L0

Σ
ϕ∗ =

T 0
Σ
Pf +W ′

Σ([ψΣ ]Σ) + T 0
Σ
V

∂Ω
Ψ0 − T 0

Σ
W

∂Ω
Φ0 − ψ0

Σ
on Σ. (3.17)

The notation (MC11) indicates that the BDIE system includes integral operators (3.15) and (3.16)
of the first kind on the Dirichlet and Neumann parts of the boundary, respectively.

Now we formulate the basic equivalence theorem for the problem (MC) and BDIE system (MC11).

THEOREM 3.1 Let conditions (2.12) hold and let Φ0 ∈ H
1
2 (∂Ω) and Ψ0 ∈ H− 1

2 (∂Ω) be some
extensions of ϕ0 and ψ0, respectively.

(i) If a function u ∈ H1(ΩΣ) solves the problem (MC), then the four-vector (u, ψ, ϕ, ϕ∗), where
ψ, ϕ, and ϕ∗ are defined by (3.13), solves the BDIE system (3.14)-(3.17).

(ii) If a four-vector (u, ψ, ϕ, ϕ∗) ∈ H1(ΩΣ) × H̃− 1
2 (SD) × H̃

1
2 (SN ) × H̃

1
2 (Σ) solves the BDIE

system (3.14)-(3.17), then this solution is unique, u solves the problem (MC) and relations (3.13)
hold.

Proof. For a function u ∈ H1(ΩΣ) solving (2.8) under conditions (2.12), we have u ∈ H1,0(ΩΣ ;L)
since f ∈ H0(ΩΣ). Under hypothesis of item (i) this implies (3.11) and thus the claims of item
(i).

Now, let a four-vector (u, ψ, ϕ, ϕ∗) ∈ H1(ΩΣ)× H̃− 1
2 (SD)× H̃

1
2 (SN )× H̃

1
2 (Σ) solve the BDIE

system (3.14)-(3.17). We have to show that u solves the problem (MC).

From (3.15) and the trace of (3.14) on ∂Ω we conclude that rSD
u+ = ϕ0 on SD, while from

(3.16) and the co-normal derivative of (3.14) on ∂Ω we have rSN
T+u = ψ0 on SN . Taking the

jump of traces of (3.14) on Σ we get

[u]Σ = ϕ∗ on Σ. (3.18)

Further, take the co-normal derivatives T+, T− of the equation (3.14) on Σ, construct their
difference, and compare their sum with (3.17) to obtain

rΣ

{
T+u− T−u− [u]Σ∂na− ([ψΣ ]Σ) + ϕ∗∂na

}
= 0, rΣ

{
T+u + T−u

}
= [ψΣ ]Σ ,

i.e.,
[T ]Σu = [ψΣ ]Σ , T 0

Σ
u = ψ0

Σ
on Σ. (3.19)

These relations coincide with (2.13) thus implying (2.11).

Since u ∈ H1(ΩΣ), it follows from equation (3.14) and Theorems A.1, B.1 that u ∈ H1,0(ΩΣ ;L),
and we can write Green’s third identity (3.11) for u. Comparing it with equation (3.14) and
taking into account (3.18), (3.19) gives

−V
∂Ω

(T+u− ψ −Ψ0) + W
∂Ω

(u+ − ϕ− Φ0) = P(Lu− f) in ΩΣ . (3.20)
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Since all the potentials in (3.20) are continuous on Ω (including Σ), equation (3.20) can be
extended on the whole Ω. Then taking into account that u+−ϕ−Φ0 = 0 on SD and T+u−ψ−
Ψ0 = 0 on SN , we obtain by [2, Lemmas 4.1, 4.2] that Lu− f = 0 in Ω, while u+−ϕ−Φ0 = 0
and T+u− ψ −Ψ0 = 0 on ∂Ω.

We now have to prove uniqueness of the BDIE system solution. Let (u, ψ, ϕ, ϕ∗) ∈ H1(ΩΣ) ×
H̃

1
2 (SN ) × H̃− 1

2 (SD) × H̃
1
2 (Σ) solve homogeneous BDIE system (3.14)-(3.17), which zero

right hand side can be considered as generated by the zero right hand side of problem (MC),
(ϕ0, ψ0, ψ

±
Σ

, f) = 0. Then already proved statements of item (ii) imply that u is a solution of the
homogeneous problem (MC), which is zero by Theorem 2.1, and thus (ψ, ϕ, ϕ∗) = 0 by item (i).

¤

Further we study invertibility in appropriate function spaces of the 4 × 4 matrix operator A11,
generated by the left hand side of the BDIE system (3.14)-(3.17),

A11 :=




I +R −V
∂Ω

W
∂Ω

WΣ

rSD
γ+R −rSD

V
∂Ω

rSD
W

∂Ω
rSD

γ+WΣ

rSN
T+R −rSN

W ′
∂Ω

rSN
L+

∂Ω
rSN

T+WΣ

T 0
Σ
R −T 0

Σ
V

∂Ω
T 0

Σ
W

∂Ω
L0

Σ




. (3.21)

Let

X := H1(ΩΣ)× H̃− 1
2 (SD)× H̃

1
2 (SN )× H̃

1
2 (Σ),

F11 := H1(ΩΣ)×H
1
2 (SD)×H− 1

2 (SN )×H− 1
2 (Σ).

In view of the mapping properties of the potential type operators (3.4)-(3.8), see Appendix, the
operator

A11 : X→ F11 (3.22)

is continuous.

Note that we have the identity (see [2])

L±S g = L̂S (g) + (∂na)
(
± 1

2
g −WS g

)
,

with either S = ∂Ω or S = Σ. Here

L̂S (g) := LS, ∆ (ag) = [TWS, ∆ (ag)]+ = [TWS, ∆ (ag)]− on S, (3.23)

where W
S , ∆ (ag) is the usual harmonic double layer potential over S with density ag,

WS, ∆ (ag) (y) =
1
4π

∫

S

∂

∂n(x)
1

|x− y| a(x) g(x) dSx.

Equality (3.23) then represents the well-known Liapunov-Tauber theorem for a harmonic double
layer potential.

By Theorem 3.1(ii) operator (3.22) is injective. Now we prove that it is surjective. To this end
let us consider the operator

A11
0 :=




I −V
∂Ω

W
∂Ω

WΣ

0 −rSD
V

∂Ω
0 0

0 0 rSN
L̂

∂Ω
0

0 0 0 L̂Σ




. (3.24)
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As follows from Appendix, the operator A11
0 : X → F11 is continuous and the operator A11 −

A11
0 : X→ F11 is compact. Since the diagonal operators

rSD
V

∂Ω
: H̃− 1

2 (SD) → H
1
2 (SD),

rSN
L̂

∂Ω
: H̃

1
2 (SN ) → H− 1

2 (SN ),

L̂Σ : H̃
1
2 (Σ) → H− 1

2 (Σ),

are invertible (see Theorems A.4, A.5), we conclude that the triangular operatorA11
0 : X→ F11 is

invertible, implying that (3.22) is a Fredholm operator with index zero. Therefore from injectivity
of A11 it follows that (3.22) is invertible. Thus we have the following result.

THEOREM 3.2 The operator A11 : X→ F11 is continuous and continuously invertible.

3.2 BDIEs for the problem (DC)

A segregated BDIE system for problem (DC) is formulated by the same way as for the problem
(MC) but with apparent simplifications. Let u ∈ H1,0(ΩΣ ; L) be a solution of the problem (DC).
Taking (3.11) in the domain, its trace on ∂Ω, the average of its co-normal derivatives, T 0

Σ
, on Σ,

and introducing the notations

ψ = T+u ∈ H− 1
2 (∂Ω), ϕ∗ = [u]Σ ∈ H̃

1
2 (Σ), (3.25)

we derive the following boundary-domain integral equation system (DC1),

u +Ru− V
∂Ω

ψ + WΣϕ∗ = Pf + VΣ([ψΣ ]Σ)−W
∂Ω

ϕ0 in ΩΣ , (3.26)

γ+Ru− V
∂Ω

ψ + γ+WΣϕ∗ = γ+Pf + VΣ([ψΣ ]Σ)− 1
2

ϕ0 −W∂Ω
ϕ0 on ∂Ω, (3.27)

T 0
Σ
Ru− T 0

Σ
V

∂Ω
ψ + L0

Σ
ϕ∗ = T 0

Σ
Pf +W ′

Σ([ψΣ ]Σ)− T 0
Σ
W

∂Ω
ϕ0 − ψ0

Σ
on Σ. (3.28)

Let us denote the left hand side operator of the BDIE system (DC1) as

AD1 :=




I +R −V
∂Ω

WΣ

γ+
∂Ω
R −V

∂Ω
γ+

∂Ω
WΣ

T 0
Σ
R −T 0

Σ
V

∂Ω
L0

Σ


 , (3.29)

where γ+
∂Ω

:= r
∂Ω

γ+.

Simplifying corresponding proofs of Theorems 3.1 and 3.2, we arrive at the following equivalence
theorem for the problem (DC) and BDIE system (DC1), and the theorem of invertibility of the
operator AD1.

THEOREM 3.3 Let conditions (2.17) hold.

(i) If a function u ∈ H1(ΩΣ) solves the problem (DC), then the triple (u, ψ, ϕ∗), where ψ and
ϕ∗ are defined by (3.25), solves BDIE system (3.26)-(3.28).

(ii) If a triple (u, ψ, ϕ∗) ∈ H1(ΩΣ)×H− 1
2 (∂Ω)× H̃

1
2 (Σ) solves the BDIE system (3.26)-(3.28),

then this solution is unique, u solves the problem (DC) and relations (3.25) hold.
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THEOREM 3.4 The operator,

AD1 : H1(ΩΣ)×H− 1
2 (∂Ω)× H̃

1
2 (Σ) → H1(ΩΣ)×H

1
2 (∂Ω)×H− 1

2 (Σ)

is continuous and continuously invertible.

3.3 BDIEs for the problem (NC)

Again, BDIEs for problem (NC) are formulated by the same way as for the problem (MC) but
with apparent simplifications. Let u ∈ H1,0(ΩΣ ; L) be a solution of the problem (NC). Taking
(3.11) in the domain, its co-normal derivative on ∂Ω, the average of its co-normal derivatives,
T 0

Σ
, on Σ, and introducing the notations

ϕ = γ+u ∈ H
1
2 (∂Ω), ϕ∗ = [u]Σ ∈ H̃

1
2 (Σ), (3.30)

we derive the following boundary-domain integral equation system (NC1),

u +Ru + W
∂Ω

ϕ + WΣϕ∗ = Pf + VΣ([ψΣ ]Σ) + V
∂Ω

ψ0 in ΩΣ , (3.31)

T+Ru + L+
∂Ω

ϕ + T+WΣϕ∗ = T+Pf + T+VΣ([ψΣ ]Σ)− 1
2

ψ0 +W ′
∂Ω

ψ0 on ∂Ω, (3.32)

T 0
Σ
Ru + T 0

Σ
W

∂Ω
ϕ + L0

Σ
ϕ∗ = T 0

Σ
Pf +W ′

Σ([ψΣ ]Σ) + T 0
Σ
V

∂Ω
ψ0 − ψ0

Σ
on Σ. (3.33)

THEOREM 3.5 Let conditions (2.21) hold.

(i) If a function u ∈ H1(ΩΣ) solves the problem (NC), then the triple (u, ϕ, ϕ∗), where ϕ and ϕ∗

are defined by (3.30), solves BDIE system (3.31)-(3.33).

(ii) If a triple (u, ϕ, ϕ∗) ∈ H1(ΩΣ)×H
1
2 (∂Ω)× H̃

1
2 (Σ) solves BDIE system (3.31)-(3.33), then

u solves the problem (NC) and relations (3.30) hold.

(iii) Homogeneous BDIE system (3.31)-(3.33) admits only one linearly independent solution

(u, ϕ, ϕ∗) = (1, 1, 0) in H1(ΩΣ)×H
1
2 (∂Ω)× H̃

1
2 (Σ).

(iv) Condition (2.22) is necessary and sufficient for solvability of nonhomogeneous BDIE system

(3.31)-(3.33) in H1(ΩΣ)×H
1
2 (∂Ω)× H̃

1
2 (Σ).

Proof. Items (i) and (ii) are obtained by simplifying corresponding proofs of Theorems 3.1. Then
items (iii) and (iv) follow from items (i) and (ii) and from Theorem 2.1(iii), similar to the last
paragraph of the proof of Theorem 3.1. ¤

Let us denote the left hand side operator of the BDIE system (NC1) as

AN1 :=




I +R W
∂Ω

WΣ

T+
∂Ω
R L+

∂Ω
T+

∂Ω
WΣ

T 0
Σ
R T 0

Σ
W

∂Ω
L0

Σ


 , (3.34)

where T+
∂Ω

:= r
∂Ω

T+.

Let XN := H1(ΩΣ)×H
1
2 (∂Ω)× H̃

1
2 (Σ), FN1 := H1(ΩΣ)×H− 1

2 (∂Ω)×H− 1
2 (Σ).
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THEOREM 3.6 The operator AN1 : XN → FN1 is a continuous Fredholm operator with zero in-
dex. It has one–dimensional null–space, kerAN1, spanned over the element (u, ϕ, ϕ∗) = (1, 1, 0).

Proof. Let us consider the operator

AN1
0 :=




I W
∂Ω

WΣ

0 L̂
∂Ω

0

0 0 L̂Σ


 . (3.35)

It is evident from the Appendix that the operator AN1
0 : XN → FN1 is continuous and the

operator AN1 − AN1
0 : XN → FN1 is compact. By Theorem A.5 the operator L̂Σ : H̃

1
2 (Σ) →

H− 1
2 (Σ) is continuously invertible and the operator L̂

∂Ω
: H̃

1
2 (∂Ω) → H− 1

2 (∂Ω) is a Fredholm
operator with index zero. Then we conclude that the triangular operator AN1

0 : XN → FN1

is a Fredholm operator with index zero, implying that AN1 : XN → FN1 is also a Fredholm
operator with index zero. By Theorem 3.5(iii), kerAN1 is one-dimensional and is spanned over
the element (u, ϕ, ϕ∗) = (1, 1, 0). ¤

4 Concluding remarks

Three segregated direct boundary-domain integral equation systems associated with the Dirichlet,
Neumann and mixed problems for a scalar ”Laplace” PDE with variable coefficient on a three-
dimensional bounded domain with a crack were formulated and analysed in the paper. The
Neumann conditions were assumed on the crack surfaces. In all the considered BDIE systems,
the operators on the boundary were of the first kind. Equivalence of the BDIE systems to the
original BVPs was proved in the case when right-hand side of the PDE is from L2(Ω), and the

Dirichlet and the Neumann data from the spaces H
1
2 (SD) and H− 1

2 (SN ), H−
1
2 (Σ), respectively.

The invertibility of the BDIE operators was proved in the corresponding Sobolev spaces.

Similar to [2], other segregated direct BDIE systems with boundary operators of the second or the
third (mixed) kind can be formulated and analysed for the same BVPs, while using approach of [10]
united direct boundary-domain integro-differential systems can be also formulated and analysed
for the BVPs with crack. The BDIEs for unbounded domains with cracks can be analysed as
well. The approach can be extended also to more general PDEs and to systems of PDEs, while
smoothness of the variable coefficients and the boundary can be essentially relaxed, and the PDE
right hand side can be considered in more general spaces, c.f. [9, 10].

Employing methods of [1] and [3], one can consider also the localised counterparts of the BDIEs
for BVPs with cracks.
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APPENDIX

A Properties of surface potentials

The auxiliary facts collected in Theorems A.1-A.5 follow e.g. from [4, Theorem 2], [5, Ch. XI,
Part B, §3,], [14, Theorem 2.7(ii)], [2, Section 3], [10, Appendix].

THEOREM A.1 The following operators are continuous,

V
∂Ω

: H− 1
2 (∂Ω) → H1,0(Ω;L), W

∂Ω
: H

1
2 (∂Ω) → H1,0(Ω;L),

VΣ : H̃− 1
2 (Σ) → H1,0(ΩΣ ;L), WΣ : H̃

1
2 (Σ) → H1,0(ΩΣ ; L).

THEOREM A.2 The following operators are continuous.

V
∂Ω

: H− 1
2 (∂Ω) → H

1
2 (∂Ω), VΣ : H̃− 1

2 (Σ) → H
1
2 (Σ), (A.1)

W
∂Ω

: H
1
2 (∂Ω) → H

1
2 (∂Ω), WΣ : H̃

1
2 (Σ) → H

1
2 (Σ), (A.2)

W ′
∂Ω

: H− 1
2 (∂Ω) → H− 1

2 (∂Ω), W ′
Σ : H̃− 1

2 (Σ) → H− 1
2 (Σ), (A.3)

L±
∂Ω

: H
1
2 (∂Ω) → H− 1

2 (∂Ω), L±
Σ

: H̃
1
2 (Σ) → H− 1

2 (Σ) (A.4)

Moreover the operators (A.2)-(A.3) are compact.

THEOREM A.3 Let ϕ ∈ H
1
2 (∂Ω), ψ ∈ H− 1

2 (∂Ω), ψ∗ ∈ H̃− 1
2 (Σ) and ϕ∗ ∈ H̃

1
2 (Σ). Then

there hold the following jump relations on ∂Ω,

γ±V
∂Ω

ψ = V
∂Ω

ψ, (A.5)

γ±W
∂Ω

ϕ = ∓ 1
2

ϕ +W
∂Ω

ϕ, (A.6)

T±V
∂Ω

ψ = ± 1
2

ψ+W ′
∂Ω

ψ, (A.7)

T+W
∂Ω

ϕ− T−W
∂Ω

ϕ = L+
∂Ω

ϕ−L−
∂Ω

ϕ =
∂a

∂n
ϕ, (A.8)

and similar jump relations on Σ,

γ±VΣψ∗ = VΣψ∗, (A.9)

γ±WΣϕ∗ = ∓ 1
2

ϕ∗ +WΣϕ∗, (A.10)

T±VΣψ∗ = ± 1
2

ψ∗+W ′
Σψ∗, (A.11)

T+WΣϕ∗ − T−WΣϕ∗ = L+
Σ
ϕ∗−L−

Σ
ϕ∗ =

∂a

∂n
ϕ∗. (A.12)

THEOREM A.4 Let S = ∂Ω or S be a nonempty, simply connected sub–manifold of ∂Ω with
infinitely smooth boundary curve. Then the operators

V
∂Ω

: H− 1
2 (∂Ω) → H

1
2 (∂Ω), rSV∂Ω

: H̃− 1
2 (S) → H

1
2 (S)

are continuously invertible.
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THEOREM A.5 Let the operator L̂S be given by (3.23).

(i) The operator L̂
∂Ω

: H
1
2 (∂Ω) → H− 1

2 (∂Ω) is Fredholm operator with zero index and the

operator L±
∂Ω
− L̂

∂Ω
: H

1
2 (∂Ω) → H− 1

2 (∂Ω) is compact.

(ii) Let S = Σ or S along with ∂Ω\S be nonempty, open simply connected sub–manifolds of

∂Ω with an infinitely smooth boundary curve. Then the operator L̂S : H̃
1
2 (S) → H− 1

2 (S) is

continuously invertible and the operator L±
S
− L̂S : H̃

1
2 (S) → H− 1

2 (S) is compact.

THEOREM A.6 The following operators are compact,

γ±
Σ

V
∂Ω

: H− 1
2 (∂Ω) → H

1
2 (Σ), γ±

Σ
W

∂Ω
: H

1
2 (∂Ω) → H

1
2 (Σ),

T±
Σ

V
∂Ω

: H− 1
2 (∂Ω) → H− 1

2 (Σ), T±
Σ

W
∂Ω

: H
1
2 (∂Ω) → H− 1

2 (Σ),

γ+
∂Ω

VΣ : H̃− 1
2 (Σ) → H

1
2 (∂Ω), γ+

∂Ω
WΣ : H̃

1
2 (Σ) → H

1
2 (∂Ω),

T+
∂Ω

VΣ : H̃− 1
2 (Σ) → H

1
2 (∂Ω), T+

∂Ω
WΣ : H̃

1
2 (Σ) → H

1
2 (∂Ω).

Proof. Let S be either ∂Ω or Σ. As shown in [2],

VSg =
1
a
V∆,Sg, WSg =

1
a
W∆,S (ag), (A.13)

where V∆,S , W∆,S are the single and double layer potentials for the Laplace operator, with
the densities having support on S. Since ∆V∆,Sg = 0, ∆W∆,Sg = 0 on R3\S, we have
V∆,Sg, W∆,Sg ∈ C∞(R3\S) by the solution regularity theorem for strongly elliptic equations,
see e.g. [7], which by (A.13) implies also VSg, WSg ∈ C∞(R3\S). Since ∂Ω and Σ do not
intersect, employing the Rellich compact imbedding theorem completes the proof. ¤

B Properties of volume potentials

THEOREM B.1 The following operators are continuous

P : H0(Ω) → H2(Ω) ⊂ H1,0(Ω;L), (B.1)

R : H0(Ω) → H1(Ω), (B.2)

: H1(ΩΣ) → H1,0(ΩΣ ; L). (B.3)

Moreover, for f ∈ H0(ΩΣ) and u ∈ H1(ΩΣ) we have,

[Pf ]Σ = 0, [T ]ΣPf = 0, [Ru]Σ = 0, [T ]ΣRu = −(∂na) [u]Σ . (B.4)

Proof. The continuity of operators (B.1) and (B.2) is proved in [2, Theorem 3.8]. Similar to the
proof of [2, Theorem 3.8], integrating by parts we have the following relation for g ∈ H1(ΩΣ),

∂j P∆ g = P∆

(
∂jg

)
+ V

∆,∂Ω
(njγ

+g) + V∆,Σ (nj [g]Σ) in ΩΣ . (B.5)

Taking into account that expressions (3.1) and (3.3) give

Ru = − 1
a

3∑

j=1

∂j

[
P∆

(
u ∂ja)

]
,
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we have from (B.5),

Ru = − 1
a

3∑

j=1

P∆ ∂j

(
u ∂ja) − V

∆,∂Ω
(γ+u ∂na) − V∆,Σ ([u]Σ∂na) in ΩΣ (B.6)

which along with (B.1) and Theorem A.1 implies (B.3). The first two relations in (B.4) follow
from (B.1) and imply the last two by (B.6) and Theorem A.3. ¤

The following statement follows from [2, Corollary 3.9].

THEOREM B.2 Let S = ∂Ω, or S be a nonempty, open sub–manifold ∂Ω with an infinitely
smooth boundary curve, or S = Σ. The operators

R : H1(ΩΣ) → H1(ΩΣ), (B.7)

rS γ±R : H1(ΩΣ) → H
1
2 (S), (B.8)

rS T±R : H1(ΩΣ) → H− 1
2 (S) (B.9)

are compact.
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