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Abstract. Employing a localized parametrix the Dirichlet boundary value problem for elliptic
equations in the divergence form with general variable matrix coefficients is reduced to a local-
ized boundary-domain integral equation (LBDIE) system. The equivalence between the Dirichlet
problem and the LBDIE system is studied. It is established that the localized boundary do-
main integral operator obtained in the paper belongs to the Boutet de Monvel algebra and the
operator Fredholm properties and invertibility is investigated by the Wiener-Hopf factorization
method.

1. INTRODUCTION

We consider the Dirichlet boundary value problem (BVP) for second order elliptic partial differ-
ential equations in the divergence form with a general variable matrix of coefficients and develop
the boundary-domain integral approach based on the localized parametrices. The BVP treated
in the paper is well investigated in the literature by the variational and, when the correspond-
ing fundamental solution is available in an explicit form, also by the usual classical potential
methods (see, e.g., [6, 7, 8, 11]). Our goal here is to show that solutions of the problem can be
represented by localized potentials and that the localized boundary-domain integral operator (LB-
DIO) corresponding to the Dirichlet problem is invertible, which is particularly important for
constructing and analysis of efficient numerical method for the LBDIE solution. Some numerical
algorithms and implementations of the LBDIEs can be found in [9, 10, 13, 14, 15].

In our case, the localized parametrix Pχ(x, y) is represented as the product of the corre-
sponding Levi function P1(y, x−y) of the differential operator under consideration by an appro-
priately chosen cut-off function χ(x, y) supported on some neighbourhood of the origin. Clearly,
the kernels of the corresponding localized potentials are supported in some neighbourhood of the
reference point y (assuming that x is an integration variable) and they do not solve the original
differential equation, while the localized potentials preserve almost all mapping properties of the
usual non-localized ones (cf. [3]).

By the direct approach we reduce the BVP to the localized boundary-domain integral equa-
tions (LBDIE) system. First we establish the equivalence between the original boundary value
problem and the corresponding LBDIEs system which proved to be a quite nontrivial problem
and plays a crucial role in our analysis.

Afterwards we establish that the localized boundary domain integral operator obtained be-
longs to the Boutet de Monvel algebra of pseudodifferential operators [2]. With the help of the
Vishik-Eskin theory [4], based on the factorization method (Wiener-Hopf method), we investi-
gate Fredholm properties and prove invertibility of the corresponding localized boundary-domain
operator in appropriate function spaces.



2. THE BOUNDARY VALUE PROBLEM LOCALIZED POTENTIALS AND

GREEN’S THIRD IDENTITY

Consider a uniformly elliptic second order scalar partial differential operator

A(x, ∂x)u =
∂

∂xk

(

akj(x)
∂u

∂xj

)

,

where ∂x = (∂1, ∂2, ∂3), ∂j = ∂xj
= ∂/∂xj , akj ∈ C∞ and akj = ajk, j, k = 1, 2, 3. Moreover, due

to the uniform ellipticity, there are positive constants c1 and c2 such that

c1 |ξ|
2 ≤ akj(x) ξk ξj ≤ c2 |ξ|

2 ∀ x ∈ R
3, ∀ ξ ∈ R

3.

Here and in what follows we assume summation from 1 to 3 over repeated indices if not otherwise
stated.

Further, let Ω+ be a bounded domain in R
3 with a simply connected boundary ∂Ω = S ∈ C∞,

Ω+ = Ω+ ∪ S. Throughout the paper n = (n1, n2, n3) denotes the unit normal vector to S
directed outward the domain Ω+. Set Ω− := R

3 \ Ω+.
By Hr(Ω) = Hr

2(Ω) and H
r(S) = Hr

2(S), r ∈ R, we denote the Bessel potential spaces on a
domain Ω and on a closed manifold S without boundary, while D(R3) stands for C∞ functions in
R
3 with compact support and S(R3) denotes the Schwartz space of rapidly decreasing functions

in R
3. Recall that H0(Ω) = L2(Ω) is a space of square integrable functions in Ω. Let us denote

u± := γ±u, where γ ≡ γ+ and γ− are the trace operators on ∂Ω from the interior and exterior
of Ω+ respectively.

We also need the following subspace of H1(Ω),

H1, 0(Ω;A) := {u ∈ H1(Ω) : A(x, ∂)u ∈ H0(Ω)} .

The Dirichlet boundary value problem reads as follows: Find a function u ∈ H1, 0(Ω+, A)
satisfying the differential equation

A(x, ∂x)u = f in Ω+ (1)

and the boundary condition

u+ = φ
0

on S, (2)

where φ
0
∈ H1/2(S), f ∈ H0(Ω+).

Equation (1) is understood in the distributional sense, while the Dirichlet boundary condition
(2) is understood in the usual trace sense.
Note,that the co-normal derivative is understood in the generalized functional trace sense defined
by the following Green’s identity for a function u ∈ H1, 0(Ω+;A):

⟨T+ u , g⟩S :=

∫

Ω+

A(x, ∂x)u(x) v(x) dx+

∫

Ω+

akj(x) ∂xj
u(x) ∂xk

v(x) dx, (3)

where g ∈ H1/2(S) is an arbitrary function and v ∈ H1(Ω) is an extension of g from S onto
the whole of Ω+, i.e., v+ = g on S, while ⟨· , ·⟩S denotes the duality between the adjoint spaces

H− 1

2 (S) and H
1

2 (S) which extends the usual bilinear L2(S) inner product.
Let us denote

P1(y, x) =
α

(

a−1(y)x , x
)

1

2

with α = −
1

4π [deta(y)]
1

2

, a(y) = [akj(y)]3×3,



where a−1 is the matrix inverse to a and (· , ·) denotes the usual scalar product in R
3. It is

well known (see. e.g., [11]) that P1(y, x − y) is the Levi function (parametrix) of the operator
A(x, ∂x) and satisfies the equation

A(y, ∂x)P1(y, x− y) = δ(x− y),

where δ( · ) is the Dirac distribution.
Let us define the following class of cut-off functions, see [3].

DEFINITION 1 We say χ0 ∈ X∞ if χ0(x) = χ̆(|x|), χ̆ ∈ C∞[0,∞) and ϱαχ̆(k)(ϱ) → 0 as
ϱ→ 0 for any real α and any non-negative integer k.

We say χ0 ∈ X∞
+ if χ ∈ X∞, χ(0) = 1 and σχ0

(ω) > 0 for all ω ∈ R, where

σχ0
(ω) :=















χ̂s(ω)

ω
for ω ∈ R \ {0},

∫ ∞

0
ϱχ̆ (ϱ) dϱ for ω = 0,

and χ̂s(ω) denotes the sine-transform of the function χ̆,

χ̂s(ω) :=

∫ ∞

0
χ̆ (ϱ) sin(ϱω) dϱ.

Note that X∞ and X∞
+ are subsets, respectively, of the classes Xk and Xk

+, defined in [3],
for any k ≥ 0.

Since a−1 is symmetric and positive definite, there is a symmetric positive definite matrix d

such that a−1 = d2 and (a−1x , x) = |dx |2, detd = [det a]−
1

2 .
Throughout the paper we we will consider functions χ of the form χ(y, z) = χ0

(

d(y)z
)

,
where χ0 ∈ X∞ if not otherwise stated.

Introduce the localized parametrix P (y, x− y),

P (y, x− y) = Pχ(y, x− y) = χ(y, x− y)P1(y, x− y).

It is easy to check that A(x, ∂x)P (y, x− y) = δ(x− y) +R(x, y), where

R(x, y) = Rχ(x, y) = P1(y, x− y)A(y, ∂x)χ(y, x− y) + 2 akj(y)
∂χ(y, x− y)

∂xj

∂P1(y, x− y)

∂xk

+
[

akj(x)− akj(y)
]∂2

[

χ(y, x− y)P1(y, x− y)
]

∂xk∂xj
+
∂akj(x)

∂xk

∂
[

χ(y, x− y)P1(y, x− y)
]

∂xj
.

The function R(x, y) possesses a weak singularity of type

R(x, y) = O(|x− y|−2) as x→ y.

Let us introduce the localized surface and volume potentials, based on the above defined
localized parametrix P ,

V g(y) := −

∫

S
P (y, x− y) g(x) dSx, W g(y) := −

∫

S

[

T (x, ∂x)P (y, x− y)
]

g(x) dSx, (4)

P h(y) :=

∫

Ω+

P (y, x− y)h(x) dx, Rh(y) :=

∫

Ω+

R(y, x− y)h(x) dx. (5)

If the domain of integration in the Newtonian volume potential is the whole space R3, we employ
the notation Ph := P h.



Now we recall Green’s second identity for the operator A(x, ∂x),

∫

Ω+

[

v A(x, ∂x)u− uA(x, ∂x)v
]

dx = ⟨T+u, v+⟩S − ⟨T+v, u+⟩S . (6)

where u, v ∈ H1, 0(Ω+, A).
Taking v(x) = P (y, x−y), from (6) by standard limiting arguments we arrive at the following

localized third Green’s identity for u ∈ H1, 0(Ω+, A),

u+Ru− V (T+u) +W (u+) = P(Au) in Ω+. (7)

3. LBDIE FORMULATION FOR THE DIRICHLET PROBLEM

To derive the equivalent LBDIE formulation of the Dirichlet problem we need some auxiliary
material. Let us denote by E0 the operator of extension of a function, defined in Ω+, by zero
outside Ω+ to a function defined in R

3. Therefore, for f ∈ H0(Ω+) we can rewrite the volume
potential Pf as a pseudodifferential operator

Pf(y) =

∫

Ω+

P (y, x− y) f(x) dx =

∫

R3

P (y, x− y)E0f(x) dx

= P(E0f )(y) =
1

(2π)3

∫

R3

S(P)(y, ξ) e−i(y, ξ)F(E0f )(ξ) dξ,

where the symbol F stands for the generalized Fourier transform andS(P)(y, ξ) := Fz→ξ

[

P (y, z)
]

is the complete symbol of the operator P.
One can prove the following lemma.

LEMMA 2 Let χ0 ∈ X∞. Then S(P) ∈ C∞(R3 × R
3), and the following expansion holds for

ξ ̸= 0 and any integer k ≥ 0,

S(P)(y, ξ) =
k∗
∑

m=0

(−1)m+1

(a(y)ξ , ξ)m+1
χ̆
(2m)
0 (0)

−
1

(a(y)ξ , ξ)(k+1)/2

∫ ∞

0
sin

(

(a(y)ξ , ξ)1/2ϱ+
kπ

2

)

χ̆
(k)
0 (ϱ) dϱ , (8)

where k∗ is the integer part of (k − 1)/2 and the sum disappears in (8) if k∗ < 0, i.e., if k = 0.
For any multi-indices α, β there are positive constants cαβ independent of ξ and y such that

|∂αξ ∂
β
yS(P)(y, ξ)| < cαβ(1 + |ξ|2)

−1−|α|/2

for any ξ ∈ R
3, y ∈ R

3.
Moreover, if χ0 ∈ X∞

+ , then there is a positive constant c independents of ξ and y such that

c(1 + |ξ|2)−1 < −S(P)(y, ξ)

for any ξ ∈ R
3, y ∈ R

3.

We have the following corollary which follows from the above Lemma 2 and Theorem 18.1.13
in [5].

COROLLARY 3 Let χ0 ∈ X∞. Then S(P) belongs to the Hörmander class of symbols
S−2(R3 × R

3) and the operator P : Hs(R3) → Hs+2(R3) is continuous for all s ∈ R.



First we introduce the notation A∞(ξ) := −|ξ|2 for the symbol of the Laplace operator and
take into account that A(y, ξ) := −akj(y) ξk ξj . Further, let

A′(y, ξ) := A(y, ξ)−A∞(ξ) = −akj(y) ξk ξj + |ξ|2, .

Let us denote P∞(z) = −χ0(z)/4π|z| the localized parametrix of the Laplace operator, while
P ′(y, x − y) := P (y, x − y) − P∞(x − y). Introducing the corresponding pseudodifferential
operators

P∞h(y) :=

∫

R3

P∞(x− y)h(x) dx, P′h(y) :=

∫

R3

P ′(y, x− y)h(x) dx,

we arrive at the decomposition P = P′ + P∞. For the corresponding symbols we then obtain,
S(P∞)(ξ) := Fz→ξ

[

P∞(z)
]

= S(P)(y, ξ)|aij≡δij , S(P′)(y, ξ) := S(P)(y, ξ)−S(P∞)(ξ).
From Lemma 2 we have the following decomposition

S(P)(y, ξ) =
1

A(y, ξ)
+O(|ξ|−4),

and therefore the corresponding principal homogeneous symbols of the operators P,P′ and P∞,
read as

◦
S(P)(y, ξ) =

1

A(y, ξ)
= −

1

akj(y) ξk ξj
,

◦
S(P∞)(ξ) =

1

A∞(ξ)
= −

1

|ξ|2
,

◦
S(P′)(y, ξ) =

1

A(y, ξ)
−

1

A∞(ξ)
=
A∞(ξ)−A(y, ξ)

A(y, ξ)A∞(ξ)
= −

A ′(y, ξ)

A(y, ξ)A∞(ξ)
.

It is easy to see that all the above principal homogeneous symbols are rational functions in ξ
and satisfy the so called transmission conditions. Consequently, the operators P,P∞ and P′ are
pseudodifferential operators of rational type, see [2, 4, 12].

Note that if χ0 ∈ X1
+, from Lemma 2 it then follows that the operator P∞ : Hs(R3) →

Hs+2(R3), s ∈ R, is invertible.
Similar decompositions can be written also for the layer potentials

V ψ = −P(γ∗ψ) = −P ′(γ∗ψ)−P∞(γ∗ψ) = V ′ψ + V∞ψ ,

Wφ = −P(T ∗φ) = −P ′(T ∗φ)−P∞(T ∗φ) =W ′φ+W∞φ ,

where

V ′ψ := −P ′(γ∗ψ), V∞ψ = −P∞(γ∗ψ), W ′φ = −P ′(T ∗φ), W∞φ = −P∞(T ∗φ) (9)

and their explicit forms are given by expressions (4) after replacing there the kernel P with P ′

and P∞, respectively. Here the operator γ∗ : H
1

2
−t(S) → H−t(R3), t > 1/2 is adjoint to the

trace operator γ : Ht(R3) → Ht− 1

2 (S), t > 1/2, i.e., is defined by the relation

⟨γ∗ψ , h⟩R3 := ⟨ψ , γh⟩
S

for all h ∈ Ht(R3), ψ ∈ H
1

2
−t(S), t >

1

2
. (10)

Similarly, T ∗ : H
3

2
−t(S) → H−t(R3), t > 3

2 is the operator adjoint to the classical (defined in

terms of the trace) co-normal derivative operator T = akj nk(x) γ∂xj
: Ht(R3) → Ht− 3

2 (S), that
is continuous for t > 3

2 (for the infinitely smooth S), i.e.,

⟨T ∗φ , h⟩R3 := ⟨φ , Th⟩
S

for any h ∈ Ht(R3), φ ∈ H
3

2
−t(S), t >

3

2
. (11)



Now we can rewrite (7) in the form

u+Ru− V ′(T+u)− V∞(T+u)−P ′(E0Au) = P∞(E0Au)−W (u+) in Ω+. (12)

Further, for u ∈ H1, 0(Ω+, A) and v ∈ D(R3) we can rewrite Green’s second identity in Ω+

as
∫

R3

[

v E0Au− (E0u)Av
]

dx = ⟨T+u, γv⟩S − ⟨Tv, γ+u⟩S ,

which, in turn, in view of the notation (10)-(11) can be written in the form

⟨E0Au , v⟩R3 − ⟨AE0u , v⟩R3 = ⟨γ∗T+u, v⟩R3 − ⟨T ∗γ+u, v⟩R3 , ∀ v ∈ D(R3).

Whence we get AE0u = E0Au− γ∗T+u+ T ∗γ+u.
Therefore in view of (9) we get

P ′(AE0u) = P ′(E0Au) + V ′(T+u)−W ′(u+) in R
3 (13)

which implies

{P ′(E0Au)}
+ + V ′(T+u) = {P ′(AE0u)}

+ + {W ′(u+)}+

= {P ′(AE0u)}
+ + {W (u+)}+ − {W∞(u+)}+

= {P ′(AE0u)}
+ −

1

2
u+ +W(u+) +

1

2
µu+ −W∞(u+)

= {P ′(AE0u)}
+ −

1

2
(1− µ)u+ +W(u+)−W∞(u+), (14)

where µ = akj nk nj .
Due to (13), third Green’s identity (12) can be also rewritten as

u+Ru−P ′A(E0u)− V∞(T+u) = P∞(E0Au)−W∞(u+) in Ω+. (15)

Further we have,

P ′(AE0u)(y) = ⟨P ′(y, · − y), AE0u⟩R3 = ⟨AP ′(y, · − y), E0u⟩R3 = ⟨AP ′(y, · − y), u⟩Ω+

= ⟨AP (y, · − y)−AP∞(· − y), u⟩Ω+ = u(y) +Ru(y)− ⟨AP∞(· − y), u⟩Ω+

= u(y) +Ru(y)− β(y)u(y)−N∞u(y), (16)

where

β(y) :=
1

3
[ a11(y) + a22(y) + a33(y) ], N∞u(y) = v.p.

∫

Ω+

N∞(x, y)u(x)dx,

N∞(x, y) := A(x, ∂x)P∞(x− y) =
[

−
akj(x)

4π

∂2

∂xk ∂xj

1

|x− y|

]

+R∞(x, y), x ̸= y,

R∞(x, y) := −
1

4π

{ ∂

∂xk

[∂χ(x− y)

∂xj

akj(x)

|x− y|

]

+
∂
[

akj(x)χ(x− y)
]

∂xk

∂

∂xj

1

|x− y|

+ akj(x)
[

χ(x− y)− 1
] ∂2

∂xk∂xj

1

|x− y|

}

, x ̸= y,

Substituting (16) in (15), we arrive at the equivalent form of the third Green identity that
does not involve the parametrix P (cf. the two-operator Green identities in [1]),

βu+N∞ u− V∞(T+u) +W∞(γ+u) = P∞(Au) in Ω+. (17)



Taking trace of (17) on S and using the jump properties of the layer potentials (cf. [3]), we
get

(

β −
1

2
µ

)

u+ + γ+N∞u− V∞(T+u) +W∞(γ+u) = γ+P∞(Au) on S, (18)

where V∞g and W∞g are the direct values of the corresponding potentials V∞g and W∞g on
the boundary S.

Denoting ψ = T+u and substituting equations (1) and (2) in (17) and (18), we obtain the
LBDIE system with respect to the unknowns u ∈ H1, 0(Ω+, A) and ψ ∈ H−1/2(S) considered as
independent of each other (i.e. segregated),

βu+N∞ u− V∞ψ = P∞f −W∞φ0
in Ω+, (19)

γ+N∞u− V∞ψ = γ+P∞(f)− (β −
1

2
µ)φ

0
−W∞φ0

on S, (20)

where φ
0
∈ H1/2(S) and f ∈ H0(Ω+).

4. FORMULATION OF THE BASIC RESULTS

First, the following equivalence theorem can be proved.

THEOREM 4 Let χ0 ∈ X∞
+ .

(i) If a function u ∈ H1, 0(Ω+, A) solves the Dirichlet BVP (1)-(2), then it is unique and the
pair (u, ψ) ∈ H1, 0(Ω+, A)×H−1/2(S) with

ψ = T+u (21)

solves the LBDIE system (19)-(20).
(ii) Vice versa, if a pair (u, ψ) ∈ H1, 0(Ω+, A) × H−1/2(S) solves the LBDIE system (19)-

(20), then it is unique and the function u solves the Dirichlet BVP (1)-(2) and the equality (21)
holds.

From Theorem 4 it follows that the LBDIE system (19)-(20), which has a special right hand
side, is uniquely solvable in the class H1, 0(Ω+, A)×H−1/2(S).

Now we investigate the LBDIO generated by the left hand side expressions in (19)-(20) in
appropriate function spaces. The LBDIE system (19)-(20) with an arbitrary right hand side
functions from the space H1(Ω+)×H1/2(S) can be written as

(β I +N∞)u− V∞ψ = F1 in Ω+, (22)

γ+N∞u− V∞ψ = F2 on S, (23)

where I stands for the identity operator and F1 ∈ H1(Ω+), F2 ∈ H1/2(S).
Denote by A the LBDIO generated by the left hand side expressions in LBDIE system

(22)-(23) as

A :=

[

r
Ω+

(β I +N∞) −r
Ω+
V∞

γ+N∞ −V∞

]

.

The following assertion holds.

THEOREM 5 Let χ0 ∈ X∞
+ . Then the operator

A : Hr+1(Ω+)×Hr−1/2(S) → Hr+1(Ω+)×Hr+1/2(S)

is continuous and continuously invertible for any r ≥ 0.
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