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Recently, we have defined rational differential equations, and derived conditions when two such
equations have the same solution set. In this article, we study the same question, but present a different
approach based on the new notion of symbols. Also we try to describe the relationship with the work
‘‘Behaviors defined by rational functions’’ of Willems and Yamamoto.
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1. Introduction

As is known, in behavioral system theory (see Polderman
and Willems [1], Willems [2]), dynamical systems are viewed as
collections of time trajectories. In most cases they are described
via equations. ‘‘These are often differential or difference equations,
sometimes integral equations’’ [2]. Pursuing this (‘‘behavioral’’)
point of view, it is quite natural to consider differential/integral
equations and study the corresponding dynamical systems.

In our recent article [3], we introduced linear constant coeffi-
cient differential/integral equations. They are associated to ratio-
nal matrices and naturally generalize linear constant coefficient
differential equations. The inspiration came fromWillems and Ya-
mamoto [4,5], where rational matrices have been considered as
new representations for linear differential systems.

For the convenience of the reader, we briefly recall the main
point from the above-mentioned article.

Let F be the field of real or complex numbers and s an indeter-
minate, and let U be the space of infinitely differentiable F-valued
functions defined on some interval of the real time axis onwhich an
initial time is fixed. Let ∂ denote the differentiation operator. The
initial time allows us to introduce the indefinite integral operator∫

: U → U,

and we define ∂−1 by setting
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∂−1
=

∫
.

(The relation ∂ ◦


= id justifies this definition.) For n ≥ 0, we set

∂−n
= (∂−1)n =

∫ n

.

Given now a rational matrix G, we define the operator G(∂) to
be

G−n∂
n
+ · · · + G−1∂ + G0I + G1∂

−1
+ G2∂

−2
+ · · · ,

where

G−n, . . . ,G−1,G0,G1,G2, . . .

are the coefficients in the Laurent expansion of G at infinity. This
operator is a linear differential/integral operator with constant
coefficients, and it gives rise to the equation

G(∂)w = 0.

The solution set of this equationhas been called, in [3], the behavior
of G, and it is denoted by Bh(G).

This interpretation of the equation G(∂)w = 0 is different from
that offered by Willems and Yamamoto [4,5]. We remind readers
that, according to these works, a function w is said to be a solution
of this equation if it satisfies the equation Q (∂)w = 0, where Q is
the numerator in a left coprime factorization of G.

The following simple example illustrates well the difference
between the two approaches.

Example 1. The behavior of s−1(s2 − 1) = s − s−1 in the sense
of [3] is the solution set of the equation

http://dx.doi.org/10.1016/j.sysconle.2011.09.009
http://www.elsevier.com/locate/sysconle
http://www.elsevier.com/locate/sysconle
mailto:vakholoma@yahoo.com
mailto:loma@rmi.ge
http://dx.doi.org/10.1016/j.sysconle.2011.09.009


V. Lomadze / Systems & Control Letters 61 (2012) 98–106 99
y′
−

∫
y = 0,

which is the set

{C(ex + e−x) | C ∈ R}.

The behavior in the sense ofWillems and Yamamoto is the solution
set of the equation

y′′
− y = 0,

that is, the set

{C1ex + C2e−x
| C1, C2 ∈ R}.

Any set representable as the behavior of a rational matrix is
called a linear differential/integral system. Of course, the class of
linear differential/integral systems is larger than the class of linear
differential systems. As shown in [3], linear differential systems
are precisely those linear differential/integral systems that are
differentiation invariant.

In [3], we have derived conditions under which two rational
matrices give rise to the same linear differential/integral system. In
the present article, we shall deal with the same problem. However,
we shall offer a very different approach to it.

It turns out that a relevant notion is the notion of a symbol.
By a symbol, we understand a pair (µ, A), where µ is a finite
sequence of nonnegative integers and A is a right invertible proper
rational matrix such that the length of µ is equal to the row
number of A. These simple objects permit us to represent all linear
differential/integral systems. Symbols can be regarded as the most
‘‘economic’’ representations; they contain the minimum of data
that is necessary to define a linear differential/integral system.
There is a natural partial order on the set of symbols, which allows
us to say when one symbol is more powerful than another symbol.
The main result of the article is Theorem 3, stating that, if B1 and
B2 are two linear differential/integral systems, then B1 ⊆ B2 if
and only if the symbol representing B1 is more powerful than the
symbol representing B2. It should be pointed out that the proof of
this theorem is straightforward and easy. The equivalence theorem
is an immediate consequence of this result.

In this article, we also establish, in a special but interesting case,
a connection with the Willems–Yamamoto definition of rational
behaviors. Namely, we show that if a rational matrix has positive
Wiener–Hopf indices, then the differential closure of its behavior
in the sense of [3] coincides with that in the sense of Willems and
Yamamoto.

The notations F, s, and U will remain in force. We let O denote
the ring of proper rational functions, and put t = s−1. The symbol
} will stand for the function that is identically 1 on the interval.

We can define a natural composition law between proper
rational functions and C∞-functions, so that U turns out to be a
module over O (see [6,3]). For any g ∈ O, and for any w ∈ U, the
product gw is defined by the formula

gw = b0w + b1

∫
w + b2

∫ 2

w + · · · + bn

∫ n

w + · · · ,

where b0, b1, b2, . . . , bn, . . . are the coefficients in the expansion
of g at infinity. (The reader can easily prove that the series above
converges uniformly on every compact neighborhood of the initial
time.)

Example 2. For n ≥ 1 and λ ∈ F, we have

1
(s − λ)n

u =
xn−1

(n − 1)!
eλx

∗ u,

where ∗ denotes the convolution operation (see [3]).
Define the L-transform L : O → U by the formula

L(g) = g}.

It is clear that L(1) = } and L(tn) = xn/n! forn ≥ 1.More generally,
we have the following.

Example 3. For n ≥ 1 and λ ∈ F,

L


s
(s − λ)n


=

xn−1

(n − 1)!
eλx

(see [3]).

The two examples above together with the partial fraction
expansion theorem enable us to compute all products gu and all
L-transforms L(g). We can see that the functions L(g) are precisely
Bohl functions, which play a very important role in the theory of
linear systems (see, for example, Polderman and Willems [1]).

We remind readers that a square polynomial matrix U is called
unimodular if it has a polynomial inverse; a square proper rational
matrix A is called biproper if it has a proper rational inverse. A
polynomial matrix U will be said to be left unimodular if it has a
left polynomial inverse; likewise, a proper rational matrix A will
be said to be right biproper if it has a right proper rational inverse.

For every integer n, we shall write F[s]≤n to denote the space of
polynomials (in s) having degree ≤ n; likewise, F[t]≤n will denote
the space of polynomials (in t) having degree ≤ n (Reminder: The
degree of the zero polynomial is −∞).

If λ = (l1, . . . , lr) is a sequence of integers, we let sλ
(respectively, tλ) be the diagonal matrix with sli (respectively, t li )
on the diagonal. We set

F[t]rλ =


i

F[t]≤(li−1).

If µ and ν are two finite integer sequences, we shall write µ ≃ ν
when they are equal up to order.

We shall use the concept of (short) exact sequences. The
sequence

0 → M1
f

→M
g

→M2 → 0,

where M1, M , M2 are modules and f , g are homomorphisms, is
said to be exact if f is a monomorphism, g is an epimorphism,
and Im(f ) = Ker(g). One says that the exact sequence splits if it
satisfies the following equivalent conditions.

(a) There is a homomorphism u : M → M1 such that u ◦ f is the
identity onM1.

(b) There is a homomorphism v : M2 → M such that g ◦ v is the
identity onM2.

If these conditions are satisfied, then

M = Im(f ) ⊕ Ker(u) and M = Ker(g) ⊕ Im(v).

2. Some preliminaries

This section deals with matrices with entries in F[t]; they are
interpreted as homomorphisms between matrices of the form
sµ. At the end, we recall the Wiener–Hopf factorization theorem,
which will play a key role in what follows.

Let

µ = (m1, . . . ,mp) and ν = (n1, . . . , nr)

be two integer sequences. By a homomorphism from sµ to sν , we
mean a proper rational matrix (xij) ∈ Or×p such that

xij ∈ F[t]≤(ni−mj)

for all i, j. Let Hom(sµ, sν) denote the set of all homomorphisms
from sµ to sν . Note that
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Hom(sµ, sν) = {X ∈ Or×p
| sνXtµ ∈ F[s]r×p

}.

Note also that, if k is large enough (say, such that k+mj ≥ 0 for all
j), then

Hom(sµ, sν) =


X ∈ Or×p

 X


j

F[t]≤(k+mj)



⊆


i

F[t]≤(k+ni)


.

Example 4.

Hom
[

1 0
0 s2

]
, s4


=


g1 g2


| g1 ∈ F[t]≤4, g2 ∈ F[t]≤2

.

It is easily seen that the composition of two homomorphisms is
a homomorphism; that is, if λ,µ, and ν are integer sequences, then

X ∈ Hom(sλ, sµ), Y ∈ Hom(sµ, sν) ⇒ YX ∈ Hom(sλ, sν).

We can speak therefore about isomorphisms. Ifµ and ν are integer
sequences, then a homomorphism X : sµ → sν is an isomorphism
if there exists a homomorphism Y : sν → sµ such that XY = I and
YX = I .

The following lemma gives a characterization of isomorphisms.

Lemma 1. Let µ and ν be integer sequences, and let X ∈ Hom
(sµ, sν). The following conditions are equivalent.

(a) X is an isomorphism.
(b) µ ≃ ν and X is biproper.

Proof. Let

µ = (m1, . . . ,mp) and ν = (n1, . . . , nr).

(a) ⇒ (b): That X is biproper and that p = r is clear.
We certainlymay assume that the terms inµ and ν are arranged

in increasing order, and we have to show then that µ = ν.
Assume that µ ≠ ν, and let i be the biggest number for which

mi ≠ ni. Say thatmi > ni. Consider the following two spaces:

F[t]≤(m1−mi) ⊕ · · · ⊕ F[t]≤(mi−mi) ⊕ F[t]≤(mi+1−mi)

⊕ · · · ⊕ F[t]≤(mp−mi)

and

F[t]≤(n1−mi) ⊕ · · · ⊕ F[t]≤(ni−mi) ⊕ F[t]≤(ni+1−mi)

⊕ · · · ⊕ F[t]≤(np−mi).

The matrix X induces a linear map from the first one to the
second. Because X is biproper, this map is injective. On the other
hand, the summands F[t]≤(n1−mi), . . . , F[t]≤(ni−mi) are zero, and
consequently the first space has greater dimension than the second
one.

This contradiction proves what we want.
(a) ⇐ (b): Certainly, p = r . Take sufficiently large k (so that

k + mi ≥ 0 for each i). Then X determines a linear map

F[t]≤(k+m1) ⊕ · · · ⊕ F[t]≤(k+mp) → F[t]≤(k+n1) ⊕ · · · ⊕ F[t]≤(k+np).

This linear map is injective. Because the spaces have equal
dimensions, it must be bijective. The inverse linearmap is induced
by the matrix X−1. We thus have

X−1


i

F[t]≤(k+ni)


⊆


i

F[t]≤(k+mi),

and hence X−1 is a homomorphism of sν into sµ.
The proof is complete. �
It follows from this lemma (and from the fact that the com-
position of two homomorphisms is a homomorphism) that the
biproper rational matrices in Hom(sµ, sµ) form a group. This
is denoted by Aut(sµ). Notice that this is precisely the group
of Brunovsky µ-transformations. (We remind readers that a
Brunovsky µ-transformation is a biproper rational matrix X ∈

Op×p such that sµXtµ ∈ F[s]p×p is a unimodular polynomial
matrix.)

Example 5.

Aut
[

1 0
0 s2

]
=

[
a 0

b0t2 + b1t + b2 c

] a, b0, b1, b2, c ∈ F, a, c ≠ 0


.

Closing the section, we formulate the Wiener–Hopf factoriza-
tion theorem in the formwe shall need. No doubt, this is the deep-
est fact about rational matrices.

Lemma 2 (Wiener–Hopf Factorization Theorem). Let G be a rational
matrix of size p × q and rank r.

(a) There exists a factorization

G = UsµA,

where µ is a sequence of integers of length r, U is a left unimodular
polynomialmatrix of size p×r, andA is a right biproper rationalmatrix
of size r × q.

(b) If

G = U1sµ1A1 and G = U2sµ2A2

are two such factorizations, then there exists an isomorphism X ∈

Hom(sµ1 , sµ2) such that

A2 = XA1 and U1 = U2(sµ1Xtµ2).

3. Symbols

In this section, we introduce our main objects, which are called
symbols.

We start with the remark that, because ∂−1
◦∂ ≠ id, one should

not expect the equality

(G1G2)(∂) = G1(∂) ◦ G2(∂)

in general. However, as the following lemma says, this equality
does hold to be true in two important cases.

Lemma 3. (a) Let P be a polynomial matrix and G a rational matrix
(such that the column number of P is equal to the row number of G).
Then

(PG)(∂) = P(∂) ◦ G(∂).

(b) Let G be a rational matrix and A a proper rational matrix (such that
the column number of G is equal to the row number of A). Then

(GA)(∂) = G(∂) ◦ A(∂).

Proof. Using ∂ ◦ ∂−1
= id, one can easily verify that the relation

∂n
◦ ∂m

= ∂m+n

is true in the following two special cases.
Case 1: n ∈ Z+,m ∈ Z.
Case 2: n ∈ Z,m ∈ Z−.
By linearity, statement (a) follows from Case 1 and statement

(b) follows from Case 2.
The proof is complete. �
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Lemma 3(a) has the following important consequence.

Corollary 1. If G1 and G2 are rational matrices such that G2 = PG1
for some polynomial matrix P, then

Bh(G1) ⊆ Bh(G2).

Two rational matrices G1 and G2 (with the same column
number) are said to be strongly equivalent if there exist polynomial
matrices P andQ such thatG2 = PG1 andG1 = QG2. It immediately
follows from the above corollary that strongly equivalent rational
matrices have the same behavior. The converse is not true, of
course.

Important invariants of a rational matrix are the transfer
function and the initial condition space (see [3]). If G is a rational
matrix of size p × q, then its transfer function is defined as the set

{g ∈ Oq
| Gg = 0};

the initial condition space is defined to be the space

F[s]p ∩ tGOq.

The dimension of this latter is called the McMillan degree.
It is worth noting that, if A is a proper rational matrix, say, of

size p × q, then A(∂) is nothing but the operator

Uq A
→ Up, w → Aw.

Lemma 4. Let A be a right invertible proper rational matrix of size
p × q. Then the operator

Uq A
→ Up, w → Aw

is surjective.

Proof. To see this, it suffices to tensor by U the surjective map

Oq A
→Op,

and use the general well-known fact that tensoring a surjective
homomorphism by a module yields another surjective homomor-
phism.

An elementary proof is possible. Indeed, let A1 be a right proper
rational inverse of A. Then the composition

Op A1
→Oq A

→Op

is identical. Consequently, the composition

Up A1
→ Uq A

→ Up

is identical as well. �

Given a sequence λ = (l1, . . . , lr) of arbitrary integers, we
define

λ+
= (max{l1, 0}, . . . ,max{lr , 0}) and |λ| = l1 + · · · + lr .

Let G be a rational matrix of size p × q and rank r , and let G =

UsµA be its Wiener–Hopf factorization. We remind readers that
this means thatµ is a sequence of r integers, U is a left unimodular
polynomial matrix of size p × r , and A is a right biproper rational
matrix of size r × q.

Theorem 1. We have

Bh(G) = {w ∈ Uq
| Aw ∈ L(F[t]rµ+

)}.

Proof. Multiplication from the left of G = UsµA by a left
polynomial inverse U1 of U gives sµA = U1G. Hence, the matrices
G and sµA are strongly equivalent, and therefore
Bh(G) = Bh(sµA).

Further, because A is proper, by Lemma 3(b), the operator (sµA)(∂)
is equal to the composition

Uq A
→ gUr ∂µ

→ Ur .

Hence,

Bh(G) = {w ∈ Uq
|∂µ(Aw) = 0} = {w ∈ Uq

| Aw ∈ Ker(∂µ)}.

It is clear that

Ker(∂µ) = L(F[t]rµ).

The trivial observation that F[t]rµ = F[t]r
µ+ completes the

proof. �

As we saw in Lemma 4, the map

Uq A
→ Ur , w → Aw

is surjective. The theorem above tells us that Bh(G) is the preimage
of
L(F[t]rµ+

) ⊆ Ur

under this map.
Theorem 1 leads to the notion of what we call symbols.

Definition. A symbol is a pair (µ, A), where µ is a sequence of
nonnegative integers and A is a right biproper rational matrix such
that the length of µ is equal to the row number of A.

Let (µ, A) be a symbol. The following definitions are obvious.
The signal number of (µ, A) is the column number of A; the output
number is the row number of A, and the input number is the signal
number minus the output number. If the signal number of (µ, A)
is equal to q and the output number to p, then its behavior is

Bh(µ, A) = {w ∈ Uq
| Aw ∈ L(F[t]pµ)};

the transfer function is

{g ∈ Oq
| Ag = 0};

the initial condition space is

F[t]pµ;

and the McMillan degree is |µ|.
The following gives a complete description of the behavior of a

symbol.

Theorem 2. Let (µ, A) be a symbol with signal number q, output
number p, and input number m. Let A1 be a right proper rational
inverse of A, and let A2 be a maximal (proper rational) right
annihilator of A. Then

Bh(µ, A) = A2U
m

⊕ L(A1F[t]pµ).

Proof. We have an exact sequence

0 → Om A2
→Oq A

→Op
→ 0,

which splits becauseAA1 = I . Tensoring this byU, we get therefore
a split exact sequence

0 → Um A2
→ Uq A

→ Up
→ 0.

By definition, the linear map

Bh(G)
A

→ L(F[t]pµ)

is surjective. By the exact sequence above, the kernel of this map is
equal to A2U

m. The theorem follows now from the decomposition

Uq
= A2U

m
⊕ A1U

p.

The proof is complete. �
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Example 6. Consider the symbol (µ, A), where

µ = (0, 2) and A =

 4s2 − 1
s2

−1 0
1

(s − 1)2
s

(s + 2)2
s

s − 5

 .

The matrix

A1 =


s2

4s2 − 1
0

0 0
−(s − 5)s

(s − 1)2(4s2 − 1)
s − 5
s


is a right proper rational inverse of A, and the matrix

A2 =


−s

s − 5
1 − 4s2

(s − 5)s
4s2 − 1
s(s + 2)2

+
1

(s − 1)2


is a maximal (proper rational) right annihilator of A.

By Theorem2, every trajectoryw can bewritten in a uniqueway
as

w = A2u + A1L
[

0
C1 + C2t

]

= A2u +

 0
0

C1L(1 − 5t) + C2L(t − 5t2)

 ,

where u ∈ U and C1, C2 are constants. Using the partial fraction
expansions

−s
s − 5

= −1 +
−5
s − 5

,

1 − 4s2

(s − 5)s
= −4 −

99/5
s − 5

−
1/5
s

,

4s2 − 1
s(s + 2)2

+
1

(s − 1)2
=

−1/4
s

+
17/4
s + 2

+
−15/2
(s + 2)2

+
1

(s − 1)2

and Example 3, we find

w =


−u − 5e5x ∗ u

−4u −
99
5

e5x ∗ u −
1
5

∫
u

−
1
4

∫
u +


xex +

17
4

e−2x
−

15
2

xe−2x


∗ u



+


0
0

C1(1 − 5x) + C2


x −

5x2

2


 .

4. More powerfulness and equivalence

The goal of this section is to define a partial order on symbols,
and then an equivalence between symbols.

We need to modify Hom(sµ, sν) for nonnegative integer
sequences µ and ν.

Given two sequences of nonnegative integers

µ = (m1, . . . ,mp) and ν = (n1, . . . , nr),

we call a relaxed homomorphism from sµ to sν any proper rational
matrix (xij) of size r × p such that

xij ∈ F[t]≤(ni−mj) ifmj ≥ 1.
(Notice that the entries x1j, . . . , xrj are unrestricted whenmj = 0.)
The set of all relaxed homomorphisms from sµ to sν will be denoted
by Hom(sµ, sν). Obviously,

Hom(sµ, sν) ⊆ Hom(sµ, sν).

In case, when all mj ≥ 1, we certainly have

Hom(sµ, sν) = Hom(sµ, sν).

Note that

Hom(sµ, sν) = {X ∈ Op×q
| XF[t]pµ ⊆ F[t]rν}.

Example 7.

Hom
[

1 0
0 s2

]
, s4


=


g1 g2


| g1 ∈ O, g2 ∈ F[t]≤2

.

It is clear that the composition of two relaxed homomorphisms
is a relaxed homomorphism. More precisely, if λ, µ, and ν are
sequences of nonnegative integers, then

X ∈ Hom(sλ, sµ),

Y ∈ Hom(sµ, sν) ⇒ YX ∈ Hom(sλ, sν).

This permits us to speak about relaxed isomorphisms. If µ
and ν are sequences of non-negative integers, we say that X ∈

Hom(sµ, sν) is a relaxed isomorphism if there exists a Y ∈

Hom(sν, sµ) such that XY = I and YX = I .
The following lemma is similar to Lemma 1; it characterizes

relaxed isomorphisms.

Lemma 5. Let µ and ν be sequences of nonnegative integers, and let
X ∈ Hom(sµ, sν). The following conditions are equivalent.

(a) X is a relaxed isomorphism.
(b) µ ≃ ν and X is biproper.

Proof. We may assume that both µ = (m1, . . . ,mp) and ν =

(n1, . . . , nr) are increasing sequences.
(a) ⇒ (b): Clearly, X is biproper and p = r . Let a be the number

of zeros inµ and b the number of zeros in ν, and suppose that a ≤ b.
Since n1 = · · · = na = 0 andma+1 = · · · = mp ≥ 1, we have

F[t]≤(ni−mj) = F[t]≤(−mj) = {0}

for i = 1, . . . , a and j = a + 1, . . . , p. It follows from this that X
has the form[
X1 0
⋆ X2

]
,

where X1 and X2 are square biproper rational matrices of size a and
p − a, respectively. If a < b, we would obtain that the first row in
X2 is zero, which is impossible, since X2 is biproper. Hence, a = b.

Let µ̃ = (ma+1, . . . ,mp) and ν̃ = (na+1, . . . , np). Because all
the entries in µ̃ are greater than or equal to 1,

Hom(sµ̃, sν̃) = Hom(sµ̃, sν̃).

It follows that X2 ∈ Hom(sµ̃, sν̃). It is clear that X2 is an isomor-
phism of sµ̃ onto sν̃ , and, applying Lemma 1, we get that µ̃ = ν̃.
Hence, µ = ν.

(a) ⇐ (b): In view of our assumption, we have µ = ν. Let again
a be the number of zeros in µ, and let µ̃ = (ma+1, . . . ,mp). Write
X as

X =

[
X1 0
Z X2

]
,

where X1 and X2 are square biproper rational matrices of size a
and p − a, respectively, and Z is a proper rational matrix of size
(p − a) × a. We have

Z ∈ Hom(Ia, sµ̃) and X2 ∈ Hom(sµ̃, sµ̃).
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(Here and in what follows, Ia denotes the identity matrix of size a).
Clearly,

X−1
=

[
X−1
1 0

−X−1
2 ZX−1

1 X−1
2

]
.

From Lemma 1, and from the fact thatHom(sµ̃, sµ̃) = Hom(sµ̃, sµ̃),
we obtain that X−1

2 ∈ Hom(sµ̃, sµ̃). Next, it is easily seen that
X−1
2 ZX−1

1 ∈ Hom(Ia, sµ̃). It follows that

X−1
∈ Hom(sµ, sµ).

Hence, X is an isomorphism.
The proof is complete. �

By the above lemma, the biproper rational matrices in
Hom(sµ, sµ) form a group; we denote it by Aut(sµ).

Example 8.

Aut
[

1 0
0 s2

]
=

[
u 0
v c

] u, v ∈ O, u ∉ tO, c ∈ F, c ≠ 0


.

The following says that the ‘‘plus-map’’ preserves homomor-
phisms.

Lemma 6. Let

µ = (m1, . . . ,mp) and ν = (n1, . . . , nr),

be two sequences of arbitrary integers. Then

Hom(sµ, sν) ⊆ Hom(sµ
+

, sν
+

).

Proof. Take any i and j, and consider two cases.
Case 1: mj ≤ 0. The j-th component of µ+ is 0, and therefore

the entries at the (i, j)-th position of matrices inHom(sµ
+

, sν
+

) are
unrestricted.

Case 2:mj ≥ 1. We have ni − mj ≤ max{ni, 0} − mj.
The proof is complete. �

Note that, if A and B are right biproper rational matrices, then
theremay exist only oneproper rationalmatrixX such thatB = XA.
(If such a matrix exists, then it is equal to BA1, where A1 is a right
proper rational inverse of A.)

We are now finally in a position to give the following definition.

Definition. Let (µ, A) and (ν, B) be symbols with the same signal
number. We shall say that (µ, A) is more powerful than (ν, B) and
write (µ, A) ≽ (ν, B), if

∃X ∈ Hom(sµ, sν) such that B = XA.

Example 9. The symbol(0, 2),

 4s2 − 1
s2

−1 0
1

(s − 1)2
s

(s + 2)2
s

s − 5




is more powerful than the symbol
4,
[
2s3 − 3s2 + 4

s(s − 1)2
−s3 − 4s2 + 2s − 3
(s − 2)2(2s − 1)

3
s − 5

]
.

Indeed, the matrix of the second symbol is obtained from that of
the first one by left multiplication by[

s
2s − 1

3
s

]
,

which belongs to Hom


1 0
0 s2


, s4

.

The definition of equivalence of symbols is obvious: two
symbols (with the same signal number) are equivalent if and only
if each of them is more powerful than the other.

Lemma 7. Let (µ, A) and (ν, B) be two symbols with the same signal
number. They are equivalent if and only if there is an isomorphism
X ∈ Hom(sµ, sν) such that B = XA.

Proof. The ‘‘If’’ part is obvious. To show the ‘‘Only if’’ part, assume
that (µ, A) ≽ (ν, B) and (ν, B) ≽ (µ, A). Then

B = XA and A = YB,

where X ∈ Hom(sµ, sν) and Y ∈ Hom(sν, sµ). We have

B = XYB and A = YXA;

hence, XY = I and YX = I . This means that X is an isomorphism.
The proof is complete. �

It is clear that equivalent symbols have the same input and
output numbers, the same transfer function, the same initial
condition space, and the sameMcMillan degree. In the next section,
we shall see that they have the same behavior as well.

5. Inclusion lemma and equivalence theorem

In this section, we state and prove our main results.
We need the following lemma. It says that the transfer function

of a symbol can be defined in terms of its behavior.

Lemma 8. Let (µ, A) be a symbol with signal number q, and let B be
its behavior and T its transfer function. Then

T = {g ∈ Oq
| gU ⊆ B}.

Proof. Let p denote the output number. If g ∈ T , then Ag = 0, and
therefore, for every u ∈ U, we have

A(gu) = (Ag)u = 0u = 0 ∈ F[t]pµ.

Hence, gu ∈ B. Conversely, suppose that g ∈ Oq is such that g ∉ T ,
i.e., Ag ≠ 0. It is clear that, if we take n to be sufficiently large, then

tnAg ∉ F[t]pµ.

Consequently, g(tn}) is not a trajectory of B.
The proof is complete. �

Theorem 3 (Inclusion Lemma). Let (µ, A) and (ν, B) be two symbols
(with the same signal number q). Then

Bh(µ, A) ⊆ Bh(ν, B) ⇔ (µ, A) ≽ (ν, B).

Proof. ‘‘⇒’’: By the previous lemma, the transfer function of (µ, A)
is contained in that of (ν, B). Let

TA = {g ∈ Oq
| Ag = 0} and TB = {g ∈ Oq

| Bg = 0},

and let TA → TB be the inclusion map. Letting p and r denote
the output numbers of (µ, A) and (ν, B), respectively, we have a
diagram

0 → TA → Oq A
→ Op

→0
↓ ||

0 → TB → Oq B
→ Or

→0,

where the rows are exact and the square is commutative. It
immediately follows from this that B = XA for some proper
rational matrix X .

Next, the hypothesis implies that

B(Bh(µ, A)) ⊆ B(Bh(ν, B)).
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Because

B(Bh(µ, A)) = XA(Bh(µ, A)) = XL(F[t]rµ) and

B(Bh(ν, B)) = L(F[t]rν),

we get

XL(F[t]pµ) ⊆ L(F[t]rν).

From this, we certainly have

XF[t]pµ ⊆ F[t]rν .

This means that X is a relaxed homomorphism from sµ to sν .
‘‘⇐’’: This is easy, and is left to the reader.
The proof is complete. �

The following is an immediate consequence of the above
theorem.

Corollary 2 (Equivalence Theorem). Two symbols determine the
same behavior if and only if they are equivalent.

Let G be a rational matrix, and let G = UsµA be itsWiener–Hopf
factorization. We call (µ+, A) a symbol of G.

A symbol of a rational matrix is not uniquely determined, of
course. But, as the following lemma says, it is uniquely determined
up to equivalence.

Lemma 9. If G = U1sµ1A1 and G = U2sµ2A2 are two Wiener–Hopf
factorizations of G, then (µ+

1 , A1) and (µ+

2 , A2) are equivalent.

Proof. By Lemma 2(b), there exists an isomorphism X ∈

Hom(sµ1 , sµ2) such that A2 = XA1. In view of Lemma 6, X ∈

Hom(sµ
+

1 , sµ
+

2 ). Because X is biproper, the lemma follows. �

If G is a rational matrix and if (µ, A) is its symbol, then, by
Theorem 1,

Bh(G) = Bh(µ, A).

Lemma 9 permits us to extend the notion ofmore powerfulness
to rational matrices. If G1 and G2 are two rational matrices, we say
that G1 is more powerful than G2 and write G1 ≽ G2, if a symbol
of G1 is more powerful than a symbol of G2. One can define in an
obvious way the equivalence between rational matrices.

Example 10. Let

G1 =

 4s2 − 1
s3

−1
s

0

−8s3 + 3s2 + 2s − 1
s2(s − 1)2

−4s3 − s2 − 4s − 4
(s + 2)2

−4s3

s − 5

 .

The Wiener–Hopf factorization of this matrix is

G1 =

[
1 0
s −4

] [
s−1 0
0 s2

] 4s2 − 1
s2

−1 0
1

(s − 1)2
s

(s + 2)2
s

s − 5

 ,

and therefore it is more powerful than

G2 = s4
[
2s3 − 3s2 + 4

s(s − 1)2
−s3 − 4s2 + 2s − 3
(s − 2)2(2s − 1)

3
s − 5

]
(see Example 9).

We leave to the reader the obvious reformulation of Inclusion
Lemma and Equivalence Theorem in terms of rational matrices.

We shall now try to derive from Theorem 3 the following
well-known result, which, to our knowledge, was first proved by
Schumacher [7].
Corollary 3. Let Q and R be two polynomial matrices with the same
column number. Then

Bh(Q ) ⊆ Bh(R) ⇔ ∃P ∈ F[s]•×• such that R = PQ .

Proof. ‘‘⇒’’: Let

Q = UsµA and R = VsνB

be Wiener–Hopf factorizations of our matrices. Then (µ, A) and
(ν, B) are symbols of Q and R, respectively. If Bh(Q ) ⊆ Bh(R), then,
by Inclusion Lemma, (µ, A) ≽ (ν, B). Hence, B = XA for some
X ∈ Hom(sµ, sν).

We need to prove that

X ∈ Hom(sµ, sν).

If we can prove this, it will follow that

R = VsνB = VsνXA = V (sνXtµ)sµA = V (sνXtµ)KQ ,

where K is a left polynomial inverse of U , and this will finish the
proof.

Let a be the number of the zero components in µ. Let 0a denote
the sequence of a zeros. Reordering (if necessary) the entries in µ,
we can write µ = (0a, λ). The matrix A can be written in the form

A =

[
A1
A2

]
.

Because sµA is a polynomial matrix, we can see from[
Ia 0
0 sλ

] [
A1
A2

]
= sµA

that A1 is a polynomial matrix. On the other hand, this is a proper
rational matrix. Hence, A1 is a scalar matrix.

We have X =

X1 X2


, where X1 ∈ Hom(Ia, sν) and

X2 ∈ Hom(sλ, sν). Because all the components of λ are positive,
Hom(sλ, sν) = Hom(sλ, sν), and therefore the matrix sνX2tλ is a
polynomial matrix in s.

By the hypothesis, B = X1A1 + X2A2. From this, we have

sνB = sνX1A1 + (sνX2tλ)sλA2.

Because A1 has a right scalar inverse, we can see from this equality
that sνX1 is a polynomial matrix in s. It follows that

sνXtµ =

sνX1 sνX2

 [Ia 0
0 tλ

]
=

[
sνX1
sνX2tν

]
is a polynomial matrix in s.

‘‘⇐’’: This is obvious.
The proof is complete. �

6. Conclusion

Given an integer sequence λ = (l1, . . . , lr), let
sλ = diag(sl1 , . . . , slr ) and λ+

= (max{l1, 0}, . . . ,max{lr , 0}).
If G is a rational matrix, then, according to the Wiener–Hopf

factorization theorem, it admits a factorization G = UsλA, where λ
is a sequence of integers, U is a left unimodular polynomial matrix,
and A is a right biproper rational matrix. It turns out that the pair
(λ+, A) is exactly what is needed for the definition of the behavior
ofG. (ThematrixU and the negative entries in λ are irrelevant.) It is
reasonable therefore to focus attention on pairs (µ, A), where µ is
a finite sequence of nonnegative integers and A is a right invertible
proper rational matrix such that the length of µ is equal to the
row number of A. Such pairs have been called symbols. For every
symbol (µ, A), we have defined the behavior Bh(µ, A). There is a
natural partial order on the set of symbols, denoted by ≽. And we
have shown that if (µ, A) and (ν, B) are two symbolswith the same
signal number, then
Bh(µ, A) ⊆ Bh(ν, B) ⇔ (µ, A) ≽ (ν, B).
This, in turn, leads to a condition for the equality of behaviors.
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Appendix. Connection with the Willems–Yamamoto approach

Given a rational matrix G with left coprime factorization G =

P−1Q , Willems and Yamamoto (see [4,5]) define the behavior of G
as the solution set of the differential equation

Q (∂)w = 0.

In this Appendix, we address the following question: Does there
exists a connection between the two definitions of the behavior of
a rational matrix?

Obviously,

Bh(G) ⊆ Bh(Q ).

We are going to show that, in the case when the Wiener-Hopf
indices of G are positive, Bh(Q ) is the differential closure of Bh(G),
that is, the smallest differentiation-invariant subspace containing
Bh(G).

The following example tells us that one should not expect the
existence of any relationship in the general case.

Example 11. The behavior of the rational function (s−1)−1s is {0};
the behavior of s, in the sense of Willems–Yamamoto, is the set of
all constant functions.

The following lemma implies that, for every rational matrix G,
we can find a full row rank rational matrix G1 that is strongly
equivalent to G and has a numerator that is equivalent to a
numerator of G.

Lemma 10. Let G be a rational matrix of size p × q and rank r, and
let G = P−1Q be its left coprime factorization. Then, there exist
a nonsingular polynomial matrix P1 of size r × r, a full row rank
polynomial matrix Q1 of size r × q, and left unimodular polynomial
matrices U, V of size p × r such that

• P1 and Q1 are left coprime;
• Q = UQ1;
• G = VG1, where G1 = P−1

1 Q1.

Proof. We can find a left unimodular polynomial matrix U and
a full row rank polynomial matrix Q1 such that Q = UQ1. By
hypothesis, there exist polynomial matrices X and Y such that
PX +QY = I . We then have PX +UQ1Y = I . This can be written as
U −P

 [Q1Y
−X

]
= I.

From this it follows that there are P1 and V such that the sequence

0 → F[s]r


P1
V


→ F[s]r ⊕ F[s]p


U −P


→ F[s]p → 0,

is an exact sequence. It follows also that this is a split exact
sequence, and that


Q1Y
−X


splits


U −P


.

We therefore have an isomorphism[
P1 Q1Y
V −X

]
: F[s]r ⊕ F[s]p → F[s]r ⊕ F[s]p.

It follows that there exist polynomial matrices A and B such that[
P1 Q1Y
V −X

] [
A B
U −P

]
= I and[

A B
U −P

] [
P1 Q1Y
V −X

]
= I.

We have, in particular, the following relations:

P1A + Q1YU = I, AP1 + BV = I, UP1 − PV = 0.
The first relation tells us that P1 and Q1 are left coprime.
Choosing a left polynomial inverse K of U , from the two other
relations, we get that (AKP + B)V = I; hence, V is left unimodular.
It is clear from UP1 = PV that P1 is nonsingular. Finally, we have
G = P−1Q = P−1UQ1 = VP−1

1 Q1.
The proof is complete. �

We want to present the following consequence (although we
shall not need it).

Corollary 4. Let G1 and G2 be two rational matrices (with the same
column number), and let G1 = P−1

2 Q1 and G2 = P−1
2 Q2 be their left

coprime factorizations. If G1 and G2 are strongly equivalent, then Q1
and Q2 are equivalent.

Proof. The lemma above allows us to reduce the proof to the case
when both G1 and G2 have full row rank. In this case, if G1 and
G2 are strongly equivalent, then G2 = UG1 for some unimodular
polynomial matrix U . We then have

G2 = UP−1
1 Q1 = (P1U−1)−1Q1.

This means that (P1U−1)−1Q1 is a left coprime factorization of G2.
One easily completes the proof. �

Remark. The corollary implies that, if G1 and G2 are strongly
equivalent, then they have the same behavior in the sense of
Willems and Yamamoto. The converse is not true, of course.
In Gottimukkala et al. [8], the reader can find a necessary and
sufficient condition for these behaviors to be equal.

We shall need also the following lemma, which is of some
independent interest.

Lemma 11. Let G and H be two rational matrices with the same
column number, and suppose that the Wiener–Hopf indices of G are
positive. Then

Bh(G) ⊆ Bh(H) ⇔ ∃P ∈ F[s]•×• such that H = PG.

Proof. Let

G = UsµA and H = VsνB

be Wiener–Hopf factorizations.
If Bh(G) ⊆ Bh(H), then (µ, A) ≽ (ν, B), and consequently there

is X ∈ Hom(µ, ν) such that B = XA. The hypothesis about the
Wiener–Hopf indices of G implies that Hom(µ, ν) = Hom(µ, ν).
So, sνXtµ is a polynomial matrix (in s). We have

H = VsνB = VsνXA = V (sνXtµ)sµA.

Selecting a left polynomial inverse K of U , we get sµA = KG.
Therefore,

H = V (sνXtµ)KG,

and this proves ‘‘⇒’’.
The implication ‘‘⇐’’ is obvious.
The proof is complete. �

Before proceeding further, we recall, from [6], the definition of
the relative dimension of a linear subspace in a ‘‘universum’’. Let
X ⊆ Uq be an F-linear subspace, and let

T = {g ∈ Oq
| gU ⊆ X}.

This is a submodule of Oq. Letting TU denote the set of all finite
sums Σguwith g ∈ T and u ∈ U, we clearly have

TU ⊆ X.

The dimension of X/TU as an F-linear space is called the relative
dimension of X.
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If G is a rational matrix, and if T is its transfer function, then it
can be easily shown that

{g ∈ Oq
| gU ⊆ Bh(G)} = T .

So the relative dimension of Bh(G) is equal to the McMillan degree
of G (see Theorem 3 in [3]).

Theorem 4. Let G be a rational matrix with positive Wiener-Hopf
indices, and let G = P−1Q be its left coprime factorization. Then, the
differential closure of Bh(G) coincides with Bh(Q ).

Proof. Lemma 10 allows us to reduce the proof to the full row rank
case.

We therefore shall assume that our matrix G has full row rank.
Let q be the column number of G, and let B denote the

differential closure of Bh(G). Obviously,

{f ∈ Oq
|Gf = 0} = {f ∈ Oq

|Qf = 0}.

Hence, G and Q have the same transfer function. Denote this
common transfer function by T . From

Bh(G) ⊆ B ⊆ Bh(Q ),

it is clear that

{g ∈ Oq
| gU ⊆ B} = T .

It is obvious that

dim(B/TU) ≤ dim(Bh(Q )/TU),

and thus B has finite relative dimension. Because B is differentia-
tion invariant, by Theorem 3 in [6], there is a full row rank polyno-
mial matrix Q1 such that

B = Bh(Q1).

Because Bh(G) ⊆ Bh(Q1), by Lemma 11, we can find a polynomial
matrix P such that Q1 = P1G. By the rank assumption, the matrix
P1 must be square nonsingular. Hence,

G = P−1
1 Q1.

We clearly have Bh(Q1) ⊆ Bh(Q ); hence Q = DQ1 for some
square polynomial matrix D. We have

P−1
1 Q1 = P−1Q ⇒ P−1

1 Q1 = P−1DQ1 ⇒ P−1
1

= P−1D ⇒ P = DP1.

We see that D is a common left divisor of P and Q . Because P and
Q are left coprime, D must be unimodular. So,

B = Bh(Q1) = Bh(Q ).

The proof is complete. �
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