

Contents lists available at SciVerse ScienceDirect

# **Applied Mathematics Letters**

journal homepage: www.elsevier.com/locate/aml



# Lifting discrete trajectories

# Vakhtang Lomadze\*

Andrea Razmadze Mathematical Institute, Tbilisi 0183, Georgia

#### ARTICLE INFO

Article history:
Received 9 December 2010
Received in revised form 3 August 2011
Accepted 30 January 2012

Keywords: Taylor expansion Formal series Mikusinski function

#### ABSTRACT

It is shown that every discrete trajectory of a polynomial matrix can be lifted to a continuous one.

© 2012 Elsevier Ltd. All rights reserved.

### 1. Introduction

The starting point of this note has been E. Borel's theorem, which states that every formal series can be represented as the Taylor expansion of some  $C^{\infty}$ -function. This beautiful fact (which we found in [1, Section 26]) gives rise to the following natural question: Can any discrete trajectory of a polynomial matrix be represented as the Taylor expansion of a continuous one?

More precisely, let s be an indeterminate and  $t = s^{-1}$ . Let I be an interval containing 0,  $\partial: C^{\infty}(I) \to C^{\infty}(I)$  the differentiation operator,  $\sigma: \mathbb{R}[[t]] \to \mathbb{R}[[t]]$  the backward shift operator. ( $\mathbb{R}[[t]]$  denotes the ring of formal series in t.) Define the operator  $T: C^{\infty}(I) \to \mathbb{R}[[t]]$  by the formula

$$T(w) = w(0) + w'(0)t + w''(0)t^2 + \cdots$$

This is surjective by Borel's theorem. Remark that  $T \circ \partial = \sigma \circ T$ .

Let now p and q be positive integers, and let  $R \in \mathbb{R}[s]^{p \times q}$ . In view of the above remark, we clearly have  $T \circ R(\partial) = R(\sigma) \circ T$ . It is immediate from this that T induces a map

$$\operatorname{Ker} R(\partial) \to \operatorname{Ker} R(\sigma)$$
.

In other words, T transforms continuous trajectories of R into discrete trajectories of R. The question is whether this map is surjective.

In this note we shall prove that the map is surjective; we shall find also its kernel.

Let O denote the ring of proper rational functions in s. (It is worth recalling that O coincides with  $\mathbb{R}(s) \cap \mathbb{R}[[t]]$ .) Let  $\mathbb{R}((t))$  be the field of Laurent formal series, and let  $\Pi_- : \mathbb{R}((t)) \to \mathbb{R}[s]$  be the canonical projection ("taking the polynomial part"), which is determined by the decomposition  $\mathbb{R}((t)) = \mathbb{R}[s] \oplus t\mathbb{R}[[t]]$ .

Let r be the rank of R, and put m = q - r. Choose once for all a proper rational matrix G such that

$$0 \to O^m \stackrel{G}{\to} O^q \stackrel{R}{\to} \mathbb{R}(s)^p \tag{1}$$

E-mail address: vakholoma@yahoo.com.

<sup>\*</sup> Tel.: +995 32 30 70 55.

is an exact sequence. Define the initial condition space X of R by setting

$$X = \mathbb{R}[s]^p \cap tRO^q$$
.

The space X will permit us to parameterize the trajectories of R (see the two lemmas below) and this justifies the terminology. Clearly, this is a finite-dimensional linear space over  $\mathbb{R}$ .

## 2. The differential operator $R(\partial)$

For every  $w \in C^{\infty}(I)$ , define its indefinite integral  $\int w$  by the formula

$$\left(\int w\right)(x) = \int_0^x w(\alpha)d\alpha \quad (x \in I).$$

There is a natural composition law between proper rational functions and  $C^{\infty}$ -functions. If  $g \in O$  and  $w \in C^{\infty}(I)$ , then the product gw is defined by the formula

$$gw = b_0w + b_1 \int w + b_2 \int^2 w + \cdots + b_n \int^n w + \cdots,$$

where  $b_i$  are the coefficients in the expansion of g at infinity. (The reader can easily see that the series above converges uniformly on every compact neighborhood of 0.) This makes  $C^{\infty}(I)$  a module over O. Because the integration operator is injective, this module is without torsion. Let us denote its fraction space by  $\mathcal{M}$ . Elements in  $\mathcal{M}$  will be referred to as Mikusinski functions. The canonical map  $w\mapsto w/1$  is injective, and this permits us to identify  $C^{\infty}(I)$  with a subset in  $\mathcal{M}$ . Every Mikusinski function can be represented as  $s^n w$ , where  $w\in C^{\infty}(I)$  and  $n\geq 0$ .

Let  $\hbar$  denote the function that is identically one on I, and put  $\delta = s\hbar$ , which is an analog of Dirac's delta-function.

The Newton–Leibniz formula for  $w \in C^{\infty}(I)$  can be rewritten in the form

$$sw = w' + w(0)\delta$$
.

This, by induction, yields a more general formula

$$s^{n}w = w^{(n)} + (s^{n-1}w(0) + \dots + w^{(n-1)}(0))\delta.$$
(2)

One can see that  $C^{\infty}(I) \cap \mathbb{R}[s]\delta = \{0\}$ , and thus we have

$$\mathcal{M} = \mathcal{C}^{\infty}(I) \oplus \Delta.$$

where  $\Delta = \mathbb{R}[s]\delta$ . Functions in  $\Delta$  should be interpreted as purely impulsive functions.

Using (2) (and linearity), one can easily see that

$$Rw = R(\partial)w + \Pi_{-}((R_{0}s^{n-1} + \dots + R_{n-1})T(w))\delta.$$
(3)

It follows from this that

$$\operatorname{Ker} R(\partial) = \{ w \in C^{\infty}(I)^q \mid Rw \in \Delta^p \}. \tag{4}$$

As we have already remarked,  $C^{\infty}(I)$  is a torsion free module, and hence flat. Therefore, tensoring (1) by  $C^{\infty}(I)$ , we obtain an exact sequence

$$0 \to C^{\infty}(I)^m \stackrel{G}{\to} C^{\infty}(I)^q \stackrel{R}{\to} \mathcal{M}^p.$$

In view of (4), this yields an exact sequence

$$0 \to C^{\infty}(I)^m \stackrel{G}{\to} \operatorname{Ker} R(\partial) \stackrel{R}{\to} \Delta^p.$$

Let us compute the image of Ker  $R(\partial) \stackrel{R}{\to} \Delta^p$ , i.e., the set  $\Delta^p \cap RC^{\infty}(I)^q$ .

Choose a full column rank rational matrix D such that  $RO^q = DO^r$ . We then have

$$\Delta^p \cap RC^{\infty}(I)^q = \mathbb{R}[s]^p \delta \cap DC^{\infty}(I)^r = \mathbb{R}[s]^p \delta \cap \mathbb{R}(s)^p \hbar \cap DC^{\infty}(I)^r.$$

We claim that  $\mathbb{R}(s)^p \hbar \cap DC^{\infty}(I)^r = DO^r \hbar$ . To show this, take a left inverse C of D. If  $w \in C^{\infty}(I)^r$  is such that  $Dw \in \mathbb{R}(s)^p \hbar$ , then  $w = CDw \in \mathbb{R}(s)^r \hbar$ . Because  $C^{\infty}(I)^r \cap \mathbb{R}(s)^r \hbar = O^r \hbar$ , it follows that  $w \in O^r \hbar$ . The claim is proved, and thus our image is equal to  $\mathbb{R}[s]^p \delta \cap DO^r \hbar$ . Further, we have

$$\mathbb{R}[s]^p \delta \cap DO^r \hbar = (s\mathbb{R}[s]^p \cap DO^r) \hbar = (\mathbb{R}[s]^p \cap tRO^q) \delta = X\delta.$$

So, the image, in which we are interested, is  $X\delta$ . There is an evident bijective map of  $X\delta$  onto X. Composing Ker  $R(\partial) \to X\delta$  with this map, we get a canonical  $\mathbb{R}$ -linear surjective map

$$\operatorname{Ker} R(\partial) \to X$$
.

(If w is a trajectory of R, then its image under this map is called the initial condition of w.)

We have proved the following.

**Lemma 1.** There is a canonical exact sequence

$$0 \to C^{\infty}(I)^m \stackrel{G}{\to} \operatorname{Ker} R(\partial) \to X \to 0.$$

(The interested reader is referred to [2], where a little more about the material of this section can be found.)

### 3. The difference operator $R(\sigma)$

Difference operators can be treated in a similar but easier manner.

Instead of  $C^{\infty}(I)$  we have to consider  $\mathbb{R}[[t]]$ , which certainly is a module over O. The role of the Mikusinski function space is played by  $\mathbb{R}((t))$ .

One can easily verify that

$$Rg = R(\sigma)g + \Pi_{-}((R_0s^{n-1} + \dots + R_{n-1})g)s.$$
 (5)

Consequently,

$$\operatorname{Ker} R(\sigma) = \{ w \in \mathbb{R}[[t]]^q \mid Rw \in \mathbb{R}[s]^p \}.$$

As above, we have the following.

**Lemma 2.** There is a canonical exact sequence

$$0 \to \mathbb{R}[[t]]^m \overset{G}{\to} \operatorname{Ker} R(\sigma) \to X \to 0.$$

#### 4. Lifting theorem

To begin with, remark that

$$T: C^{\infty}(I) \to \mathbb{R}[[t]]$$

is an O-homomorphism. Indeed, it is easily verified that if  $g \in O$  and  $w \in C^{\infty}(I)$ , then

$$(gw)^{(n)}(0) = b_0w^{(n)}(0) + b_1w^{(n-1)}(0) + \dots + b_nw(0),$$

where  $b_i$  are the coefficients in the expansion of g at infinity. It follows that

$$\sum_{n\geq 0} (gw)^{(n)}(0)t^n = \left(\sum_{i\geq 0} b_i t^i\right) \left(\sum_{j\geq 0} w^{(j)}(0)t^j\right).$$

Hence,

$$T(gw) = g(Tw).$$

Let  $C_n^{\infty}(I)$  be the space of flat functions at 0, i.e.,  $C^{\infty}$ -functions having zero Taylor expansion at 0.

**Theorem 1.** There is a short exact sequence

$$0 \to C_{fl}^{\infty}(I)^m \stackrel{G}{\to} \operatorname{Ker} R(\partial) \stackrel{T}{\to} \operatorname{Ker} R(\sigma) \to 0.$$

**Proof.** Consider the following diagram

One easily verifies that the first square in this diagram commutes. (Indeed, for any  $u \in C^{\infty}(I)^m$ , T(Gu) = GT(u).) In view of (3), the map  $\operatorname{Ker} R(\partial) \to X$  sends  $w \in \operatorname{Ker} R(\partial)$  to

$$\Pi_{-}((R_0s^{n-1}+\cdots+R_{n-1})T(w));$$

similarly, in view of (5), the map  $\operatorname{Ker} R(\sigma) \to X$  sends  $g \in \operatorname{Ker} R(\sigma)$  to

$$\Pi_{-}((R_0s^{n-1}+\cdots+R_{n-1})g).$$

We see that the second square also commutes. The rows are exact by the lemmas above. The left downward arrow is surjective by Borel's theorem, and its kernel is equal to  $C_n^{\infty}(I)^m$ .

It remains to use the snake lemma (see Proposition 2.10 in [3]).  $\Box$ 

By a linear time-invariant differential (resp. difference) system one understands a set that can be represented as the kernel of a linear differential (resp. difference) operator with constant coefficients (see [4]). One knows that there is a bijective correspondence between the two classes of linear systems. The following is an explicit formulation of this fact.

**Corollary 1.** *The mapping* 

$$\mathcal{B} \mapsto T(\mathcal{B})$$

establishes a bijective correspondence between linear time-invariant differential systems and linear time-invariant difference systems.

**Proof.** The surjectivity is immediate by Theorem 1. Assume that  $\mathcal{B}_1$  and  $\mathcal{B}_2$  are two linear time-invariant differential systems such that  $T(\mathcal{B}_1) = T(\mathcal{B}_2)$ . Let  $R_1$  and  $R_2$  be their "kernel" representations. By Theorem 1, Ker  $R_1(\sigma) = \text{Ker } R_2(\sigma)$ . By the discrete-time version of Equivalence Theorem (see [5]),

$$R_2 = AR_1$$
 and  $R_1 = BR_2$ 

for some polynomial matrices A and B. It immediately follows from this that  $\operatorname{Ker} R_1(\partial) = \operatorname{Ker} R_2(\partial)$ .  $\square$ 

# 5. Application

Lefschetz [6] introduced the notion of linearly compact vector spaces and extended the ordinary duality for finite-dimensional vector spaces to a duality between all vector spaces and all linearly compact vector spaces (see also [7]). Various results about linear time-invariant difference systems can be very easily deduced from the Lefschetz theory. In our opinion, Theorem 1 may serve as an effective tool in extending these results to linear time-invariant differential systems. To demonstrate how it works, let us prove Duality Theorem, which is fundamental in the "behavioral" systems theory of Willems.

Consider the canonical pairing  $\mathbb{R}[s]^q \times \mathbb{R}[[t]]^q \to \mathbb{R}$  defined by

$$\langle f, g \rangle$$
 = the free coefficient of  $f^{tr}(\sigma)g$ .

(The superscript "tr" stands for the transpose.) For any subset V in  $\mathbb{R}[s]^q$  or  $\mathbb{R}[[t]]^q$ , let  $V^{\perp}$  denote the orthogonal complement of V with respect to this pairing.

One can easily check that

$$(R^{\operatorname{tr}}\mathbb{R}[s]^p)^{\perp} = \operatorname{Ker} R(\sigma).$$

By the Lefschetz duality, we get

$$\operatorname{Ker} R(\sigma)^{\perp} = R^{\operatorname{tr}} \mathbb{R}[\mathfrak{s}]^{p}. \tag{6}$$

(See also Section 3 in [8].)

Recall that the annihilator of any dynamical system  $\mathcal{B} \subseteq C^{\infty}(I)^q$  is defined to be

$$Ann(\mathcal{B}) = \{ f \in \mathbb{R}[s]^q \mid f^{tr}(\partial)w = 0 \text{ for all } w \in \mathcal{B} \}.$$

**Theorem 2** (Duality Theorem). There holds

$$Ann(Ker(\partial)) = R^{tr} \mathbb{R}[s]^p.$$

**Proof.** The inclusion " $\supset$ " is obvious. (Indeed, for every  $f \in \mathbb{R}[s]^p$  and  $w \in \mathcal{B}$ , we have

$$(R^{\mathrm{tr}}f)^{\mathrm{tr}}(\partial)w = f^{\mathrm{tr}}(\partial)R(\partial)w = 0.)$$

The hard part is to prove " $\subseteq$ ". For this, take any  $f \in \text{Ann}(\text{Ker}\,(\partial))$ . In view of (6), to show that  $f \in R^{\text{tr}}\mathbb{R}[s]^p$ , it suffices to show that  $f \in \text{Ker}\,R(\sigma)^\perp$ . If  $g \in \text{Ker}\,(\sigma)$ , then (by Theorem 1) it can be written as g = Tw with  $w \in \text{Ker}\,R(\partial)$ . We therefore have

$$f^{\text{tr}}(\sigma)g = f^{\text{tr}}(\sigma)Tw = Tf^{\text{tr}}(\partial)w = T0 = 0;$$

whence,  $\langle f, g \rangle = 0$ .

An immediate consequence of Duality Theorem is the following corollary.

**Corollary 2** (Inclusion Lemma). Let  $R_1$  and  $R_2$  be two polynomial matrices with the same column number and with row numbers  $p_1$  and  $p_2$ , respectively. The following conditions are equivalent:

- (a)  $\operatorname{Ker} R_1(\partial) \subseteq \operatorname{Ker} R_2(\partial)$ ;
- (b)  $R_2^{\operatorname{tr}} \mathbb{R}[s]^{p_2} \subseteq R_1^{\operatorname{tr}} \mathbb{R}[s]^{p_1}$ ;
- (c)  $R_2 = AR_1$  for some polynomial matrix A.

Inclusion Lemma implies in turn the following important corollary.

**Corollary 3** (Equivalence Theorem). Let  $R_1$ ,  $R_2$ ,  $p_1$  and  $p_2$  be as above. The following conditions are equivalent:

- (a)  $\operatorname{Ker} R_1(\partial) = \operatorname{Ker} R_2(\partial)$ ;
- (b)  $R_2^{\text{tr}}\mathbb{R}[s]^{p_2} = R_1^{\text{tr}}\mathbb{R}[s]^{p_1};$ (c)  $R_2 = AR_1$  and  $R_1 = BR_2$  for some polynomial matrices A and B.

#### References

- [1] R. Meise, D. Vogt, Introduction to Functional Analysis, Oxford University Press, New York, 1997.
- V. Lomadze, When are linear differentiation-invariant spaces differential? Linear Algebra Appl. 424 (2007) 540–554.
   M. Atiyah, I.G. Macdonald, Introduction to Commutative Algebra, Addison-Wesley, Reading, MA, 1969.
   J.W. Polderman, J.C. Willems, Introduction to Mathematical Systems Theory, Springer, New York, 1998.

- [5] J.C. Willems, From time series to linear system—Part I. Finite dimensional linear time-invariant systems, Automatica 22 (1986) 561–580.
- [6] S. Lefschetz, Algebraic Topology, vol. XXVII, Am. Math. Soc. Coll. Publications, New York, 1942.
  [7] J. Dieudonné, Linearly compact spaces and double vector spaces over sfields, Amer. J. Math. 73 (1951) 13–19.
- [8] P.A. Fuhrmann, A study of behaviors, Linear Algebra Appl. 351–352 (2002) 303–380.