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It is shown that every discrete trajectory of a polynomial matrix can be lifted to a
continuous one.
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1. Introduction

The starting point of this note has been E. Borel’s theorem, which states that every formal series can be represented as
the Taylor expansion of some C∞-function. This beautiful fact (which we found in [1, Section 26]) gives rise to the following
natural question: Can any discrete trajectory of a polynomial matrix be represented as the Taylor expansion of a continuous
one?

More precisely, let s be an indeterminate and t = s−1. Let I be an interval containing 0, ∂ : C∞(I) → C∞(I) the
differentiation operator, σ : R[[t]] → R[[t]] the backward shift operator. (R[[t]] denotes the ring of formal series in t .)

Define the operator T : C∞(I) → R[[t]] by the formula

T (w) = w(0) + w′(0)t + w′′(0)t2 + · · · .

This is surjective by Borel’s theorem. Remark that T ◦ ∂ = σ ◦ T .
Let now p and q be positive integers, and let R ∈ R[s]p×q. In view of the above remark, we clearly have T ◦R(∂) = R(σ )◦T .

It is immediate from this that T induces a map

Ker R(∂) → Ker R(σ ).

In other words, T transforms continuous trajectories of R into discrete trajectories of R. The question is whether this map is
surjective.

In this note we shall prove that the map is surjective; we shall find also its kernel.
Let O denote the ring of proper rational functions in s. (It is worth recalling that O coincides with R(s)∩R[[t]].) Let R((t))

be the field of Laurent formal series, and let Π− : R((t)) → R[s] be the canonical projection (‘‘taking the polynomial part’’),
which is determined by the decomposition R((t)) = R[s] ⊕ tR[[t]].

Let r be the rank of R, and putm = q − r . Choose once for all a proper rational matrix G such that

0 → Om G
→ Oq R

→ R(s)p (1)
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is an exact sequence. Define the initial condition space X of R by setting

X = R[s]p ∩ tROq.

The spaceX will permit us to parameterize the trajectories ofR (see the two lemmasbelow) and this justifies the terminology.
Clearly, this is a finite-dimensional linear space over R.

2. The differential operator R(∂)

For every w ∈ C∞(I), define its indefinite integral


w by the formula
w


(x) =

 x

0
w(α)dα (x ∈ I).

There is a natural composition law between proper rational functions and C∞-functions. If g ∈ O and w ∈ C∞(I), then
the product gw is defined by the formula

gw = b0w + b1


w + b2

 2

w + · · · + bn

 n

w + · · · ,

where bi are the coefficients in the expansion of g at infinity. (The reader can easily see that the series above converges
uniformly on every compact neighborhood of 0.) This makes C∞(I) a module over O. Because the integration operator
is injective, this module is without torsion. Let us denote its fraction space by M. Elements in M will be referred to as
Mikusinski functions. The canonical map w → w/1 is injective, and this permits us to identify C∞(I) with a subset in M.
Every Mikusinski function can be represented as snw, where w ∈ C∞(I) and n ≥ 0.

Let } denote the function that is identically one on I , and put δ = s}, which is an analog of Dirac’s delta-function.
The Newton–Leibniz formula for w ∈ C∞(I) can be rewritten in the form

sw = w′
+ w(0)δ.

This, by induction, yields a more general formula

snw = w(n)
+ (sn−1w(0) + · · · + w(n−1)(0))δ. (2)

One can see that C∞(I) ∩ R[s]δ = {0}, and thus we have

M = C∞(I) ⊕ ∆,

where ∆ = R[s]δ. Functions in ∆ should be interpreted as purely impulsive functions.
Using (2) (and linearity), one can easily see that

Rw = R(∂)w + Π−((R0sn−1
+ · · · + Rn−1)T (w))δ. (3)

It follows from this that

Ker R(∂) = {w ∈ C∞(I)q | Rw ∈ ∆p
}. (4)

Aswe have already remarked, C∞(I) is a torsion freemodule, and hence flat. Therefore, tensoring (1) by C∞(I), we obtain
an exact sequence

0 → C∞(I)m
G

→ C∞(I)q
R

→ Mp.

In view of (4), this yields an exact sequence

0 → C∞(I)m
G

→ Ker R(∂)
R

→ ∆p.

Let us compute the image of Ker R(∂)
R

→ ∆p, i.e., the set ∆p
∩ RC∞(I)q.

Choose a full column rank rational matrix D such that ROq
= DOr . We then have

∆p
∩ RC∞(I)q = R[s]pδ ∩ DC∞(I)r = R[s]pδ ∩ R(s)p} ∩ DC∞(I)r .

We claim that R(s)p} ∩ DC∞(I)r = DOr}. To show this, take a left inverse C of D. If w ∈ C∞(I)r is such that Dw ∈ R(s)p},
then w = CDw ∈ R(s)r}. Because C∞(I)r ∩ R(s)r} = Or}, it follows that w ∈ Or}. The claim is proved, and thus our image
is equal to R[s]pδ ∩ DOr}. Further, we have

R[s]pδ ∩ DOr} = (sR[s]p ∩ DOr)} = (R[s]p ∩ tROq)δ = Xδ.

So, the image, inwhichwe are interested, is Xδ. There is an evident bijectivemap of Xδ onto X . Composing Ker R(∂) → Xδ
with this map, we get a canonical R-linear surjective map

Ker R(∂) → X .

(If w is a trajectory of R, then its image under this map is called the initial condition of w.)
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We have proved the following.

Lemma 1. There is a canonical exact sequence

0 → C∞(I)m
G

→ Ker R(∂) → X → 0.

(The interested reader is referred to [2], where a little more about the material of this section can be found.)

3. The difference operator R(σ)

Difference operators can be treated in a similar but easier manner.
Instead of C∞(I)we have to consider R[[t]], which certainly is amodule over O. The role of theMikusinski function space

is played by R((t)).
One can easily verify that

Rg = R(σ )g + Π−((R0sn−1
+ · · · + Rn−1)g)s. (5)

Consequently,

Ker R(σ ) = {w ∈ R[[t]]q | Rw ∈ sR[s]p}.

As above, we have the following.

Lemma 2. There is a canonical exact sequence

0 → R[[t]]m
G

→ Ker R(σ ) → X → 0.

4. Lifting theorem

To begin with, remark that

T : C∞(I) → R[[t]]

is an O-homomorphism. Indeed, it is easily verified that if g ∈ O and w ∈ C∞(I), then

(gw)(n)(0) = b0w(n)(0) + b1w(n−1)(0) + · · · + bnw(0),

where bi are the coefficients in the expansion of g at infinity. It follows that
n≥0

(gw)(n)(0)tn =


i≥0

bit i


j≥0

w(j)(0)t j


.

Hence,

T (gw) = g(Tw).

Let C∞

fl (I) be the space of flat functions at 0, i.e., C∞-functions having zero Taylor expansion at 0.

Theorem 1. There is a short exact sequence

0 → C∞

fl (I)m
G

→ Ker R(∂)
T

→ Ker R(σ ) → 0.

Proof. Consider the following diagram

0 → C∞(I)m → Ker R(∂) → X → 0
T ↓ T ↓ ||

0 → R[[t]]m → Ker R(σ ) → X → 0
.

One easily verifies that the first square in this diagram commutes. (Indeed, for any u ∈ C∞(I)m, T (Gu) = GT (u).) In view of
(3), the map Ker R(∂) → X sends w ∈ Ker R(∂) to

Π−((R0sn−1
+ · · · + Rn−1)T (w));

similarly, in view of (5), the map Ker R(σ ) → X sends g ∈ Ker R(σ ) to

Π−((R0sn−1
+ · · · + Rn−1)g).

We see that the second square also commutes. The rows are exact by the lemmas above. The left downward arrow is
surjective by Borel’s theorem, and its kernel is equal to C∞

fl (I)m.
It remains to use the snake lemma (see Proposition 2.10 in [3]). �
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By a linear time-invariant differential (resp. difference) system one understands a set that can be represented as the
kernel of a linear differential (resp. difference) operator with constant coefficients (see [4]). One knows that there is a
bijective correspondence between the two classes of linear systems. The following is an explicit formulation of this fact.

Corollary 1. The mapping

B → T (B)

establishes a bijective correspondence between linear time-invariant differential systems and linear time-invariant difference
systems.

Proof. The surjectivity is immediate by Theorem 1. Assume that B1 and B2 are two linear time-invariant differential
systems such that T (B1) = T (B2). Let R1 and R2 be their ‘‘kernel’’ representations. By Theorem 1, Ker R1(σ ) = Ker R2(σ ).
By the discrete-time version of Equivalence Theorem (see [5]),

R2 = AR1 and R1 = BR2

for some polynomial matrices A and B. It immediately follows from this that Ker R1(∂) = Ker R2(∂). �

5. Application

Lefschetz [6] introduced the notion of linearly compact vector spaces and extended the ordinary duality for
finite-dimensional vector spaces to a duality between all vector spaces and all linearly compact vector spaces (see also [7]).
Various results about linear time-invariant difference systems can be very easily deduced from the Lefschetz theory. In our
opinion, Theorem 1 may serve as an effective tool in extending these results to linear time-invariant differential systems.
To demonstrate how it works, let us prove Duality Theorem, which is fundamental in the ‘‘behavioral’’ systems theory of
Willems.

Consider the canonical pairing R[s]q × R[[t]]q → R defined by

⟨f , g⟩ = the free coefficient of f tr(σ )g.

(The superscript ‘‘tr’’ stands for the transpose.) For any subsetV inR[s]q orR[[t]]q, letV⊥ denote the orthogonal complement
of V with respect to this pairing.

One can easily check that

(RtrR[s]p)⊥ = Ker R(σ ).

By the Lefschetz duality, we get

Ker R(σ )⊥ = RtrR[s]p. (6)

(See also Section 3 in [8].)
Recall that the annihilator of any dynamical system B ⊆ C∞(I)q is defined to be

Ann(B) = {f ∈ R[s]q | f tr(∂)w = 0 for all w ∈ B}.

Theorem 2 (Duality Theorem). There holds

Ann(Ker (∂)) = RtrR[s]p.

Proof. The inclusion ‘‘⊇’’ is obvious. (Indeed, for every f ∈ R[s]p and w ∈ B, we have

(Rtrf )tr(∂)w = f tr(∂)R(∂)w = 0.)

The hard part is to prove ‘‘⊆ ’’. For this, take any f ∈ Ann(Ker (∂)). In view of (6), to show that f ∈ RtrR[s]p, it suffices to
show that f ∈ Ker R(σ )⊥. If g ∈ Ker (σ ), then (by Theorem 1) it can be written as g = Tw with w ∈ Ker R(∂). We therefore
have

f tr(σ )g = f tr(σ )Tw = Tf tr(∂)w = T0 = 0;

whence, ⟨f , g⟩ = 0. �

An immediate consequence of Duality Theorem is the following corollary.

Corollary 2 (Inclusion Lemma). Let R1 and R2 be two polynomial matrices with the same column number and with row numbers
p1 and p2, respectively. The following conditions are equivalent:

(a) Ker R1(∂) ⊆ Ker R2(∂);
(b) Rtr

2 R[s]p2 ⊆ Rtr
1 R[s]p1 ;

(c) R2 = AR1 for some polynomial matrix A.
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Inclusion Lemma implies in turn the following important corollary.

Corollary 3 (Equivalence Theorem). Let R1, R2, p1 and p2 be as above. The following conditions are equivalent:

(a) Ker R1(∂) = Ker R2(∂);
(b) Rtr

2 R[s]p2 = Rtr
1 R[s]p1 ;

(c) R2 = AR1 and R1 = BR2 for some polynomial matrices A and B.
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