
Systems & Control Letters 94 (2016) 25–30
Contents lists available at ScienceDirect

Systems & Control Letters

journal homepage: www.elsevier.com/locate/sysconle

Proper representations of (multivariate) linear differential systems
Vakhtang Lomadze
A. Razmadze Mathematical Institute, Mathematics Department of I. Javakhishvili State University, Georgia

a r t i c l e i n f o

Article history:
Received 10 December 2015
Received in revised form
4 May 2016
Accepted 5 May 2016
Available online 30 May 2016

Keywords:
LTI differential system
Graded and filtered modules
Regularity at infinity
WPD property
Proper representation

a b s t r a c t

A proper representation of a linear differential system is a representation with no singularity at infinity.
It is shown that such a representation always exists. It turns out that for proper representations having
minimal number of rows is equivalent to havingminimal total rowdegree. One is led therefore to a natural
definition of the notion of minimality. What is remarkable is that a minimal proper representation is
uniquely determined up to premultiplication by a unimodular polynomial matrix of special form. This
uniqueness result allows, in particular, to introduce important integer invariants.
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1. Introduction

Throughout, F is the field of real or complex numbers, n and q
are fixed positive integers, s = (s1, . . . , sn) is a sequence of in-
determinates, and s0 is an extra (‘‘homogenizing’’) indeterminate.
We let S = F[s] and T = F[s0, s], and denote by U the space of
C∞-functions (or distributions) defined on some domain of Rn.

Proper polynomial matrices are polynomial matrices (with
entries in S) that behave well at infinity. They play a significant
role in the classical one-dimensional linear systems theory, andwe
claim that their role in higher dimensions must be analogous. (The
infinity is the complement of the affine space An to the projective
space Pn, that is, the hyperplane in Pn defined by the equation
s0 = 0.)

Assume that we have a linear time-invariant (LTI) differential
systemB ⊆ Uq, and assume that it is represented by a polynomial
matrix R ∈ Sp×q, so that

B = KerR(∂).

As is well-known, the submodule RtrSp ⊆ Sq is independent
of the choice of R and is an intrinsic invariant of B; moreover,
by Oberst’s duality, this is a full invariant. There is a procedure,
called homogenization (and denoted here by the superscript ‘‘h’’),
that produces homogeneous things from non-homogeneous ones.
Homogenizing the submodule RtrSp ⊆ Sq, we get a homogeneous
submodule (RtrSp)h ⊆ T q. Like RtrSp, thismodule also is an intrinsic
full invariant. Alternatively, one can homogenize first R and then
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take the homogeneous submodule (Rh)trT p
⊆ T q. The latter,

however, depends on R and is not an invariant of B. One has

(Rh)trT p
⊆ (RtrSp)h.

The equality holds if and only if s0 is not a zero divisor on
the quotient module T q/(Rh)trT p. In our opinion, representations
having this property are of primary importance, and we call them
proper.

We think that it is not proper to represent an LTI differential
system via an improper polynomial matrix since it does not
provide an adequate description at infinity.

Remark. As explained in the concluding section, properness
should be interpreted as the property of ‘‘controllability at infin-
ity’’.

In this paper, we prove that proper representations always
exist. Next, we show that for proper representations there is a
good notion of minimality. Namely, we show that if R is a proper
representation of an LTI differential system B, then the following
two conditions are equivalent:

(a) R has theminimumpossible number of rows (among all proper
representations of B);

(b) Rhas theminimumpossible total rowdegree (among all proper
representations of B).

Proper representations satisfying these conditions are called
minimal. The uniqueness result that we prove states that minimal
proper representations are uniquely determined up to, the so-
called, Brunovsky equivalence.
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Remark. As is well-known, in dimension 1, an LTI differential
system has a full row rank proper representation, which certainly
is a minimal proper representation. This is unfortunately not the
case in higher dimensions; even more, an LTI differential system
may have a full row rank representation, but not a full row rank
proper representation (see Example 10 in Section 6).

For every d ∈ Z, we shall write S≤d to denote the space of poly-
nomials (in S) of degree ≤ d and Td for the space of homogeneous
polynomials (in T ) of degree d. It is worth noting that S≤d = {0}
and Td = {0} for negative d. (In Section 6, we shall need homoge-
neous polynomials in S as well, and Sd will stand for the space of
all homogeneous polynomials that have degree d.) For a positive
integer p, we write [1, p] for the set {1, . . . , p}.

This article can be viewed as an attempt to generalize Section
X in Willems [1] to higher dimensions. We remark also that much
of material presented here is adapted from [2] (which, in turn, is
based on [3]).

2. Preliminaries on graded and filtered modules

Powerful tools for the study of LTI differential systems are
S-modules. But S-modules disregard the infinity, and therefore
are useless when one wants to carry out the study at infinity.
Graded T -modules have the advantage that they allow to study
LTI differential systems (simultaneously) both on the finite domain
and at the infinity.

A graded module over T is a module M together with a
gradation, i.e., a sequence M0,M1,M2, . . . of F-linear subspaces of
M such that

M =


d≥0

Md and skMd ⊆ Md+1 ∀k, d.

(For d < 0, one puts Md = {0}.) The elements of Md are called the
homogeneous elements of M of degree d. A submodule N ⊆ M is
called a graded submodule ofM if N =


(N ∩ Md).

For a graded T -module M and a nonnegative integer k, one
denotes by M(−k) the graded T -module whose homogeneous
components are defined by

M(−k)d = Md−k.

Example 1. Let p be a positive integer. Then, a function a : [1, p]
→ Z+ determines on T p a gradation consisting of the spaces

T p(−a)d = {f ∈ T p
| deg(fi) = d − a(i)} (d ≥ 0).

Themodule T p equippedwith this gradation is denoted by T p(−a).
Notice that

T p(−a) = T (−a(1)) ⊕ · · · ⊕ T (−a(p)).

A homomorphism of graded modules M → N is a module
homomorphism u : M → N such that u(Md) ⊆ Nd for all d ≥ 0.

Example 2. Let a and b be nonnegative integers. Homomorphisms
from T (−a) to T (−b) are exactly multiplications by homogeneous
polynomials of degree a − b. That is,

Hom(T (−a), T (−b)) = Ta−b.

A polynomial matrix with entries in T is called column-
homogeneous if all the entries in each column are homogeneous
and have the same degree.

Example 3. A column-homogeneous polynomial matrix H of size
q × p and with column degree function a determines a homomor-
phism of graded modules

H : T p(−a) → T q.
The homogenization in degree d is the bijective linear map θd :

S≤d → Td defined by the formula

θd(f ) = sd0f (s/s0).

(Here and below s/s0 stands for (s1/s0, . . . , sn/s0).)

Example 4. Let n = 2 and f = 2s31s2 + 1. Then

θ4(f ) = 2s31s2 + s40 and θ5(f ) = 2s0s31s2 + s50.

If A ⊆ Sq is a submodule, the homogenization Ah of A is defined
to be

Ah
=


d≥0

Ah
d,

where Ah
d = θd(A≤d). This is the smallest graded submodule of T q

that contains A.
The dehomogenization is the operator T → S defined by

u(s0, s) → u(1, s).

It is worth noting that if d ≥ 0, then

∀u ∈ Td, θd(u(1, s)) = u and
∀f ∈ S≤d, (θdf )(1, s) = f .

(1)

If B ⊆ T q is a graded submodule, the dehomogenization Bdh of
B is its image under the dehomogenization operator, i.e.,

Bdh
= {u(1, s)| u ∈ B}.

This is a submodule of Sq.
We pass now to filtered S-modules, which are more natural

tools than graded T -modules. (However, graded modules are
superior from the purely technical point of view.) The point is
that the modules associated with LTI differential systems have the
structure of a filtered S-module.

LetM be amodule over S. A filtration onM is an ascending chain

M≤0 ⊆ M≤1 ⊆ M≤2 ⊆ · · ·

of linear subspaces ofM such that

M =


d≥0

M≤d and skM≤d ⊆ M≤d+1 ∀k, d.

Amodule with a filtration is called a filtered module. A submodule
N of a filtered moduleM is a filtered module with the filtration

N≤d = N ∩ M≤d, d ≥ 0.

(For d < 0, put M≤d = {0}.) If M is a filtered module and k a non-
negative integer, we denote byM[−k] the filteredmodulewith the
filtration defined by

M[−k]≤d = M≤d−k.

Example 5. Let p be a positive integer. Then, a function a : [1, p]
→ Z+ determines on Sp a filtration consisting of the spaces

Sp[−a]≤d = {f ∈ Sp| deg(fi) ≤ d − a(i)} (d ≥ 0).

The module Sp equipped with this filtration is denoted by Sp[−a].
Notice that

Sp[−a] = S[−a(1)] ⊕ · · · ⊕ S[−a(p)].

A homomorphism of filtered modules M → N is a module ho-
momorphism u : M → N such that

∀d ≥ 0, u(M≤d) ⊆ N≤d.

Notice that Ker(ϕ) is a graded submodule of M and Im(ϕ) is a
graded submodule of N .
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Example 6. Let a and b be nonnegative integers. Homomorphisms
from S[−a] to S[−b] are exactly multiplications by polynomials of
degree ≤ a − b. That is,

Hom(S[−a], S[−b]) = S≤a−b.

Example 7. A polynomial matrix G of size q × p and with column
degree function adetermines a homomorphismof filteredmodules

G : Sp[−a] → Sq.

One has the obvious notion of isomorphisms of filtered
modules.

Lemma 1. Let a1 : [1, p1] → Z+ and a2 : [1, p2] → Z+ be two
functions. If

Sp1 [−a1] ≃ Sp2 [−a2],

then p1 = p2 and a1 = a2 (up to permutation).
Proof. See Lemma 1 in [3]. �

For each p ≥ 1, one denotes by GL(p, S) the group of
unimodular matrices of size p. The following lemma is immediate
from Example 6.

Lemma 2. Let a : [1, p] → Z+ be given. Then,

Aut(Sp[−a]) = {(uij) ∈ GL(p, S)| deg(uij) ≤ a(j) − a(i) ∀i, j}.

3. Regularity at infinity and the WPD property

Given a graded submodule B ⊆ T q, we say that B is regular (or
non-singular) at infinity if s0 is not a zero divisor on the module
T q/B, or equivalently, if the linear maps

T q
d /Bd

s0
→ T q

d+1/Bd+1, d ≥ 0
are injective, that is,
∀d ≥ 0 (f ∈ T q

d and s0f ∈ Bd+1 ⇒ f ∈ Bd).

Lemma 3. The mapping

A → Ah

establishes a one-to-one correspondence between submodules of S q

and graded submodules of T q that are regular at infinity.
Proof. Let A be a submodule of Sq. We claim that Ah is regular at
infinity. Indeed, let d ≥ 0 and suppose that u ∈ T q

d is such that
s0u ∈ Ah

d+1. It is clear that u(1, s) has degree ≤ d and belongs to A.
Thus, we have u(1, s) ∈ A≤d. By (1), u is the d-homogenization of
u(1, s), and therefore belongs to Ah

d. The claim is proved.
Now, let B be a graded submodule of T q that is regular at infinity,

and put A = Bdh. We claim that B = Ah. Indeed, let again d ≥ 0. In
view of (1), it is clear that Bd ⊆ Ah

d. To show the inverse inclusion,
take any element in Ah

d andwrite it as θd(f )with f ∈ A≤d. There is a
sufficiently large k ≥ 0 and there is u ∈ Bd+k such that f = u(1, s).
Using once again (1), we get

sk0θd(f ) = sk0s
d
0f (s/s0) = sd+k

0 f (s/s0)
= θd+k(f ) = θd+k(u(1, s)) = u ∈ Bd+k.

From this, since sk0 is not a zero divisor on T q/B, we get that θd(f ) ∈

Bd. The claim is proved.
The lemma follows. �

Let G be a polynomial matrix of size q × p and with column
degree function a. Define the homogenization Gh of G by setting
Gh

= G(s/s0)sa0,

where sa0 stands for the diagonal matrix with sa(1)0 , . . . , sa(p)0 on the
diagonal.
Associated with G there are two graded submodules in T q,
namely,

GhT p and (GSp)h.

Remark. Gh determines a homomorphism T p(−a) → T q, and so
GhT p

= GhT p(−a) is indeed a graded submodule of T q.

Using the relations G(Sp[−a]≤d) ⊆ (GSp)≤d, one can easily see
that

GhT p
⊆ (GSp)h.

The following simple example tells us that the equality does not
hold always.

Example 8. Let n = 1, and consider the matrix G =


1 s
0 1


.

This is a unimodular matrix, and hence GS2 = S2. Consequently,
(GS2)h = T 2. However, the homogenization of G is Gh

=


1 s
0 s0


,

and we have

GhT 2
= T ⊕ s0T ≠ T 2.

Definition. Say thatG is regular at infinity if the graded submodule

GhT p
⊆ T q

is regular at infinity.

Definition. Say that G has the weak predictable degree (WPD)
property if the linear map

GSp[−a]≤d = (GSp)≤d ∀d ≥ 0.

Theorem 1. The following three conditions are equivalent:

(a) G is regular at infinity;
(b) GhT p

= (GSp)h;
(c) G has theWPD property.

Proof. (a) ⇔ (b) follows from Lemma 3 (and the equality
(GhT p(−a))dh = GSp).

(b) ⇔ (c) follows from the commutative diagrams

Sp[−a]≤d
G

→ Sq
≤d

↓ ↓

T p(−a)d
Gh
→ T q

d

.

(The left vertical arrow here is diag(θd−a1 , . . . , θd−ap) and the right
one is θ

q
d .)

The proof is complete. �

4. The integer invariants

Given a filtered moduleM , for every d ≥ 1, we define

Γd(M) =
M≤d

M≤d−1 + s1M≤d−1 + · · · + snM≤d−1
.

This is a linear space over F.

Example 9.

Γd(S[−k]) =


F when d = k;

{0} when d ≠ k.

Lemma 4. If A ⊆ Sq is a submodule, then all the linear spaces Γd(A)
have finite dimension. Moreover, they all are trivial except for a finite
number.
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Proof. See Theorem 1 in [2]. �

Recall that if B ⊆ Uq is an LTI differential system, then its
associated module A is defined by setting

A = {f ∈ F[s]q| f tr(∂)w = 0 ∀w ∈ B}.

(If R is a representation of B, then A = ImRtr .)
The previous lemma permits us to introduce very important

integer invariants.

Definition. Let B be an LTID system, and let A be its associated
module. For every d ≥ 0, set

γB(d) = dim(Γd(A)).

Following Willems [1], call γB(d), d ≥ 0 the structural indexes of
B. Define π(B) and δ(B) by setting

π(B) =


γB(d) and δ(B) =


dγB(d).

Call the integers d, for which γB(d) ≠ 0, observability indices.
Every observability index d is counted with multiplicity; the
multiplicity is γB(d).

5. Proper representations

Given a function a : [1, p] → Z+, let Γ (a) denote the group of
unimodular polynomial matrices (uij) ∈ GL(p, S) such that

∀i, j deg(uij) ≤ a(i) − a(j).

Remark. In dimension 1, this group is well-known for systems
community (see, for example, Fuhrmann and Willems [4]).

Remark. Assume that a is increasing. Let

d1 < · · · < dr

be its different values and, for each k ∈ [1, r], let γ (k) be the
number of times that a takes the value dk. Then Γ (a) consists of
matrices
U11 0 0 · · · 0
U21 U22 0 · · · 0
U31 U32 U33 · · · 0
...

...
...

...
...

Ur1 Ur2 Ur3 · · · Urr


with Uij ∈ (S≤di−dj)

γ (i)×γ (j) and U11,U22, . . . ,Urr nonsingular.
(Compare with unimodular matrices in Section X, Willems [1].)

Two polynomial matrices R1 and R2 with the same row number
p are said to be Brunovsky equivalent if there exist a : [1, p] →

Z+,U ∈ Γ (a), and permutation matrices P1, P2 such that

P2R2 = UP1R1.

Let u : M → N be a homomorphism of filtered modules such
that the linear maps

M≤d → N≤d, d ≥ 0

are surjective. Then, clearly, the linear maps

Γd(u) : Γd(M) → Γd(N), d ≥ 0

also are surjective. Say that u is a quasi-isomorphism when all
these maps are bijective.

A polynomial matrix R is called proper if its transpose is regular
at infinity.
Theorem 2. Let B be an LTI differential system, and let A be its
associated module. Then, there exists a proper representation R such
that

Rtr
: Sp[−a] → A,

where p is the row number of R and a the row degree function, is
a quasi-isomorphism. Moreover, such a representation is uniquely
determined up to Brunovsky equivalence.

Proof. Follows from Theorem 2 in [2]. �

Definition. Any R satisfying the condition of Theorem 2 is called a
minimal proper representation of B.

If R is a polynomial matrix, we let π(R) denote the number of
rows in R and δ(R) the total row degree of R (i.e., the sum of all its
row degrees).

Theorem 3. Let B be an LTI differential system, and let R be its proper
representation. Then,

π(B) ≤ π(R) and δ(B) ≤ δ(R).

Moreover, the following three conditions are equivalent:

(a) R is minimal;
(b) π(R) = π(B);
(c) δ(R) = δ(B).

Proof. The proof is the same as that of Theorem 3 in [2]. Since it is
very easy, we reproduce it.

Let a denote the row degree function of R. For each d ≥ 0, let
γR(d) denote the number of values of a equal to d. Then

π(R) =


γR(d) and δ(R) =


dγR(d).

In view of Example 9, we have: γR(d) = dimΓd(Sp[−a]). Because
the linear map Γd(Sp[−a]) → Γd(A) is surjective, γR(d) ≥ γB(d).
Consequently,

π(R) =


γR(d) ≥


γB(d) = π(B) and

δ(R) =


dγR(d) ≥


dγB(d) = δ(B).

Certainly, (b) and (c) hold if and only if γR(d) = γB(d) for every d.
But this, in turn, is equivalent to bijectivity of all the linear maps
Γd(Sq[−a]) → Γd(A).

The proof is complete. �

As a consequence, we have the following two characterizations
of minimality.

Corollary 1. (a) A minimal proper representation is a one that has
minimal number of rows (among all proper representations).

(b) A minimal proper representation is a one that has minimal total
row degree (among all proper representations).

Needless to say that the row degrees of a minimal proper
representation coincide with the observability indices.

6. Illustrative examples

Before we consider examples, wewant to give the following re-
mark. Assume we have an LTI differential system B ⊆ Uq, and
assume further that R is its proper representation. Let d1, . . . , dr
be the different row degrees of R, and let γ1, . . . , γr be their ‘‘mul-
tiplicities’’. The transpose matrix G = Rtr determines a homomor-
phism of filtered modules

G : S[−d1]γ1 ⊕ · · · ⊕ S[−dr ]γr → Sq.
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Put A = ImG. For every d ≥ 0, the linear map

Γd(⊕S[−di]γi)
G

→ Γd(A)

is surjective (because R is proper). This map automatically is bijec-
tive when d differs from all of d1, . . . , dr since Γd(S[−di]) = {0}.
When d = di, we have: Γd(⊕S[−di]γi) = Fγi . So, if one wants to
prove minimality of R, it suffices to check injectivity of the linear
maps

Fγi G
→ Γdi(A), i = 1, . . . , r.

Example 10. Let n = 2, and let B ⊆ U2 be the solution set of
w1 + ∂2

1w2 = 0
∂2w2 = 0 .

A representation of B is
1 s21
0 s2


.

This is a full row rank representation. However, it is not proper; its
transpose
1 0
s21 s2


: S[−2] ⊕ S[−1] → S2

does not have the WPD property. (Indeed, for example,
s2
0


=


1 0
s21 s2


s2

−s21


∈ A≤1,

but it does not belong to

1 0
s21 s2


({0} ⊕ F).)

The equation above is equivalent tow1 + ∂2
1w2 = 0

∂2w1 = 0
∂2w2 = 0

,

and consequently the polynomial matrix

R =

1 s21
s2 0
0 s2


also is a representation. Its transpose

G =


1 s2 0
s21 0 s2


: S[−2] ⊕ S[−1]2 → S2

has theWPDproperty. Indeed, assume that


x
s21x + s2y


is an element

in A≤d. Then

x ∈ S≤d and y ∈ S≤d+1

necessarily. Define polynomials f ∈ Sd−1 + Sd and g ∈ Sd + Sd+1 so
that

x − f ∈ S≤d−2 and y − g ∈ S≤d−1.

Since s21x + s2y ∈ S≤d, we must have s21f + s2g = 0. It follows that
f = s2u and g = −s21u for some u ∈ S≤d−1. We then have:x − f

u
y − g


∈ S≤d−2 ⊕ S≤d−1 ⊕ S≤d−1 and

G

x − f
u

y − g


=


x

s21x + s2y


.

Thus, R is a proper representation.
To show that R is minimal, we only need to check that the linear
maps

F2
→ Γ1(A) and F → Γ2(A)

are injective.
Notice that A≤1 = s2F2. Because A≤0 = {0}, Γ1(A) = s2F2 and

the first linear map is
a
b


→ s2


a
b


.

This, of course, is injective. The second linear map above is given
by

c →


c
cs21


mod(A≤1 + s1A≤1 + s2A≤1).

Obviously,


1
s21


∉ A≤1 + s1A≤1 + s2A≤1, and this implies that the

map is injective.
We haveπ(B) = 3 and δ(B) = 4; the observability indices are

2, 1, 1.
The next example is more interesting. (It was suggested to

consider by one of the referees.)

Example 11. Let n = 3, and let

B = {w ∈ U3
| curl(w) = 0}.

A natural representation of B is

R =

 0 −s3 s2
s3 0 −s1

−s2 s1 0


.

The transpose

G =

 0 s3 −s2
−s3 0 s1
s2 −s1 0


determines a homogeneous homomorphism

S(−1)3 → S3.

(Like T , S also is a graded ring. So, one can consider gradedmodules
over S. The definition of the ‘‘shifted’’ graded modules S(−d) is the
same as that of T (−d) given in Section 2.) Therefore, the image
A = ImG is a graded submodule of S3, i.e.,

A =


(A ∩ S3d ).

The matrix G has a property that is much stronger than the WPD
property. Namely, there holds

GS3d−1 = Ad ∀d ≥ 0,

where Ad = A∩ S3d . Since A≤d = Ad + · · ·+ A1 + A0, it is clear from
this that

∀d ≥ 0, GS3
≤d−1 = A≤d.

Thus, R is a proper representation.
Further, A0 = {0} and so Γ1(A) = A≤1 = A1. The linear map

F3 G
→ A1, given bya

b
c


→

bs3 − cs2
cs1 − as3
as2 − bs1


,

clearly is injective. It follows that R is minimal.
We haveπ(B) = 3 and δ(B) = 3; the observability indices are

1, 1, 1.
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7. Concluding remarks

If f ∈ S is a nonconstant polynomial, the set of zeros of f inAn is
called the affine hypersurface defined by f , and is denoted by V (f ).
Likewise, if f ∈ T is a nonconstant form, the set of zeros of f in Pn

is called the projective hypersurface defined by f , and is denoted
by V (f ).

There is a one-to-one correspondence between affine hypersur-
faces and nonconstant polynomials with no multiple factors (and
determined up to multiplication by a nonzero constant). Likewise,
there is a one-to-one correspondence between projective hyper-
surfaces and nonconstant forms with no multiple factors (and de-
termined up to multiplication by a nonzero constant).

The infinite hyperplane is the hypersurface defined by the
form s0.

If H = V (f ) is an affine hypersurface, then H = V (f h) is called
the projective closure of H .

Of special interest are irreducible hypersurfaces, i.e., hypersur-
faces defined by irreducible polynomials. The assignment H → H
yields a bijective correspondence between irreducible affine hy-
persurfaces and irreducible projective hypersurfaces that are dis-
tinct from the infinite hyperplane.

A frequency is an irreducible projective hypersurface. The
infinite frequency, denoted by ∞, is the infinite hyperplane. All
other frequencies are called finite and can be identified with
irreducible affine hypersurfaces.

If B is a graded submodule of T q and if φ is a frequency, say that
B is regular at φ if the defining form of φ is not a zero divisor on
T q/B.

A submodule A ⊆ Sq can be homogenized, and by homogeniz-
ing one gets a graded submodule Ah

⊆ T q. A simple observation
is that Ah is regular at a finite frequency φ if and only if the
dehomogenization of the defining polynomial of φ is not a zero
divisor on Sq/A. Further, one can easily show that Ah is regular
at ∞.

Let now B ⊆ Uq be an LTI differential system, and let A ⊆

Sq be the (‘‘non-homogeneous’’) associated module. Define the
associated homogeneous module to be the module Ah. This is an
intrinsic invariant that contains the whole information about the
behavior ofB at all frequencies. Recall thatB is called controllable
if Sq/A is torsion-free. Saying that Sq/A is torsion-free is clearly
equivalent to saying that no irreducible polynomial is a zero divisor
on Sq/A. One naturally comes to a local definition of controllability.
Say that B is controllable at a frequency φ if Ah is regular at φ.
According to this definition, B is a priori controllable at ∞. (In
our opinion, this is as it should be!). We obviously have that B is
controllable if and only if it is controllable at all frequencies.

All representations of an LTI differential system provide an
adequate description at finite frequencies but not necessarily at the
infinite one. Proper representations are those representations that
take into account the structure at infinity as well. The main result
of this paper is exactly the definition of proper representations.

We have proved that proper representations exist and then
explored the minimality problem.
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