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Abstract

As is known, the notion of homotopy equivalence is a fundamental notion of mathematics
and was introduced in order to formalize a relation that is weaker than isomorphism. In this
note we define a homotopy equivalence of Rosenbrock systems and show that it coincides with
the classical equivalences of Rosenbrock and Fuhrmann. Next, we show that the homotopy
equivalence does preserve the important properties of a system (including the properties at
infinity when these are properly understood). Finally, we define in a simple manner the states
and motions of a system and claim that they are homotopy invariants. © 2002 Elsevier Science
Inc. All rights reserved.
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1. Introduction

The general idea of homotopy is to “deform” slightly a complicated object into
another object, which is simpler and shares important properties of the original one.
The idea comes from algebraic topology (see, for example, [10]) and homological al-
gebra (see, for example, [9]). The reader recognizes of course that the idea of Rosen-
brock concerning “polynomial system matrices” is very similar. In [15] Rosenbrock
determined a sort of “deformation” applying which a general system of the type

T(s)z=U(s)u, y=V)z+ Wis)u @
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can be brought to a special system of the type
(sI — A)x = Bu, y=Cx+ D(s)u. 2)

As one knows, several important properties are left invariant in the process.

In this paper we construct a homotopy theory of Rosenbrock models in full analo-
gy to the classical homotopy theories. We then demonstrate that the homotopy equiv-
alence coincides with the equivalences defined by Rosenbrock [15,17] and Fuhrmann
[3]. Next, we show that it leaves unchanged fundamental structural properties (in-
cluding the properties at infinite frequency). We also address the question of how to
define the states and motions of a Rosenbrock model.

It should be emphasized that our approach to the notion of structure at infinity is
different from those that exist in the literature (see, for example, [2,16,19]). In our
approach systems of the form (1) and (2) have no infinite decoupling zeros. In other
words, our standpoint is that most of the systems studied in the literature are in fact
controllable and observable at infinity.

To explain the naturalness of this point of view we need to recall the Willems
idea of considering systems in which external variables are not classified into inputs
and outputs (see [20]). Létbe a ground field, and let be a fixed integer. Call a
Willems model (with signal numbey) a quintuple(X, Y, E, F, G), whereX andY
are finite-dimensional linear spaces andr : X — Y, G : k9 — Y are linear maps
such thatf is injective and E G] is surjective. We can express this model as

sEx = Fx + Gw,

wherew stands for the signal variable. Let=dimY —dimX andm = g — p;

these are respectively the output number and the input number. A partition of
{1, ..., ¢} in two subsets with cardinalities and p gives rise to a decomposition

k1 ~ k™ & kP, which in turn determines a representat@n= [G1 G2]. A partition

is called an 1/0 structure if dBtE — F: — G2] # 0. A Willems model together with

an /O structure can be written as

sEx = Fx 4+ Giu + Gov. 3)
The transfer function of this I/O model is defined to be the composition
k()™ — Y(s) = X(s) ®k(s)P — k(s)?,

where the first arrow i1, the second one i[SE — F: — G,]~1 and the third is the
canonical projection. In general, the transfer function of course is not proper. A sim-
ple remarkable fact is that there always exists an I/O structure such that the resulting
model is an ordinary classical model. Indeed, the canonicalkfiap Y/E(X) is
surjective, and clearly we can find a partition such that

kP ~Y/E(X).
This allows us to identifyy with X @ k?. Doing this we obtain

e o el )
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and consequently our model becomes
(sI — A)x = Bu, v=Cx+ Du.

One knows that controllability and observability are independent from the 1/O struc-
ture. (This principle is to be found in [1,20].) Since a classical linear system is con-
trollable and observable at infinity, we therefore conclude that so is (3). Now, it can
be shown that there is@nonicalone-to-one correspondence between models of the
type (2) and models of the type (3). This strongly suggests that one think of models
of the type (2) as being controllable and observable at infinity. General models of the
type (1) should also be regarded as such, if we want the homotopy equivalence to
leave invariant the infinite structure.

As one knows, the structure at infinity in the traditional understanding is lost under
the equivalence of Rosenbrock and Fuhrmann. Hayton et al. [4] were led therefore
to propose the notion dtill system equivalencé&his kind of equivalence has been
thoroughly studied in [6,7,12,13]. We remind the reader that using the full system
equivalence, one can bring (1) to the system

sEx = Ax + Bu, v=Cx + Du. (4)

In our opinion, the classical notion of system equivalence is very nice and it is rather
the notion of infinite structure that should be reexamined. The reader may ask: which
approach is more correct? This question reduces essentially to the following. Which
is the more correct generalization of a classical linear system, (3) or (4)? (The author
personally thinks that (3) is, notwithstanding the fact that (4) is the usual starting
point for a singular theory of linear systems.)

Concluding the introduction we point out that the concept of homotopy equiva-
lence has already been introduced into linear system theory (see [11,14]). However,
the present note has a different slant (and was written independently). It is our belief
that it will help the reader to understand well the true mathematical nature of one of
the classical topics of linear systems theory.

Throughoutk is an arbitrary fields an indeterminatern an input number and
p an output number. We le? denote the ring of proper rational functions. Given a
finitely generated torsion module overk[s] or O, we shall writtH°M to denote
the underlyingk-linear space oM.

2. Preliminaries

A Kalman model is a quintupléX, A, B, C, D), whereX is a finite-dimensional
linear spaceA : X — X, B: k™ — X andC : X — kP are linear maps, an®
is a polynomialp x m matrix. (Usually one expresses it as (2).) There is an equi-
valent definition, which will be used in the sequel. A Kalman model is a quadru-
ple (Q; ¢, ¥, D), where Q is a finite k[s]-module,¢ : k[s]" — Q andy : O —
k(s)P /k[s]P are homomorphisms, anfl is as above. That the two definitions are
equivalent is the main result of [5, Chapter 10]. One introduces in an evident way the



522 V. Lomadze / Linear Algebra and its Applications 351-352 (2002) 519-532

notion of transformations for Kalman models. Obviously Kalman models and their

transformations form a category. Isomorphic Kalman models are said to be similar.
By an operational calculus we understand a paif, L), where # is a non-

torsion module oveD andL : O — J# an injective homomorphism ove?. Typ-

ical examples can be found in [8]. Intuitively” is a “function” space oveR, and

L is the (inverse) Laplace transform. Functions that belong(i@) are interpreted

as exponential functions and functions that belond.t®) as constant functions.

Multiplication by s~ is regarded as integration. We require that

he# andsthe L(O) = helL(0). (5)

This axiom says that a function is exponential whenever its primitive is exponential.
Let .# denote the fraction space &f. This is a linear space ovérs), and we call
its elements Mikusinski functions. There is a canonical embedding’dhto .#
given byh — h/1, and we shall identify# with its image under this embedding.
The homomorphisni can be continued to/fa(s)-linear mapk(s) — .4, which will
be denoted by. again. One can easily introduce “vector functions”. Given a finite-
dimensionak-linear spaceX, we set#'(X) = # ® X and.#(X) = /4 ® X.(The
tensor products are taken ovel) Again, we shall use the lettdr to denote the
canonicak(s)-linear mapX (s) — #(X).

We recall now the well-known Bezout lemma.

Lemmal. LetZ and Z’ be finite-dimensional linear spaces. Assume we have a
commutative square

ZIs] - Zls]
K I M,

/

7] - Z's]

whereK and T are right coprime andV and T’ are left coprime. Therthere exist
H, K’, H and M’ such that

M T [M T _[1 O
-H —K'||-H —-K||0 I}’
that is,
MM =T'H +1, HM' =K'H', and K'K=HT + 1.

Proof. We have an exact sequence

|:_TK:| ’ [M T/] ’
0— Z[s] — Z[s]1® Z'[s] — " Z'[s]— 0.

This sequence splits, and the lemma follows§]
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Coroallary 1. In the situation of the lemma we have

R e B

M’ I M 17 _[r o
~T'H -M||-TH -M'|~ |0 1]

Proof. Obvious. O

and

3. Modelsand transformations

A Rosenbrock model is a quintuple; 7, U, V, W), where Z is a finite-di-
mensional linear spacd, : Z[s] — Z[s] is an injective homomorphism and :
k[s]" — Z[s],V : Z[s] — k[s]?, W : k[s]" — k[s]? are arbitrary homomorphisms.
The spaceZ is the space of latent variables. (The terminology is due to Willems
[20].) The transfer function is defined as the rational maix U + W. A model
is called regular if its transfer function is proper.

Example. For eachr > 0, Q" = (k"; I, 0,0, 0) is a Rosenbrock model. The zero
model 0 is defined in an evident way. We g2t = 0.

A transformation of a Rosenbrock modgt; T, U, V, W) into a Rosenbrock
model (Z"; T',U’, V', W) is a quadruple(K, L, M, N) consisting of homomor-
phismsK : Z[s] — Z'[s], L : k[s" — Z'[s], M : Z[s] — Z'[s], andN : Z[s] —
k[s]? such that

M 0 T ul T Ullk -L
N I||-V WwW| |-V wW]||0 I}
that is,
MT =T'K, MU=-T'L+U’, NT-V=-VK,
NU+W=V'L+W.
(Compare with (4.13) in [3] and (22) in [4].)
If &1 = (K1, L1, M1, N1) and ®, = (K2, L, M>, N2) are two transformations

such that the range of the first one is equal to the domain of the second, then their
composition is defined to be

D0 @1 = (K2K1, KoL1+ Lo, MoM1, NoMj + Ni).

The identity transformation of a Rosenbrock modle: (Z; T, U, V, W) is de-
fined asls = (1,0, I, 0).
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One can check easily that Rosenbrock models together with transformations form
a category. One therefore has, in particular, the notion of isomorphism. Isomor-
phisms of Rosenbrock models are called strict equivalences. Thus, a transformation
@ : ¥ — X' is a strict equivalence if there exists a transformatiéon 2’ — X such
that

Pod=1Ir and Pod =Iy.
The following states that our notion of strict equivalence coincides with that of
Rosenbrock (see [15, Chapter 2]).

Proposition 1. A transformation(K, L, M, N) is a strict equivalence if and only if
K and M are unimodular.

Proof. Straightforward and easy.rJ
Proposition 2. Any transformation leaves invariant the transfer function.
Proof. Let(K,L,M,N):(Z;T,U,V,W)— (Z';T',U’, V', W) be a transfor-
mation. Then

T -L=7"MU and 7'M =kKT"
Using these relations, we see that

VT W +VL=-vTMU=-VKT U
=(NT-WTu=nNU-VvT1U.

This together with the relatioNU + W = V'L + W’ proves the proposition.

If X=(Z;T,U,V,W) is a Rosenbrock model, then we define the Kalman
representation KRZ) as the quadruple consisting of the moddlg]/ T Z[s], the
homomorphisms

U (Uu)modT Z[s] (u € k[s]™),
zmodT Z[s] — (VT 1z) modk[s]” (z € Z[s]).

and the polynomial part of the transfer functionof

LetX=(Z;T,U,V,W)andX = (Z'; T',U’, V', W) be Rosenbrock models,
and let(Q; ¢, ¥, D) and(Q’; ¢’, ¥', D") be their Kalman representations, respec-
tively. If ® = (K, L, M, N) is a transformation of into 2’, defined : 0 — Q' by
the formula

0(zmodT Z[s]) = (Mz) modT’'Z'[s].

One can check without difficulty thatis a transformation of KR) into KR(Z").
We call this the Kalman representationdfand denote it by KRD).
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It is easy to check that KR is a (covariant) functor from the category of Rosen-
brock models to that of Kalman models.

4. Homotopy equivalence

LetX=(Z;T,U,V,W)andY' = (Z’;T',U’, V', W) be Rosenbrock models.
If &1 = (K1, L1, M1, N1) and @ = (K>, Lo, M2, N») are transformations of the
first one into the second, then we say thatis homotopic tod; if there exists a
homomorphismH : Z[s] — Z'[s] satisfying the following two equivalent condi-
tions:

T'"H=M1— M, and HT = K; — K>.

Such a homomorphism is called a homotopy. We wiiiex~ &, for “ @4 is homo-
topic to®@,”".

Lemma2. LetX = (Z;T,U,V,W)beaRosenbrock model. Thetfl transforma-
tions that are homotopic tés have the form

(HT +1,—HU,TH + I, —VH),
whereH € Hom(Z[s], Z[s]).

Proof. Leftto the reader. O

Proposition 3. Homotopy is an equivalence relation on the set of all transforma-
tions of one Rosenbrock model into another.

Proof. Reflexivity If @ is a transformation, then clearly 0 is a homotopyZobnto
itself.

Symmetrylf H is a homotopy ofp; into @, then clearly—H is a homotopy of
@5 into @;.

Transitivity. If H is a homotopy ofp; into ¢, and H' a homotopy ofb; into @3,
thenH + H' is a homotopy ofpq into ¢3. [

Two transformations are homotopy equivalent if there is a homotopy between
them. Speaking intuitively, two transformations are homotopy equivalent if one of
them can be obtained from the other “perturbing” a little.

A transformation® : ¥ — X’ is a homotopy equivalence if there exists a trans-
formation®’ : 2’ — X such that

Podr~Ir and Pod ~ [y,

(Compare with the notion of strict equivalence.) Two Rosenbrock maxelsd >’
are homotopy equivalent if there exists a homotopy equivaldnce — 2’. We
write ¥ ~ X’ to denote that and 2’ are homotopy equivalent. Certainly strictly
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equivalent models are homotopy equivalent, i.e., the homotopy equivalence is a
weaker relation than the strict equivalence.

Proposition 4. The relation between Rosenbrock models of being homotopy equi-
valent is an equivalence relation.

Proof. Follows from the previous proposition.(

Lemma3. A Rosenbrock model, with “latent’ dimensionr > 1, is homotopy
equivalent ta) if and only if it is strictly equivalent t@2".

Proof. If: Clearly Q" is homotopy equivalent to 0; the homotopy equivalence is
(0,0,0,0).

Only if: Let 2 = (T, U, V, W) be a Rosenbrock model homotopy equivalent to
0, and suppose thék, L, M, N) establishes this equivalence. We then have

M OIfT UJ_,
N I||-V wW| 7
This in particular givesVU + W = 0. Further, we have
(0,0,0,0)0 (K, L, M,N)=(0,0,0,N)
and consequently, by Lemma 2,
(HT +1,—-HU,TH +1,—-VH) =(0,0,0, N),

where H is a polynomial matrix. We get tha&t is unimodular,yU = 0 andW = 0.
Finally,

-H O||T 0] | O
—-VH [I||-Vv 0| |0 Of
The lemma is proved. O

Proposition 5. Two transformations are homotopy equivalent if and only if their
Kalman representations are equal.

Proof. Let(Z;T,U,V,W)and(Z';T’,U’, V', W) be Rosenbrock models, and
let (K1, L1, M1, N1) and (K2, L2, M>, N2) be two transformations of the first one
into the second.

If : Assume thaM, — M1 = T'H. Then

MozmodT’'Z'[s] = (M1z + T'Hz) modT’ Z'[s] = M1z modT’Z'[s].

Only if: Assume thatM>z mod7T’Z’[s] = M1z modT’Z'[s] for eachz € Z[s].
Then

H=T"YMy— My)
is a homotopy. O
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Corollary 2. Two Rosenbrock models are homotopy equivalent if and only if their
Kalman representations are similar.

Proof. Obvious. O

Theorem 1. The homotopy category of Rosenbrock models is canonically equiva-
lent to the category of Kalman models.

Proof. Follows from the previous proposition and corollary.]

5. Classical equivalences

We say that two Rosenbrock modelg; 7, U, V, W) and (Z’; T', U’, V', W)
are equivalentin the sense of Fuhrmann if there exists a transforng&tidn M, N)
of the first one into the other for whicki andT are right coprime and/ andT’ are
left coprime (see [3]).

Theorem 2. Two Rosenbrock models are equivalent in the sense of Fuhrmann if and
only if they are homotopy equivalent.

Proof. The “If” part of the theorem is obvious. To prove the “Only if” part
assume thatK, L, M, N) : (Z; T, U, V,W) — (Z'; T',U’, V', W) is a transfor-
mation, whereMf andT’ are left coprime, an& andT are right coprime. Definé,
H’, K’ andM’ as in the Bezout lemma. Next, defihéandN’ by

K'L+L =—HU and NM'+N' =-V'H',
respectively.

One can check easily thek’, L', M’, N’) is a transformation. (It suffices to use
the Bezout lemma and its corollary.) Further, we have

NM4+N=(-VH -—NMYM~+N=—-VHM+NI—-MM)
=—VHM-NTH=-V'HM+ (V'K—-V)H
=V (KH—-HM)-VH=-VH.

Likewise, we have

KL'+L=K(-HU - K'L)+L=((—-KK)L—-KHU
=—HTL—-KHU =HMU-U")-—KHU
=—HU +HM-KHU=-HU'.

It follows that
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(K'K,K'L+L , MM,NM+N)=(HT +1,-HU,TH+1,-VH)
and
(KK',KL' + L, MM',NM' + N)
=HT +1,-H'U,T'H' +1,-V'H).
The theorem is proved.

If (Zy; T1, U1, V1, W1) and (Zo; T>, U, Vo, W) are Rosenbrock models, their
parallel connection is defined to be

|1 0 Uq
(Zl @ Zz; [0 Tz} , [Uz} v Vel Wi+ Wz) .
We say that two Rosenbrock modeélsand’ are equivalent in the sense of Ro-
senbrock if

Qdor~d oy
for some nonnegative integdrand!’ (see [15,17]).

Theorem 3. Two Rosenbrock models are equivalent in the sense of Rosenbrock if
and only if they are homotopy equivalent.

Proof. LetX = (T,U,V,W)and' = (T’,U’, V', W) be Rosenbrock models.
If: Let (K, L, M, N) be a homotopy equivalence. Chodde H’, K’ andM’ as
in the Bezout lemma. We have

M I 0 1 0 0
-T"H -M 0 0O T U
VVHY —-N -—-I1||0 -V W

1 0 0 M T U
=10 T U’ —-H —-K L
o -v w 0 0o -1

By Corollary 1, the extreme matrices are unimodular.
Only if: Using Lemma 3, we have
Qe e~y

The theorem is proved.]

6. Polesand zeros

Poles and zeros of linear systems were defined first by Rosenbrock [15], and a
great number of works have been devoted to the study of them. For a nice historical
survey we refer the reader to [18]. Below we define finite poles and zeros following



V. Lomadze / Linear Algebra and its Applications 351-352 (2002) 519-532 529

Bourlés and Fliess [1]. As emphasized, a Rosenbrock model has no decoupling zeros
at infinity. This tells us in particular that its infinite structure can be defined in terms
of the transfer function. The theory of poles and zeros of transfer functions has been
established well by Wyman et al. [21], and we follow them when we define infinite
poles and infinite (invariant) zeros.

LetX = (Z;T,U, V,W) be aRosenbrock model, and &tbe its transfer func-
tion. We define the finite and infinite pole modules to be

zZ or+gGgonm
= Ls] and 2y = ;.
TZ[s] or
We define the finite (invariant) and infinite (invariant) zero modules to be

Fy=TP <Z[s] eak[s]f’/[ T U] (Z[s] ®k[s]’”)>

Py

-V W
and
)4 m
7 —TP 07+ GO
Gon
We define the input-decoupling and output-decoupling zero modules to be
id _ Zls]
TZ[s]+ Uk[s]™
and

7°4 = TP (Z[s] @ k[s]” /[_TV} Z[s]) .

(Above: “TP” stands for “torsion part”.) All these modules surely are finitely gener-
ated and torsion.

It should be noted that the pole modules are especially important. The dimension
of H9% is called the number of finite poles and the dimensiof/8#,, the number
of infinite poles. The first clearly is equal to deigt7T). Choose a rational matrii(
such thato? + GO™ = U~10P. Itis clear thatU exists and is defined uniquely up
to biproper multiplier. Sinc&? € U~10?, we havell 07 € 0P and consequently
U is proper. The number of infinite poles is equal to Qtdetl). Obviously the
model is regular if and only if it has no infinite poles.

Remark that the model is controllable if and onlyiandU are left coprime, and
observable if and only if” andV are right coprime.

It is easily seen that the constructions of poles and zeros are functorial. That is, a
transformation® — 2’ gives rise to canonical homomorphisms

P — P; and Py > P,
Zi— Z¢ and Zo —> 70,

2 - 7% and z0%  zod



530 V. Lomadze / Linear Algebra and its Applications 351-352 (2002) 519-532

Proposition 6. Two homotopy equivalent transformations induce the same homo-
morphisms of pole and zero modules.

Proof. Straightforward and easy.CJ
Remark. In view of Proposition 2, the case of infinite poles and zeros is trivial.
Theorem 4. Homotopy equivalence leaves invariant pole and zero modules.

Proof. Follows immediately from the previous propositior.]

7. Statesand motions

Let2 = (Z; T, U, V, W) be a Rosenbrock model, and tgtbe its transfer func-
tion. We define the state spa&eby the formula

_ @) € ZIsI @K1 VT Ttz + v e s7HOP + GO™)

X= T
[

There is a canonical linear map: X — k(s)?, which in fact has values T 1(0? +

GO™). If x is a state and ifz, v) is its representative, thef(x) = VT 1z + v.
Let #; and Z., be pole modules of. For eachn, we let o, (n) = s"(O? +

GO™)/s"OP. (Certainly all? (n) are isomorphic to each other.)

Theorem 5. There is a canonical isomorphism

X~ H%? & H'Z?,(-1).

Proof. If x is a state, assign to it the pair
(zmodT Z[s], (VT ™1z + v) mods—t07),

where(z, v) is a representative of.
Suppose a pait;, v) represents a state going to 0. Thea 7 Z[s] andV T 1z +
v e s~toP. Itfollows that

=Tz and Vzo+ves toP

for somezg € Z[s]. Becausd/zg + v € k[s]”, we getVzg + v = 0. Hence(z, v) =
(Tzo, —Vzp), and so the state is equal to 0.

To show the surjectivity take € Z[s] andv € s~1(0? + GO™). Let v; denote
the polynomial part of — V7 ~1z. Itis easily seen that, v1) represents a state and
its image is equal t&z mod7 Z[s], v mods—10P7).

Thus, our linear map is bijective.[]
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The McMillan degree of the model is defined to be the number of all its poles.
Corallary 3. The dimension of the state space is equal to the McMillan degree.

We now pass to the notion of motions. To define them assume we have an opera-
tional calculus(#, L).

Let xo € X andu € .#™. Choose a representativep, vg) of the statexg and
consider the equations

Tz =Uu+ sL(zo), v=VZ+ Wi+ sL(vp).
Herez € ./ (Z) andv € ./P?. From the first equation we have
7=T" i+ sL(T 1z).
Substituting this in the second equation, we obtain
b =VT i+ Wi+sL(VT 1z0) + sL(vg) = Git + sL(¢(x0)).
This is the motion associated with the initial stateand the input functiom. We
call
X x " — MP, (x0, ) = Gi + sL(¢(x0))
the behavior o. The mapxg — sL(¢(xp)) is called the free response map.

Proposition 7. The following conditions are equivalerfa) X is regular, (b) G #™"
C #°P; (c) all free motions belong to7’”.

Proof. (a) « (b). If G is proper, clearly we have (b). Conversely, if (b) holds,
thenGL(0O™) C »#?. Using the axiom (5), we see th@at (0™) € L(O?), whence
GO™ C OPF.

(@) < (c). Note that (c) is equivalent to saying tligtX) < s~1OP. Thisin turn
is equivalent to saying that the canonical linear map> H°2.(—1) is zero. In
view of Theorem 5, this is possible if and onlygf,.(—1) = 0. O

Closing, we remark that the state spaces and behaviors are respected by transfor-
mations and that they are homotopy invariants. The reader easily verifies this.
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