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Abstract

It is shown that a linear differentiation-invariant subspace of a C∞-trajectory space is differential (i.e., can
be represented as the kernel of a linear constant-coefficient differential operator) if and only if its McMillan
degree is finite.
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1. Introduction

Let k be the field of real or complex numbers, s an indeterminate, U the space of all infinitely
differentiable k-valued functions of the nonnegative real variable, and let q be a fixed positive
integer.

The paper is concerned with the following question: When a linear differentiation-invariant
subspace ofUq can be described via an equation of the form R(∂)w = 0, where R is a polynomial
matrix (with q columns) and ∂ is the differentiation operator? This natural question was posed by
Willems (see [7,8]), and we try here to give a brief answer to it.

Let O be the ring of proper rational functions (in s), and let t denote the “uniformizer” s−1.
The space U has a natural O-module structure: Given g ∈ O and ξ ∈ U, we define

gξ =
∑
n�0

bn

∫ n

ξ,
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where bn are the coefficients in the expansion of g at infinity and
∫ n stands for the n-fold iteration

of the integration operator with itself. The series converges uniformly on [0, X] for each X > 0.
Indeed, we can find r > 0 so that

∑ |bn|rn = B < +∞, and consequently |bn| < Br−n for all
n � 0. Letting now M = sup0�x�X|ξ(x)|, we have

∀x ∈ [0, X],
∑
n�0

|bn|
∣∣∣∣
(∫ n

ξ

)
(x)

∣∣∣∣

= |b0||ξ(x)| +
∑
n�1

|bn|
∣∣∣∣
∫ x

0

(x − u)n−1

(n − 1)! ξ(u) du

∣∣∣∣

� |b0|M +
∑
n�1

|bn|M
∫ x

0

(x − u)n−1

(n − 1)! du

�
∑
n�0

|bn|M xn

n! �
∑
n�0

Br−nM
xn

n! � BMexp(X/r).

It is remarkable that U is torsion free. (This immediately follows from the fact that the integration

operator is injective and the fact that every proper rational function is represented as tnu with
n � 0 and invertible u ∈ O.) Let L : k �→ U be the canonical map embedding numbers into
constant functions. For g ∈ O, we define the (inverse) Laplace transform L(g) to be the function
gL(1), i.e., the analytic function

x �→
∑
n�0

bn

xn

n! (x � 0),

where bn are as above. The functions L(g) will be called exponential functions. (In the case
k = C these are precisely finite linear combinations of functions xneλx , where n ∈ Z+ and
λ ∈ C.)

Define a transfer function as a submodule T ⊆ Oq such that Oq/T is torsion free, i.e., a
subset of the form GOm, where m is a nonnegative integer and G is a left invertible proper
rational matrix of size q × m. This notion is a natural generalization of the classical notion of
transfer function. (Indeed, up to componentwise partition kq � km ⊕ kp, a transfer function is
the graph of a classical transfer function u �→ Au(u ∈ Om), where A is a proper rational matrix
of size p × m.) A submodule T ⊆ Oq gives rise to a submodule TU ⊆ Uq consisting of all
finite sums of trajectories of the form gξ (g ∈ T , ξ ∈ U). Notice that if G is a generating matrix
of T , then TU = GUm, where m is the column number of G. It is interesting to note that the
correspondence T �→ TU is one-to-one. We think of the distinguished modules TU as zero initial
condition trajectory modules (ZICTMs).

It can be shown without difficulty that if S is a linear differentiation-invariant subspace of Uq ,
then the set

T = {g ∈ Oq |gU ⊆ S}
is a transfer function. We call it the transfer function of S, and we regard trajectories in TU as
zero initial condition trajectories of S. We define the McMillan degree of S as its dimension
modulo TU, i.e., the dimension of S/TU. The space S/TU itself is called the initial condition
(or state) space. We define a linear system to be a linear differentiation-invariant subspace with
finite McMillan degree.
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Not surprisingly, the kernel of a linear constant-coefficient differential operator is a linear
system. The main result of this paper (namely, Theorem 3) states that the converse also is true. To
prove this result we consider a canonical k-linear bilinear form k[s]q × Uq → k defined by the
formula

〈f, ξ〉 = (f tr(∂)ξ)(0).

(“tr” stands for the transpose.) IfS is a linear system, then clearlyS⊥ is a submodule of k[s]q . It is
trivial that every submodule has an “image representation”, and letting E be such a representation
of S⊥, the idea is that a “kernel representation” of S should be R = Etr . In deriving the result
helpful roles will be played by the “Riemann–Roch formula” and the “key lemma” (Lemma 8).
The key lemma gives a duality relation between transfer functions and, what we call, convolution
functions. (Convolution functions are certain linear subspaces of k[s]q , which play in the paper
just an auxiliary role; they are connected with submodules as ZICTMs are connected with linear
systems.) This immediately leads to a relation between ZICTMs and convolution functions. We
apply the Riemann–Roch formula to compute some dimensions. This computation allows then to
extend the relation above to a one between linear systems and submodules of k[s]q .

Concluding the introduction, it seems worthwhile to point out that the paper is self-contained.

2. Mikusinski functions

We let M be the fraction space of U. Elements of M are called Mikusinski (or generalized)
functions. Every Mikusinski function can be written as a ratio ξ/tn, where ξ ∈ U and n � 0.
(This is because every /= 0 element in O, as already remarked, is a power of t modulo invertible
elements.) Of course tn · ξ/tn = ξ , and this means that every generalized function is a quantity
that after “integrating” sufficiently many times becomes an ordinary function.

Remark. It is Mikusinski’s idea to define generalized functions as ratios (see [5]). This is a nice
idea.

We identify U with its image in M under the canonical map ξ �→ ξ/1. It is obvious that

U ⊂ sU ⊂ s2U ⊂ · · · and M = ∪snU.

The homomorphism L can be uniquely continued to a k(s)-linear map k(s) → M, and we shall
use the same letter L to denote it. We call elements of L(sk[s]) purely impulsive functions.

The Newton–Leibniz formula can be rewritten as sξ = ξ ′ + sξ(0). Using induction argument,
one easily deduces the Taylor formula

snξ = ξ (n) + snξ(0) + · · · + sξ (n−1)(0).

The following says that every Mikusinski function has the “regular” part and the purely
impulsive part.

Lemma 1. M = U ⊕ L(sk[s]).

Proof. Follows from Taylor’s formula. �

We shall need the following

Lemma 2. Let R be a polynomial matrix of size p × q. Then

Ker R(∂) = {ξ ∈ Uq |Rξ ∈ L(sk[s]p)}.
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Proof. Let R = R0s
n + R1s

n−1 + · · · + Rn, and let ξ ∈ Uq . Using Taylor’s formula, we have

Rξ = R(∂)ξ + [sIp . . . snIp]

⎡
⎢⎢⎢⎣

Rn−1 Rn−2 . . . R0
Rn−2 Rn−3 0

...
...

R0 0 . . . 0

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

ξ(0)

ξ ′(0)
...

ξ (n−1)(0)

⎤
⎥⎥⎥⎦ .

We see that R(∂)ξ is equal to the regular part of Rξ , and the lemma follows. �

The following two elementary examples illustrate how Mikusinski functions work.

Example 1. Let r = a0s
n + a1s

n−1 + · · · + an be a polynomial witha0 /= 0, and letx0, . . . , xn−1
∈ k. Consider the Cauchy problem{

a0x
(n) + a1x

(n−1) + · · · + anx = 0;
x(0) = x0, . . . , x

(n−1)(0) = xn−1.

Applying the Taylor formula, we can rewrite this as

rx = L(f ),

where f is a polynomial given by the formula

f = [s . . . sn]

⎡
⎢⎢⎢⎣

an−1 an−2 . . . a0
an−2 an−3 0

...
...

a0 0 . . . 0

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

x0
x1
...

xn−1

⎤
⎥⎥⎥⎦ .

Multiplying both sides of this equation by 1/r , we obtain

x = 1

r
L(f ) = L

(
f

r

)
.

Notice that f/r is a proper rational function, and so the solution is an exponential function (as it
should be of course).

Example 2. Let r be as in the previous example, and let ξ ∈ U. Consider the Cauchy problem{
a0x

(n) + a1x
(n−1) + · · · + anx = ξ ;

x(0) = 0, . . . , x(n−1)(0) = 0.

Applying the Taylor formula, we can rewrite this as

rx = ξ.

Multiplying both sides of this equation by 1/r , we obtain

x = 1

r
ξ = tn

a0 + a1t + · · · + antn
ξ.

3. Algebraic preliminaries

Let D be a nonsingular rational matrix of size p. The number −ord∞(det D) is called the
Chern number of D and is denoted by ch(D). (We remind that the order at infinity of a rational
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function u/v with u, v ∈ k[s] and v /= 0 is defined to be deg(v) − deg(u).) We define the dual of
D as D∗ = (D−1)tr . The cohomology spaces are defined as

H 0(D) = sk[s]p ∩ DOp and H 1(D) = k(s)p/(k[s]p + tDOp).

One can easily compute that

dim H 0(snIp) = max{np, 0} and dim H 1(tnIp) = max{np, 0},
where n is an arbitrary integer. It immediately follows from these formulas that the spaces H 0(D)

and H 1(D) have finite dimension. (Indeed, for sufficiently large n, DOp ⊆ snOp and tnOp ⊆
DOp. Hence, H 0(D) ⊆ H 0(snIp) and there is a surjective linear map H 1(tnIp) → H 1(D).)

We shall need the following nice formula (“Riemann–Roch formula”)

ch(D) = dim H 0(D) − dim H 1(D).

To prove it, choose n � 0 so large that DOp ⊆ snOp, and consider the diagram

0 → sk[s]p ⊕ DOp → sk[s]p ⊕ snOp → snOp/DOp → 0
↓ ↓ ↓

0 → k(s)p = k(s)p → 0 → 0

The diagram commutes and has exact rows. Applying the snake lemma (see, for example,
Proposition 2.10 in [1]) and the facts that

k(s)p/(sk[s]p + snOp) = {0} and k(s)p/(sk[s]p + DOp) � H 1(D),

we get an exact sequence

0 → H 0(D) → H 0(snIp) → snOp/DOp → H 1(D) → 0.

The space snOp/DOp � Op/tnDOp has dimension equal to ord∞(tn det D) = np − ch(D),
and the formula follows.

Let us say that two nonsingular rational matrices D1 and D2 are similar if there exists a biproper
matrix B such that D2 = D1B. Notice that if this is the case, then D1 and D2 have the same Chern
number and the same cohomologies.

Remark. There is a close link between similarity classes of nonsingular rational matrices and
vector bundles over the projective line (see [4]), and this explains the terminology above.

If X and Y are k-linear spaces such X ⊆ Y , we write [Y : X] to denote the codimension of X

in Y .

Lemma 3. Let V be a k(s)-linear space of finite dimension, and let M and N be submodules in
V over k[s] and O, respectively. The following conditions are equivalent:

(a) M and N have full rank;
(b) [V : (M + N)] is finite.

Proof. Let r denote the dimension of V .
(a) ⇒ (b) Take an isomorphism φ : V → k(s)r so that φ(M) = k[s]r . Then φ(N) = DOr for

some nonsingular rational matrix D, and therefore V/(M + N) � H 1(D).
(a) ⇐ (b) Say that M is not of full rank. Let i denote its rank and put j = r − i. Take an

isomorphism φ : V → k(s)r so that φ(M) = k[s]i ⊕ 0 (⊂ k[s]i ⊕ k[s]j ) and choose n � 1 so
that φ(N) ⊆ snOr . We then have a surjective linear map
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V/(M + N) → k(s)r/((k[s]i ⊕ 0) + snOr).

It remains now to notice that

k(s)r/((k[s]i ⊕ 0) + snOr) = k(s)i/(k[s]i + snOi) ⊕ k(s)j /snOj = k(s)j /snOj

has infinite dimension. �

Lemma 4. Let R be a full row rank polynomial matrix of size p × q. Then there exists a
nonsingular rational matrix D satisfying the following equivalent conditions:

(a) D−1R is a right invertible proper rational matrix;
(b) ROq = DOp.

The matrix D is uniquely determined up to similarity.

Proof. Clearly ROq is a full rank O-submodule in k(s)p. Hence, ROq = DOp for some non-
singular rational matrix D. It is obvious that saying that D−1R is a right invertible proper rational
matrix is equivalent to saying that D−1ROq = Op, i.e., ROq = DOp.

Assume that D1 and D2 satisfy the condition. Then D1O
p = D2O

p, and therefore Op =
D−1

1 D2O
p. It follows that D−1

1 D2 is biproper. �

Lemma 5. Let E be a full column rank polynomial matrix of size q × p. Then there exists a
nonsingular rational matrix D satisfying the following equivalent conditions:

(a) ED is a left invertible proper rational matrix;
(b) EDOp = Ek(s)p ∩ Oq.

The matrix D is uniquely determined up to similarity.

Proof. This can be deduced easily from the previous lemma. (A direct proof is possible, and we
leave it to the interested reader.) �

4. Convolution and transfer functions

Given a rational subspace V ⊆ k(s)q , we shall write V− to denote the set of the polynomial
parts of all elements in V .

Lemma 6. Let M ⊆ k[s]q be a submodule and V ⊆ k(s)q a rational subspace such that M ⊆ V.

The following conditions are equivalent:

(a) V is the fraction space of M;
(b) [V− : M] is finite.

Proof. Consider the canonical map V → V−/M , which certainly is surjective. Its kernel is equal
to M + (V ∩ tOq). Indeed, assume that x + ty ∈ V , where x ∈ k[s]q and y ∈ Oq , goes to zero.
Then we must have x ∈ M . Because M ⊆ V , we also must have y ∈ V , and so x + ty ∈ M +
(V ∩ tOq). Thus, we have a canonical isomorphism
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V/(M + (V ∩ tOq)) � V−/M.

Using Lemma 3, we complete the proof. �

Any subset C ⊆ k[s]q of the form C = V−, where V is a k(s)-linear subspace of k(s)q , will be
referred to as a convolution function. (It can be shown easily, using the previous lemma, that V−
is uniquely determined by V .) The convolution function of a submodule M ⊆ k[s]q is defined to
be V−, where V is the fraction space of M . By the lemma above, [V− : M] < +∞. The following
says that this property uniquely characterizes the convolution function of a module.

Corollary 1. If M is a submodule and C a convolution function such that M ⊆ C and [C : M] <

+∞, then necessarily C is the convolution function of M.

Proof. Let V be the fraction space of M , and let W be a rational subspace such that C = W−.
Then

W−/M ⊕ V−/M → (W + V )−/M

clearly is surjective, and consequently [(W + V )− : M] < +∞. Using now the previous lemma,
we find that W + V = V . Hence, W ⊆ V . Because V is the least rational subspace containing
M , we conclude that W = V . �

Lemma 7. Let E be a full column rank polynomial matrix of size q × p, and let D be a
nonsingular rational matrix satisfying the conditions of Lemma 5. Letting M = Ek[s]p and
C = (Ek(s)p)−, we then have

[C : M] = −ch(D).

Proof. The matrix E induces a canonical linear map H 0(D) → H 0(Iq), which must be injective
because E has full column rank. It follows that H 0(D) = 0. Hence, by the Riemann–Roch
formula, ch(D) = − dim H 1(D). Further, there is (see the proof of Lemma 6) a canonical
isomorphism

C/M � Ek(s)p/(M + Ek(s)p ∩ tOq).

This completes the proof, because the right hand side is isomorphic to H 1(D). �

We call a transfer function any subset T ⊆ Oq of the form T = V ∩ Oq , where V is a k(s)-
linear subspace of k(s)q . (This definition is equivalent to that given in Introduction.) The dimension
of V is called the input number of T . It should be noted that the correspondence V �→ V ∩ Oq

is one-to-one. (This is because V is equal to the fraction space of V ∩ Oq ). If T is a transfer
function with input number m, then T can be written as T = GOm, where G is left invertible
proper rational matrix of size q × m. If G1 and G2 are two generating matrices, then they are
equivalent in the sense that G2 = G1B for some biproper rational matrix B.

Given a proper rational function g, we let g(∞) be its value at infinity and gσ its backward shift.
(If g = b0 + b1t + b2t

2 + · · ·, then g(∞) = b0 and gσ = b1 + b2t + · · ·). Define a canonical
k-bilinear form

k[s]q × Oq → k, 〈f, g〉 = (f tr(σ )g)(∞), (1)

which clearly is nondegenerate. For a k-linear subspace X in k[s]q or Oq , we let X⊥ denote the
orthogonal of X with respect to this bilinear form.
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Given a k(s)-linear subspace V ⊆ k(s)q , we set

V ◦ = {f ∈ k(s)q |f trg = 0 ∀g ∈ V }.
Obviously V ◦ also is a k(s)-linear subspace, and V ◦◦ = V . The following lemma, which relates
convolution and transfer functions to each other, will play a key role. (For convenience, we
postpone its proof to Appendix A.)

Lemma 8 (Key lemma). Let V be a k(s)-linear subspace in k(s)q . Then

(V ∩ Oq)⊥ = (V ◦)− and (V−)⊥ = V ◦ ∩ Oq.

Corollary 2. If C is a convolution function, then C⊥⊥ = C; likewise, if T is a transfer function,

then T ⊥⊥ = T .

5. Linear systems

Given a transfer function T , let TU denote the submodule of Uq generated by all columns
of the form gξ , where g ∈ T and ξ ∈ U. Remark that if G is a generating matrix of T , then
TU = GUm; in other words, letting g1, . . . , gm denote the columns of G, then every element
ξ ∈ TU can be (uniquely) written as

ξ = g1ξ1 + · · · + gmξm

with ξ1, . . . , ξm ∈ U. We remark also that TU is the image under the canonical homomorphism
T ⊗ U → Oq ⊗ U = Uq .

It is interesting to note that the correspondence T �→ TU is one-to-one. Indeed, let T be a
transfer function and let {g1, . . . , gm} be its basis. Because Oq/T is torsion free (and therefore
free), we can find h1, . . . , hp ∈ Oq such that {g1, . . . , gm, h1, . . . , hp} is a basis of Oq . Any
element of Uq is uniquely represented then as

g1ξ1 + · · · + gmξm + h1ζ1 + · · · + hpζp.

This belongs to TU if and only if

ζ1, . . . , ζp = 0,

and belongs to L(Oq) if and only if

ξ1, . . . , ξm, ζ1, . . . , ζp ∈ L(O).

We see that TU ∩ L(Oq) = L(T ), and hence

T = L−1(TU ∩ L(Oq)).

Proposition 1. LetSbe a linear subspace inUq that is invariant with respect to the differentiation
operator. Then the set

T = {g ∈ Oq |gU ⊆ S}
is a transfer function (called the transfer function of S).

Proof. Obviously, T is a submodule (in Oq ). Choose any its generating matrix G, and assume that
it is not left invertible. Then the scalar matrix Ḡ is not of full column rank. (The bar here denotes
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the canonical homomorphism from O to k = O/tO.) This means that the columns g1, . . . , gm

of G are linearly dependent modulo tOq . Say that

gm ≡ a1g1 + · · · + am−1gm−1 (mod tOq),

where a1, . . . , am−1 ∈ k. Then there exists a column h ∈ Oq such that

gm = a1g1 + · · · + am−1gm−1 + th.

Certainly h /= 0. We claim that h ∈ T . Indeed, let ξ be an arbitrary function. Then thξ ∈ S
(because th ∈ T ). Using the invariance property of S, we have hξ = (thξ)′ ∈ S. The claim is
proved.

The columns g1, . . . , gm−1, h generate T , and they must form a basis (since their number is
m). But diag(1, . . . , 1, t) is not biproper, and therefore {g1, . . . , gm−1, gm} can not be a basis.
The contradiction shows that T must be a transfer function. �

Given a linear differentiation-invariant subspace S with transfer function T , we call S/TU
the initial condition space of S. If ξ is a trajectory in S, then its image in S/TU is called the
initial condition of ξ . The cardinality [S : TU] is called the McMillan degree. We shall see in
the next section that the solution sets of linear constant-coefficient differential equations have
finite McMillan degree. The following examples show that, in general, the McMillan degree is
not finite.

Example 3. The space S = k[x]q , i.e., the space of all polynomial trajectories, clearly is differ-
entiation-invariant. Obviously,

L−1(S) = k[t]q .

It is clear that the transfer function is {0}, and so the space has infinite McMillan degree.

Example 4. Let n � 0, and let S = {ξ ∈ Uq |∀i � n, ξ (i)(0) = 0}. Clearly S is differentiation-
invariant. We have

L−1(S ∩ L(Oq)) = {f ∈ k[t]q |degf � n − 1}.
The only transfer function contained in the above set is {0}, and so the transfer function of our
space is {0}. It follows that the McMillan degree is infinite.

Lemma 9. Let S be a linear subspace in Uq . There may exist only one transfer function T such
that

TU ⊆ S and [S : TU] < +∞.

Proof. Suppose that there are two such transfer function T1 and T2, and put T = T1 + T2. (Notice
that T may not be a transfer function, but TU still is defined.) Clearly, we have [TU : TiU] < +∞.
From this and from the exact sequence

0 → TiU → TU → T/Ti ⊗ U → 0,

which is obtained by tensoring the exact sequence 0 → Ti → T → T/Ti → 0 with U, it follows
that T/Ti ⊗ U has finite dimension. We see that T/Ti must be a torsion module, and hence Ti

has the same fraction space as T . We conclude that each Ti is equal to V ∩ Oq , where V is the
fraction space of T . �
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By a linear (dynamical) system we shall understand a linear differentiation-invariant subspace
of Uq that has finite McMillan degree.

Proposition 2. Let S be a linear system with transfer function T . Then

S ⊆ TU + L(Oq);
in other words, there always exists in S an exponential trajectory with a given initial condition.

Proof. Take any ξ ∈ S. Modulo TU the trajectories ξ, ξ ′, ξ ′′, . . . are linearly dependent. It
follows that there exist an integer n � 1 and elements a1, . . . , an ∈ k such that

ξ (n) + a1ξ
(n−1) + · · · + anξ ≡ TU.

This means that our trajectory ξ satisfies the differential equation

x(n) + a1x
(n−1) + · · · + anx = ξ0

with ξ0 ∈ TU. In view of Example 2, a particular solution of this equation is

tn(1 + a1t + · · · + ant
n)−1ξ0,

which certainly belongs to TU. Further, in view of Example 1, ξ differs from this particular
solution by an exponential trajectory. The proof is complete. �

6. Linear differential operators

Let R be a full row rank polynomial matrix of size p × q. A nonsingular matrix D satisfying
the conditions of Lemma 4 is called a denominator of R. The module T = {w ∈ Oq |Rw = 0} is
called the transfer function; the space X = sk[s]p ∩ ROq = H 0(D) is called the initial con-
dition (or state) space; the Chern number of D is called the McMillan degree. It is easily
seen that the McMillan degree is equal to the dimension of the state space. Indeed, the ma-
trix R induces a canonical linear map H 1(Iq) → H 1(D), which must be surjective, because
R has full row rank. Hence, H 1(D) = 0, and the statement follows from the Riemann–Roch
formula.

Remark. The above concept of states is, in principle, the same as Fuhrmann’s classical one [2].
Indeed, with notation of [2], we have H 0(D) = sSD .

Example 5. Assume that q = 1, and let r be as in Example 1. The initial condition space of r is

X = sk[s] ∩ rO = sk[s] ∩ snO = ⊕1�i�nksi .

On the other hand, according to the textbooks, the initial condition space of the equation r(∂)w = 0
is kn. The two definitions agree with each other; namely, there is a canonical isomorphism kn � X

given by

x �→ [s · · · sn]Ax,

where A denotes the triangle matrix from Example 1.
The linear subspace Ker R(∂) is easily seen to be differentiation-invariant.

Theorem 1. The McMillan degree of Ker R(∂) is finite (and is equal to that of R).
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Proof. Put S = Ker R(∂). According to Lemma 2,

S = {ξ ∈ Uq |Rξ ∈ L(sk[s]p)}.
Consider the canonical linear map S → L(sk[s]p) (which is determined by the homomor-

phism R : Uq → Mp). The image of this map is equal to

L(sk[s]p) ∩ RUq = L(sk[s]p) ∩ DUp = L(sk[s]p) ∩ L(k(s)p) ∩ DUp

= L(sk[s]p) ∩ D(Lk(s)p ∩ Up) = L(sk[s]p) ∩ DL(Op) = L(X).

So, we have a canonical surjective linear map S → X.
Consider now the exact sequence

0 → T → Oq R→ DOp → 0.

The module U is torsion free (and hence flat). Therefore tensoring this sequence by U, we get
an exact sequence

0 → T ⊗ U → Uq R→ DUp → 0.

Replacing T ⊗ U by TU, we obtain an exact sequence

0 → TU → Uq R→ DUp → 0.

This immediately implies that the kernel of the canonical map S → X is equal to TU, and
consequently we have an exact sequence

0 → TU → S → X → 0.

This shows immediately that the transfer function of S is the same as that of R. This shows also
that the initial condition space of S is canonically isomorphic to that of R. �

We shall need the following:

Lemma 10. Let R = Etr, where E is a full column rank polynomial matrix of size q × p. Then
the transfer function of R is equal to C⊥, where C is the convolution function of E.

Proof. Given u ∈ k(s)p and v ∈ k(s)q, we have (Eu)trv = utrRv. From this evident formula it
immediately follows that

(Ek(s)p)◦ = {v ∈ k(s)q |Rv = 0}.
Applying now the key lemma, one completes the proof. �

7. Main theorems

We have a canonical k-bilinear form

k[s]q × Uq → k, 〈f, ξ〉 = (f tr(∂)ξ)(0). (2)

This clearly is nondegenerate from the left (but not from the right of course). This bilinear form
is related with the one defined in Section 4: If f ∈ k[s]q and g ∈ Oq , then 〈f, g〉 = 〈f, L(g)〉.
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Given a k-linear subspace X ⊆ Uq , we shall write X⊥ to denote the orthogonal of X. (We believe
that X⊥ can not be confused with X⊥ defined earlier.)

Lemma 11. If T is a transfer function, then (TU)⊥ = T ⊥.

Proof. “⊇” By definition, T = V ∩ Oq for some k(s)-linear subspace V ⊆ k(s)q . Let f ∈ T ⊥,
and let g ∈ T and ξ ∈ U. By the key lemma, f ∈ (V ◦)−, and consequently f + th ∈ V ◦ for
some h ∈ Oq . We then have (f + th)trg = 0, and therefore (f + th)trgξ = 0. By Lemma 2,
f tr(∂)(gξ) is equal to the regular part of f trgξ . But the latter is already regular, since it is equal to
−thtrgξ . We see that f tr(∂)(gξ) ∈ tU, and so 〈f, gξ〉 = 0. Because TU is generated by elements
of the form gξ , we conclude that f ∈ (TU)⊥.

“⊆” Because TU ⊇ L(T ), we have (TU)⊥ ⊆ L(T )⊥. Clearly L(T )⊥ = T ⊥, and thus (TU)⊥
⊆ T ⊥. �

Lemma 12. Let S be a linear system with transfer function T . Then S⊥ is a submodule (in
k[s]q) with convolution function T ⊥, and the canonical bilinear form

T ⊥/S⊥ × S/TU → k,

is nondegenerate.

Proof. That S⊥ is a submodule follows immediately from the relationship 〈sf, ξ〉 = 〈f, ξ ′〉 (and
the invariance property of S). It is easily seen that the bilinear form is nondegenerate from the
left, and therefore T ⊥/S⊥ is finite-dimensional. Using Corollary 1, it follows from this that T ⊥
is the convolution function of S⊥. To show that the form is nondegenerate from the right, take
an arbitrary ξ ∈ S such that 〈f, ξ〉 = 0 for each f ∈ T ⊥. Write ξ = ξ0 + L(w), where ξ0 ∈ TU
and w ∈ Oq . By the previous lemma, 〈f, ξ0〉 = 0 for each f ∈ T ⊥. It follows that

∀f ∈ T ⊥, 〈f, L(w)〉 = 0.

Using the key lemma, we can see that w ∈ T . Hence, ξ ∈ TU, and the proof is complete. �

Two full row rank polynomial matrices R1 and R2 are said to be equivalent if there exists a
unimodular matrix U such that R2 = UR1. The following is due to Schumacher [6].

Theorem 2. Two full row rank polynomial matrices (with column number q) generate the same
linear system if and only if they are equivalent.

Proof. Let R be a full row rank polynomial matrix of size p × q, and let T be its transfer function.
Put E = Rtr , S = Ker R(∂) and M = Ek[s]p. We want to show that

S⊥ = M.

Take x ∈ M . Then x = Ef with f ∈ k[s]p. For each ξ ∈ S, we have

〈x, ξ〉 = 〈Ef, ξ〉 = ((f trR)(∂)ξ)(0) = (f tr(∂)R(∂)ξ)(0) = 〈f, R(∂)ξ〉 = 〈f, 0〉 = 0.

Hence M ⊆ S⊥. To see that in fact we have equality, consider the tower

M ⊆ S⊥ ⊆ T ⊥.

Choose a denominator D of R. Then ED∗ is a left invertible proper rational matrix. Using Lemma
12, Theorem 1 and Lemma 7, we get
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[T ⊥ : S⊥] = [S : TU] = ch(D) = −ch(D∗) = [T ⊥ : M].
Therefore we indeed must have equality. The “only if” part follows because M is “representation
free”.

The “if” part is obvious. �

Theorem 3. Every linear system is represented as the kernel of a linear constant-coefficient
differential operator.

Proof. Assume we have a linear system S with input number p. Let M = S⊥, and choose a full
column rank polynomial matrix E such that Ek[s]p = M (minimal image representation of M).
Put R = Etr . We are going to show that S = Ker R(∂).

Let T denote the transfer function of S. By Lemma 12, C = T ⊥ is the convolution function of
M . Thanks to the key lemma, C⊥ = T . It follows from Lemma 10 that T is the transfer function
of R, and thus T is the transfer function of Ker R(∂) as well.

Take an arbitrary ξ ∈ S, and write ξ = ξ0 + L(w) with ξ0 ∈ TU and w ∈ Oq . Because M ⊆
C and C = (TU)⊥, 〈x, ξ0〉 = 0 for each x ∈ M . We therefore have

∀x ∈ M, 〈x, L(w)〉 = 〈x, ξ0〉 + 〈x, L(w)〉 = 〈x, ξ〉 = 0.

In other words,

∀f ∈ k[s]p, 〈Ef, L(w)〉 = 0.

It follows that

∀f ∈ k[s]p, 〈f, R(∂)L(w)〉 = 〈Ef, L(w)〉 = 0.

Because 〈f, R(∂)L(w)〉 = 〈f, R(σ)w〉 and because (1) is nondegenerate, this implies
R(∂)L(w) = 0. Thus L(w) ∈ Ker R(∂), and hence ξ belongs to Ker R(∂). We conclude that
S ⊆ Ker R(∂).

The proof now is easily completed by dimension count. Indeed, consider the tower

TU ⊆ S ⊆ Ker R(∂).

By the proof of the previous theorem, Ker R(∂)⊥ = M . Applying Lemma 12 both to S and
Ker R(∂), we get

[S : TU] = [C : M] = [Ker R(∂) : TU].
This yields S = Ker R(∂). �
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Appendix A: Proof of the key lemma

Let W1 and W2 be rational linear spaces of the same dimension, and assume that we are given a
nondegenerate k(s)-bilinear form W1 × W2 → k(s). There is a canonical k-linear map k(s) → k

(determined by the decomposition k(s) = sk[s] ⊕ k ⊕ tO). Composing our form with this map
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we obtain a k-bilinear form W1 × W2 → k. Using the latter, for each subset N ⊆ Wi , define N⊥.
We state that if N is a finitely generated full rank O-submodule, say, in W1, then N⊥⊥ = N . To see
this, let us denote by p the dimension of our spaces and choose isomorphisms φ1 : W1 � k(s)p

and φ2 : W2 � k(s)p so that φ1(N) = Op and the diagram

W1 × W2 → k(s)

↓ ↓ ||
k(s)p × k(s)p → k(s)

is commutative. (The bottom bilinear form is given by (f, g) �→ f trg.) We are reduced therefore to
the case when W1 = k(s)p, W2 = k(s)p and M = Op. One can check easily that in this standard
case (Op)⊥ = tOp and (tOp)⊥ = Op; hence (Op)⊥⊥ = Op.

We are able now to give:

Proof of the key lemma. The bilinear form (1) is extended to the canonical bilinear form k(s)q ×
k(s)q → k. We claim that with respect to this latter

(V ∩ Oq)⊥ = V ◦ + tOq.

Indeed, consider the canonical bilinear form

k(s)q/V ◦ × V → k,

which obviously is nondegenerate, and put N = (V ◦ + tOq)/V ◦. The latter is a finitely generated
full rank submodule in k(s)q/V ◦, and hence N⊥⊥ = N . It is easy to see that N⊥ = V ∩ Oq , and
so (V ∩ Oq)⊥ = N . This implies our claim. Returning now to (1), we get

(V ∩ Oq)⊥ = (V ◦ + tOq) ∩ k[s]q .

The left hand side is just (V ◦)−, and the first relation is proved.
The second relation is easy, and needs no preparation. Indeed, let g ∈ Oq and let f ∈ V . We

then have

〈f, g〉 = 〈f−, g〉,
where f− denotes the polynomial part of f . Hence, g ∈ V ◦ if and only if g ∈ (V−)⊥. �

Appendix B: Frequency responses

We begin with the remark that if g ∈ O and ξ ∈ U, then

(gξ)′ = gξ ′ + L(gσ )ξ(0).

(Indeed, it is easy to check that (gξ)(0) = g(∞)ξ(0). In view of this, (gξ)′ = sgξ − sg(∞)ξ(0).
We therefore have

(gξ)′ = g(sξ − sξ(0)) + ξ(0)L(sg − sg(∞)) = gξ ′ + L(gσ )ξ(0).)

If F is a shift-invariant k-linear subspace in Oq , then the largest submodule contained in F

is a transfer function. (The proof of this is the same as that of Proposition 1.) We say that F

is a frequency response if its transfer function is “large enough” in the sense that has finite
codimension.

Given a frequency response F with transfer function T , we set �(F ) = TU + L(F). Using the
above remark (and the equality L(g)′ = L(gσ )), we can see that �(F ) is differentiation-invariant.
Further, choosing a finite-dimensional linear subspace X ⊆ F such that F = T ⊕ X, we clearly
have �(F ) = TU ⊕ L(X). So, �(F ) is a linear system.
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Conversely, if S is a linear system, then clearly �(S) = L−1(S ∩ L(Oq)) is a frequency
response. By definition, it consists of those proper rational functions that correspond to the
exponential trajectories.

It is easily seen that the mappings

F �→ �(F ) and S �→ �(S)

are inverse to each other. It follows, in particular, that a linear system is uniquely determined by
its exponential trajectories.

(If X is a subset of Uq , we write X to denote its topological closer.)

Proposition 3. If F is a frequency response, then

�(F ) = L(F).

Proof. Let F = T ⊕ X, and let g1, . . . , gm be a basis of T . For each g ∈ T , we have

L(g) = g1L(a1) + · · · + gmL(am) (a1, . . . , am ∈ O).

As noticed already, every ξ ∈ TU can be written uniquely as

ξ = g1ξ1 + · · · + gmξm (ξ1, . . . , ξm ∈ U).

Because L(O) = U, we see that TU = L(T ). Next, L(X) must be closed in Uq as a finite-
dimensional subspace. We thus have

�(F ) = TU + L(X) = L(T ) + L(X) = L(T + X) = L(F). �

As a consequence we get a 1-dimensional case of Ehrenpreis–Malgrange–Palamodov approx-
imation theorem (see [3]).

Corollary 3. The exponential solutions of a linear constant-coefficient differential equation form
a dense subset in the set of all solutions.

Appendix C: Extension to time-series

Extension to time series is trivial. Indeed, the reader could notice that very little about C∞
functions have been employed. Letting k be an arbitrary field and setting U = kZ+(� k[[t]]),
it only suffices to do the following: (1) Regard U as a torsion free module over O; (2) Take
L : k → U to be the natural embedding; (3) Check that U = tU ⊕ L(k).
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