When are linear differentiation-invariant spaces differential?

Vakhtang Lomadze
Institute of Mathematics, Tbilisi 0193, Georgia
Received 15 December 2005; accepted 21 June 2006
Available online 12 March 2007
Submitted by P. Fuhrmann

Abstract

It is shown that a linear differentiation-invariant subspace of a C^{∞}-trajectory space is differential (i.e., can be represented as the kernel of a linear constant-coefficient differential operator) if and only if its McMillan degree is finite. © 2007 Elsevier Inc. All rights reserved.

Keywords: Linear system; Transfer function; Convolution function; Zero initial condition

1. Introduction

Let k be the field of real or complex numbers, s an indeterminate, \mathscr{U} the space of all infinitely differentiable k-valued functions of the nonnegative real variable, and let q be a fixed positive integer.

The paper is concerned with the following question: When a linear differentiation-invariant subspace of \mathscr{U}^{q} can be described via an equation of the form $R(\partial) w=0$, where R is a polynomial matrix (with q columns) and ∂ is the differentiation operator? This natural question was posed by Willems (see $[7,8]$), and we try here to give a brief answer to it.

Let O be the ring of proper rational functions (in s), and let t denote the "uniformizer" s^{-1}. The space \mathscr{U} has a natural O-module structure: Given $g \in O$ and $\xi \in \mathscr{U}$, we define

$$
g \xi=\sum_{n \geqslant 0} b_{n} \int^{n} \xi,
$$

[^0]where b_{n} are the coefficients in the expansion of g at infinity and \int^{n} stands for the n-fold iteration of the integration operator with itself. The series converges uniformly on $[0, X]$ for each $X>0$. Indeed, we can find $r>0$ so that $\sum\left|b_{n}\right| r^{n}=B<+\infty$, and consequently $\left|b_{n}\right|<B r^{-n}$ for all $n \geqslant 0$. Letting now $M=\sup _{0 \leqslant x \leqslant X}|\xi(x)|$, we have
\[

$$
\begin{aligned}
& \forall x \in[0, X], \quad \sum_{n \geqslant 0}\left|b_{n}\right|\left|\left(\int^{n} \xi\right)(x)\right| \\
&=\left|b_{0}\right||\xi(x)|+\sum_{n \geqslant 1}\left|b_{n}\right|\left|\int_{0}^{x} \frac{(x-u)^{n-1}}{(n-1)!} \xi(u) \mathrm{d} u\right| \\
& \leqslant\left|b_{0}\right| M+\sum_{n \geqslant 1}\left|b_{n}\right| M \int_{0}^{x} \frac{(x-u)^{n-1}}{(n-1)!} \mathrm{d} u \\
& \leqslant \sum_{n \geqslant 0}\left|b_{n}\right| M \frac{x^{n}}{n!} \leqslant \sum_{n \geqslant 0} B r^{-n} M \frac{x^{n}}{n!} \leqslant B M \exp (X / r) .
\end{aligned}
$$
\]

It is remarkable that \mathscr{U} is torsion free. (This immediately follows from the fact that the integration operator is injective and the fact that every proper rational function is represented as $t^{n} u$ with $n \geqslant 0$ and invertible $u \in O$.) Let $L: k \mapsto \mathscr{U}$ be the canonical map embedding numbers into constant functions. For $g \in O$, we define the (inverse) Laplace transform $L(g)$ to be the function $g L(1)$, i.e., the analytic function

$$
x \mapsto \sum_{n \geqslant 0} b_{n} \frac{x^{n}}{n!} \quad(x \geqslant 0)
$$

where b_{n} are as above. The functions $L(g)$ will be called exponential functions. (In the case $k=\mathbb{C}$ these are precisely finite linear combinations of functions $x^{n} e^{\lambda x}$, where $n \in \mathbb{Z}_{+}$and $\lambda \in \mathbb{C}$.)

Define a transfer function as a submodule $T \subseteq O^{q}$ such that O^{q} / T is torsion free, i.e., a subset of the form $G O^{m}$, where m is a nonnegative integer and G is a left invertible proper rational matrix of size $q \times m$. This notion is a natural generalization of the classical notion of transfer function. (Indeed, up to componentwise partition $k^{q} \simeq k^{m} \oplus k^{p}$, a transfer function is the graph of a classical transfer function $u \mapsto A u\left(u \in O^{m}\right)$, where A is a proper rational matrix of size $p \times m$.) A submodule $T \subseteq O^{q}$ gives rise to a submodule $T \mathscr{U} \subseteq \mathscr{U}^{q}$ consisting of all finite sums of trajectories of the form $g \xi(g \in T, \xi \in \mathscr{U})$. Notice that if G is a generating matrix of T, then $T \mathscr{U}=G \mathscr{U}^{m}$, where m is the column number of G. It is interesting to note that the correspondence $T \mapsto T \mathscr{U}$ is one-to-one. We think of the distinguished modules $T \mathscr{U}$ as zero initial condition trajectory modules (ZICTMs).

It can be shown without difficulty that if \mathscr{S} is a linear differentiation-invariant subspace of \mathscr{U}^{q}, then the set

$$
T=\left\{g \in O^{q} \mid g \mathscr{U} \subseteq \mathscr{S}\right\}
$$

is a transfer function. We call it the transfer function of \mathscr{S}, and we regard trajectories in $T \mathscr{U}$ as zero initial condition trajectories of \mathscr{S}. We define the McMillan degree of \mathscr{S} as its dimension modulo $T \mathscr{U}$, i.e., the dimension of $\mathscr{S} / T \mathscr{U}$. The space $\mathscr{S} / T \mathscr{U}$ itself is called the initial condition (or state) space. We define a linear system to be a linear differentiation-invariant subspace with finite McMillan degree.

Not surprisingly, the kernel of a linear constant-coefficient differential operator is a linear system. The main result of this paper (namely, Theorem 3) states that the converse also is true. To prove this result we consider a canonical k-linear bilinear form $k[s]^{q} \times \mathscr{U}^{q} \rightarrow k$ defined by the formula

$$
\langle f, \xi\rangle=\left(f^{\operatorname{tr}}(\partial) \xi\right)(0)
$$

("tr" stands for the transpose.) If \mathscr{S} is a linear system, then clearly \mathscr{S}^{\perp} is a submodule of $k[s]^{q}$. It is trivial that every submodule has an "image representation", and letting E be such a representation of \mathscr{S}^{\perp}, the idea is that a "kernel representation" of \mathscr{S} should be $R=E^{\text {tr }}$. In deriving the result helpful roles will be played by the "Riemann-Roch formula" and the "key lemma" (Lemma 8). The key lemma gives a duality relation between transfer functions and, what we call, convolution functions. (Convolution functions are certain linear subspaces of $k[s]^{q}$, which play in the paper just an auxiliary role; they are connected with submodules as ZICTMs are connected with linear systems.) This immediately leads to a relation between ZICTMs and convolution functions. We apply the Riemann-Roch formula to compute some dimensions. This computation allows then to extend the relation above to a one between linear systems and submodules of $k[s]^{q}$.

Concluding the introduction, it seems worthwhile to point out that the paper is self-contained.

2. Mikusinski functions

We let \mathscr{M} be the fraction space of \mathscr{U}. Elements of \mathscr{M} are called Mikusinski (or generalized) functions. Every Mikusinski function can be written as a ratio ξ / t^{n}, where $\xi \in \mathscr{U}$ and $n \geqslant 0$. (This is because every $\neq 0$ element in O, as already remarked, is a power of t modulo invertible elements.) Of course $t^{n} \cdot \xi / t^{n}=\xi$, and this means that every generalized function is a quantity that after "integrating" sufficiently many times becomes an ordinary function.

Remark. It is Mikusinski's idea to define generalized functions as ratios (see [5]). This is a nice idea.

We identify \mathscr{U} with its image in \mathscr{M} under the canonical map $\xi \mapsto \xi / 1$. It is obvious that

$$
\mathscr{U} \subset s \mathscr{U} \subset s^{2} \mathscr{U} \subset \cdots \quad \text { and } \quad \mathscr{M}=\cup s^{n} \mathscr{U} .
$$

The homomorphism L can be uniquely continued to a $k(s)$-linear map $k(s) \rightarrow \mathscr{M}$, and we shall use the same letter L to denote it. We call elements of $L(s k[s])$ purely impulsive functions.

The Newton-Leibniz formula can be rewritten as $s \xi=\xi^{\prime}+s \xi(0)$. Using induction argument, one easily deduces the Taylor formula

$$
s^{n} \xi=\xi^{(n)}+s^{n} \xi(0)+\cdots+s \xi^{(n-1)}(0) .
$$

The following says that every Mikusinski function has the "regular" part and the purely impulsive part.

Lemma 1. $\mathscr{M}=\mathscr{U} \oplus L(s k[s])$.
Proof. Follows from Taylor's formula.
We shall need the following
Lemma 2. Let R be a polynomial matrix of size $p \times q$. Then
$\operatorname{Ker} R(\partial)=\left\{\xi \in \mathscr{U}^{q} \mid R \xi \in L\left(s k[s]^{p}\right)\right\}$.

Proof. Let $R=R_{0} s^{n}+R_{1} s^{n-1}+\cdots+R_{n}$, and let $\xi \in \mathscr{U}^{q}$. Using Taylor's formula, we have

$$
R \xi=R(\partial) \xi+\left[s I_{p} \ldots s^{n} I_{p}\right]\left[\begin{array}{cccc}
R_{n-1} & R_{n-2} & \ldots & R_{0} \\
R_{n-2} & R_{n-3} & & 0 \\
\vdots & & & \vdots \\
R_{0} & 0 & \ldots & 0
\end{array}\right]\left[\begin{array}{c}
\xi(0) \\
\xi^{\prime}(0) \\
\vdots \\
\xi^{(n-1)}(0)
\end{array}\right] .
$$

We see that $R(\partial) \xi$ is equal to the regular part of $R \xi$, and the lemma follows.
The following two elementary examples illustrate how Mikusinski functions work.
Example 1. Let $r=a_{0} s^{n}+a_{1} s^{n-1}+\cdots+a_{n}$ be a polynomial with $a_{0} \neq 0$, and let x_{0}, \ldots, x_{n-1} $\in k$. Consider the Cauchy problem

$$
\left\{\begin{array}{l}
a_{0} x^{(n)}+a_{1} x^{(n-1)}+\cdots+a_{n} x=0 \\
x(0)=x_{0}, \ldots, x^{(n-1)}(0)=x_{n-1}
\end{array}\right.
$$

Applying the Taylor formula, we can rewrite this as

$$
r x=L(f),
$$

where f is a polynomial given by the formula

$$
f=\left[s \ldots s^{n}\right]\left[\begin{array}{cccc}
a_{n-1} & a_{n-2} & \ldots & a_{0} \\
a_{n-2} & a_{n-3} & & 0 \\
\vdots & & & \vdots \\
a_{0} & 0 & \ldots & 0
\end{array}\right]\left[\begin{array}{c}
x_{0} \\
x_{1} \\
\vdots \\
x_{n-1}
\end{array}\right] .
$$

Multiplying both sides of this equation by $1 / r$, we obtain

$$
x=\frac{1}{r} L(f)=L\left(\frac{f}{r}\right) .
$$

Notice that f / r is a proper rational function, and so the solution is an exponential function (as it should be of course).

Example 2. Let r be as in the previous example, and let $\xi \in \mathscr{U}$. Consider the Cauchy problem

$$
\left\{\begin{array}{l}
a_{0} x^{(n)}+a_{1} x^{(n-1)}+\cdots+a_{n} x=\xi \\
x(0)=0, \ldots, x^{(n-1)}(0)=0
\end{array}\right.
$$

Applying the Taylor formula, we can rewrite this as

$$
r x=\xi .
$$

Multiplying both sides of this equation by $1 / r$, we obtain

$$
x=\frac{1}{r} \xi=\frac{t^{n}}{a_{0}+a_{1} t+\cdots+a_{n} t^{n}} \xi .
$$

3. Algebraic preliminaries

Let D be a nonsingular rational matrix of size p. The number $-\operatorname{ord}_{\infty}(\operatorname{det} D)$ is called the Chern number of D and is denoted by $\operatorname{ch}(D)$. (We remind that the order at infinity of a rational
function u / v with $u, v \in k[s]$ and $v \neq 0$ is defined to be $\operatorname{deg}(v)-\operatorname{deg}(u)$.) We define the dual of D as $D^{*}=\left(D^{-1}\right)^{\mathrm{tr}}$. The cohomology spaces are defined as

$$
H^{0}(D)=s k[s]^{p} \cap D O^{p} \quad \text { and } \quad H^{1}(D)=k(s)^{p} /\left(k[s]^{p}+t D O^{p}\right) .
$$

One can easily compute that

$$
\operatorname{dim} H^{0}\left(s^{n} I_{p}\right)=\max \{n p, 0\} \quad \text { and } \quad \operatorname{dim} H^{1}\left(t^{n} I_{p}\right)=\max \{n p, 0\}
$$

where n is an arbitrary integer. It immediately follows from these formulas that the spaces $H^{0}(D)$ and $H^{1}(D)$ have finite dimension. (Indeed, for sufficiently large $n, D O^{p} \subseteq s^{n} O^{p}$ and $t^{n} O^{p} \subseteq$ $D O^{p}$. Hence, $H^{0}(D) \subseteq H^{0}\left(s^{n} I_{p}\right)$ and there is a surjective linear map $H^{1}\left(t^{n} I_{p}\right) \rightarrow H^{1}(D)$.)

We shall need the following nice formula ("Riemann-Roch formula")

$$
\operatorname{ch}(D)=\operatorname{dim} H^{0}(D)-\operatorname{dim} H^{1}(D)
$$

To prove it, choose $n \geqslant 0$ so large that $D O^{p} \subseteq s^{n} O^{p}$, and consider the diagram

$$
\begin{array}{cccccccccc}
0 & \rightarrow & s k[s]^{p} \oplus D O^{p} & \rightarrow & s k[s]^{p} \oplus s^{n} O^{p} & \rightarrow & s^{n} O^{p} / D O^{p} & \rightarrow & 0 \\
& & \downarrow & & \downarrow & & & \\
0 & \rightarrow & k(s)^{p} & & & k(s)^{p} & & \rightarrow & 0 & \\
& \rightarrow & 0
\end{array}
$$

The diagram commutes and has exact rows. Applying the snake lemma (see, for example, Proposition 2.10 in [1]) and the facts that

$$
k(s)^{p} /\left(s k[s]^{p}+s^{n} O^{p}\right)=\{0\} \quad \text { and } \quad k(s)^{p} /\left(s k[s]^{p}+D O^{p}\right) \simeq H^{1}(D)
$$

we get an exact sequence

$$
0 \rightarrow H^{0}(D) \rightarrow H^{0}\left(s^{n} I_{p}\right) \rightarrow s^{n} O^{p} / D O^{p} \rightarrow H^{1}(D) \rightarrow 0
$$

The space $s^{n} O^{p} / D O^{p} \simeq O^{p} / t^{n} D O^{p}$ has dimension equal to $\operatorname{ord}_{\infty}\left(t^{n} \operatorname{det} D\right)=n p-\operatorname{ch}(D)$, and the formula follows.

Let us say that two nonsingular rational matrices D_{1} and D_{2} are similar if there exists a biproper matrix B such that $D_{2}=D_{1} B$. Notice that if this is the case, then D_{1} and D_{2} have the same Chern number and the same cohomologies.

Remark. There is a close link between similarity classes of nonsingular rational matrices and vector bundles over the projective line (see [4]), and this explains the terminology above.

If X and Y are k-linear spaces such $X \subseteq Y$, we write $[Y: X]$ to denote the codimension of X in Y.

Lemma 3. Let V be a $k(s)$-linear space of finite dimension, and let M and N be submodules in V over $k[s]$ and O, respectively. The following conditions are equivalent:
(a) M and N have full rank;
(b) $[V:(M+N)]$ is finite.

Proof. Let r denote the dimension of V.
(a) \Rightarrow (b) Take an isomorphism $\phi: V \rightarrow k(s)^{r}$ so that $\phi(M)=k[s]^{r}$. Then $\phi(N)=D O^{r}$ for some nonsingular rational matrix D, and therefore $V /(M+N) \simeq H^{1}(D)$.
$(\mathrm{a}) \Leftarrow$ (b) Say that M is not of full rank. Let i denote its rank and put $j=r-i$. Take an isomorphism $\phi: V \rightarrow k(s)^{r}$ so that $\phi(M)=k[s]^{i} \oplus 0\left(\subset k[s]^{i} \oplus k[s]^{j}\right)$ and choose $n \geqslant 1$ so that $\phi(N) \subseteq s^{n} O^{r}$. We then have a surjective linear map

$$
V /(M+N) \rightarrow k(s)^{r} /\left(\left(k[s]^{i} \oplus 0\right)+s^{n} O^{r}\right)
$$

It remains now to notice that

$$
k(s)^{r} /\left(\left(k[s]^{i} \oplus 0\right)+s^{n} O^{r}\right)=k(s)^{i} /\left(k[s]^{i}+s^{n} O^{i}\right) \oplus k(s)^{j} / s^{n} O^{j}=k(s)^{j} / s^{n} O^{j}
$$

has infinite dimension.
Lemma 4. Let R be a full row rank polynomial matrix of size $p \times q$. Then there exists a nonsingular rational matrix D satisfying the following equivalent conditions:
(a) $D^{-1} R$ is a right invertible proper rational matrix;
(b) $R O^{q}=D O^{p}$.

The matrix D is uniquely determined up to similarity.
Proof. Clearly $R O^{q}$ is a full rank O-submodule in $k(s)^{p}$. Hence, $R O^{q}=D O^{p}$ for some nonsingular rational matrix D. It is obvious that saying that $D^{-1} R$ is a right invertible proper rational matrix is equivalent to saying that $D^{-1} R O^{q}=O^{p}$, i.e., $R O^{q}=D O^{p}$.

Assume that D_{1} and D_{2} satisfy the condition. Then $D_{1} O^{p}=D_{2} O^{p}$, and therefore $O^{p}=$ $D_{1}^{-1} D_{2} O^{p}$. It follows that $D_{1}^{-1} D_{2}$ is biproper.

Lemma 5. Let E be a full column rank polynomial matrix of size $q \times p$. Then there exists a nonsingular rational matrix D satisfying the following equivalent conditions:
(a) $E D$ is a left invertible proper rational matrix;
(b) $E D O^{p}=E k(s)^{p} \cap O^{q}$.

The matrix D is uniquely determined up to similarity.
Proof. This can be deduced easily from the previous lemma. (A direct proof is possible, and we leave it to the interested reader.)

4. Convolution and transfer functions

Given a rational subspace $V \subseteq k(s)^{q}$, we shall write V_{-}to denote the set of the polynomial parts of all elements in V.

Lemma 6. Let $M \subseteq k[s]^{q}$ be a submodule and $V \subseteq k(s)^{q}$ a rational subspace such that $M \subseteq V$. The following conditions are equivalent:
(a) V is the fraction space of M;
(b) $\left[V_{-}: M\right]$ is finite.

Proof. Consider the canonical map $V \rightarrow V_{-} / M$, which certainly is surjective. Its kernel is equal to $M+\left(V \cap t O^{q}\right)$. Indeed, assume that $x+t y \in V$, where $x \in k[s]^{q}$ and $y \in O^{q}$, goes to zero. Then we must have $x \in M$. Because $M \subseteq V$, we also must have $y \in V$, and so $x+t y \in M+$ $\left(V \cap t O^{q}\right)$. Thus, we have a canonical isomorphism

$$
V /\left(M+\left(V \cap t O^{q}\right)\right) \simeq V_{-} / M
$$

Using Lemma 3, we complete the proof.
Any subset $C \subseteq k[s]^{q}$ of the form $C=V_{-}$, where V is a $k(s)$-linear subspace of $k(s)^{q}$, will be referred to as a convolution function. (It can be shown easily, using the previous lemma, that V_{-} is uniquely determined by V.) The convolution function of a submodule $M \subseteq k[s]^{q}$ is defined to be V_{-}, where V is the fraction space of M. By the lemma above, $\left[V_{-}: M\right]<+\infty$. The following says that this property uniquely characterizes the convolution function of a module.

Corollary 1. If M is a submodule and C a convolution function such that $M \subseteq C$ and $[C: M]<$ $+\infty$, then necessarily C is the convolution function of M.

Proof. Let V be the fraction space of M, and let W be a rational subspace such that $C=W_{-}$. Then

$$
W_{-} / M \oplus V_{-} / M \rightarrow(W+V)_{-} / M
$$

clearly is surjective, and consequently $\left[(W+V)_{-}: M\right]<+\infty$. Using now the previous lemma, we find that $W+V=V$. Hence, $W \subseteq V$. Because V is the least rational subspace containing M, we conclude that $W=V$.

Lemma 7. Let E be a full column rank polynomial matrix of size $q \times p$, and let D be a nonsingular rational matrix satisfying the conditions of Lemma 5. Letting $M=E k[s]^{p}$ and $C=\left(E k(s)^{p}\right)_{-}$, we then have

$$
[C: M]=-\operatorname{ch}(D)
$$

Proof. The matrix E induces a canonical linear map $H^{0}(D) \rightarrow H^{0}\left(I_{q}\right)$, which must be injective because E has full column rank. It follows that $H^{0}(D)=0$. Hence, by the Riemann-Roch formula, $\operatorname{ch}(D)=-\operatorname{dim} H^{1}(D)$. Further, there is (see the proof of Lemma 6) a canonical isomorphism

$$
C / M \simeq E k(s)^{p} /\left(M+E k(s)^{p} \cap t O^{q}\right)
$$

This completes the proof, because the right hand side is isomorphic to $H^{1}(D)$.
We call a transfer function any subset $T \subseteq O^{q}$ of the form $T=V \cap O^{q}$, where V is a $k(s)$ linear subspace of $k(s)^{q}$. (This definition is equivalent to that given in Introduction.) The dimension of V is called the input number of T. It should be noted that the correspondence $V \mapsto V \cap O^{q}$ is one-to-one. (This is because V is equal to the fraction space of $V \cap O^{q}$). If T is a transfer function with input number m, then T can be written as $T=G O^{m}$, where G is left invertible proper rational matrix of size $q \times m$. If G_{1} and G_{2} are two generating matrices, then they are equivalent in the sense that $G_{2}=G_{1} B$ for some biproper rational matrix B.

Given a proper rational function g, we let $g(\infty)$ be its value at infinity and g^{σ} its backward shift. (If $g=b_{0}+b_{1} t+b_{2} t^{2}+\cdots$, then $g(\infty)=b_{0}$ and $g^{\sigma}=b_{1}+b_{2} t+\cdots$). Define a canonical k-bilinear form

$$
\begin{equation*}
k[s]^{q} \times O^{q} \rightarrow k, \quad\langle f, g\rangle=\left(f^{\operatorname{tr}}(\sigma) g\right)(\infty), \tag{1}
\end{equation*}
$$

which clearly is nondegenerate. For a k-linear subspace X in $k[s]^{q}$ or O^{q}, we let X^{\perp} denote the orthogonal of X with respect to this bilinear form.

Given a $k(s)$-linear subspace $V \subseteq k(s)^{q}$, we set

$$
V^{\circ}=\left\{f \in k(s)^{q} \mid f^{\operatorname{tr}} g=0 \forall g \in V\right\} .
$$

Obviously V° also is a $k(s)$-linear subspace, and $V^{\circ \circ}=V$. The following lemma, which relates convolution and transfer functions to each other, will play a key role. (For convenience, we postpone its proof to Appendix A.)

Lemma 8 (Key lemma). Let V be a $k(s)$-linear subspace in $k(s)^{q}$. Then

$$
\left(V \cap O^{q}\right)^{\perp}=\left(V^{\circ}\right)_{-} \quad \text { and } \quad\left(V_{-}\right)^{\perp}=V^{\circ} \cap O^{q}
$$

Corollary 2. If C is a convolution function, then $C^{\perp \perp}=C$; likewise, if T is a transfer function, then $T^{\perp \perp}=T$.

5. Linear systems

Given a transfer function T, let $T \mathscr{U}$ denote the submodule of \mathscr{U}^{q} generated by all columns of the form $g \xi$, where $g \in T$ and $\xi \in \mathscr{U}$. Remark that if G is a generating matrix of T, then $T \mathscr{U}=G \mathscr{U}^{m}$; in other words, letting g_{1}, \ldots, g_{m} denote the columns of G, then every element $\xi \in T \mathscr{U}$ can be (uniquely) written as

$$
\xi=g_{1} \xi_{1}+\cdots+g_{m} \xi_{m}
$$

with $\xi_{1}, \ldots, \xi_{m} \in \mathscr{U}$. We remark also that $T \mathscr{U}$ is the image under the canonical homomorphism $T \otimes \mathscr{U} \rightarrow O^{q} \otimes \mathscr{U}=\mathscr{U}^{q}$.

It is interesting to note that the correspondence $T \mapsto T \mathscr{U}$ is one-to-one. Indeed, let T be a transfer function and let $\left\{g_{1}, \ldots, g_{m}\right\}$ be its basis. Because O^{q} / T is torsion free (and therefore free), we can find $h_{1}, \ldots, h_{p} \in O^{q}$ such that $\left\{g_{1}, \ldots, g_{m}, h_{1}, \ldots, h_{p}\right\}$ is a basis of O^{q}. Any element of \mathscr{U}^{q} is uniquely represented then as

$$
g_{1} \xi_{1}+\cdots+g_{m} \xi_{m}+h_{1} \zeta_{1}+\cdots+h_{p} \zeta_{p}
$$

This belongs to $T \mathscr{U}$ if and only if

$$
\zeta_{1}, \ldots, \zeta_{p}=0
$$

and belongs to $L\left(O^{q}\right)$ if and only if

$$
\xi_{1}, \ldots, \xi_{m}, \zeta_{1}, \ldots, \zeta_{p} \in L(O)
$$

We see that $T \mathscr{U} \cap L\left(O^{q}\right)=L(T)$, and hence

$$
T=L^{-1}\left(T \mathscr{U} \cap L\left(O^{q}\right)\right) .
$$

Proposition 1. Let \mathscr{S} be a linear subspace in \mathscr{U}^{q} that is invariant with respect to the differentiation operator. Then the set

$$
T=\left\{g \in O^{q} \mid g \mathscr{U} \subseteq \mathscr{S}\right\}
$$

is a transfer function (called the transfer function of \mathscr{S}).
Proof. Obviously, T is a submodule (in O^{q}). Choose any its generating matrix G, and assume that it is not left invertible. Then the scalar matrix \bar{G} is not of full column rank. (The bar here denotes
the canonical homomorphism from O to $k=O / t O$.) This means that the columns g_{1}, \ldots, g_{m} of G are linearly dependent modulo $t O^{q}$. Say that

$$
g_{m} \equiv a_{1} g_{1}+\cdots+a_{m-1} g_{m-1}\left(\bmod t O^{q}\right)
$$

where $a_{1}, \ldots, a_{m-1} \in k$. Then there exists a column $h \in O^{q}$ such that

$$
g_{m}=a_{1} g_{1}+\cdots+a_{m-1} g_{m-1}+t h
$$

Certainly $h \neq 0$. We claim that $h \in T$. Indeed, let ξ be an arbitrary function. Then $t h \xi \in \mathscr{S}$ (because $t h \in T$). Using the invariance property of \mathscr{S}, we have $h \xi=(t h \xi)^{\prime} \in \mathscr{S}$. The claim is proved.

The columns $g_{1}, \ldots, g_{m-1}, h$ generate T, and they must form a basis (since their number is m). But $\operatorname{diag}(1, \ldots, 1, t)$ is not biproper, and therefore $\left\{g_{1}, \ldots, g_{m-1}, g_{m}\right\}$ can not be a basis. The contradiction shows that T must be a transfer function.

Given a linear differentiation-invariant subspace \mathscr{S} with transfer function T, we call $\mathscr{S} / T \mathscr{U}$ the initial condition space of \mathscr{S}. If ξ is a trajectory in \mathscr{S}, then its image in $\mathscr{S} / T \mathscr{U}$ is called the initial condition of ξ. The cardinality [$\mathscr{S}: T \mathscr{U}]$ is called the McMillan degree. We shall see in the next section that the solution sets of linear constant-coefficient differential equations have finite McMillan degree. The following examples show that, in general, the McMillan degree is not finite.

Example 3. The space $\mathscr{S}=k[x]^{q}$, i.e., the space of all polynomial trajectories, clearly is differ-entiation-invariant. Obviously,

$$
L^{-1}(\mathscr{S})=k[t]^{q}
$$

It is clear that the transfer function is $\{0\}$, and so the space has infinite McMillan degree.
Example 4. Let $n \geqslant 0$, and let $\mathscr{S}=\left\{\xi \in \mathscr{U}^{q} \mid \forall i \geqslant n, \xi^{(i)}(0)=0\right\}$. Clearly \mathscr{S} is differentiationinvariant. We have

$$
L^{-1}\left(\mathscr{S} \cap L\left(O^{q}\right)\right)=\left\{f \in k[t]^{q} \mid \operatorname{deg} f \leqslant n-1\right\} .
$$

The only transfer function contained in the above set is $\{0\}$, and so the transfer function of our space is $\{0\}$. It follows that the McMillan degree is infinite.

Lemma 9. Let \mathscr{S} be a linear subspace in \mathscr{U}^{q}. There may exist only one transfer function T such that

$$
T \mathscr{U} \subseteq \mathscr{S} \quad \text { and } \quad[\mathscr{S}: T \mathscr{U}]<+\infty .
$$

Proof. Suppose that there are two such transfer function T_{1} and T_{2}, and put $T=T_{1}+T_{2}$. (Notice that T may not be a transfer function, but $T \mathscr{U}$ still is defined.) Clearly, we have $\left[T \mathscr{U}: T_{i} \mathscr{U}\right]<+\infty$. From this and from the exact sequence

$$
0 \rightarrow T_{i} \mathscr{U} \rightarrow T \mathscr{U} \rightarrow T / T_{i} \otimes \mathscr{U} \rightarrow 0,
$$

which is obtained by tensoring the exact sequence $0 \rightarrow T_{i} \rightarrow T \rightarrow T / T_{i} \rightarrow 0$ with \mathscr{U}, it follows that $T / T_{i} \otimes \mathscr{U}$ has finite dimension. We see that T / T_{i} must be a torsion module, and hence T_{i} has the same fraction space as T. We conclude that each T_{i} is equal to $V \cap O^{q}$, where V is the fraction space of T.

By a linear (dynamical) system we shall understand a linear differentiation-invariant subspace of \mathscr{U}^{q} that has finite McMillan degree.

Proposition 2. Let \mathscr{S} be a linear system with transfer function T. Then

$$
\mathscr{S} \subseteq T \mathscr{U}+L\left(O^{q}\right) ;
$$

in other words, there always exists in \mathscr{S} an exponential trajectory with a given initial condition.
Proof. Take any $\xi \in \mathscr{S}$. Modulo $T \mathscr{U}$ the trajectories $\xi, \xi^{\prime}, \xi^{\prime \prime}, \ldots$ are linearly dependent. It follows that there exist an integer $n \geqslant 1$ and elements $a_{1}, \ldots, a_{n} \in k$ such that

$$
\xi^{(n)}+a_{1} \xi^{(n-1)}+\cdots+a_{n} \xi \equiv T \mathscr{U} .
$$

This means that our trajectory ξ satisfies the differential equation

$$
x^{(n)}+a_{1} x^{(n-1)}+\cdots+a_{n} x=\xi_{0}
$$

with $\xi_{0} \in T \mathscr{U}$. In view of Example 2, a particular solution of this equation is

$$
t^{n}\left(1+a_{1} t+\cdots+a_{n} t^{n}\right)^{-1} \xi_{0}
$$

which certainly belongs to $T \mathscr{U}$. Further, in view of Example 1, ξ differs from this particular solution by an exponential trajectory. The proof is complete.

6. Linear differential operators

Let R be a full row rank polynomial matrix of size $p \times q$. A nonsingular matrix D satisfying the conditions of Lemma 4 is called a denominator of R. The module $T=\left\{w \in O^{q} \mid R w=0\right\}$ is called the transfer function; the space $X=s k[s]^{p} \cap R O^{q}=H^{0}(D)$ is called the initial condition (or state) space; the Chern number of D is called the McMillan degree. It is easily seen that the McMillan degree is equal to the dimension of the state space. Indeed, the matrix R induces a canonical linear map $H^{1}\left(I_{q}\right) \rightarrow H^{1}(D)$, which must be surjective, because R has full row rank. Hence, $H^{1}(D)=0$, and the statement follows from the Riemann-Roch formula.

Remark. The above concept of states is, in principle, the same as Fuhrmann's classical one [2]. Indeed, with notation of [2], we have $H^{0}(D)=s S_{D}$.

Example 5. Assume that $q=1$, and let r be as in Example 1. The initial condition space of r is

$$
X=s k[s] \cap r O=s k[s] \cap s^{n} O=\oplus_{1 \leqslant i \leqslant n} k s^{i}
$$

On the other hand, according to the textbooks, the initial condition space of the equation $r(\partial) w=0$ is k^{n}. The two definitions agree with each other; namely, there is a canonical isomorphism $k^{n} \simeq X$ given by

$$
x \mapsto\left[s \cdots s^{n}\right] A x
$$

where A denotes the triangle matrix from Example 1.
The linear subspace $\operatorname{Ker} R(\partial)$ is easily seen to be differentiation-invariant.
Theorem 1. The McMillan degree of $\operatorname{Ker} R(\partial)$ is finite (and is equal to that of R).

Proof. Put $\mathscr{S}=\operatorname{Ker} R(\partial)$. According to Lemma 2,

$$
\mathscr{S}=\left\{\xi \in \mathscr{U}^{q} \mid R \xi \in L\left(s k[s]^{p}\right)\right\} .
$$

Consider the canonical linear map $\mathscr{S} \rightarrow L\left(s k[s]^{p}\right)$ (which is determined by the homomorphism $R: \mathscr{U}^{q} \rightarrow \mathscr{U}^{p}$). The image of this map is equal to

$$
\begin{aligned}
L\left(s k[s]^{p}\right) \cap R \mathscr{U}^{q} & =L\left(s k[s]^{p}\right) \cap D \mathscr{U}^{p}=L\left(s k[s]^{p}\right) \cap L\left(k(s)^{p}\right) \cap D \mathscr{U}^{p} \\
& =L\left(s k[s]^{p}\right) \cap D\left(L k(s)^{p} \cap \mathscr{U}^{p}\right)=L\left(s k[s]^{p}\right) \cap D L\left(O^{p}\right)=L(X) .
\end{aligned}
$$

So, we have a canonical surjective linear map $\mathscr{S} \rightarrow X$.
Consider now the exact sequence

$$
0 \rightarrow T \rightarrow O^{q} \xrightarrow{R} D O^{p} \rightarrow 0
$$

The module \mathscr{U} is torsion free (and hence flat). Therefore tensoring this sequence by \mathscr{U}, we get an exact sequence

$$
0 \rightarrow T \otimes \mathscr{U} \rightarrow \mathscr{U}^{q} \xrightarrow{R} D \mathscr{U}^{p} \rightarrow 0
$$

Replacing $T \otimes \mathscr{U}$ by $T \mathscr{U}$, we obtain an exact sequence

$$
0 \rightarrow T \mathscr{U} \rightarrow \mathscr{U}^{q} \xrightarrow{R} D \mathscr{U}^{p} \rightarrow 0 .
$$

This immediately implies that the kernel of the canonical map $\mathscr{S} \rightarrow X$ is equal to $T \mathscr{U}$, and consequently we have an exact sequence

$$
0 \rightarrow T \mathscr{U} \rightarrow \mathscr{S} \rightarrow X \rightarrow 0 .
$$

This shows immediately that the transfer function of \mathscr{S} is the same as that of R. This shows also that the initial condition space of \mathscr{S} is canonically isomorphic to that of R.

We shall need the following:
Lemma 10. Let $R=E^{\mathrm{tr}}$, where E is a full column rank polynomial matrix of size $q \times p$. Then the transfer function of R is equal to C^{\perp}, where C is the convolution function of E.

Proof. Given $u \in k(s)^{p}$ and $v \in k(s)^{q}$, we have $(E u)^{\operatorname{tr}} v=u^{\operatorname{tr}} R v$. From this evident formula it immediately follows that

$$
\left(E k(s)^{p}\right)^{\circ}=\left\{v \in k(s)^{q} \mid R v=0\right\}
$$

Applying now the key lemma, one completes the proof.

7. Main theorems

We have a canonical k-bilinear form

$$
\begin{equation*}
k[s]^{q} \times \mathscr{U}^{q} \rightarrow k, \quad\langle f, \xi\rangle=\left(f^{\operatorname{tr}}(\partial) \xi\right)(0) \tag{2}
\end{equation*}
$$

This clearly is nondegenerate from the left (but not from the right of course). This bilinear form is related with the one defined in Section 4: If $f \in k[s]^{q}$ and $g \in O^{q}$, then $\langle f, g\rangle=\langle f, L(g)\rangle$.

Given a k-linear subspace $\mathscr{X} \subseteq \mathscr{U}^{q}$, we shall write \mathscr{X}^{\perp} to denote the orthogonal of \mathscr{X}. (We believe that \mathscr{X}^{\perp} can not be confused with X^{\perp} defined earlier.)

Lemma 11. If T is a transfer function, then $(T \mathscr{U})^{\perp}=T^{\perp}$.
Proof. " \supseteq " By definition, $T=V \cap O^{q}$ for some $k(s)$-linear subspace $V \subseteq k(s)^{q}$. Let $f \in T^{\perp}$, and let $g \in T$ and $\xi \in \mathscr{U}$. By the key lemma, $f \in\left(V^{\circ}\right)_{-}$, and consequently $f+t h \in V^{\circ}$ for some $h \in O^{q}$. We then have $(f+t h)^{\operatorname{tr}} g=0$, and therefore $(f+t h)^{\operatorname{tr}} g \xi=0$. By Lemma 2 , $f^{\operatorname{tr}}(\partial)(g \xi)$ is equal to the regular part of $f^{\operatorname{tr}} g \xi$. But the latter is already regular, since it is equal to $-t h^{\mathrm{tr}} g \xi$. We see that $f^{\operatorname{tr}}(\partial)(g \xi) \in t \mathscr{U}$, and so $\langle f, g \xi\rangle=0$. Because $T \mathscr{U}$ is generated by elements of the form $g \xi$, we conclude that $f \in(T \mathscr{U})^{\perp}$.
" \subseteq " Because $T \mathscr{U} \supseteq L(T)$, we have $(T \mathscr{U})^{\perp} \subseteq L(T)^{\perp}$. Clearly $L(T)^{\perp}=T^{\perp}$, and thus $(T \mathscr{U})^{\perp}$ $\subseteq T^{\perp}$.

Lemma 12. Let \mathscr{S} be a linear system with transfer function T. Then \mathscr{S}^{\perp} is a submodule (in $k[s]^{q}$) with convolution function T^{\perp}, and the canonical bilinear form

$$
T^{\perp} / \mathscr{S}^{\perp} \times \mathscr{S} / T \mathscr{U} \rightarrow k
$$

is nondegenerate.
Proof. That \mathscr{S}^{\perp} is a submodule follows immediately from the relationship $\langle s f, \xi\rangle=\left\langle f, \xi^{\prime}\right\rangle$ (and the invariance property of \mathscr{S}). It is easily seen that the bilinear form is nondegenerate from the left, and therefore $T^{\perp} / \mathscr{S}^{\perp}$ is finite-dimensional. Using Corollary 1, it follows from this that T^{\perp} is the convolution function of \mathscr{S}^{\perp}. To show that the form is nondegenerate from the right, take an arbitrary $\xi \in \mathscr{S}$ such that $\langle f, \xi\rangle=0$ for each $f \in T^{\perp}$. Write $\xi=\xi_{0}+L(w)$, where $\xi_{0} \in T \mathscr{U}$ and $w \in O^{q}$. By the previous lemma, $\left\langle f, \xi_{0}\right\rangle=0$ for each $f \in T^{\perp}$. It follows that

$$
\forall f \in T^{\perp}, \quad\langle f, L(w)\rangle=0
$$

Using the key lemma, we can see that $w \in T$. Hence, $\xi \in T \mathscr{U}$, and the proof is complete.
Two full row rank polynomial matrices R_{1} and R_{2} are said to be equivalent if there exists a unimodular matrix U such that $R_{2}=U R_{1}$. The following is due to Schumacher [6].

Theorem 2. Two full row rank polynomial matrices (with column number q) generate the same linear system if and only if they are equivalent.

Proof. Let R be a full row rank polynomial matrix of size $p \times q$, and let T be its transfer function. Put $E=R^{\operatorname{tr}}, \mathscr{S}=\operatorname{Ker} R(\partial)$ and $M=E k[s]^{p}$. We want to show that

$$
\mathscr{S}^{\perp}=M .
$$

Take $x \in M$. Then $x=E f$ with $f \in k[s]^{p}$. For each $\xi \in \mathscr{S}$, we have

$$
\langle x, \xi\rangle=\langle E f, \xi\rangle=\left(\left(f^{\operatorname{tr}} R\right)(\partial) \xi\right)(0)=\left(f^{\operatorname{tr}}(\partial) R(\partial) \xi\right)(0)=\langle f, R(\partial) \xi\rangle=\langle f, 0\rangle=0
$$

Hence $M \subseteq \mathscr{S}^{\perp}$. To see that in fact we have equality, consider the tower

$$
M \subseteq \mathscr{S}^{\perp} \subseteq T^{\perp}
$$

Choose a denominator D of R. Then $E D^{*}$ is a left invertible proper rational matrix. Using Lemma 12, Theorem 1 and Lemma 7, we get

$$
\left[T^{\perp}: \mathscr{S}^{\perp}\right]=[\mathscr{S}: T \mathscr{U}]=\operatorname{ch}(D)=-\operatorname{ch}\left(D^{*}\right)=\left[T^{\perp}: M\right] .
$$

Therefore we indeed must have equality. The "only if" part follows because M is "representation free".

The "if" part is obvious.
Theorem 3. Every linear system is represented as the kernel of a linear constant-coefficient differential operator.

Proof. Assume we have a linear system \mathscr{S} with input number p. Let $M=\mathscr{S}^{\perp}$, and choose a full column rank polynomial matrix E such that $E k[s]^{p}=M$ (minimal image representation of M). Put $R=E^{\mathrm{tr}}$. We are going to show that $\mathscr{S}=\operatorname{Ker} R(\partial)$.

Let T denote the transfer function of \mathscr{S}. By Lemma $12, C=T^{\perp}$ is the convolution function of M. Thanks to the key lemma, $C^{\perp}=T$. It follows from Lemma 10 that T is the transfer function of R, and thus T is the transfer function of $\operatorname{Ker} R(\partial)$ as well.

Take an arbitrary $\xi \in \mathscr{S}$, and write $\xi=\xi_{0}+L(w)$ with $\xi_{0} \in T \mathscr{U}$ and $w \in O^{q}$. Because $M \subseteq$ C and $C=(T \mathscr{U})^{\perp},\left\langle x, \xi_{0}\right\rangle=0$ for each $x \in M$. We therefore have

$$
\forall x \in M, \quad\langle x, L(w)\rangle=\left\langle x, \xi_{0}\right\rangle+\langle x, L(w)\rangle=\langle x, \xi\rangle=0 .
$$

In other words,

$$
\forall f \in k[s]^{p}, \quad\langle E f, L(w)\rangle=0
$$

It follows that

$$
\forall f \in k[s]^{p}, \quad\langle f, R(\partial) L(w)\rangle=\langle E f, L(w)\rangle=0 .
$$

Because $\langle f, R(\partial) L(w)\rangle=\langle f, R(\sigma) w\rangle$ and because (1) is nondegenerate, this implies $R(\partial) L(w)=0$. Thus $L(w) \in \operatorname{Ker} R(\partial)$, and hence ξ belongs to Ker $R(\partial)$. We conclude that $\mathscr{S} \subseteq \operatorname{Ker} R(\partial)$.

The proof now is easily completed by dimension count. Indeed, consider the tower

$$
T \mathscr{U} \subseteq \mathscr{S} \subseteq \operatorname{Ker} R(\partial) .
$$

By the proof of the previous theorem, $\operatorname{Ker} R(\partial)^{\perp}=M$. Applying Lemma 12 both to \mathscr{S} and $\operatorname{Ker} R(\partial)$, we get

$$
[\mathscr{S}: T \mathscr{U}]=[C: M]=[\operatorname{Ker} R(\partial): T \mathscr{U}] .
$$

This yields $\mathscr{S}=\operatorname{Ker} R(\partial)$.

Acknowledgments

The author would like to thank the referees for several valuable suggestions.

Appendix A: Proof of the key lemma

Let W_{1} and W_{2} be rational linear spaces of the same dimension, and assume that we are given a nondegenerate $k(s)$-bilinear form $W_{1} \times W_{2} \rightarrow k(s)$. There is a canonical k-linear map $k(s) \rightarrow k$ (determined by the decomposition $k(s)=s k[s] \oplus k \oplus t O$). Composing our form with this map
we obtain a k-bilinear form $W_{1} \times W_{2} \rightarrow k$. Using the latter, for each subset $N \subseteq W_{i}$, define N^{\perp}. We state that if N is a finitely generated full rank O-submodule, say, in W_{1}, then $N^{\perp \perp}=N$. To see this, let us denote by p the dimension of our spaces and choose isomorphisms $\phi_{1}: W_{1} \simeq k(s)^{p}$ and $\phi_{2}: W_{2} \simeq k(s)^{p}$ so that $\phi_{1}(N)=O^{p}$ and the diagram

is commutative. (The bottom bilinear form is given by $(f, g) \mapsto f^{\text {tr }} g$.) We are reduced therefore to the case when $W_{1}=k(s)^{p}, W_{2}=k(s)^{p}$ and $M=O^{p}$. One can check easily that in this standard case $\left(O^{p}\right)^{\perp}=t O^{p}$ and $\left(t O^{p}\right)^{\perp}=O^{p}$; hence $\left(O^{p}\right)^{\perp \perp}=O^{p}$.

We are able now to give:
Proof of the key lemma. The bilinear form (1) is extended to the canonical bilinear form $k(s)^{q} \times$ $k(s)^{q} \rightarrow k$. We claim that with respect to this latter

$$
\left(V \cap O^{q}\right)^{\perp}=V^{\circ}+t O^{q}
$$

Indeed, consider the canonical bilinear form

$$
k(s)^{q} / V^{\circ} \times V \rightarrow k
$$

which obviously is nondegenerate, and put $N=\left(V^{\circ}+t O^{q}\right) / V^{\circ}$. The latter is a finitely generated full rank submodule in $k(s)^{q} / V^{\circ}$, and hence $N^{\perp \perp}=N$. It is easy to see that $N^{\perp}=V \cap O^{q}$, and so $\left(V \cap O^{q}\right)^{\perp}=N$. This implies our claim. Returning now to (1), we get

$$
\left(V \cap O^{q}\right)^{\perp}=\left(V^{\circ}+t O^{q}\right) \cap k[s]^{q} .
$$

The left hand side is just $\left(V^{\circ}\right)_{-}$, and the first relation is proved.
The second relation is easy, and needs no preparation. Indeed, let $g \in O^{q}$ and let $f \in V$. We then have

$$
\langle f, g\rangle=\left\langle f_{-}, g\right\rangle,
$$

where f_{-}denotes the polynomial part of f. Hence, $g \in V^{\circ}$ if and only if $g \in\left(V_{-}\right)^{\perp}$.

Appendix B: Frequency responses

We begin with the remark that if $g \in O$ and $\xi \in \mathscr{U}$, then

$$
(g \xi)^{\prime}=g \xi^{\prime}+L\left(g^{\sigma}\right) \xi(0)
$$

(Indeed, it is easy to check that $(g \xi)(0)=g(\infty) \xi(0)$. In view of this, $(g \xi)^{\prime}=\operatorname{sg\xi }-\operatorname{sg}(\infty) \xi(0)$. We therefore have

$$
\left.(g \xi)^{\prime}=g(s \xi-s \xi(0))+\xi(0) L(s g-s g(\infty))=g \xi^{\prime}+L\left(g^{\sigma}\right) \xi(0) .\right)
$$

If F is a shift-invariant k-linear subspace in O^{q}, then the largest submodule contained in F is a transfer function. (The proof of this is the same as that of Proposition 1.) We say that F is a frequency response if its transfer function is "large enough" in the sense that has finite codimension.

Given a frequency response F with transfer function T, we set $\Sigma(F)=T \mathscr{U}+L(F)$. Using the above remark (and the equality $L(g)^{\prime}=L\left(g^{\sigma}\right)$), we can see that $\Sigma(F)$ is differentiation-invariant. Further, choosing a finite-dimensional linear subspace $X \subseteq F$ such that $F=T \oplus X$, we clearly have $\Sigma(F)=T \mathscr{U} \oplus L(X)$. So, $\Sigma(F)$ is a linear system.

Conversely, if \mathscr{S} is a linear system, then clearly $\Phi(\mathscr{S})=L^{-1}\left(\mathscr{S} \cap L\left(O^{q}\right)\right)$ is a frequency response. By definition, it consists of those proper rational functions that correspond to the exponential trajectories.

It is easily seen that the mappings

$$
F \mapsto \Sigma(F) \quad \text { and } \quad \mathscr{S} \mapsto \Phi(\mathscr{S})
$$

are inverse to each other. It follows, in particular, that a linear system is uniquely determined by its exponential trajectories.
(If \mathscr{X} is a subset of \mathscr{U}^{q}, we write $\overline{\mathscr{X}}$ to denote its topological closer.)
Proposition 3. If F is a frequency response, then

$$
\Sigma(F)=\overline{L(F)}
$$

Proof. Let $F=T \oplus X$, and let g_{1}, \ldots, g_{m} be a basis of T. For each $g \in T$, we have

$$
L(g)=g_{1} L\left(a_{1}\right)+\cdots+g_{m} L\left(a_{m}\right) \quad\left(a_{1}, \ldots, a_{m} \in O\right) .
$$

As noticed already, every $\xi \in T \mathscr{U}$ can be written uniquely as

$$
\xi=g_{1} \xi_{1}+\cdots+g_{m} \xi_{m} \quad\left(\xi_{1}, \ldots, \xi_{m} \in \mathscr{U}\right)
$$

Because $\overline{L(O)}=\mathscr{U}$, we see that $T \mathscr{U}=\overline{L(T)}$. Next, $L(X)$ must be closed in \mathscr{U}^{q} as a finitedimensional subspace. We thus have

$$
\Sigma(F)=T \mathscr{U}+L(X)=\overline{L(T)}+\overline{L(X)}=\overline{L(T+X)}=\overline{L(F)} .
$$

As a consequence we get a 1-dimensional case of Ehrenpreis-Malgrange-Palamodov approximation theorem (see [3]).

Corollary 3. The exponential solutions of a linear constant-coefficient differential equation form a dense subset in the set of all solutions.

Appendix C: Extension to time-series

Extension to time series is trivial. Indeed, the reader could notice that very little about C^{∞} functions have been employed. Letting k be an arbitrary field and setting $\mathscr{U}=k^{\mathbb{Z}_{+}}(\simeq k[[t]])$, it only suffices to do the following: (1) Regard \mathscr{U} as a torsion free module over O; (2) Take $L: k \rightarrow \mathscr{U}$ to be the natural embedding; (3) Check that $\mathscr{U}=t \mathscr{U} \oplus L(k)$.

References

[1] M. Atiyah, I.G. Macdonald, Introduction to Commutative Algebra, Addison-Wesley, Reading, MA, 1969.
[2] P.A. Fuhrmann, Algebraic system theory: an analyst's point of view, J. Franklin Inst. 301 (1976) 521-540.
[3] L. Hörmander, Linear Partial Differential Operators, Springer, New York, 1976.
[4] V. Lomadze, Application of vector bundles to factorization of rational matrices, Linear Algebra Appl. 288 (1999) 249-258.
[5] J. Mikusinski, Operational Calculus, Pergamon Press, London, 1959.
[6] J.M. Schumacher, Transformations of linear systems under external equivalence, Linear Algebra Appl. 102 (1988) 1-34.
[7] J.W. Polderman, J.C. Willems, Introduction to Mathematical Systems Theory, Springer, New York, 1998.
[8] J.C. Willems, Paradigms and puzzles in the theory of dynamical systems, IEEE Trans. Automat. Control 36 (1991) 259-294.

[^0]: E-mail address: loma@rmi.acnet.ge

