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Abstract

Itis shown that a linear differentiation-invariant subspace of a C®°-trajectory space is differential (i.e., can
be represented as the kernel of a linear constant-coefficient differential operator) if and only if its McMillan
degree is finite.
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1. Introduction

Let k be the field of real or complex numbers, s an indeterminate, % the space of all infinitely
differentiable k-valued functions of the nonnegative real variable, and let g be a fixed positive
integer.

The paper is concerned with the following question: When a linear differentiation-invariant
subspace of %4 can be described via an equation of the form R(d)w = 0, where R is a polynomial
matrix (with ¢ columns) and 9 is the differentiation operator? This natural question was posed by
Willems (see [7,8]), and we try here to give a brief answer to it.

Let O be the ring of proper rational functions (in s), and let ¢ denote the “uniformizer” s~
The space % has a natural O-module structure: Given g € O and & € %, we define

g$=an/nE,

n=0
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where b,, are the coefficients in the expansion of g at infinity and f " stands for the n-fold iteration
of the integration operator with itself. The series converges uniformly on [0, X] for each X > 0.
Indeed, we can find r > 0 so that ) _ |b,|r" = B < 400, and consequently |b,| < Br~" for all
n = 0. Letting now M = supyc, <y |6(x)|, we have

Vx € [0, X], (/n é) (x)
n=0
(x _ u)nfl
—g(u)du
n>1 (n — Dt
( _u)n 1
|bo|M+Z|bn|M/ D

n>1

< bn |Mn <Y Br- M— < BMexp(X/r).

n=0 : n=>0

It is remarkable that % is torsion free. (This immediately follows from the fact that the integration

operator is injective and the fact that every proper rational function is represented as t"u with
n > 0 and invertible u € O.) Let L : k +— % be the canonical map embedding numbers into
constant functions. For g € O, we define the (inverse) Laplace transform L(g) to be the function
gL(1), i.e., the analytic function

xn
x> anﬁ (x = 0),

n=>0

where b, are as above. The functions L(g) will be called exponential functions. (In the case
k = C these are precisely finite linear combinations of functions x"e**, where n € Z, and
reC)

Define a transfer function as a submodule 7 C O7 such that O7/T is torsion free, i.c., a
subset of the form G O™, where m is a nonnegative integer and G is a left invertible proper
rational matrix of size ¢ x m. This notion is a natural generalization of the classical notion of
transfer function. (Indeed, up to componentwise partition k9 >~ k" @ k”, a transfer function is
the graph of a classical transfer function u > Au(u € O™), where A is a proper rational matrix
of size p x m.) A submodule T C 07 gives rise to a submodule 7% C %4 consisting of all
finite sums of trajectories of the form g& (g € T, £ € %). Notice that if G is a generating matrix
of T, then T% = G%™, where m is the column number of G. It is interesting to note that the
correspondence T+ T 7% is one-to-one. We think of the distinguished modules 7 % as zero initial
condition trajectory modules (ZICTMs).

It can be shown without difficulty that if & is a linear differentiation-invariant subspace of %4,
then the set

T={ge0gu <)

is a transfer function. We call it the transfer function of &, and we regard trajectories in T% as
zero initial condition trajectories of .. We define the McMillan degree of . as its dimension
modulo T%, i.e., the dimension of ¥/ T%. The space &’/ T % itself is called the initial condition
(or state) space. We define a linear system to be a linear differentiation-invariant subspace with
finite McMillan degree.
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Not surprisingly, the kernel of a linear constant-coefficient differential operator is a linear
system. The main result of this paper (namely, Theorem 3) states that the converse also is true. To
prove this result we consider a canonical k-linear bilinear form k[s]? x %% — k defined by the
formula

(f.6) = (f"®8)(0).

(“tr” stands for the transpose.) If # is a linear system, then clearly %~ is a submodule of k[s]7. It is
trivial that every submodule has an “image representation”, and letting E be such a representation
of &1, the idea is that a “kernel representation” of % should be R = E". In deriving the result
helpful roles will be played by the “Riemann—Roch formula” and the “key lemma” (Lemma 8).
The key lemma gives a duality relation between transfer functions and, what we call, convolution
functions. (Convolution functions are certain linear subspaces of k[s]?, which play in the paper
just an auxiliary role; they are connected with submodules as ZICTMs are connected with linear
systems.) This immediately leads to a relation between ZICTMs and convolution functions. We
apply the Riemann—Roch formula to compute some dimensions. This computation allows then to
extend the relation above to a one between linear systems and submodules of k[s]9.

Concluding the introduction, it seems worthwhile to point out that the paper is self-contained.

2. Mikusinski functions

We let .4 be the fraction space of %. Elements of .# are called Mikusinski (or generalized)
functions. Every Mikusinski function can be written as a ratio £/t", where £ € % and n > 0.
(This is because every # 0 element in O, as already remarked, is a power of + modulo invertible
elements.) Of course " - £/1" = &, and this means that every generalized function is a quantity
that after “integrating” sufficiently many times becomes an ordinary function.

Remark. It is Mikusinski’s idea to define generalized functions as ratios (see [5]). This is a nice
idea.
We identify % with its image in .# under the canonical map £ — & /1. It is obvious that

UCsUCs*UC--- and M =Us"U.
The homomorphism L can be uniquely continued to a k(s)-linear map k(s) — .#, and we shall
use the same letter L to denote it. We call elements of L(sk[s]) purely impulsive functions.

The Newton—Leibniz formula can be rewritten as s& = &’ + s&(0). Using induction argument,
one easily deduces the Taylor formula

s"E = £ 4+ 5"E0) + - + 57D (0).

The following says that every Mikusinski function has the “regular” part and the purely
impulsive part.

Lemma 1. .# = % & L(sk[s]).
Proof. Follows from Taylor’s formula. [
We shall need the following

Lemma 2. Let R be a polynomial matrix of size p x q. Then
Ker R(3) = {§ € U9|RE € L(sk[s]")}.
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Proof. Let R = Ros" + Rys"~ ! + .-+ R,, and let & € %4. Using Taylor’s formula, we have

Rn—1 Ry s Ro E(O)
Rn72 Rn73 0 %J(O)
RE = R(E+[sI,...5"1,] : : :
zéo 0 ... 0 £=D(0)

We see that R(9)£ is equal to the regular part of R, and the lemma follows. [
The following two elementary examples illustrate how Mikusinski functions work.
Example 1. Letr = aps" + aps" 1+ 4a,be apolynomial withag # 0,andletxg, ..., x,—1

€ k. Consider the Cauchy problem

aox™ 4+ a1 x"D 4. pax =0;
x(0) = xo, ..., x" D) = x,_;.

Applying the Taylor formula, we can rewrite this as

rx = L(f),

where f is a polynomial given by the formula

an_1 ap—> ... ag X0
Fo " an-2 Q-3 0 x|
=[s...s

ap 0 ... 0 Xn—1

Multiplying both sides of this equation by 1/r, we obtain
1
x = —L(f):L<£>.
r r

Notice that f/r is a proper rational function, and so the solution is an exponential function (as it
should be of course).

Example 2. Let r be as in the previous example, and let & € %. Consider the Cauchy problem

Cl()x(n) +a1x(”_1) + .. +anx — 57
x(0)=0,...,x7D©0) =0.

Applying the Taylor formula, we can rewrite this as
rx =E&.
Multiplying both sides of this equation by 1/r, we obtain
tn
n §.
ap +apt +---+aut

1
x=—§:
r

3. Algebraic preliminaries

Let D be a nonsingular rational matrix of size p. The number —ordy,(det D) is called the
Chern number of D and is denoted by ch(D). (We remind that the order at infinity of a rational
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function u /v with u, v € k[s] and v # 0 is defined to be deg(v) — deg(u).) We define the dual of
D as D* = (D). The cohomology spaces are defined as

HY(D) = sk[s]P " DOP and H'(D) = k(s)?/(k[s]” +tDOP).
One can easily compute that
dim HO(s"I,) = max{np,0} and dim H'(z"I,) = max{np, 0},

where 7 is an arbitrary integer. It immediately follows from these formulas that the spaces H%(D)

and H'(D) have finite dimension. (Indeed, for sufficiently large n, DO? C s"OP and 1" OP C

DOP . Hence, H*(D) C Ho(s"Ip) and there is a surjective linear map H ' (1" 1) — H'(D).)
We shall need the following nice formula (“Riemann—Roch formula™)

ch(D) = dim H°(D) — dim H' (D).
To prove it, choose n > 0 so large that DOP C 5" O”, and consider the diagram

0 — sk[s]P®DO? — sk[s]?Pds"OP — s"0OP/DOP — 0

\2 \: 2
0 — k(s)P - k(s)? N 0 - 0

The diagram commutes and has exact rows. Applying the snake lemma (see, for example,
Proposition 2.10 in [1]) and the facts that

k(s)? /(sk[s]? +s"OP) = {0} and k(s)?/(sk[s]’ + DO?) ~ H' (D),
we get an exact sequence
0— H%D) - H(s"1,) — s"0?/DO” — H'(D) — 0.

The space s"OP/DO? ~ OP /t" DOP has dimension equal to orde,(¢" det D) = np — ch(D),
and the formula follows.

Let us say that two nonsingular rational matrices D and D; are similar if there exists a biproper
matrix B such that D, = Dj B. Notice that if this is the case, then D and D; have the same Chern
number and the same cohomologies.

Remark. There is a close link between similarity classes of nonsingular rational matrices and
vector bundles over the projective line (see [4]), and this explains the terminology above.

If X and Y are k-linear spaces such X C Y, we write [Y : X] to denote the codimension of X
inY.

Lemma 3. Let V be a k(s)-linear space of finite dimension, and let M and N be submodules in
V over k[s] and O, respectively. The following conditions are equivalent:

(a) M and N have full rank;
®) [V : (M + N)] is finite.

Proof. Let r denote the dimension of V.

(a) = (b) Take an isomorphism ¢ : V — k(s)” so that (M) = k[s]". Then ¢ (N) = DO’ for
some nonsingular rational matrix D, and therefore V/(M + N) ~ H'(D).

(a) <= (b) Say that M is not of full rank. Let i denote its rank and put j = r — i. Take an
isomorphism ¢ : V — k(s)" so that ¢(M) = k[s]' @ 0 (C k[s]’ @ k[s]’) and choose n > 1 so
that ¢ (N) C s" O". We then have a surjective linear map
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V/(M+ N) — k(s)’/((k[s]i ®0)+s"0").
It remains now to notice that
k()" /((k[s]" @ 0) + s"O") = k(s)'/(k[s] + s"O") @ k(s)! /s"OF = k(s)’ /s" O’

has infinite dimension. [

Lemma 4. Let R be a full row rank polynomial matrix of size p x q. Then there exists a
nonsingular rational matrix D satisfying the following equivalent conditions:

(a) D™'R is a right invertible proper rational matrix;
(b) ROY = DOP.

The matrix D is uniquely determined up to similarity.

Proof. Clearly ROY is a full rank O-submodule in k(s)”. Hence, ROY = D OP for some non-
singular rational matrix D. It is obvious that saying that D~ ! R is a right invertible proper rational
matrix is equivalent to saying that D"'R0OY = OP,i.e., RO = DOP.

Assume that D; and D, satisfy the condition. Then D;O” = D, 0", and therefore OF =
Dl_l D, OP. 1t follows that Dl_lDz is biproper. [

Lemma 5. Let E be a full column rank polynomial matrix of size g X p. Then there exists a
nonsingular rational matrix D satisfying the following equivalent conditions:

(a) ED is a left invertible proper rational matrix;

(b) EDOP = Ek(s)? N 01.
The matrix D is uniquely determined up to similarity.

Proof. This can be deduced easily from the previous lemma. (A direct proof is possible, and we
leave it to the interested reader.) [

4. Convolution and transfer functions

Given a rational subspace V C k(s)?, we shall write V_ to denote the set of the polynomial
parts of all elements in V.

Lemma 6. Let M C k[s]? be a submodule and V' C k(s)? a rational subspace suchthat M C V.
The following conditions are equivalent:

(a) V is the fraction space of M.,
(b) [V : M] is finite.

Proof. Consider the canonical map V — V_/M, which certainly is surjective. Its kernel is equal
to M + (V NrO?). Indeed, assume that x + ¢ty € V, where x € k[s]? and y € O9, goes to zero.
Then we must have x € M. Because M C V, we also must have y € V,andsox +ty € M +
(V. Nt0O%). Thus, we have a canonical isomorphism
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V/(M+(VNto9)) ~ V_/M.

Using Lemma 3, we complete the proof. [

Any subset C C k[s]7 of the form C = V_, where V is a k(s)-linear subspace of k(s)?, will be
referred to as a convolution function. (It can be shown easily, using the previous lemma, that V_
is uniquely determined by V.) The convolution function of a submodule M C k[s]? is defined to
be V_, where V is the fraction space of M. By the lemma above, [V_ : M] < +o0. The following
says that this property uniquely characterizes the convolution function of a module.

Corollary 1. If M is a submodule and C a convolution function such that M € C and [C : M] <
400, then necessarily C is the convolution function of M.

Proof. Let V be the fraction space of M, and let W be a rational subspace such that C = W_.
Then

W_/M®V_/M— (W+V)_/M

clearly is surjective, and consequently [(W + V)_ : M] < 4o00. Using now the previous lemma,
we find that W + V = V. Hence, W C V. Because V is the least rational subspace containing
M, we conclude that W = V. 0O

Lemma 7. Let E be a full column rank polynomial matrix of size q x p, and let D be a
nonsingular rational matrix satisfying the conditions of Lemma 5. Letting M = Ek[s]P and
C = (Ek(s)P)_, we then have

[C : M] = —ch(D).

Proof. The matrix E induces a canonical linear map H %D)y—> H 0(Iq), which must be injective
because E has full column rank. It follows that H°(D) = 0. Hence, by the Riemann—Roch
formula, ch(D) = —dim H'(D). Further, there is (see the proof of Lemma 6) a canonical
isomorphism

C/M =~ Ek(s)? /(M + Ek(s)? Nt09).
This completes the proof, because the right hand side is isomorphic to H!(D). O

We call a transfer function any subset 7 € O of the form 7' = V N 04, where V is a k(s)-
linear subspace of k(s)?. (This definition is equivalent to that given in Introduction.) The dimension
of V is called the input number of T'. It should be noted that the correspondence V — V N 04
is one-to-one. (This is because V is equal to the fraction space of V. N O%). If T is a transfer
function with input number m, then T can be written as T = G O™, where G is left invertible
proper rational matrix of size ¢ x m. If G; and G, are two generating matrices, then they are
equivalent in the sense that G, = G B for some biproper rational matrix B.

Given a proper rational function g, we let g (c0) be its value at infinity and g its backward shift.
(If g = by + b1t + byt + - -, then g(00) = by and g% = by + bt + - - -). Define a canonical
k-bilinear form

k[s17 x 01 — &k, (f.8) = (f"(0)8)(00), ey

which clearly is nondegenerate. For a k-linear subspace X in k[s]9 or 09, we let X denote the
orthogonal of X with respect to this bilinear form.
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Given a k(s)-linear subspace V C k(s)9, we set
Ve={fek)|ff¢=0VgeV)

Obviously V° also is a k(s)-linear subspace, and V°° = V. The following lemma, which relates
convolution and transfer functions to each other, will play a key role. (For convenience, we
postpone its proof to Appendix A.)

Lemma 8 (Key lemma). Let V be a k(s)-linear subspace in k(s)4. Then

(VNnoHtr=(v°_ and (Vo)'=Vv°nol.

Corollary 2. If C is a convolution function, then C*+ = C; likewise, if T is a transfer function,
then Tt =T.

5. Linear systems

Given a transfer function T, let T% denote the submodule of #¢ generated by all columns
of the form g&, where g € T and £ € %. Remark that if G is a generating matrix of 7', then
T% = G™; in other words, letting g1, ..., gn denote the columns of G, then every element
& € T can be (uniquely) written as

E§=gi1&1+ -+ gmém

with &1, ..., &, € %. We remark also that T% is the image under the canonical homomorphism
TQU— 01Q WU =A1.

It is interesting to note that the correspondence T +— T % is one-to-one. Indeed, let T be a
transfer function and let {gy, ..., gn} be its basis. Because O9/T is torsion free (and therefore
free), we can find hy, ..., h, € O7 such that {g1,..., &, h1,..., hp} is a basis of O%. Any
element of %4 is uniquely represented then as

g1&1+ -+ gmbm + 11+ -+ hplp.
This belongs to T% if and only if

s Ep =0,
and belongs to L(0?) if and only if
1o Emyl1, ., 8 € L(O).
We see that T% N L(0O%) = L(T), and hence
T =L~ (T% N L(0Y)).
Proposition 1. Let ¥ be a linear subspace in U1 that is invariant with respect to the differentiation
operator. Then the set
T={gec0gUc}
is a transfer function (called the transfer function of &).

Proof. Obviously, 7" is a submodule (in O7). Choose any its generating matrix G, and assume that
it is not left invertible. Then the scalar matrix G is not of full column rank. (The bar here denotes
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the canonical homomorphism from O to k = O/t 0.) This means that the columns g1, ..., gn
of G are linearly dependent modulo ¢ O4. Say that

Egm=a181+ -+ am—18m-1 (modth),
where ay, ..., a;,—1 € k. Then there exists a column 2 € OY such that
gn=ag + -+ an_18u—1-+1th.

Certainly # #* 0. We claim that & € T. Indeed, let £ be an arbitrary function. Then th§ € &
(because th € T). Using the invariance property of ., we have hé = (th§) € <. The claim is
proved.

The columns g1, ..., gnm—1, h generate T, and they must form a basis (since their number is
m). But diag(1, ..., 1, ) is not biproper, and therefore {g1, ..., gn—1, &n} can not be a basis.
The contradiction shows that T must be a transfer function. [

Given a linear differentiation-invariant subspace . with transfer function 7', we call &/ T %
the initial condition space of .%. If £ is a trajectory in &, then its image in .%°/ T is called the
initial condition of &. The cardinality [ : T%] is called the McMillan degree. We shall see in
the next section that the solution sets of linear constant-coefficient differential equations have
finite McMillan degree. The following examples show that, in general, the McMillan degree is
not finite.

Example 3. The space & = k[x]9, i.e., the space of all polynomial trajectories, clearly is differ-
entiation-invariant. Obviously,

L~ = k[1]9.

It is clear that the transfer function is {0}, and so the space has infinite McMillan degree.

Example 4. Letn > 0,andlet.¥ = (& € %9|Vi > n, £9(0) = 0}. Clearly .7 is differentiation-
invariant. We have

L~ NL0%) ={f €klt]|degf <n — 1}.

The only transfer function contained in the above set is {0}, and so the transfer function of our
space is {0}. It follows that the McMillan degree is infinite.

Lemma 9. Let & be a linear subspace in Uq. There may exist only one transfer function T such
that

T CY and [¥:TU] < +oo.

Proof. Suppose that there are two such transfer function 77 and 75, and put 7 = T} + T>. (Notice
that 7 may not be a transfer function, but 7% still is defined.) Clearly, we have [T% : T;%] < +oo.
From this and from the exact sequence

O—>T,%—>TU—T|T, U — 0,

which is obtained by tensoring the exact sequence 0 - 7; — T — T /T; — 0 with %, it follows
that 7/ T; ® % has finite dimension. We see that 7/ T; must be a torsion module, and hence T;
has the same fraction space as 7. We conclude that each 7; is equal to V N 09, where V is the
fraction space of 7. [J
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By alinear (dynamical) system we shall understand a linear differentiation-invariant subspace
of %4 that has finite McMillan degree.

Proposition 2. Let & be a linear system with transfer function T. Then
S CTU+ L(09);

in other words, there always exists in & an exponential trajectory with a given initial condition.

Proof. Take any & € &. Modulo T% the trajectories &, &, &”, ... are linearly dependent. It
follows that there exist an integer n > 1 and elements ay, ..., a, € k such that

W +ai g™V e =T

This means that our trajectory & satisfies the differential equation
x™ pax"D 4 g =g

with & € T%. In view of Example 2, a particular solution of this equation is
(1 +art + -+ apt™) o,

which certainly belongs to T%. Further, in view of Example 1, & differs from this particular
solution by an exponential trajectory. The proof is complete. [

6. Linear differential operators

Let R be a full row rank polynomial matrix of size p x g. A nonsingular matrix D satisfying
the conditions of Lemma 4 is called a denominator of R. The module 7 = {w € O4|Rw = 0} is
called the transfer function; the space X = sk[s]”? N RO = H(D) is called the initial con-
dition (or state) space; the Chern number of D is called the McMillan degree. It is easily
seen that the McMillan degree is equal to the dimension of the state space. Indeed, the ma-
trix R induces a canonical linear map H 1(Iq) — H 1(D), which must be surjective, because
R has full row rank. Hence, H'! (D) = 0, and the statement follows from the Riemann—Roch
formula.

Remark. The above concept of states is, in principle, the same as Fuhrmann’s classical one [2].
Indeed, with notation of [2], we have H O(D) =sSp.

Example 5. Assume that ¢ = 1, and let r be as in Example 1. The initial condition space of r is
X =sk[s]NrO = sk[s]Ns"O = @1<i<nks'.

On the other hand, according to the textbooks, the initial condition space of the equationr(d)w = 0
is k". The two definitions agree with each other; namely, there is a canonical isomorphism k" >~ X
given by

X [s - s"]Ax,

where A denotes the triangle matrix from Example 1.
The linear subspace Ker R(9) is easily seen to be differentiation-invariant.

Theorem 1. The McMillan degree of Ker R(9) is finite (and is equal to that of R).
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Proof. Put . = Ker R(9). According to Lemma 2,
& = {& € U1|RE € L(sk[s]")}.

Consider the canonical linear map & — L(sk[s]?) (which is determined by the homomor-
phism R : %% — _#?). The image of this map is equal to

L(sk[s1”) N R%% = L(sk[s]") N DUP = L(sk[s]") N L(k(s)?) N DUP
= L(sk[s]”) N D(Lk(s)? N UP) = L(sk[s]”) N DL(O?) = L(X).

So, we have a canonical surjective linear map & — X.
Consider now the exact sequence

0>T— 01X por > o.

The module % is torsion free (and hence flat). Therefore tensoring this sequence by %, we get
an exact sequence

0> TU— U5 DUr — 0.
Replacing T ® % by T, we obtain an exact sequence
0— T% — 21 5 DU — 0.

This immediately implies that the kernel of the canonical map ¥ — X is equal to T%, and
consequently we have an exact sequence

0—->TU - 9% — X — 0.

This shows immediately that the transfer function of % is the same as that of R. This shows also
that the initial condition space of .’ is canonically isomorphic to that of R. [

We shall need the following:

Lemma 10. Let R = EY, where E is a full column rank polynomial matrix of size g x p. Then
the transfer function of R is equal to C+, where C is the convolution function of E.

Proof. Given u € k(s)? and v € k(s)?, we have (Eu)™v = u™ Rv. From this evident formula it
immediately follows that

(Ek(s)?)° = {v € k(s)?|Rv = 0}.

Applying now the key lemma, one completes the proof. [

7. Main theorems

We have a canonical k-bilinear form

k[s19 > Ut — k,  (f,&) = (f"(3)8)(0). @)

This clearly is nondegenerate from the left (but not from the right of course). This bilinear form
is related with the one defined in Section 4: If f € k[s]? and g € 09, then (f, g) = (f, L(g)).
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Given a k-linear subspace & C %4, we shall write L to denote the orthogonal of Z'. (We believe
that 2 can not be confused with X* defined earlier.)

Lemma 11. If T is a transfer function, then (TU)* = T+.

Proof. “2” By definition, T = V N 04 for some k(s)-linear subspace V C k(s)?. Let f € T,
and let g € T and & € %. By the key lemma, f € (V°)_, and consequently f +th € V° for
some h € 09. We then have (f + th)*g = 0, and therefore (f + th)"g& = 0. By Lemma 2,
f¥(9)(g&) is equal to the regular part of f'g&. But the latter is already regular, since it is equal to
—th''g&. We see that f'(0)(g€) € t%,and so (f, g&) = 0. Because T% is generated by elements
of the form g&, we conclude that f € (T%)* .

“c”Because T% 2 L(T), wehave (T%)+ C L(T)*.Clearly L(T)+ = T, and thus (T%)*
crt. O

Lemma 12. Let % be a linear system with transfer function T. Then &+ is a submodule (in
k[s19) with convolution function T+, and the canonical bilinear form
TY) 9 x S /TU — k,

is nondegenerate.

Proof. That % is a submodule follows immediately from the relationship (s f, &) = (f, &’) (and
the invariance property of .%). It is easily seen that the bilinear form is nondegenerate from the
left, and therefore T+ /.%* is finite-dimensional. Using Corollary 1, it follows from this that 7
is the convolution function of .%*. To show that the form is nondegenerate from the right, take
an arbitrary & € . such that (f, £) = 0 foreach f € T-. Write £ = & + L(w), where & € T%
and w € 04. By the previous lemma, ( f, &) = O for each f € T+, It follows that

VfeT*, (f L(w)) =0.

Using the key lemma, we can see that w € T. Hence, § € T%, and the proof is complete. [J

Two full row rank polynomial matrices Ry and R are said to be equivalent if there exists a
unimodular matrix U such that R, = U R;. The following is due to Schumacher [6].

Theorem 2. Tio full row rank polynomial matrices (with column number q) generate the same
linear system if and only if they are equivalent.

Proof. Let R be a full row rank polynomial matrix of size p x ¢, and let T be its transfer function.
Put E = RY, ¥ = Ker R(9) and M = Ek[s]”. We want to show that

It =M.
Take x € M. Then x = Ef with f € k[s]”. For each £ € &, we have

(x, &) = (Ef, &) = (S/"R)()E)(0) = (fT(B)R()E)(0) = (f, RB)&) = (f,0) =0.
Hence M C ¥ L. To see that in fact we have equality, consider the tower

Mcytcrt

Choose a denominator D of R. Then E D* is a left invertible proper rational matrix. Using Lemma
12, Theorem 1 and Lemma 7, we get
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[T+ : 9 =[S : TU] = ch(D) = —ch(D*) = [T+ : M].

Therefore we indeed must have equality. The “only if” part follows because M is “representation
free”.
The “if” part is obvious. [

Theorem 3. Every linear system is represented as the kernel of a linear constant-coefficient
differential operator.

Proof. Assume we have a linear system % with input number p. Let M = %, and choose a full
column rank polynomial matrix E such that Ek[s]” = M (minimal image representation of M).
Put R = E'. We are going to show that & = Ker R(9).

Let T denote the transfer function of .#. By Lemma 12, C = T is the convolution function of
M. Thanks to the key lemma, C L+ = 7.1t follows from Lemma 10 that T is the transfer function
of R, and thus T is the transfer function of Ker R(9) as well.

Take an arbitrary & € %, and write § = &y + L(w) with&y € T% and w € O9. Because M C
Cand C = (TU)*, (x, &) = 0 for each x € M. We therefore have

VxeM, (x,L(w))=(x,&)+ (x,L(w))=(x,§) =0.
In other words,

Vf ekls]?, (Ef, L(w))=0.
It follows that

Vf ekls]’, (f.RO)L(w)) = (Ef L(w))=0.

Because (f, R(d)L(w)) = (f, R(oc)w) and because (1) is nondegenerate, this implies
R(@)L(w) = 0. Thus L(w) € Ker R(d), and hence & belongs to Ker R(3). We conclude that
& C Ker R(0).

The proof now is easily completed by dimension count. Indeed, consider the tower

T €% C Ker R(9).

By the proof of the previous theorem, Ker R(3)" = M. Applying Lemma 12 both to % and
Ker R(9), we get

[ : T =[C: M]=[KerR(@©):T%].
This yields & = Ker R(9). O
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Appendix A: Proof of the key lemma

Let W; and W be rational linear spaces of the same dimension, and assume that we are given a
nondegenerate k(s)-bilinear form W; x W, — k(s). There is a canonical k-linear map k(s) — k
(determined by the decomposition k(s) = sk[s] @ k @ t O). Composing our form with this map
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we obtain a k-bilinear form W) x W, — k. Using the latter, for each subset N C W;, define N 1
We state that if N is a finitely generated full rank O-submodule, say, in Wy, then N Ll — N.Tosee
this, let us denote by p the dimension of our spaces and choose isomorphisms ¢ : W; >~ k(s)”
and ¢ : Wr >~ k(s)? so that ¢ (N) = O and the diagram
Wi X W, —  k(s)
\: \: I
k()P  x k()P — k()

is commutative. (The bottom bilinear formis given by ( f, g) — f"g.) We are reduced therefore to
the case when Wi = k(s)?, Wy = k(s)” and M = OP. One can check easily that in this standard
case (OP)L =+tOP and (rOP)+ = OP; hence (OP)*+ = O7.
We are able now to give:

Proof of the key lemma. The bilinear form (1) is extended to the canonical bilinear form k(s)? x
k(s)? — k. We claim that with respect to this latter

(VN OoNHt =ve 4109,
Indeed, consider the canonical bilinear form

k(s)1/V° xV — k,

which obviously is nondegenerate, and put N = (V° 4+ t0%)/V°. The latter is a finitely generated
full rank submodule in k(s)?/V°, and hence N1l = N Ttis easy to see that N1 =Vvno9, and
so (V. N 0%)+ = N. This implies our claim. Returning now to (1), we get

(VNOH*t = (Ve +10%) Nkls]9.

The left hand side is just (V°)_, and the first relation is proved.
The second relation is easy, and needs no preparation. Indeed, let g € O9 and let f € V. We
then have

(f. 8)=(f-,8)
where f_ denotes the polynomial part of f. Hence, g € V° if and only if g € (V_)L. O

Appendix B: Frequency responses

We begin with the remark thatif g € O and & € %, then

(88) = g&" + L(g°)£(0).

(Indeed, it is easy to check that (g&€)(0) = g(00)&(0). In view of this, (g§) = sg& — sg(c0)£(0).
We therefore have

(88)" = g(s& — 5£(0)) + £(0)L(sg — 5g(00)) = g&" + L(g°)£(0).)

If F is a shift-invariant k-linear subspace in O9, then the largest submodule contained in F
is a transfer function. (The proof of this is the same as that of Proposition 1.) We say that F'
is a frequency response if its transfer function is “large enough” in the sense that has finite
codimension.

Given a frequency response F with transfer function 7', we set X (F) = T% + L(F). Using the
above remark (and the equality L(g)’ = L(g°)), we can see that X (F) is differentiation-invariant.
Further, choosing a finite-dimensional linear subspace X € F such that F = T @ X, we clearly
have X(F) = T% & L(X). So, 2(F) is a linear system.
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Conversely, if & is a linear system, then clearly (%) = LY NL0T))is a frequency
response. By definition, it consists of those proper rational functions that correspond to the
exponential trajectories.

It is easily seen that the mappings

Fr— 2(F) and ¥+ &(%)

are inverse to each other. It follows, in particular, that a linear system is uniquely determined by
its exponential trajectories.
(If & is a subset of %4, we write ¥ to denote its topological closer.)

Proposition 3. If F is a frequency response, then
2(F) = L(F).

Proof. Let F =T & X, and let g, ..., g, be abasis of T. For each g € T, we have
L(g) = g1L(a) +---+ gmL(am) (a1.....am € O).

As noticed already, every £ € T% can be written uniquely as
E=gi51+ - +8gmbm G1.....6m ).

Because L(O) = %, we see that T% = L(T). Next, L(X) must be closed in %9 as a finite-
dimensional subspace. We thus have

SF)=TU+LX)=L(T)+L(X)=L(T+X)=L(F). O

As a consequence we get a 1-dimensional case of Ehrenpreis—Malgrange—Palamodov approx-
imation theorem (see [3]).

Corollary 3. The exponential solutions of a linear constant-coefficient differential equation form
a dense subset in the set of all solutions.

Appendix C: Extension to time-series

Extension to time series is trivial. Indeed, the reader could notice that very little about C*°
functions have been employed. Letting k be an arbitrary field and setting % = k2 (>~ k[[1D),
it only suffices to do the following: (1) Regard % as a torsion free module over O; (2) Take
L : k — 7 to be the natural embedding; (3) Check that % = t% & L(k).

References

[1] M. Atiyah, I.G. Macdonald, Introduction to Commutative Algebra, Addison-Wesley, Reading, MA, 1969.

[2] P.A. Fuhrmann, Algebraic system theory: an analyst’s point of view, J. Franklin Inst. 301 (1976) 521-540.

[3] L. Hérmander, Linear Partial Differential Operators, Springer, New York, 1976.

[4] V. Lomadze, Application of vector bundles to factorization of rational matrices, Linear Algebra Appl. 288 (1999)
249-258.

[5] J. Mikusinski, Operational Calculus, Pergamon Press, London, 1959.

[6] J.M. Schumacher, Transformations of linear systems under external equivalence, Linear Algebra Appl. 102 (1988)
1-34.

[7] J.W. Polderman, J.C. Willems, Introduction to Mathematical Systems Theory, Springer, New York, 1998.

[8] J.C. Willems, Paradigms and puzzles in the theory of dynamical systems, IEEE Trans. Automat. Control 36 (1991)
259-294.



	Introduction
	Mikusinski functions
	Algebraic preliminaries
	Convolution and transfer functions
	Linear systems
	Linear differential operators
	Main theorems
	Acknowledgments
	References

