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Abstract

In this paper we study the question of how to define state representations of a linear system in terms of
its trajectories.
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1. Introduction

In this paper we are concerned with construction state space realizations for linear dynamical
systems. The problem is well-studied and understood, of course; numerous papers are written
about it. (Major contributions have been made, as is known, by Fuhrmann [2] and Kalman et al.
[3].) However, we believe that the present paper still will be of interest, as it is provided here
the definitions of state and internal variables (and various linear maps between them) in intrinsic
terms, i.e., in terms of system trajectories. We remind that such definitions have been given for
the discrete-time case only (see [8]).

Following Willems [6,8,9], we shall deal with linear systems in which external variables are
not classified into inputs and outputs. As is known (see, for example, [4,6–9]), associated with
such a system there are state models of two types{

Gy′ = Fy

w = Hy
and Kx′ − Lx + Mw = 0.
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We shall obtain both these representations in a simple natural way and then show that they are
related by KF − LG + MH = 0. (It is interesting to note that this relation is an immediate
consequence of the Newton–Leibniz formula.)

Let us fix a few notations and recall some definitions and facts from [5]. Throughout k is an
arbitrary field, s an indeterminate, and q a signal number. By O we denote the ring of proper
rational functions in k(s), and t will stand for its distinguished element s−1. Given a proper
rational function f , we shall denote by f (∞) the value at infinity of f and by f σ the backward
shift of f . So, if f = a0 + a1t + a2t

2 + · · ·, then

f (∞) = a0 and f σ = a1 + a2t + · · · = s(f − f (∞)).

We extend these two notations in the obvious way to arbitrary proper rational matrices.
Assume that there are given: A torsion free module U over O and a k-linear imbedding

L : k → U, satisfying the “Newton–Leibniz axiom”

U = tU ⊕ L(k).

The two most important examples of U are C∞(R+) (when k = R or C) and kZ+ (= k[[t]]). (In
both examplesL is the evident canonical map.) Throughout we shall keep in mind the continuous-
time case, and therefore we shall view elements of U as smooth functions (of the nonnegative real
variable). Multiplication by t will be interpreted as the integration operator on these functions, and
we shall denote it by

∫
. If a ∈ k, then L(a) will be regarded as the constant function associated

with a. The axiom above allows us to define, for each ξ ∈ U, the “derivative” ξ ′ and the “value”
ξ(0) at 0. By definition, we thus have

ξ =
∫

ξ ′ + L(ξ(0)).

For the “differentiation” operator ξ �→ ξ ′ we shall use also the symbol ∂ . It is very helpful to
introduce the fraction space of U, denoted by M. We call its elements generalized or Mikusinski
functions. The linear map L can be extended to a k(s)-linear map k(s) → M, which we denote
also by L and call the (inverse) Laplace transform. It immediately follows from our axiom that
M = U ⊕ L(sk[s]). Elements fromL(O) (⊆ U) should be interpreted as exponential functions
and elements from L(sk[s]) as purely impulsive functions.

Given a submodule T ⊆ Oq , we define TU to be the submodule in Uq consisting of finite
sums of trajectories of the form gξ , where g ∈ T and ξ ∈ U. It should be noted that if T = GOm,
where m � 0 and G is a full column rank proper rational matrix of size q × m, then TU = GUm.
One can prove without difficulty that the correspondence T �→ TU is one-to-one. (This is an
easy consequence of the facts that U is torsion free and tU /= U.) A submodule T ⊆ Oq is called
a transfer function if Oq/T is without torsion (equivalently, if its generator matrix G is left
invertible). It is easy to see that given a transfer function T there exists a componentwise partition
kq 	 km ⊕ kp that allows to represent T as the graph of a usual classical transfer function (and
this justifies the term).

If S is a linear subspace of Uq , then the set T = {g ∈ Oq |gU ⊆ S} is easily seen to be a
submodule of Oq . We consider it as the most important invariant of S. Clearly TU ⊆ S, and
we call dim(S/TU) the McMillan degree (or the relative dimension) of S. The space S/TU
itself is called the state (or the initial condition) space, and trajectories belonging to TU are called
zero initial condition trajectories. The rank of T (as an O-module) is called the input number
of S and the signal number q minus the input number is called the output number. It can be
shown easily that if S is differentiation-invariant, then T necessarily is a transfer function; it
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is easy also to show that if the McMillan degree of S is finite, then S has sufficiently many
exponential trajectories in the sense that S ⊆ TU + L(Oq). The main result of [5] states: S
can be described via an equation of the form R(∂)w = 0, where R is a polynomial matrix with q

columns, if and only if

(a) S is differentiation-invariant;
(b) S has finite McMillan degree.

We can define therefore a linear (dynamical) system as any linear subspace in Uq that satisfies the
above two conditions. It is the goal of this paper to construct state representation theory taking
this definition as a starting point.

2. Preliminaries on state models and their behaviors

A left state model is a quintuple (X, Y, F, G, H), where X, Y are finite-dimensional linear

spaces and F, G : Y → X, H : Y → kq linear maps such that G is surjective and
[

G

H

]
is injective.

The space X is called the state space and Y the (left) internal variable space. The number dim X

is called the dimension, the number m = dim Y − dim X the input number, and the number

p = q − m the output number. The model is called observable if
[

sG − F

H

]
is left unimodular, and

controllable if sG − F is right unimodular.
A right state model is a quintuple (X, Z, K, L, M), where X, Z are finite-dimensional linear

spaces and K, L : X → Z, M : kq → Z linear maps such that K is injective and [K M] is
surjective. The space X is called the state space and Z the (right) internal variable space. The
number dim X is called the dimension, the number p = dim Z − dim X the output number, and the
number m = q − p the input number. The model is called observable if sK − L is left unimodular,
and controllable if [sK − LM] is right unimodular.

Two left state models (X1, Y1, F1, G1, H1) and (X2, Y2, F2, G2, H2) are said to be equivalent
if there exist bijective linear maps α : X1 → X2 and β : Y1 → Y2 such that

αF1 = F2β, αG1 = G2β and H1 = H2β.

Similarly, two right state models (X1, Z1, K1, L1, M1) and (X2, Z2, K2, L2, M2) are said to be
equivalent if there exist bijective linear maps α : X1 → X2 and β : Z1 → Z2 such that

βK1 = K2α, βL1 = L2α and M2 = βM1.

We say that (X, Y, F, G, H) and (X, Z, K, L, M) form an exact couple, if the sequence

0 → Y

[
F

G

H

]
→ X ⊕ X ⊕ kq [K −L M]→ Z → 0 (1)

is exact (equivalently, if both models have the same input and output numbers and satisfy the
equality

KF − LG + MH = 0).

Example 1. Let (X, A, B, C, D) be a usual classical linear system with state space X, with m

inputs and p outputs. (Recall that this just means that X is a finite-dimensional linear space, and
A : X → X, B : km → X, C : X → kp, D : km → kp are linear maps.) Then
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(
X, X ⊕ km, [A B], [I 0],

[
0 I

C D

])
and

(
X, X ⊕ kp,

[
I

0

]
,

[
A

C

]
,

[−B 0
−D I

])
are left and right state models, respectively. It is easy to check that these two state models form
an exact couple. Notice that both these models are controllable if and only if sI − A and B are
right coprime and observable if and only if sI − A and C are left coprime.

Lemma 1. Let X, Y and Z be finite-dimensional linear spaces and F, G : Y → X, H : Y →
kq, K, L : X → Z, M : kq → Z linear maps such that the sequence (1) is exact. If one of the
quintuples (X, Y, F, G, H) and (X, Z, K, L, M) is a state model, then so is the other.

Proof. Straightforward and easy. �

If two state models form an exact couple, we shall say also that they are adjoint to each other.
Using the previous lemma, one can show easily that for each state model there exists an adjoint
one. Certainly, the latter is uniquely determined up to equivalence. We thus have the following
obvious:

Proposition 1. There is a canonical one-to-one correspondence between the equivalence classes
of left state models and the equivalence classes of right state models.

We have

Lemma 2. Every exact couple of state models is “equivalent” to a couple coming from a classical
linear system.

Proof. Let (X, Y, F, G, H) and (X, Z, K, L, M) be state models forming an exact couple, and
let m and p be their input and output numbers.

The condition that
[

G

H

]
is injective implies that H induces an injective linear map Ker(G) →

kq . Clearly, there exists a componentwise partition kq 	 km ⊕ kp leading to a representation

H =
[

H1
H2

]
with H1 inducing an isomorphism Ker(G) 	 km. The map

[
G

H1

]
: Y → X ⊕ km must

be bijective, and therefore we can define A : X → X, B : km → X, C : X → kp, D : km → kp

so that

[A B]
[

G

H1

]
= F and [C D]

[
G

H1

]
= H2.

Clearly, the bijective linear maps I : X = X and
[

G

H1

]
: Y 	 X ⊕ km determine an isomorphism

of (X, Y, F, G, H) onto the left state model of Example 1.
Further, write M = [M1 M2] according to the above partition of kq . We claim that [K M2] :

X ⊕ kp 	 Z is bijective. Indeed, assume that x ∈ X and y ∈ kp are such that Kx + M2y = 0.
Using the exact sequence

0 → X ⊕ km

⎡
⎢⎣

A B

I 0
0 I

C D

⎤
⎥⎦

→ X ⊕ X ⊕ km ⊕ kp [K −L M1 M2]→ Z → 0,

we can see that there exist x1 ∈ X and u ∈ km such that
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⎛
⎜⎜⎝

x

0
0
y

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

Ax1 + Bu

x1
u

Cx1 + Du

⎞
⎟⎟⎠ .

It immediately follows that x = 0 and y = 0. So, our map is injective. Take now an arbitrary
element z ∈ Z. Because [K M1 M2] is surjective, we can find x ∈ X, u ∈ km and y ∈ kp such
that Kx + M1u + M2y = z. By the exact sequence above, KB + M1 + M2D = 0, and therefore

z = Kx + M1u + M2y = Kx − KBu − M2Du + M2y = K(x − Bu) + M2(y − Du).

So, the map is surjective as well. Applying again the exact sequence above, we obtain

[K M2]
[
I

0

]
= K, [K M2]

[
A

C

]
= L, [M1 M2] = [K M2]

[−B 0
−D I

]
.

This means that I : X = X and [K M2] : X ⊕ kp 	 Z determine an isomorphism of the right
state model of Example 1 onto (X, Z, K, L, M).

The proof is complete. �

Using the lemma above, we can easily see that that a state model is observable (resp. control-
lable) if and only if its adjoint is observable (resp. controllable).

From now on we shall be interested exclusively in observable state models. The behavior of
an observable left state model (X, Y, F, G, H) is defined by the equation{

Gy′ = Fy,

w = Hy,

i.e., as the set

{w ∈ Uq |∃y ∈ Y ⊗ U such that Gy′ = Fy, w = Hy}.
The behavior of an observable right state model (X, Z, K, L, M) is defined by the equation

Kx′ − Lx + Mw = 0;
i.e., as the set

{w ∈ Uq |∃x ∈ X ⊗ U such that Kx′ − Lx + Mw = 0}.
Two equivalent (observable) state models clearly have the same behavior.

Example 2. The behavioral equations for the state models in Example 1 are⎧⎪⎪⎪⎨
⎪⎪⎪⎩

[I 0]
(

x′
u′
)

= t[A B]
(

x

u

)
(

u

v

)
=
[

0 I

C D

](
x

u

) and

[
I

0

]
x′ −

[
A

C

]
x +

[−B 0
−D I

](
u

v

)
= 0,

respectively. Both these equations can be rewritten in the classical form{
x′ = Ax + Bu,

v = Cx + Du.

Proposition 2. The behavior of an observable state model is a linear system.
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Proof. In view of Lemma 2 and Example 2, it suffices to show that

S =
{(

u

v

)∥∥∥∥ u ∈ Um, v ∈ Up and ∃x ∈ X ⊗ U such that x′ = Ax + Bu, v = Cx + Du

}
is a linear system.

It is clear thatS is differentiation-invariant. Let T = C(sI − A)−1B + D and, for each x ∈ X

and u ∈ Um, define

wx,u =
(

u

C(I − tA)−1x + T u

)
.

As is known (and as it can be seen easily), (x, u) �→ wx,u establishes an isomorphism X ⊕ Um 	
S. LettingT =

[
I

T

]
, we obviously have TUm ⊆ S and dim(S/TUm) < +∞. In view of Lemma

9 in [5], T Om necessarily is the transfer function of S (in the sense of this paper). Thus, the
McMillan degree of S is finite. The proof is complete. �

Proposition 3. Two (observable) models that are adjoint to each other have the same behavior.

Proof. Follows easily from the previous lemma and the examples above. �

3. From a linear system to state models

We begin with the following:

Lemma 3. Let T be a transfer function. Then

TU ∩ tUq = tTU.

Proof. We claim that T ∩ tOq = tT . Indeed, let tg, where g ∈ Oq , belongs to T . Then, let-
ting V denote the fraction space of T , we have g ∈ V ∩ Oq = T , and so tg ∈ tT . We see that
T ∩ tOq ⊆ tT . The inclusion “⊇” is obvious.

It follows that the canonical sequence

0 → tT → T ⊕ tOq → Oq

is exact. Tensoring this by U, we obtain an exact sequence

0 → tTU → TU ⊕ tUq → Uq,

which completes the proof. �

We remark that tUq = {w ∈ Uq |w(0) = 0}. So, the lemma above says that the set of trajec-
tories with initial state 0 and initial value 0 is equal to the set of the integrals of trajectories with
initial state 0.

Assume we have a linear system S. Set S = tS + L(kq), which is the least subspace in
Uq containing the integrals of trajectories in S and the constant functions. Notice that, by the
Newton–Leibniz formula, S ⊆ S. We have canonical linear maps

S → S ⊕ S ⊕ kq, w �→ (w′, w, w(0))
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and

S ⊕ S ⊕ kq → S, (w1, w2, a) �→ tw1 − w2 + L(a).

Obviously, the first one is injective and the second surjective.

Lemma 4. The sequence

0 → S → S ⊕ S ⊕ kq → S → 0 (2)

is exact.

Proof. We only need to show exactness at the middle term. But this immediately follows from
the Newton–Leibniz formula. �

Let T be the transfer function of our system S. We have already introduced in Introduction
the state space X = S/TU. Set also

Y = S/tTU and Z = S/TU.

Elements of Y are called left internal variables of S and elements of Z right internal variables.
There are canonical linear maps F, G : Y → X, H : Y → kq defined by the formulas

F(w mod tTU) = w′mod TU, G(w mod tTU) = w mod TU, H(w mod tTU) = w(0)

and canonical linear maps K, L : X → Z, M : kq → Z defined by the formulas

K(w mod TU) = tw mod TU, L(w mod TU) = w mod TU, Ma = L(a) mod TU.

Proposition 4. The quintuples (X, Y, F, G, H) and (X, Z, K, L, M) are state models.

Proof. Assume that w mod tTU goes to zero under G and H , i.e., w ∈ TU and w(0) = 0. By

Lemma 3, then w ∈ tTU, and hence w mod tTU = 0. It follows that
[

G

H

]
is injective.

Next, assume that w mod TU goes to zero under K , i.e., tw ∈ TU. Using again Lemma 3, we
see that tw ∈ tTU. It follows that w ∈ TU, and hence w mod TU = 0. So, K is injective.

Finally, it is obvious that G and [K M] are surjective. �

The state models that we have constructed will be called the canonical state representations
of S.

Theorem 1. The canonical state representations form an exact couple.

Proof. Consider the sequence

0 → tTU → TU ⊕ TU → TU → 0,

where the second and third arrows are defined respectively by

ξ �→ (sξ, ξ) and (ξ1, ξ2) �→ tξ1 − ξ2.

The sequence is exact, and together with (2) gives the commutative diagram

0 → tTU → TU ⊕ TU → TU → 0,

↓ ↓ ↓
0 → S → S ⊕ S ⊕ kq → S → 0,

where the vertical arrows are inclusion maps. Applying now the snake lemma (see [1, Proposition
2.10]), we conclude the proof. �
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Proposition 5. The dimension of the canonical state representations is equal to the McMillan
degree of S; their input and output numbers are equal to those of S.

Proof. The first statement is true by definition.
To prove the second one, let m denote the input number of S. By definition, there is an

isomorphism T 	 Om. Hence, TU 	 Um, and therefore we have

TU/tTU 	 Um/tUm 	 km.

(We remark that the isomorphism U/tU 	 k holds by the Newton–Leibniz axiom.) Using this
and the tower tTU ⊆ TU ⊆ S, we can see that the statement is true for the left state model.
Dimension count in (1) shows that the statement must be true for the right state model as well. �

4. Realization and uniqueness theorems

In this section we are going to demonstrate that the state models that we have constructed realize
S, and that they are uniquely determined by this property. (We shall keep here the notations of
the previous section.)

Let R be a minimal kernel representation of S, i.e., a full row rank polynomial matrix such
that S = KerR(∂). Recall that

Ker R(∂) = {w ∈ Uq |Rw ∈ L(sk[s]p)}
(see [5, Lemma 2]).

Lemma 5. S = {w ∈ Uq |Rw ∈ L(k[s]p)}.

Proof. If w ∈ S, then Rw ∈ L(sk[s]p), and hence Rtw ∈ tL(sk[s]p) = L(k[s]p). If w =
L(a), where a ∈ kq , then Ra ∈ k[s]p, and hence Rw ∈ L(k[s]p).

Conversely, assume that w ∈ Uq and Rw ∈ L(k[s]p). Then Rw′ = R(sw − sLw(0)) ∈
L(sk[s]p). This means that w′ is a trajectory in S. It follows that w = ∫

w′ + Lw(0) belongs
to S. �

In view of the previous lemma, we have a canonical linear map S → k[s]p. We remind (see
the proof of Theorem 1 in [5]) that the transfer function T can be computed via R : T = {a ∈
Oq |Ra = 0}. So, we have an exact sequence

0 → T → Oq R→ k(s)p.

Tensoring this by U, we get an exact sequence

0 → T ⊗ U → Uq R→Mp.

The image of T ⊗ U → Uq is just TU, and thus we have

TU = {w ∈ Uq |Rw = 0}.
There is therefore a well-defined linear map Z → k[s]p. The latter, in turn, gives rise to a canonical
homomorphism

ρ : Z[s] → k[s]p.



542 V. Lomadze / Linear Algebra and its Applications 425 (2007) 534–547

We also have a canonical homomorphism

Ks − L : X[s] → Z[s].
Note that if x is a state and if ξ is its representative, then

ρ(Ks − L)(x) = ρ((Kx)s − Lx) = L−1(R(tξ)s − Rξ) = 0.

This implies that the sequence

0 → X[s] → Z[s] → k[s]p → 0 (3)

is a complex.

Lemma 6. The complex (3) is exact.

Proof. Exactness at X[s]: Obvious, because K : X → Z is injective.
Exactness at Z[s]: Assume that an element z0 + z1s + · · · + zls

l ∈ Z[s] goes to zero under
ρ, and let ζ0, ζ1, . . . , ζl ∈ S be any representatives of z0, z1, . . . , zl , respectively. We then have,
by the assumption, that L−1(Rζ0) + L−1(Rζ1)s + · · · + L−1(Rζl)s

l = 0. Set

ξ0 = −ζ0, ξ1 = −(tζ0 + ζ1), . . . , ξl−1 = −(t l−1ζ0 + · · · + ζl−1).

All these elements are trajectories of S.
Let x0, x1, . . . , xl−1 be the initial states of these trajectories. One can check easily that

−Lx0 = z0, Kx0 − Lx1 = z1, . . . , Kxl−2 − Lxl−1 = zl−1, Kxl−1 = zl.

It follows that

(sK − L)(x0 + x1s + · · · + xl−1s
l−1) = z0 + z1s + · · · + zls

l .

Exactness at k[s]p: Take any v ∈ k[s]p. Because R has full row rank (and because k(s) = O +
sk[s]), there exist g ∈ Oq and a1, . . . , al ∈ kq such that R(g + a1s + · · · + als

l) = v. Clearly
Rg ∈ k[s]p, and therefore L(g) lies in S. Letting z0 = L(g), z1 = M(a1), . . . , zl = M(al), we
see that

ρ(z0 + z1s + · · · + zls
l) = v.

The lemma is proved. �

Theorem 2. The state models (X, Y, F, G, H) and (X, Z, K, L, M) are observable, and they
realize S.

Proof. In view of Proposition 3, it suffices to consider, say, the case of right state model.
The exact sequence (3) splits. It follows from this that (X, Z, K, L, M) is observable. Consider

U as a k[s]-module in which s acts on U as ∂ . Then tensoring (3) by this module, we obtain a
(split) exact sequence

0 → X ⊗ U → Z ⊗ U → Up → 0. (4)

(The arrows here are given by x �→ Kx′ − Lx and z �→ ρ(z), respectively.)
Further, the polynomial matrix R determines an obvious linear map kq → k[s]p, which can

be viewed as the composition of the linear maps M : kq → Z and Z → k[s]p. Consequently, we
have a commutative diagram

k[s]q
↓ ↘

Z[s] → k[s]p,
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which gives rise to the commutative diagram

Uq

↓ ↘
Z ⊗ U → Up.

(5)

(The downward arrow here is defined by w �→ Mw and the south-east arrow is R(∂).)
Using the exact sequence (4) and the commutative diagram (5), we can see that the behav-

ior of our state model is equal to the kernel of R(∂) : Uq → Up. Indeed, let w ∈ Ker R(∂).
Then, by (5), Mw goes to zero under the map Z ⊗ U → Up. Consequently, in view of (4),
there exists x ∈ X ⊗ U such that Mw = Lx − Kx′. Conversely, assume that w ∈ Uq is such
that Mw = Lx − Kx′ for some x ∈ X ⊗ U. Then, by (4), the image of Mw under the map
Z ⊗ U → Up is zero. Using again (5), we can see that R(∂)w = 0. �

Theorem 3. Suppose (X1, Y1, F1, G1, H1) and (X1, Z1, K1, L1, M1) are observable (left and
right, respectively) state models that realize S. Then they are equivalent to the canonical repre-
sentations of S.

Proof. Using again Proposition 3, we may restrict ourselves by considering the case of left state
model. Further, in view of Lemma 2, we may assume without loss of generality that

Y1 = X1 ⊕ km, F1 = [A B], G1 = [I 0] and H1 =
[

0 I

C D

]
.

In other words, we may assume that S is determined via the classical equation{
x′ = Ax + Bu,

v = Cx + Du,

where x ∈ X1 ⊗ U. As remarked already in Example 1, the pair (A, C) is observable in the
classical sense.

Define T , wx,u and T as in the proof of Proposition 2. Every trajectory of S is uniquely
represented in the form wx,u, and T Om is the transfer function of S.

We have canonical linear maps

α : X1 → X and β : Y1 → Y

defined respectively by

α(x) = wx,0 mod TUm and β(x, u) = wx,L(u) mod tTUm.

If x ∈ X1 and u ∈ Um, then clearly

wx,u ≡ wx,0 mod TUm and wx,u ≡ wx,Lu(0) mod tTUm.

This means that the linear maps above are surjective. They are injective as well; the injectivity
follows immediately from the well-known fact that if a pair (A, C) is observable, then C(I −
tA)−1x = 0 if and only if x = 0.

One can check easily that, for each x ∈ X1 and u ∈ kq ,

(wx,u)
′ = wAx+Bu,0 and wx,u(0) =

(
u

Cx + Du

)
.

From these formulas and the first congruence above, we conclude that

Fβ = α[A B], Gβ = α[I 0], Hβ =
[

0 I

C D

]
.

The proof is complete. �
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Appendix: Connection with Fuhrmann’s realization theory

Let S be a linear system given by the equation R(∂)w = 0, where R is a full row rank
polynomial matrix, say, of size p × q. According to Theorem 1 in [5], the transfer function of S
is equal to the kernel of the homomorphism R : Oq → k(s)p. Choosing a generator matrix G of
this transfer function, we get an exact sequence

0 → Om G→ Oq R→ k(s)p,

where m = q − p. Since G is left invertible proper rational matrix, the k-linear map G(∞) :
km → kq is injective. It follows that there exist rows gi1 , . . . , gim of G such that

det

⎡
⎢⎣

gi1(∞)
...

gim(∞)

⎤
⎥⎦ /= 0.

Let G0 denote the submatrix of G with rows gi1 , . . . , gim . Because detG0(∞) /= 0, G0 is a
biproper rational matrix. Therefore GG−1

0 also is a generator of the transfer function. We reorder

(if necessary) the components in kq in such a way that GG−1
0 becomes

[
I

T

]
, where (I is the unit

matrix of size m × m and) T is a proper rational matrix of size p × m. Letting [−Q P ] be the
matrix R after this reordering, we have an exact sequence

0 → Om

[
I

T

]
→ Om ⊕ Op [−Q P ]→ k(s)p.

We see that −Q + PT = 0. Next, because [−Q P ] is of full row rank, we have an exact sequence

0 → k(s)m

[
I

T

]
→ k(s)m ⊕ k(s)p

[−Q P ]→ k(s)p → 0.

This implies that P : k(s)p → k(s)p is bijective, i.e., det P /= 0. (Compare with Theorem 3.3.22
in [6].)

Thus, we may assume that our linear system S ⊆ Uq(= Um ⊕ Up) is given by the equation

P(∂)v = Q(∂)u (u ∈ Um, v ∈ Up),

where P and Q are polynomial matrices respectively of sizes p × p and p × m such that P is
nonsingular and T = P −1Q is proper.

Following Fuhrmann, we set

X = sk[s]p ∩ POp.

(Warning: According to Fuhrmann’s definition the state space, in fact, is k[s]p ∩ tPOp. The reason
for giving a slightly different definition is that our Laplace transform L is the conventional one
followed by differentiation.) For each x ∈ X and u ∈ km, define

Ax = P(P −1x)σ , Bu = PT σ u, Cx = (P −1x)(∞) and Du = T (∞)u.

We claim that Ax and Bu belong to X. Indeed, clearly they are contained in POp. Next,

Ax = sx − s(P −1x)(∞) and Bu = sQu − sPT (∞)u

and so they are contained in sk[s]p as well. Further, it is obvious that Cx and Du belong to kp.
We thus have four canonical linear maps
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A : X → X, B : km → X, C : X → kp, and D : km → kp.

The quintuple (X, A, B, C, D) is called the Fuhrmann realization. Our aim here is to express in

terms of this construction the state models we have defined. Let T be the matrix
[

I

T

]
(as in the

proofs of Proposition 2 and Theorem 3).

(1) Representation via left state models
The differential equation above can be written in an “operational” form

Pv = L(x) + Qu (x ∈ X, u ∈ Um, v ∈ Up).

For each x ∈ X and u ∈ Um, set

wx,u =
(

u

P −1Lx + T u

)
.

It is clear that (x, u) �→ wx,u is a bijective map of X ⊕ Um onto S.
We need to compute the derivative of wx,u. We have

(P −1Lx)′ = sP −1Lx − s(P −1Lx)(0)

= L(sP −1x − s(P −1x)(∞)) = L(P −1x)σ .

Also we have

(T u)′ = sT u − s(T u)(0) = sT u − sT u(0) + sT u(0) − s(T u)(0)

= T (su − su(0)) + s(T u(0) − T (∞)u(0)) = T u′ + T σ u(0).

We therefore obtain that (wx,u)
′ is equal to(

u′
(P −1Lx)′ + (T u)′

)
=
(

u′
L(P −1x)σ + T σ u(0)) + T u′

)

=
(

u′
(P −1L(Ax + Bu(0)) + T u′

)
.

Thus, we have

(wx,u)
′ = wAx+Bu(0),u′ .

Further, we have

wx,u(0) =
(

u(0)

(P −1x)(∞) + T (∞)u(0)

)
=
(

u(0)

Cx + Du(0)

)
.

These two formulas (together with a trivial one) yield the following commutative diagrams:

S
∂→ S

↓ ↓
X ⊕ km [A B]→ X

,

S
id→ S

↓ ↓
X ⊕ km [I 0]→ X

,

S
ev→ kq

↓ ||

X ⊕ km

[
0 I

C D

]
→ kq

.

(The top arrow in the third diagram is the “evaluation at 0”.) Next, the map wx,u �→ x induces an
isomorphismS/TUm 	 X and the map wx,u �→ (x, u(0)) induces an isomorphismS/tTUm 	
X ⊕ km. We can see that the left canonical state model of S is equivalent to(

X, X ⊕ km, [A B], [I 0],
[

0 I

C D

])
.
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(2) Representation via right state models
Set Z = k[s]p ∩ POp. Notice that Z contains X and tX. It is easily seen that

Z = tX + Pkp and tX ∩ Pkp = 0;
i.e., every z ∈ Z can be uniquely represented as

z = tx + Pv with x ∈ X, v ∈ kp. (6)

Remark. One can observe easily that if z ∈ X, then in the representation above x = Az and
v = Cz.

We extend the definition of wx,u to all z ∈ Z by setting

wz,u =
(

u

P −1Lz + T u

)
.

By Lemma 5, (z, u) �→ wz,u is a bijective map of Z ⊕ Um onto S.

Sending wz,u to
(

x

v

)
, where x and v are defined via (6), we obtain a canonical map from S to

X ⊕ kp.
Take any x ∈ X and u ∈ Um. It is easily seen that twx,u = wtx,tu, and so it goes to

(
x

0

)
under

the map S → X ⊕ kp. In view of the remark above, the trajectory wx,u itself goes to
(

Ax

Cx

)
. Now

take u ∈ km and v ∈ kp, and put z = Pv − Qu. The latter belongs to Z, and it is easily seen that

L
(

u

v

)
= wz,L(u). We have

z = (PT (∞)u − Qu) + (P v − PT (∞)u) = −tBu + P(v − Du).

Therefore L
(

u

v

)
goes to

( −Bu

v − Du

)
under S → X ⊕ kp.

Thus, there are commutative diagrams

S

∫
→ S

↓ ↓

X

[
I

0

]
→ X ⊕ kp

,

S
id→ S

↓ ↓

X

[
A

C

]
→ X ⊕ kp

,

kq L→ S
|| ↓

kq

[
−B 0
−D I

]
→ X ⊕ kp

.

Next, the mapS → X induces (as we already know) an isomorphismS/TUm → X and the map
S → X ⊕ kp induces an isomorphism S/TUm → X ⊕ kp. We can see that the right canonical
state model of S is equivalent to(

X, X ⊕ km,

[
I

0

]
,

[
A

C

]
,

[−B 0
−D I

])
.
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