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0. Introduction

One defines in an obvious way the dual of a classical (input/state/output) linear system{
x′ = Ax + Bu,

y = Cx + Du.

In higher dimensions, the class of linear systems admitting input/state/output representations is very

limited, and the question of how to define the dual of a (general) linear system is not obvious at all.
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One approach to the problem has already been presented by Pommaret [8]. Herewe pursue a different

point of view.

Let s1, . . ., sr be indeterminates and ∂1, . . ., ∂r partial differentiation (or shift) operators, and let q

be a positive integer. Put s = (s1, . . ., sr) and ∂ = (∂1, . . ., ∂r). We remind (see [11]) that an AR-model

with signal number q is an equation of the form

R(∂)w = 0, (1)

with R(s) ∈ R[s]g×q, and an MA-model with signal number q is an equation of the form

w = M(∂)l, (2)

withM(s) ∈ R[s]q×g . There is an evident duality between AR-models andMA-models: The dual of (1)

is

w = Rt(∂)l

and the dual of (2) is

Mt(∂)w = 0.

(Here and in the text the superscript “t” stands for the transpose.)

The so-calledARMA-models (see [11]) compriseAR-models aswell asMA-models. AnARMA-model

with signal number q is defined to be

M(∂)l = R(∂)w,

where R andM are as above. The duality between AR- and MA-models, in our opinion, is very natural,

and our purpose in this paper is to extend it to all ARMA-models.

We are based on our own paper [3], where, among other things, the duals for special type ARMA-

models (1st order in the latentvariable and0thorder in themanifest variable) aredefined.Weconstruct

the duals here in the same manner as in the mentioned paper. But the double dual in the general

setting of the present paper is no longer isomorphic to the original system. Instead, it is homotopy

equivalent to it. Thus, in order to obtain a real duality we need a category in which ARMA-models are

isomorphic whenever they are homotopy equivalent. In other words, we need a homotopy category

of ARMA-models.

Homotopy iswell-known for systems community; this is none other than the classical strict system

equivalence of Fuhrmann and Rosenbrock (see [4]).

Throughout, D is a ring of polynomials in r indeterminates (with coefficients in any field), q a fixed

positive integer, andU is amoduleoverD. Thenumberqwill serve as the signal number, and themodule

U will be regarded as a function space. So, Uq will be our “universum”. (See [11] for this concept.) Given

a homomorphism P : X → Y , we shall denote by P� the homomorphism P ⊗ U : X ⊗ U → Y ⊗ U .

We shall use the abbreviation “f.g.” for “finitely generated”.

The module U will be assumed to be either an injective cogenerator or a faithfully flat module.

The importance of the injective cogenerator property is well-known since Oberst’s fundamental paper

[5]. It turned out that the property of faithful flatness also is of importance for systems theory, and

Shankar [10] was the first who realized this importance. (We remind that U is an injective cogenerator

if it is injective and satisfies the condition:Hom(X , U) = 0⇔ X = 0. Likewise, forU to be faithfully flat

means to be flat and satisfy the condition:X ⊗ U = 0⇔ X = 0.) Examples of an injective cogenerator

are the space of C∞-functions and the space of distributions (see Ref. [5]). Examples of a faithfully flat

module are the space of compactly supported C∞-functions and the space of compactly supported

distributions (see [10]).

The content of the paper is as follows.

Section 1. ARMA-models

Section 2. Homotopy

Section 3. The dual of an ARMA-model

Section 4. The structural modules

Section 5. Elimination theorems

Section 6. Long exact behavioral sequence

Section 7. Controllability and observability, and autonomy
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Closing Introduction, we remark that every linear map between modules can be viewed as a chain

complex concentrated in the degrees 1 and 0: A linear map X1
u→ X0 can be identified with the chain

complex

· · · → 0→ X1
u→ X0→ 0→ · · ·

We can speak therefore about the homologies of a linear map, chain maps between linear maps, a

homotopy equivalence of chain maps, and a homotopy equivalence of linear maps: The homologies

of u : X1→ X0 are H1(u) = Ker(u) and H0(u) = Coker(u); a chain map between X = {X1
u→ X0} and

Y = {Y1 v→ Y0} is a pairϕ = (f1, f0) consisting of linearmaps f1 : X1→ Y1 and f0 : X0→ Y0 such that

f0u = vf1; twochainmaps (f1, f0)and (g1, g0)arehomotopyequivalent if there is a linearmaph : X0→
Y1 such that g1 − f1 = hu and g0 − f0 = vh; two linear maps X = {X1

u→ X0} and Y = {Y1 v→ Y0} are
homotopy equivalent, if there exist chainmapsϕ : X → Y andψ : Y → X such thatψ ◦ ϕ andϕ ◦ ψ
are homotopy equivalent to the “identity” chain maps 1X and 1Y , respectively. It is an easy exercise

to show that homotopy equivalent linear maps have isomorphic homologies. (An excellent book on

homological algebra is Gelfand and Manin [2].)

1. ARMA-models

We shall mean by an AR-model a pair (Z , R), where Z is a f.g. free D-module and R is a D-linear

map from Dq to Z . Similarly, we shall mean by an MA-model a pair (Z ,M), where again Z is a f.g. free

D-module andM is a linear map from Z to Dq. A map from one AR-model (Z1, R1) to another (Z2, R2) is
a linear map f : Z1→ Z2 such that R2 = fR1. A map from one MA-model (Z1,M1) to another (Z2,M2)
is a linear map f : Z1→ Z2 such that M1 = M2f . The category of AR-models will be denoted by AR,

and the category of MA-models by MA.

An ARMA-model is a diagram

Z1
M→ Z0

R←Dq,

where Z1, Z0 are f.g. free D-modules and M, R are D-linear maps.

Example 1. Let (Z , R) be an AR-model. Then

0→ Z
R← Dq

is an ARMA-model.

Example 2. Let (Z ,M) be an MA-model. Then

Z
M→Dq id←Dq

is an ARMA-model.

Example 3. Let X be a f.g. free module. Then

X → 0← Dq

is an ARMA-model. Such an ARMA-model will be called trivial.

Example 4. Let X be a f.g. free module. Then

0→ X ⊕ Dq

[
0
I

]
←−Dq

is an ARMA-model. Such an ARMA-model will be called incorrect.

As is known, one needs not just objects, but alsomaps (morphisms) between them. Amap between

ARMA models
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{Y1 L→ Y0
Q←Dq} → {Z1 M→ Z0

R←Dq}
is a triple (f1, f0, k) consisting of linear maps f1 : Y1→ Z1, f0 : Y0→ Z0 and k : Dq→ Z1 such that

f0L = Mf1 and f0Q = R+Mk;
that is,([

f1 −k
0 I

]
, f0

)

is a chain map between the linear maps

Y1 ⊕ Dq [L −Q]−→ Y0 and Z1 ⊕ Dq [M −R]−→ Z0.

Example 5. Let f be a map between AR-models (Y ,Q) and (Z , R). Then clearly (0, f , 0) is a chain map

from 0→ Y
Q←Dq to 0→ Z

R←Dq. Every map from 0→ Y
Q←Dq to 0→ Z

R←Dq is obtained this

way.

Example 6. Let f be a map between MA-models (Y , L) and (Z ,M). Then clearly (f , I, 0) is a map

from Y
L→Dq id←Dq to Z

M→Dq id←Dq. However, not every map from Y
L→Dq id←Dq to Z

M→Dq id←Dq is

obtained this way.

We remark that if A = {X → Z ← Dq} is an ARMA-model, then 1A = (I, I, 0) is a map of A into

itself, called the identity map. The composition of two maps

{X1→ X0← Dq} (f1,f0,k)−→ {Y1→ Y0← Dq} (g1,g0,l)−→ {Z1→ Z0← Dq}
is defined by the formula

(g1, g0, l) ◦ (f1, f0, k) = (g1f1, g0f0, g1k+ l).

We let ARMA denote the category of ARMA-models and their maps. The Examples 5 and 6 say that

AR is a full subcategory of ARMA, but MA not. (We remind that a subcategory C0 of a category C is

said to be full, if for every pair (A, B) of objects in C0, the set HomC0
(A, B) coincides with the whole

HomC(A, B).)

2. Homotopy

Our aim in this section is to introduce a new category, a kind of quotient of ARMA, in which it is

better to work. The point is that ARMA, in fact, is not so good: It contains too many maps! (We have

seen this in Example 6.)

Suppose

Y1
L→ Y0

Q←Dq and Z1
M→ Z0

R←Dq

are ARMA-models, and suppose (f1, f0, k) and (g1, g0, l) are two maps from the first one to the second.

We say that these maps are homotopic if there is h : Y0→ Z1 such that

g1 = f1 + hL, g0 = f0 +Mh and l = k+ hQ .

(Intuitively: (g1, g0, l) is obtained from (f1, f0, k) by a slight change). We shall write ≈ to denote

homotopy equivalence.

Proposition 1. Let A and B be ARMA-models. Homotopy is an equivalence relation in the set

MorARMA(A,B).

Proof. Left to the reader. �
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The following says that composing homotopic maps yields homotopic compositions.

Proposition 2. Let A, B and C be ARMA-models, and let ϕ1,ϕ2 : A→ B and ψ1,ψ2 : B→ C be

chain maps. If ϕ1 ≈ ϕ2 andψ1 ≈ ψ2, thenψ1 ◦ ϕ1 ≈ ψ2 ◦ ϕ2.
Proof. Left to the reader. �

Wewant to treat homotopic maps between ARMA-models as being equal; in other words, wewant

homotopy equivalence classes to be morphisms between ARMA-models.

Define the category K(ARMA) as follows: The objects are ARMA-models and the morphisms be-

tween ARMA-models are maps modulo the homotopy equivalence relation; that is,

MorK(ARMA)(A,B) = MorARMA(A,B)/ ≈ .
That this is a category indeed follows from the previous proposition. (For the notion of the homotopy

category K(C) of a category C, the reader may consult [2, Chapter III.4].)

Isomorphisms in K(ARMA) will be called also homotopy equivalences in ARMA. Thus, a mapping

ϕ : A→ B is a homotopy equivalence if there exists ψ : B→ A such that ϕ ◦ ψ is homotopic

to idB and ψ ◦ ϕ is homotopic to idA. We shall use the same symbol “≈” to denote the homotopy

equivalence between ARMA-models.

Wedefine linear systems tobehomotopyequivalenceclassesofARMA-models, that is, isomorphism

classes in K(ARMA).

Example 7. Let (Y ,Q) and (Z , R) be two AR-models. If f and g are two maps of (Y ,Q) into (Z , R), then

themaps (0, f , 0) and (0, g, 0) from 0→ Y
Q←Dq to 0→ Z

R←Dq are homotopy equivalent if and only

if f = g.

Example 8. Let (Y , L) and (Z ,M) be two MA-models. If (f , g, k) is a map

{Y → Dq = Dq} → {Z → Dq = Dq},
then, it is easily seen that f − kL is a map of (Y , L) into (Z ,M) and (f , g, k) is homotopy equivalent to

(f − kL, I, 0). Next, if f and g are twomaps of (Y , L) into (Z ,M), then (f , I, 0) and (g, I, 0) are homotopy

equivalent if and only if f = g.

Proposition 3. Both AR andMA are full subcategories of K(ARMA).

Proof. Follows from the previous two examples. �

Remark 1. It is worthwhile to note that the category of f.g. free modules also can be viewed (in two

different ways) as full subcategories of K(ARMA). (See Examples 3 and 4.)

We remark that if two ARMA-models

X1
L→ X0

Q←Dq and Y1
M→ Y0

R←Dq

are homotopy equivalent, then necessarily

rk(X1)+ rk(Y0) = rk(X0)+ rk(Y1).

(See [4].) The following theorem is a generalization of Fuhrmann’s classical result in [1]. It is very

usefulwhen onewants to checkwhether a givenmap fromone ARMA-model to another is a homotopy

equivalence.
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Theorem 1. Let

X1
L→ X0

Q←Dq and Y1
M→ Y0

R←Dq

be two ARMA-models satisfying the rank condition above. Then a map ϕ = (f1, f0, k) between them is a

homotopy equivalence if and only if it satisfies the following two conditions (“Fuhrmann’s conditions”):

(a) f0 and M are right coprime;
(b) f1 and L are left coprime.

Proof. See [4]. �

We close the section by the following relevant

Lemma 1. Let

Z1
M→ Z0

R←Dq

be an ARMA-model. Then the ARMA-model

Z1 ⊕ Dq

[
M −R
0 −I

]
−→ Z0 ⊕ Dq

[
0
I

]
←−Dq

is canonically isomorphic, in K(ARMA), to the given one.

Proof. It is easily seen that([
I 0

]
,
[
I −R]

, 0
)

is a map from the ARMA-model (in which we are interested) to the given one. This map satisfies

Furmann’s conditions; hence, it is a homotopy equivalence. �

3. The dual of an ARMA-model

Let A = {Z1 M→ Z0
R←Dq} be an ARMA-model. We define the dual of A as the ARMA-model

A∗ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩Z∗0

[
Mt

−Rt
]

−→ Z∗1 ⊕ Dq

[
0
I

]
←−Dq

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ .

The following two examples say that the dual of an AR-model is an MA-model and the dual of

MA-model is an AR-model.

Example 9. Let (Z , R) be an AR-model. Then the dual of 0→ Z
R←Dq is

Z∗ −R
t→ Dq id←Dq.

This certainly is isomorphic to

Z∗ Rt→Dq id←Dq,

which corresponds to the MA-model (Z∗, Rt).

Example 10. Let (Z ,M) be an MA-model. Then the dual of Z
M→Dq id←Dq is

Dq

[
Mt

−I
]

−→ Z∗ ⊕ Dq

[
0
I

]
←−Dq.
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By Lemma 1, this one is homotopy equivalent to

0→ Z∗ Mt←Dq,

which corresponds to the AR-model (Z∗,Mt).

The following two examples say that the dual of a trivial model is incorrect and the dual of an

incorrect model is trivial.

Example 11. The dual of X → 0← Dq is

0→ X∗ ⊕ Dq

[
0
I

]
←−Dq.

Example 12. The dual of 0→ X ⊕ Dq

[
0
I

]
←−Dq is

X∗ ⊕ Dq [0 −I]−→ Dq← Dq,

which, by Lemma 1, is homotopy equivalent to X∗ → 0← Dq.

The following example says, in particular, that our definition of the dual agrees with that in the

classical case.

Example 13. Letm and p be integers such that m+ p = q. Consider a Rosenbrock model

(Z; T ,U, V ,W),

where Z is a free module over D, and T : Z → Z is a linear map with det(T) /= 0 and U : Dm→ Z ,

V : Z → Dp,W : Dm→ Dp are arbitrary linear maps. As an ARMA-model, this is

Z

[
T
−V

]
−→ Z ⊕ Dp

[
U 0
W −I

]
←− Dm ⊕ Dp.

The dual of this ARMA-model is

Z∗ ⊕ Dp

⎡
⎢⎣ Tt −Vt

−Ut −Wt

0 I

⎤
⎥⎦

−→ Z∗ ⊕ Dm ⊕ Dp

⎡
⎣0 0
I 0
0 I

⎤
⎦

←− Dm ⊕ Dp.

In K(ARMA), the latter is canonically isomorphic to

Z∗

[−Tt
Ut

]
−→ Z∗ ⊕ Dm

[
0 −Vt

−I −Wt

]
←− Dm ⊕ Dp.

The isomorphism is given by([
I 0

]
,

[−I 0 −Vt

0 −I −Wt

]
,
[
0 0

])
.

(One can check easily that Fuhrmann’s conditions are satisfied.)

As a Rosenbrock model, this is

(Z;−Tt ,−Vt ,−Ut ,−Wt).

Remark 2. It is harmless to define the dual of (Z; T ,U, V ,W) as (Z∗;−Tt ,−Vt ,−Ut ,−Wt).
Letϕ = (f1, f0, k) be amap fromA = {Y1→ Y0← Dq} toB = {Z1→ Z0← Dq}. Define the dual

of ϕ by the formula

ϕ∗ =
(
f t0 ,

[
f t1 0

−kt I

]
, 0

)
.

One can easily see that this indeed is a map from B∗ to A∗.
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It is clear that if ϕ : A→ B andψ : B→ C are maps between ARMA-models, then (ψ ◦ ϕ)∗ =
ϕ∗ ◦ ψ∗.
Proposition 4. If ϕ,ψ : A→ B are homotopy equivalent maps, then so are the maps ϕ∗,ψ∗ : B∗ →
A∗.

Proof. Obvious. �

The following is our main theorem.

Theorem 2. For every ARMA-model A, in K(ARMA), there exists a canonical isomorphism

A∗∗ � A.

Proof. This is exactly Lemma 1. �

One defines in an obvious way the dualΣ∗ of a linear systemΣ , and we have

Corollary 1. Σ∗∗ = Σ.
We shall need the following

Lemma 2. Let Z1
M→ Z0

R←Dq be an ARMA-model. Then there are canonical isomorphisms

H0

[
M −R
0 −I

]
� H0M and H0

[
Mt 0

−Rt −I
]
� H0M

t .

Proof. The homomorphisms

Z1 ⊕ Dq

[
M −R
0 I

]
−→ Z0 ⊕ Dq and Z1

M→ Z0

are homotopy equivalent. (The homotopy equivalence is ([I 0], [I − R].)
Likewise, the homomorphisms

Z∗0 ⊕ Dq

[−Mt 0

Rt −I
]

−→ Z∗1 ⊕ Dq and Z∗0
Mt→ Z∗1

are homotopy equivalent as well. (The homotopy equivalence is
([
I 0

]
,
[
I 0

]
.
)

The proof is complete. �

4. Structural modules

In this section we are interested in four modules that are very much related to the structure of

ARMA-models.

Let

A =
{
Z1

M→ Z0
R←Dq

}

be an ARMA-model. Associated with A there are, as we already could notice, two important homo-

morphisms[
M −R] : Z1 ⊕ Dq→ Z0 and M : Z1→ Z0.
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We set

ID(A) = H0

[
M −R]t

, OD(A) = H0(M), Co(A) = H0

[
M −R]

and

Ob(A) = H0(M
t).

Using Rosenbrock’s terminology (see [9]), we call ID(A) and OD(A) the input and output decoupling

modules. We call Co(A) and Ob(A) the controllability and observability modules.

The following example may justify the names we have given.

Example 14. Let A be a Rosenbrock model (Z; T ,U, V ,W). Then

ID(A) = H0

[
Tt

−Ut

]
, OD(A) = H0

[
T

−V
]
, Co(A) � H0

[
T −U]

,

Ob(A) � H0

[
Tt −Vt

]
.

The following examples are of special interest.

Example 15. Let A be an AR-model 0→ Z
R→Dq. Then

ID(A) = H0(R
t), OD(A) = Z , Co(A) = H0(R), Ob(A) = 0.

Example 16. Let A be an MA-model Z
M→Dq = Dq. Then

ID(A) = Z∗, OD(A) = H0(M), Co(A) = 0, Ob(A) = H0(M
t).

Example 17. Let A be a trivial ARMA-model X → 0← Dq. Then

ID(A) = X∗ ⊕ Dq, OD(A) = 0, Co(A) = 0, Ob(A) = X∗.

Example 18. Let A be an incorrect ARMA-model 0→ X ⊕ Dq← Dq. Then

ID(A) = 0, OD(A) = X ⊕ Dq, Co(A) = X , Ob(A) = 0.

The four modules are related to each other, as the following says.

Proposition 5. Given an ARMA-model A, one has the following canonical exact sequences

Dq→ ID(A)→ Ob(A)→ 0 and Dq→ OD(A)→ Co(A)→ 0.

Proof. The first exact sequence follows from the commutative diagram

0 → Z∗0 = Z∗0 → 0

↓ ↓
0 → Dq → Z∗1 ⊕ Dq → Z∗1 → 0

by the snake lemma. Similarly, the second one follows from the following commutative diagram

0 → Z1 → Z1 ⊕ Dq → Dq → 0

↓ ↓ ↓
0 → Z0 = Z0 → 0 .

�

If ϕ : A→ B is a map of ARMA-models, then there are canonical homomorphisms

ID(ϕ) : ID(A)→ ID(B) and OD(ϕ) : OD(A)→ OD(B).

Likewise, we have canonical homomorphisms

Co(ϕ) : Co(A)→ Co(B) and Ob(ϕ) : Ob(A)→ Ob(B).
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Lemma 3. Suppose ϕ,ψ : A→ B are homotopy equivalent maps. Then

ID(ϕ) = ID(ψ), OD(ϕ) = OD(ψ), Co(ϕ) = Co(ψ) and Ob(ϕ) = Ob(ψ).

Proof. Let

A =
{
Y1

L→ Y0
Q←Dq

}
and B =

{
Z1

M→ Z0
R←Dq

}
,

and let ϕ = (f1, f0, k) andψ = (g1, g0, l). Suppose h : Y0→ Z1 is a homotopy between ϕ andψ .

Then,
[
h
0

]
determines a homotopy between the chain maps

([
f1 −k
0 I

]
, f0

)
,

([
g1 −l
0 I

]
, g0

)
:

{
Y1 ⊕ Dq [L −Q]−→ Y0

}
→

{
Z1 ⊕ Dq [M −R]−→ Z0

}

and
[
ht 0

]
a homotopy between their transposes.

Obviously, h determines a homotopy between the chain maps

(f1, f0), (g1, g0) : {Y1→ Y0} → {Z1→ Z0}
and ht a homotopy between their transposes.

This completes the proof, because homotopy equivalent chain maps yield equal maps of the ho-

mologies. �

The following is in the spirit of Rosenbrock’s book [9].

Theorem 3. Homotopy equivalence preserves the structural modules.

Proof. Follows from the previous lemma. �

Theorem 4. There are canonical isomorphisms

ID(A∗) � OD(A), OD(A∗) � ID(A), Co(A∗) � Ob(A) and Ob(A∗) � Co(A).

Moreover, the diagrams

Dq → ID(A∗) → Ob(A∗) →0

|| ↓ ↓
Dq → OD(A) → Co(A) →0

and

Dq → OD(A∗) → Co(A∗) →0

|| ↓ ↓
Dq → ID(A) → Ob(A) →0

are commutative.

Proof. That ID(A∗) � OD(A) and Co(A∗) � Ob(A) follows from Lemma 2. By the very definition,

OD(A∗) = ID(A) and Ob(A∗) = Co(A).
The proof of the second statement is left to the reader. �

5. Elimination theorems

Let an ARMA-model A =
{
Z1

M→ Z0
R←Dq

}
be given.

In this section we are interested in the question: When A can be brought to the AR-, MA-, trivial

or incorrect form?

Theorem 5. A is homotopically equivalent to an AR-model if and only if its observability module is zero.
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Proof. “If”: The linear map M∗ is surjective, and therefore its kernel must be a free module. Letting Y

denote the dual of this kernel, we have a canonical short exact sequence

0→ X → Z → Y → 0.

Denote by U the canonical linear map Z → Y .

The canonical map

(0,U, 0) : A→
{
0→ Y

Q←Dq

}
determines an isomorphism in K(ARMA). (It satisfies Fuhrmann’s conditions: U is right invertible and

M is left invertible.)

“Only if”: Follows from Example 15.

The proof is complete. �

Theorem 6. A is homotopically equivalent to anMA-model if and only if its controllabilitymodule is zero.

Proof. “If”: Letting Y denote the kernel of [M − R], we have a canonical exact sequence

0→ Y → X ⊕ Dq→ Z → 0.

Let U and L denote the canonical linear maps Y → X and Y → Dq, respectively.

The canonical map

(U, R, 0) : {Y L→ Dq = Dq} → A

determines an isomorphism inK(ARMA). (It satisfies Fuhrmann’s conditions: [R M] is right invertible
and

[
U
L

]
is left invertible.)

“Only if”: Follows from Example 16.

The proof is complete. �
Theorem 7. A is homotopically equivalent to a trivial model if and only if its output-decoupling module

is zero.

Proof. “If”: The hypothesis implies that there is an exact sequence

0→ Y
j→ Z → X → 0,

where Y is a freemodule. It is easily seen that (j, 0, 0) is a homotopy equivalence of Y → 0← Dq with

A.

“Only if”: Follows from Example 17. �
Theorem 8. A is homotopically equivalent to an incorrectmodel if and only if its input-decouplingmodule

is zero.

Proof. “If”: There is an exact sequence

0→ X ⊕ Dq→ Z → Y → 0,

where Y is a f.g. free module. The sequence splits, and hence there exists a linear map j : Y → Z

such that [M j R] is an isomorphism of X ⊕ Y ⊕ Dq onto Z . One can easily check that (0, [j R], 0) is a
homotopy equivalence of 0→ Y ⊕ Dq← Dq with A.

“Only if”: Follows from Example 18. �

6. Long exact behavioral sequence

We begin with the following simple lemma (“Malgrange lemma”).

Lemma 4. Let P : X → Y be a homomorphism of free D-modules of finite rank. Then

H1(P
�) = Hom(H0(P

t), U) and H0(P
�) = H0(P)⊗ U.
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In other words, there is a canonical exact sequence

0→ Hom(H0(P
t), U)→ X ⊗ U P�→ Y ⊗ U → H0(P)⊗ U → 0.

Proof. Applying the functor Hom(−, U) to the exact sequence

Y∗ Pt→ X∗ → H0(P
t)→ 0,

we get an exact sequence

0→ Hom(H0(P
t), U)→ X ⊗ U P�→ Y ⊗ U.

Next, applying the functor−⊗ U to the exact sequence

X
P→ Y → H0(P)→ 0,

we get an exact sequence

X ⊗ U P�→ Y ⊗ U → H0(P)⊗ U → 0.

The proof is complete. �

Theorem 9. Let A =
{
Z1

M→ Z0
R←Dq

}
be an ARMA-model. There is an exact sequence

0→ Hom(Ob(A), U)→ Hom(ID(A), U)→ Uq→ OD(A)⊗ U → Co(A)⊗ U → 0.

Proof. We have a commutative diagram

0 → Z1 → Z1 ⊕ Dq → Dq → 0

↓ ↓ ↓
0 → Z0 = Z0 → 0 .

Tensoring this by U and then applying the snake lemma, we obtain an exact sequence

0→ H1(M
�)→ H1[M� − R�] → Uq→ H0(M

�)→ H0[M� − R�] → 0.

From this, in view of the previous lemma, the statement follows. �

We call the sequence in the theorem the long exact behavioral sequence of A and denote it by

Bh(A).
We set

Bid(A) = Hom(ID(A), U) and Bod(A) = OD(A)⊗ U.
With this notation, the middle part of the above sequence can be rewritten as

Bid(A)→ Uq→ Bod(A).

The image of the first homomorphism and the kernel of the second one coincide, and this common

set is called the manifest behavior of A. We shall denote it by Bmf (A). Notice that Bid(A) is equal to
the solution set of the equation

Mz = Rw (z ∈ Z1 ⊗ U , w ∈ Uq),

which in Willems [11] is called the full behavior of A. This space certainly is very important, and we

want to emphasize that the space Bod(A) is equally important. (It is suggestive to think of Bid(A) and
Bod(A) as two “black boxes” associated with A.)

Example 19. The long exact behavioral sequence of AR-model (X , R) is

0→ 0→ Ker(R)→ Uq R→ X ⊗ U → H0(R)⊗ U → 0.
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Example 20. The long exact behavioral sequence of MA-model (X ,M) is

0→ Ker(M)→ X ⊗ U M→ Uq→ H0(M)⊗ U → 0→ 0.

Example 21. The long exact behavioral sequence of X → 0← Dq is

0→ X ⊗ U → X ⊗ U ⊕ Uq→ Uq→ 0→ 0→ 0.

(Notice that the manifest behavior is equal to Uq.)

Example 22. The long exact behavioral sequence of 0→ X ⊕ Dq

[
0
I

]
←−Dq is

0→ 0→ 0→ Uq→ X ⊗ U ⊕ Uq→ X ⊗ U → 0.

(Notice that the manifest behavior is equal to {0}.)
If ϕ : A→ B is a map of ARMA-models, then there is an obvious chain map

Bh(ϕ) : Bh(A)→ Bh(A).

It is clear thathomotopyequivalentmapsofARMA-models induce the samechainmapof theassociated

long exact behavioral sequences. It follows from this that homotopy equivalent ARMA-models have

isomorphic long exact behavioral sequences.

In the sequel we shall need Bid(ϕ) and Bod(ϕ), which are defined in an obvious way. (They are, by

the way, two components of Bh(ϕ).)
Given two ARMA-models A and B, we say that A is more powerful than B (and write A � B) if

there is a map ϕ : A→ B.

Proposition 6. Let A and B be ARMA-models. Then

A � B ⇒ Bmf (A) ⊆ Bmf (B).

Proof. LetA =
{
Y1

L→ Y0
Q←Dq

}
andB =

{
Z1

M→ Z0
R←Dq

}
, and let ϕ = (f0, f1, k) be amap fromA

to B.

If w is a manifest trajectory of A, then Qw = Ly for some y ∈ U ⊗ Y1. And we have

Rw = f0Q −Mkw = f0Ly−Mkw = Mf1y−Mkw = M(f1y− kw).

Hence, w is a manifest trajectory of B as well. �

The following twotheoremsareelimination theorems. Thefirstone iswell-known(see, for example,

[10,11]), and it says that if the function module is injective, then the manifest behavior of any ARMA-

model has a “kernel representation”. The second is analogous, and it says that if the function module

is flat, then the manifest behavior of any ARMA-model has an “image representation”.

Theorem 10. Suppose U is injective. Then, for every ARMA-modelA, there exists an AR-modelB such that

A � B and Bmf (A) = Bmf (B).

Proof. Let A be Z1
M→ Z0

R←Dq. There is an exact sequence

X∗ f ∗→ Z∗0 → Z∗1 ,
where X is a f.g. free module and f : Z0→ X is a homomorphism. We claim that the AR-model B =
(X , fR) satisfies the theorem. Indeed, (0, f , 0) is a map from A to B. Further, applying the functor

Hom(−, U) to the exact sequence above, we obtain an exact sequence

Z1 ⊗ U → Z0 ⊗ U → X ⊗ U.
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It follows from this that the canonical map

Bod(A)→ X ⊗ U
is injective. From the commutative diagram

Uq = Uq

↓ ↓
Bod(A) → X ⊗ U

we see that B has the same manifest behavior as A. �

Theorem 11. Suppose U is flat. Then, for every ARMA-model A, there exists an MA-model B such that

B � A and Bmf (B) = Bmf (A).

Proof. Let A be Z1
M→ Z0

R←Dq. There is an exact sequence

X

[
f
L

]
→ Z1 ⊕ Dq→ Z0,

where X is a f.g. free module and f : X → Z1, L : X → Dq are homomorphisms. We claim that the

MA-model B = (X , L) satisfies the theorem. Indeed, (f , R, 0) is map from B to A. Next, applying the

functor−⊗ U to the sequence above, we obtain an exact sequence

X ⊗ U → Z1 ⊗ U ⊕ Uq→ Z0 ⊗ U.
It follows from this that the canonical map

X ⊗ U → Bid(A)

is surjective. From the commutative diagram

X ⊗ U → Bid(A)↓ ↓
Uq = Uq

we see that B has the same manifest behavior as A. �

We close the section by the following:

Theorem 12. The long exact behavioral sequence of the dual of A =
{
Z1

M→ Z0
R←Dq

}
is canonically

isomorphic to

0→ Hom(Co(A), U)→ Hom(OD(A), U)→ Uq→ ID(A)⊗ U → Ob(A)⊗ U → 0.

Proof. Follows immediately from Theorem 4. �

The reader can notice that the relation between Bh(A) and Bh(A∗) is symmetric.

7. Controllability and observability, and autonomy

The concepts of controllability, observability and autonomy are fundamental, as one knows well.

For higher-dimensional linear systems, several attempts were made by various authors to develop a

unified approach to the notions of controllability and autonomy. The results culminate in Pommaret

and Quadrat [6,7], where very good definitions for these notions have been proposed, using Ext. We

recommend Zerz [12] for a nice expository account. In the book [8], Pommaret gave the definition of

observability as well.
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For convenience of the reader, we briefly review the approach of Pommaret and Quadrat.

Let E be a f.g. D-module, and suppose P : X → Y is a homomorphism of f.g. free D-modules such

that E = H0(P). A crucial fact is that the “dual” module F = H0(P
t) is uniquely determined up to

projective equivalence (see [7]). The module E, regarded as a linear system without signals, is said to

be controllable if Ext1(F ,D) = 0. If E is controllable, then the maximum integer d such that

Ext1(F ,D) = · · · = Extd(F ,D) = 0.

is called the controllability degree of E. The definition is based on the observation that

E is torsion free ⇔ d � 1; E is reflexive ⇔ d � 2; E is free ⇔ d = r.

So, the controllability degree classifies the “higher” analogues of torsion freeness.

Further, E is said to be autonomous if Ext0(E,D) = 0, and one says that its autonomy degree is k, if

k is the maximum integer such that

Ext0(E,D) = · · · = Extk(E,D) = 0.

There is a nice formula

k = r − dim(E)− 1.

(The dimension of E is the Krull dimension of the ring D/Ann(E)). In particular, we have

Ext0(E,D) = 0⇔ E is a torsion module.

Finally, Pommaret [8] defines E to be observable if Ext1(E,D) = 0.

We apply the above machinary to our situation in the following way.

Let

A = {Z1 M→ Z0
R← Dq}

be an ARMA-model. Associated with A there are, as we know, four (structural) modules

ID(A), OD(A), Co(A) and Ob(A).

Notice that Co(A) is the dual of ID(A) (in the sense of Pommaret-Quadrat) and Ob(A) is the dual of

OD(A). We say:

(Co)A is controllable if it satisfies the following equivalent conditions

Ext1(Co(A),D) = 0⇔ ID(A) is torsion free;
(Ob)A is observable if it satisfies the following equivalent conditions

Ext1(Ob(A),D) = 0⇔ OD(A) is torsion free

(IA)A is input-autonomous if it satisfies the following equivalent conditions

Ext0(ID(A),D) = 0⇔ ID(A) is a torsion module

(OA)A is output-autonomous if it satisfies the following equivalent conditions:

Ext0(OD(A),D) = 0⇔ OD(A) is a torsion module.

In case A is controllable, its controllability degree is defined to be the maximum integer d such that

Ext1(Co(A),D) = · · · = Extd(Co(A),D) = 0.

If the degree is equal to r, we say that A is strongly controllable. Similarly, in case A is observable, its

observability degree is the maximum integer d such that

Ext1(Ob(A),D) = · · · = Extd(Ob(A),D) = 0.

If the degree is equal to r, we say that A is strongly observable.

One can introduce in an analogous way various degrees of autonomy as well.
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We remark that

A is strongly controllable⇔ ID(A) is free⇔ Co(A) = 0⇔ A ≈ an MA�model;
A is strongly observable⇔ OD(A) is free⇔ Ob(A) = 0⇔ A ≈ an AR�model.

So, the controllability module of an ARMA-model is the obstruction to strong controllability and the

observability module is the obstruction to strong observability. We can also say: The controllability

module of an ARMA-model is the obstruction to representability in theMA-form and the observability

module is the obstruction to representability in the AR-form.

Of course, in the one-dimensional case, “controllability” = “strong controllability” and “observ-

ability” = “strong observability”. And in this case the definitions above coincide with those given by

Willems [11, Section VI].

Under the hypothesis that U is faithfully flat, saying that Co(A) = 0 is equivalent to saying that

Uq→ Bod(A) is surjective. Hence, strong controllability means that

“the “od”� variable is (completely) controlled via the manifest variable”.

Under the hypothesis that U is an injective cogenerator, saying that Ob(A) = 0 is equivalent to

saying that Bid(A)→ Uq is injective. Hence, strong observability means that

“the “id”� variable is (completely) observed via the manifest variable”.

(This interpretation was given in Willems [11, Section VI]).

The intuitive meaning of controllability and observability is quite clear. To get it we have to replace

above the word “completely”, say, by the word “essentially”.

We shall now make an attempt to interpret more precisely the notions of controllability and

observability.

Assume we have an ARMA-model

A =
{
Z1

M→ Z0
R←Dq

}
.

We have seen that controllability is a feature of MA-models and observability is a feature of AR-

models. It is a natural idea therefore to express controllability using MA-models and observability

using AR-models.

The following theoremgeneralizes the standard fact that thepropertyof controllability is equivalent

to the property of having MA-representation. (Recall that the “Bid” of MA-model (X , L) is equal to

X ⊗ U).

Theorem 13. Suppose U is an injective cogenerator. ThenA is controllable if and only if there exists a pair

(a “controller”) (B,ϕ), where B is an MA-model and ϕ : B→ A a map such that

Bid(ϕ) : Bid(B)→ Bid(A)

is surjective.

Proof. “If”: Let B = {X L→ Dq = Dq} be an MA-model and ϕ = (f , g, k) a map that satisfy the condi-

tion above. Notice that (f − kL, R, 0) is homotopy equivalent to (f , g, k), and therefore wemay assume

that ϕ = (f , R, 0). We then have an exact sequence

X ⊗ U → Z1 ⊗ U ⊕ Uq→ Z0 ⊗ U.
This can be rewritten as

Hom(X∗, U)→ Hom(Z∗1 ⊕ Dq, U)→ Hom(Z∗0 , U).
Since U is an injective cogenerator, we get that the sequence

Z∗0 → Z∗1 ⊕ Dq→ X∗

is exact. It follows from this that Co(A) is torsion free.

“Only if”: This is left to the reader. (The proof of this part requires only injectiveness of U .) �
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Comment.A is controllable if andonly if its “id”-trajectories canbecontrolledvia the“id”-trajectories

of some more powerful MA-model.

Remark 3. If happens that Bid(ϕ) is bijective, then A is strongly controllable. (The proof of this also

is left to the reader.)

The following theorem is an obvious analog of the previous one. (Recall that the “Bod” of AR-model

(X ,Q) is equal to X ⊗ U .)

Theorem 14. Suppose U is faithfully flat. Then A is observable if and only if there exists a pair (an
“observer”) (B,ϕ), where B is an AR-model and ϕ : A→ B a map such that

Bod(ϕ) : Bod(A)→ Bod(B)

is injective.

Proof. “If”: Let B = {0→ X
Q←Dq} be an AR-model that satisfies the condition above. We then have

an exact sequence

Z1 ⊗ U → Z0 ⊗ U → X ⊗ U.

Since U is faithfully flat, we get that the sequence

Z1→ Z0→ X

is exact. It follows from this that Ob(A) is torsion free.

“Only if”: This is left to the reader. (The proof of this part requires only flatness of U .) �

Comment.A is observable if andonly if its “od”-trajectories canbeobservedvia the “od”-trajectories

of some less powerful AR-model.

Remark 4. If happens that Bod(ϕ) is bijective, then A is strongly observable. (The proof of this also is

left to the reader.)

We turn now to an interpretation of input-autonomy and output-autonomy.

The following theorem generalizes the standard fact that a linear system is autonomous if and only

if its only compact support trajectory is the zero one. (See [12] and references there.)

Theorem 15. Suppose U is faithfully flat. Then A is input-autonomous if and only if

Bid(A) = 0.

Proof. The exact sequence

Z∗0 → Z∗1 ⊕ Dq→ ID(A)→ 0

yields the following two exact sequences

0→ Hom(ID(A),D)→ Z1 ⊕ Dq→ Z0 and

0→ Hom(ID(A), U)→ Z1 ⊗ U ⊕ Uq→ Z0 ⊗ U.

We can see

Ext0(ID(A),D) = 0⇔ 0→ Z1 ⊕ Dq→ Z0 is exact ⇔
0→ Z1 ⊗ U ⊕ Uq→ Z0 ⊗ U is exact⇔ Bid(A) = 0.

The proof is complete. �
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The following theorem is an obvious analog of the previous one.

Theorem 16. Suppose U is an injective cogenerator. Then A is output-autonomous if and only if

Bod(A) = 0.

Proof. The exact sequence

Z1→ Z0→ OD(A)→ 0

yields the following two exact sequences

0→ Hom(OD(A),D)→ Z∗0 → Z∗1 and Z1 ⊗ U → Z0 ⊗ U → OD(A)⊗ U → 0.

We can see

Ext0(OD(A),D) = 0⇔ 0→ Z∗0 → Z∗1 is exact ⇔
Z1 ⊗ U → Z0 ⊗ U → 0 is exact ⇔ Bod(A) = 0.

The proof is complete. �

We close by the following theorem, which is an immediate consequence of Theorem 4.

Theorem 17. Controllability and observability are dual concepts; so are input-autonomy and output-

autonomy.
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