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1. Introduction

Linear systems with impulsive trajectories have been studied in numerous papers since the work

Verghese [20]. The bibliography gives a list only of a very few papers. (These are mostly the papers of

which we are aware.)

In [10] the following definition has been offered as the starting point for the “singular" behavioral

theory of linear systems. A generalized AR-model is a pair (A, B), where A is a full row rank polynomial

matrix and B is a full row rank proper rational matrix such that A = DB for some nonsingular rational

matrix D. (The “D" is uniquely determined, and is called the transition matrix. The column numbers
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of A and B are equal, and this common number is called the signal number.) We say that (A, B) is

nonsingular if B is right invertible (as a proper rational matrix). Nonsingular generalized AR-models

can be identified with standard AR-models.

Since the definition above may seem strange at first sight, we shall try to give a motivation for it.

Let s be an indeterminate, and put t = s−1. Suppose for simplicity that the ground field is C, and

consider the casewhere the signalnumber is equal to1. In this special caseonecangive threeequivalent

definitions of a classical AR-model (and its McMillan degree):

Definition 1. An AR-model with signal number 1 is a sequence (a0, . . . , an) of elements in C, where

a0 /= 0. The number n is called the McMillan degree.

Definition 2. AnAR-modelwith signal number 1 is a pair (a,μ), where a is a nonzero complex number

and μ : C → Z+ is a function with a finite support. The McMillan degree is defined as the number∑
x∈C μ(x) = n.

Definition 3. An AR-model with signal number 1 is a nonzero polynomial f ∈ C[s]. The McMillan

degree is defined simply as the degree of the polynomial.

The definitions above admit respectively the following evident generalizations.

Definition 1′. A generalized AR-model with signal number 1 is a sequence (a0, . . . , an) of elements in

C, where ai /= 0 for some i. The number n is called the McMillan degree.

Definition 2′. A generalized AR-model with signal number 1 is a pair (a,μ), where a is a nonzero

complex number and μ : C ∪ ∞ → Z+ is a function with a finite support. The McMillan degree is

defined as the number
∑

x∈C∪∞ μ(x) = n.

Definition 3′. A generalized AR-model with signal number 1 is a pair (f , g) with nonzero polyno-

mials f ∈ C[s] and g ∈ C[t] such that f = sng for some nonnegative integer n. The “n" is uniquely

determined, and is called the McMillan degree.

The previous three definitions are equivalent. Indeed, suppose that (a0, . . . , an) is as in Definition

1′. Letting a to be the leading coefficient of the polynomial a0s
n + · · · + an and defining μ by the

formula

μ(x) =
{
multiplicity of x in a0s

n + · · · + an, if x ∈ C,

n − deg(a0s
n + · · · + an), if x = ∞,

we obtain a generalized model in the sense of Definition 2′. Further, setting f = a0s
n + · · · + an and

g = a0 + · · · + ant
n, we obtain a pair as in Definition 3′. Both of the constructions can be inverted.

It should be noted that the infinite frequency is treated with the same emphasis as finite ones; in

other words, no constraint is imposed on the behavior at infinity. (This is best seen via Definition 2′.)
Note also that, as in the regular case, two generalized AR-models are isomorphic if they differ by a

(nonzero) constant multiple.

Definition 3′ is especially interesting for us, as it can be easily generalized to the case of arbitrary

signal number. The generalization is as follows: A generalized AR-model with signal number q is a pair

(A, B) consisting of full rank matrices A ∈ C[s]•×q and B ∈ C[t]•×q having the same rank and such

that

A = diag(sn1 , . . . , snp)B,

where p is the common rank and n1, . . . , np are nonnegative integers. Because B is right invertible as

a rational matrix, these integers are uniquely determined. Using Willems’ terminology (see [21]), we

call them the lag indices. The number p is called the output number; the McMillan degree is defined

as the sum of the lag indices.
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The definition that we have recalled at the beginning is equivalent to the definition above and has

the advantage to be more flexible. The equivalence follows immediately from the Wiener–Hopf fac-

torization theorem (see Proposition 2). Generalized AR-models in the sense of the previous paragraph

are somewhat special and are analogous to row proper AR-models in the regular theory. We call them

reduced. (It is interesting to note that saying that (A, B) is a nonsingular reduced generalized AR-model

with lag indices n1, . . . , np is the same as saying that A is a row proper polynomial matrix with row

degrees n1, . . . , np.)
The question that arises naturally is: Why generalized AR-models should be studied?

Consider first the following simple example.

Example 1. Let εw(n) + w = 0 be an AR-model depending on the parameter ε. Themodel hasMcMil-

lan degree n. However, when ε → 0, it converges tow = 0, which has the degree 0. We conclude that

w = 0 can not be the right limit, since this would be in apparent contradiction with the fundamental

idea of continuity. To find the right limit, write the given model as the polynomial εsn + 1, which,

in turn, can be rewritten in the form (εsn + 1, ε + tn). Letting now ε → 0, we see that our model

converges to (1, tn),which is the right limit. Thebehaviorof this limitmodel is spannedbyδ, . . . , δ(n−1),

where δ is the delta-function (see Example 2).

The example indicates the presence of “holes" in the class of Willems’ AR-models. (These “holes"

were discovered by Hazewinkel [5].) The point of generalized AR-models is that they form a “compact-

ification" of Willems’ AR-models. This means that the class of generalized models is a minimal class

that contains all standard models and is closed with respect to taking limits. The “compactification"

theorem is a consequence of Grothendieck’s deep result about quotient schemes (see [7]). The fact can

be easily explained in the case of signal number 1. In this special case the set of isomorphic classes

of classical AR-models of degree n clearly is An (affine space of dimension n) whereas the set of

isomorphic classes of generalized AR-models of degree n (according to Definition 1′) is Pn (projective

space of dimension n).

The generalizedAR-models inmore complicated termswere introduced in [8]. In another form they

were proposed and studied by other authors as well (see “eligible pairs" in Geerts and Schumacher

[3,4] and “homogeneous behaviors" in Ravi et al. [15]).

The paper is organized as follows.

In Section 1 we introduce generalized functions. (To describe the behaviors of generalized AR-

models, we certainly need generalized functions.) Then we give a purely algebraic definition of a

vector bundle. Vector bundles are going to play the role of f.g. torsion free polynomial modules. (“f.g."

stands for “finitely generated".)

In Section 2we relax the requirement that a generalized AR-model be of full row rank. (As is known,

in the regular theory AR-models are not required to be full rank polynomialmatrices necessarily.) Then

we define various important invariants (the output number, the initial condition space, the transfer

function, the associated vector bundle). Finally, we define the behavior.

In Section 3we show that there is a good notion ofMcMillan degree for every linear subspace of the

“universum". Then we extend the main result of [9]; we prove that the behaviors of generalized AR-

models are characterized by the property of having finiteMcMillan degree and two evident invariance

properties. The paradox is that derivation of this characterization in the general case is easier than in

the regular case.

Throughout, F will be an arbitrary field and s an indeterminate. We let O be the ring of proper

rational functions and t the “distinguished" element s−1. We assume that given is a pair (U , �),
where U is a torsion-free module over O and � a non-zero element of U satisfying the following

axiom

U = tU ⊕ F�.

This abstract setting allows us to treat simultaneously both the continuous-time and the discrete-time

cases:
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• F is R or C; U is C∞(T, F), where T ⊆ R is a time interval with initial time; � is the function

which is identically 1 in T. Let
∫
be the integral operator mapping a function to its “normalized"

primitive, i.e., the primitive that is zero at the initial time. There is exactly one (continuous)

action of O on U for which tw = ∫
w (see [9]). This action makes U a torsion-free module over

O. The axiom holds by the Newton–Leibniz formula.

• F is arbitrary; U is C(Z+, F); � is the function defined by

�(x) =
{
1 if x = 1,

0 if x /= 1.

Identifying U with F[[t]], one makes U a torsion-free O-module in an obvious way. The axiom

holds certainly. Indeed, if g = b0 + b1t + · · ·, then g = tg1 + b0� with g1 = b1 + b2t + · · ·
Since we are primarily interested in the continuous-time case, in what follows we shall interpret

elements of U as smooth functions.

We shall oftenmake of use the functorQ . For anymoduleM over an integral domain,Q(M) denotes
the quotient space of M.

2. Some preliminaries

We shall need generalized functions. Our choice is generalized functions, which were introduced

in Yosida [22] (and independently in [10]). These functions constitute a very small part of the field of

Mikusinski’s operators [11].

We define Mikusinski (or generalized) functions simply as elements of M = Q(U). Because a

nonzeroproper rational function is congruent to a power of tmodulo invertible ones, every generalized

function can be written as a ratio u/tm, where u ∈ U and m� 0. We identify U with its image in M
under the canonicalmapu 
→ u/1. This identification allowsus to represent everyMikusinski function

in the form smu.

The Mikusinski function δ = s� will be interpreted as the Dirac delta-function. The functions g�

with g ∈ Owill be called exponential functions; the functions f δ with f ∈ F[s] will be called (purely)

impulsive functions. The space of all impulsive functions will be denoted by �. Functions from F(s)�
will be referred to as exponential-impulsive functions.

To explain howMikusinski functionswork, consider the continuous-time case and take (a0, . . . , an)
to be a generalized AR-model in the sense of Definition 1′. If a0 /= 0, then its trajectories, as is well-

known, are defined to be the solutions of the differential equation

a0w
(n) + · · · + anw = 0.

This equation is equivalent to the integral equation

a0w + a1

∫
w + · · · + an

∫ n

w = a polynomial fuction of degree � n − 1.

(Here
∫ l

means the l-fold integral.) This, in turn, can be rewritten as

(a0 + a1t + · · · + ant
n)w = c0t

n−1
� + · · · + cn−1�. (1)

Notice that the lattermakes sense in the class ofMikusinski functions evenwhen the condition a0 /= 0

does not hold. Indeed, the polynomial a0 + a1t + · · · + ant
n is not zero. Hence we can divide both

sides by it. Doing this, we get

w = (a0 + a1t + · · · + ant
n)−1(c0t

n−1 + · · · + cn−1)�.

We see, in particular, that the solution space of (1) always has dimension n. It is reasonable therefore

to declare these solutions as the trajectories of the model.

Here is a concrete example.

Example 2. Suppose that a0 = 0, . . . , an−1 = 0, an = 1; in other words, suppose we are given the

model (1, tn), the limit model from Example 1. Then (1) becomes
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tnw = c0t
n−1

� + · · · + cn−1�.

Multiplying both sides by sn, we find

w = c0s� + · · · + cn−1s
n
�;

whence w = c0δ + · · · + cn−1δ
(n−1). (For i � 1, δ(i) = siδ, the ith “derivative" of δ.)

From the axiom imposed on (U , �), one can easily derive (see [9]) that

M = U ⊕ �.

We therefore have two canonical projection maps

�+ : M → U and �− : M → �.

There are two canonical operators

σ : U → U and τ : � → �;
they are defined respectively as the compositions

U s→ M �+→ U and �
t→ M �−→ �.

(Certainly, in the continuous time case σ is the differentiation operator; in the discrete time case this

is the (backward) shift operator.)

Suppose given are A ∈ F[s]r×l and B ∈ Or×l . They determine the operators

U l → Mr (u 
→ Au) and �l → Mr (v 
→ Bv).

Composing these respectively with the projections �+ and �−, we get the operators

�+ ◦ A : U l → U r and �− ◦ B : �l → �r .

We also have

A(σ ) : U l → U r and B(τ ) : �l → �r .

Not surprisingly,

A(σ ) = �+ ◦ A and B(τ ) = �− ◦ B.

It follows that

A(σ )u = 0 ⇔ Au ∈ �r and B(τ )v = 0 ⇔ Bv ∈ U r . (2)

for every u ∈ U l and v ∈ �l .

We turn now to some “algebraic geometry".

By a vector bundle we shall mean a triple (M, N,φ), where M and N are free modules of finite

rank over F[s] and O, respectively, and φ is an isomorphism of the F(s)-linear space Q(M) onto the

F(s)-linear space Q(N). A vector bundle should be thought of as a f.g. torsion free “module" over the

whole frequency domain.

The basic example of a vector bundle is O = (F[s], O, id). Given a nonsingular rational matrix D,

the triple O(D) = (F[s]r , Or , D), where r is the size of D, is a vector bundle.

If (M, N,φ) is a vector bundle, then every pair (M1, N1) consisting of submodules M1 ⊆ M and

N1 ⊆ N such that φ(Q(M1)) = Q(N1) will be called a subbundle.

One defines in an obvious way direct sums of vector bundles. Vector bundles of the form Oq (and

their subbundles) will play the same role as modules of the form F[s]q (and their submodules) play in

Willems’ theory [12, 20].

3. Generalized AR-models and their behaviors

A generalized AR-model is a pair (A, B), where A is a polynomial matrix and B a proper rational

matrix that have the same size and satisfy the following equivalent conditions:
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(a) A and B have the same kernel as rational matrices;

(b) ∃ a nonsingular rational matrix D such that A = DB.

One should think of A as a representation at the finite domain and of B as a representation at the

infinity. The equivalent conditions express compatibility of these representations. The “D" is no longer

uniquely determined. Every nonsingular rational matrixD for which A = DBwill be called a transition

matrix. The number of columns is called the signal number.

Example 4. Assume A is a polynomial matrix with row number p.

(a) Let n be any integer that is greater than or equal to the maximum of the degrees of the entries

of A. Then (A, tnA) is a generalized AR-model.

(b) Let n1, . . . , np be integers that are greater than or equal to the row degrees of A. Then

(A, diag(tn1 , . . . , tnp)A) is a generalized AR-model.

Let (A, B) be a generalized AR-model with signal number q. The dimensions of F(s)-linear subspaces
AF(s)q ⊆ F(s)p and BF(s)q ⊆ F(s)p are equal.We call this commondimension the rank (or, the output

number) and denote by rk(A, B). Further, if D is any transition matrix, then

Q(AtrF[s]p) = AtrF(s)p = BtrDtrF(s)p = BtrF(s)p = Q(BtrOp).

It follows that (AtrF[s]p, BtrOp) is a subbundle of Oq. We call this the associated vector bundle and

denote by Ass(A, B).

Given two AR-models (A1, B1) and (A2, B2) with equal signal numbers, we shall say that (A1, B1) is
more powerful than (A2, B2) (and write (A1, B1) � (A2, B2)) if there exist a polynomial matrix U and a

proper rational matrix V such that A2 = UA1 and B2 = VB1. Clearly we have

(A1, B1) � (A2, B2) ⇔ Ass(A2, B2) ⊆ Ass(A1, B1).

Two generalized AR-models are said to be equivalent if each of them is more powerful than the

other.

Certainly, the rank of a generalized AR-model is greater than or equal to the rank of the associated

vector bundle. In case of equality one says that an AR-model is minimal. Notice that a generalized

AR-model (A, B) is minimal if and only if both A and B have full row rank.

As already mentioned, a minimal generalized AR-model has one transition matrix only. Minimal

generalized AR-models are of special interest thanks to the following

Proposition 1. Every generalized AR-model is equivalent to a minimal one.

Proof. This is clear. �

We remark that if (A1, B1) and (A2, B2) are two AR-models and if (A1, B1) is minimal, then they

are equivalent if and only if A2 = UA1 for some left unimodular polynomial matrix U and B2 = VB1
for some left biproper rational matrix V . Obviously, two minimal AR-models (A1, B1) and (A2, B2) are
equivalent if and only if A2 = UA1 with unimodular polynomial matrix U and B2 = VB1 with biproper

rational matrix V .

By a reduced generalized AR-model we shall understand a minimal generalized AR-model whose

transitionmatrix is of the form diag(sn1 , . . . , snp), where n1, . . . , np are nonnegative integers. Reduced
generalized AR-models should be viewed as generalizations of row proper polynomial matrices.

Example 5. The following pairs([
s3 1

1 s

]
,

[
1 t3

t 1

])
and

([
s3 1

1 s

]
,

[
1 t3

t2 t

])
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are reduced generalized AR-models. Their transition matrices are([
s3 0

0 s

]
and

[
s3 0

0 s2

])

respectively. The first model is nonsingular, the second not. The first one can be identified with[
s3 1

1 s

]
,

which is row proper.

Proposition 2. Every generalized AR-model can be brought into reduced form.

Proof. Let (A, B) be a generalized AR-model. In view of the previous proposition, we may assume that

it is minimal. Let D be the transition matrix, and let

D = U diag(sn1 , . . . , snp)V

be a (left) Wiener–Hopf factorization of D. (Here U is a unimodular polynomial matrix and V is a

biproper rational matrix.) Then (U−1A, VB) is a reduced generalized AR-model, which is equivalent to

the given one. �

By a transfer functionwith signal number q, we shall mean anyF(s)-linear subspace ofF(s)q. Every
transfer function has a representation GF(s)m, where m is the dimension and G is a full column rank

rational matrix of size q × m. Given a transfer function T ⊆ F(s)q, we let TM denote the set of all

finite sums of the form 	fw, where f ∈ T and w ∈ M. Obviously, if T = GF(s)m, then TM = GMm.

Clearly, TM is a F(s)-linear subspace of Mq.

Assume we are given a generalized AR-model (A, B) of size p × q.

By definition, the F(s)-linear maps

F(s)q
A→ F(s)p and F(s)q

B→ F(s)p

have the same kernel. Let T denote this common kernel. This certainly is a transfer function, and call

it the transfer function of (A, B).
Let D be any transition matrix of our model. We define the initial condition space X by the formula

X = AF(s)q ∩ F[s]p ∩ tDOp.

Lemma 1. The space X is well-defined and finite-dimensional.

Proof. We have to prove that X does not depend on the choice of D. We have canonical isomorphisms

F(s)q/T � AF(s)q and F(s)q/T � BF(s)q.

It follows that there is a unique isomorphism φ : BF(s)q � AF(s)q making the diagram

F(s)q → BF(s)q

|| ↓ φ
F(s)q → AF(s)q

commutative. On the other hand, we have a commutative diagram

F(s)q → F(s)p

|| ↓ D

F(s)q → F(s)p
.

It follows that the restriction of D : F(s)p → F(s)p on BF(s)q coincides with φ. Therefore,

AF(s)q ∩ F[s]p ∩ tDOp = F[s]p ∩ D(BF(s)q ∩ tOp) = F[s]p ∩ φ(BF(s)q ∩ tOp).
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Further, choose k so large that the entries in tkD be proper. Then DOp ⊆ skOp, and therefore

X ⊆ F[s]p ∩ tDOp ⊆ F[s]p ∩ sk−1Op.

This implies that X has finite-dimension.

The proof is complete. �

We define the behavior of (A, B) to be the set

Bh(A, B) = Ker A(σ ) ⊕ Ker B(τ ).

Thus, by definition, the behavior consists of two parts; one part is regular and the other is impulsive.

Associated with the model there is an “operational" equation

Aw = xδ (x ∈ X). (3)

(The unknown w is a Mikusinski function.)

Example 6. Leta0, . . . , an beas inDefinition1
′.Wecan take the“D" tobe sn. Becausea0s

n + · · · + an /=
0, the initial condition space is equal to

F(s) ∩ F[s] ∩ tsnO = {c0sn−1 + · · · + cn−1| ci ∈ F}.
Therefore, the operational equation has the form

(a0s
n + · · · + an)w = (c0s

n−1 + · · · + cn−1)δ.

Multiplying this by tn, we get the equation

(a0 + · · · + ant
n)w = (c0 + · · · + cn−1t

n−1)�,

which is the same as (1).

We need the following

Lemma 2. If R is a rational matrix of size p × q, then

RMq ∩ �p = RF(s)q� ∩ �p.

Proof. Let r be the rank of R, and choose a full column rank rational matrix P of size p × r so that

PF(s)r = RF(s)q.
We claim that

PMr ∩ F(s)p� = PF(s)r�.

Indeed, supposew ∈ Mr is such that Pw ∈ F(s)p�. We need to show thatw ∈ F(s)r�. For this, choose
any left inverse matrix Q of P. We then have w = Q(Pw) ∈ F(s)r�, as desired.

The claim is proved, and we have

RMq ∩ �p = PMr ∩ �p = PMr ∩ F(s)p� ∩ �p = PF(s)r� ∩ �p = RF(s)q� ∩ �p.

The proof is complete. �

Proposition 3. The behavior of (A, B) can be defined by Eq. (3).

Proof. Let w = u + v with u ∈ Uq and v ∈ �q. We have to show that

A(σ )u = 0 and B(τ )v = 0 ⇔ Aw ∈ Xδ.

We clearly have

Aw ∈ Xδ ⇔ Aw ∈ AF(s)q� ∩ �p and Aw ∈ DUp
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Because Av ∈ AF(s)q� ∩ �p and because AF(s)q� ∩ �p = AMq ∩ �p (by the previous lemma),

Aw ∈ AF(s)q� ∩ �p ⇔ Au ∈ AF(s)q� ∩ �p ⇔ Au ∈ AMq ∩ �p ⇔ Au ∈ �p.

Next, because Au ∈ DUp,

Aw ∈ DUp ⇔ Av ∈ DUp ⇔ Bv ∈ Up.

Using (2), we complete the proof. �

Proposition 4. There is a canonical exact sequence

0 → TM → Bh(A, B) → X → 0.

Proof. Consider the homomorphismMq A→ Mp. By the previous proposition, this induces a surjective

linear map Bh(A, B) → Xδ.
We have an exact sequence

0 → T → F(s)q
A→ F(s)p.

Tensoring this by M, we get the exact sequence

0 → T ⊗ M → Mq A→ Mp.

The image of T ⊗ M → Mq coincides with TM. It follows that the kernel of Mq A→ Mp is equal to

TM. It remains to see that the above kernel is contained in Bh(A, B) and that Xδ � X .

The proof is complete. �

Closing the section, we remark that the transfer function of (A, B) can be defined in terms of its

behavior; namely, we have

T = {f ∈ F(s)q |∀w ∈ M, fw ∈ Bh(A, B)}.

4. Smooth/impulsive linear systems

A natural question to ask is:What is special about the behaviors of AR-models? For the regular case

this question was posed in [21], and the works [9,17] have been devoted to it. We aim to generalize

the main result in [9].

Fix a positive integer q. In the present section we define smooth/impulsive linear systems with

signal number q as F-linear subspaces of Mq satisfying certain axioms. We then show that these

are exactly those ones that are representable as the behaviors of generalized AR-models with signal

number q.

Let B be an F-linear subspace of Mq. The remark at the end of the previous section suggests to

define the transfer function of B to be

T = {f ∈ F(s)q |∀w ∈ M, fw ∈ B}.
By definition, TM ⊆ B. Intuitively, TM is the set of zero initial condition trajectories inB. TheF-linear
space B/TM should be viewed as the initial condition space of B. We define the McMillan degree (or

the relative dimension) of B as the dimension of the initial condition space.

By a smooth/impulsive (sm/imp) linear system, we shall understand an F-linear subspace B ⊆ Mq

satisfying the following axioms:

(LS1) B has finite McMillan degree;

(LS2) w ∈ B ⇒ �+(w) ∈ B and �−(w) ∈ B;
(LS3) u ∈ B ∩ Uq ⇒ σ(u) ∈ B ∩ Uq and v ∈ B ∩ �q ⇒ τ(v) ∈ B ∩ �q.

In other words, a sm/imp linear system is an F-linear subspace B ⊆ Mq having finite relative

dimension and such that
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B = B+ + B−,

where B+ and B− are σ - and τ -invariant subspaces in Uq and �q, respectively.

It immediately follows from the results of the previous section that the behavior of a generalized

AR-model is a sm/imp linear system.

Proposition 5. Let B be a sm/imp linear system with transfer function T . Then

B ⊆ TM + F(s)q�.

Proof. Take an arbitrary trajectory w ∈ B, and let w = u + v with u ∈ Uq and v ∈ �q. By the axioms

(LS2) and (LS3),

u, σu, σ 2u, . . . ∈ B and v, τv, τ 2v, . . . ∈ B.

By the axiom (LS1), there exist nonzero finite sequences of constants (a0, . . . , al) and (b0, . . . , bm) such
that

a0u + · · · + alσ
lu ∈ TM and b0v + · · · + bmτmv ∈ TM.

Putting a = a0 + · · · + als
l and b = b0 + · · · + bmt

m, we have

a0u + · · · + alσ
lu = au + f δ and b0v + · · · + bmτmv = bv + g�

for some f ∈ F[s]q and g ∈ F[t]q. It follows that

u = a−1(a0u + · · · + alσ
lu) − a−1f δ and v = b−1(b0v + · · · + bmτmv) − b−1g�.

We see that both u and v belong to TM + F(s)q�.
The proof is complete. �

Remark. The proposition says that there are sufficiently many exponential-impulsive trajectories in

B. More precisely, B always has an exponential-impulsive trajectory with any given initial condition.

There is an obvious F(s)-bilinear form

F(s)q × Mq → M
taking (f , w) to f trw. (“tr" stands for the transpose.) The decomposition

M = tU ⊕ F� ⊕ �

determines a canonical F-linear map M → F. Composing the above form with this map, we obtain a

canonical F-bilinear form

〈−,−〉 : F(s)q × Mq → F, (4)

which will be very helpful in the sequel. (It allows to reduce “analysis" to “algebra".)

We remark that if f ∈ F[s]q, g ∈ Oq, u ∈ Uq and v ∈ �q, then

〈f , v〉 = 0 and 〈tg, u〉 = 0; (5)

〈sf , u〉 = 〈f , σ(u)〉 and 〈t2g, v〉 = 〈tg, τ(v)〉. (6)

Lemma 3. The F-bilinear forms

F[s]q × (O�)q → F and tOq × �q → F,

induced by (4), are nondegenerate.

Proof. Left to the reader. �

For every transfer function T , we let T◦ denote the set
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{f ∈ F(s)q|f trg = 0 ∀g ∈ T},
(T◦ is the orthogonal of T with respect to the standard F(s)-bilinear form F(s)q × F(s)q → F(s).) This
again is a transfer function, of course.

Lemma 4. Let T be a transfer function. Then

(T�)⊥ = T◦ and (T◦)⊥ ∩ F(s)q� = T�.

Proof. Left to the reader. �

Lemma 5. Let T be a transfer function. Then

(TM)⊥ = T◦.

Proof. The inclusion “⊇" is obvious: If f ∈ T◦, then f trgw = 0 for all g ∈ T , w ∈ M.

The inclusion “⊆" follows from

(TM)⊥ ⊆ (T�)⊥ = T◦.
The proof is complete. �

By the previous lemma, we have B⊥ ⊆ (TM)⊥ = T◦.

Lemma 6. Let B be a sm/imp linear system, and let T be its transfer function. Then the bilinear form

T◦/B⊥ × B/TM → F,

induced by (4), is nondegenerate.

Proof. It is obvious that the form is nondegenerate from the left.

Take any w ∈ B such that 〈g, w〉 = 0 for every g ∈ T◦. Since modulo TM the space B is generated

by exponential-impulsive trajectories, we may assume that w is exponential-impulsive. By Lemma 4,

then w ∈ T�; hence, the class of w in B/TM is zero.

The proof is complete. �

Theorem 1 (Duality Theorem). Let B be a sm/imp linear system, and let T be its transfer function. There
is a unique subbundle (M, N) of Oq such that

B⊥ = M + tN.

Moreover, both Q(M) and Q(N) are equal to T◦.

Proof. Set

M = {f ∈ F[s]q | 〈f , u〉 = 0 ∀u ∈ B ∩ Uq} and N = {g ∈ Oq | 〈tg, v〉 = 0 ∀v ∈ B ∩ �q}.
It is easily seen that M is an F[s]-submodule of F[s]q and N is an O-submodule of Oq. (This follows

from the relationships (6) and the invariance properties of B ∩ Uq and B ∩ �q.)

Using (5) and the invariance of B with respect to �+ and �−, one can show easily that B⊥ =
M + tN.

Further, by Lemma 6, the space

T◦/(M + tN)

has finite dimension over F. Applying Lemma 3 in [9], we conclude that Q(M) = T◦ = Q(N). Hence,
the pair (M, N) is a subbundle of Oq.

The statement about uniqueness is trivial due to the fact that F[s]q ∩ tOq = {0}.
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The proof is complete. �

The subbundle, existenceofwhich is asserted in theprevious theorem,will be called theannihilator;

we shall denote it by Ann(B).

Proposition 6. If (A, B) is a generalized AR-model, then

Ann(Bh(A, B)) = Ass(A, B).

Proof. The proof is very similar to that of Proposition 3 in [10], and is left to the reader. �

The following result was obtained in [10]. In [3,13,14] the reader can found its different versions.

For the regular version, the reader is referred to [1,2,6,12,16,21].

Corollary 1 (Equivalence Theorem). Two generalized AR-models have the same behavior if and only if

they are equivalent.

Proof. The “if" part is easy. The “only if" part follows from the duality theorem and the previous

proposition (and the fact that two generalized AR-models are equivalent if and only if their associated

vector bundles coincide).

The proof is complete. �

We are ready now to prove our main result.

Theorem 2 (Representation Theorem). Every sm/imp linear system has an AR-representation.

Proof. Assume B is a linear system with transfer function T , and let (M, N) be its annihilator. Take a

full rank polynomial matrix A and a full rank proper rational matrix B such that

AtrF[s]p = M and BtrOp = N.

We claim that (A, B) is an AR-model. Indeed, we have

AtrF(s)p = Q(M) = T◦ and BtrF(s)p = Q(N) = T◦.
Next, note that if R is a rational matrix of size p × q, then

{f ∈ F(s)q | Rf = 0} = (RtrF(s)p)◦.
In view of this, we have

{f ∈ F(s)q | Af = 0} = (AtrF(s)p)◦ = T = (BtrF(s)p)◦ = {f ∈ F(s)q | Bf = 0},
which proves the claim.

We are going to show that B = Bh(A, B).
To show that B ⊆ Bh(A, B), it suffices to show that B ∩ F(s)q� ⊆ Bh(A, B). (This is because TM ⊆

Bh(A, B) and B ⊆ TM + F(s)q�.)
Take any exponential-impulsive trajectory w ∈ B, and write w = u + v with exponential u and

impulsive v. We have

∀f ∈ F[s]p, 〈Atrf , u〉 = 0 and ∀g ∈ Op, 〈tBtrg, v〉 = 0.

Because

〈Atrf , u〉 = 〈f , A(σ )u〉 and 〈tBtrg, v〉 = 〈tg, B(τ )v〉,
we have

∀f ∈ F[s]p, 〈f , A(σ )u〉 = 0 and ∀g ∈ Op, 〈tg, B(τ )v〉 = 0.
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In view of Lemma 3, this implies

A(σ )u = 0 and B(τ )v = 0.

We conclude that B ⊆ Bh(A, B).
To complete the proof consider the tower

TM ⊆ B ⊆ Bh(A, B).

By the previous proposition, Bh(A, B)⊥ = M + tN. Applying Lemma 6 both to B and Bh(A, B), we

get

dim(B/TM) = dim(T◦/(M + tN)) = dim(Bh(A, B)/TM).

It is immediate from this that B = Bh(A, B).
The proof is complete. �

Every subbundle (M, N) of Oq can be written in the form (M, N) = Ass(A, B), where (A, B) is a

generalized AR-model. The latter is uniquely determined up to equivalence. So,we can define Bh(M, N)
by the formula

Bh(M, N) = Bh(A, B).

From the proof of the theorem, we have the following

Corollary 2. If B is a linear system, then

Bh(Ann(B)) = B.
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