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Introduction

Let{
sx = Fx + Gu

y = Hx + Ju

be a classical Kalman system. (Here s is an indeterminate, andmultiplication by it means the differen-

tiation operator or the backward shift operator.) We then have canonical homomorphisms[
sI − Ft

−Gt

]
: R[s]n→ R[s]n ⊕ R[s]m and

[
Ht

Jt

]
: R[s]p→ R[s]n ⊕ R[s]m
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where n is the state dimension, m and p are the input and output numbers (and “t" stands for

“transpose"). Put

M = R[s]n ⊕ R[s]m[
sI − Ft

−Gt

]
R[s]n

,

and let ϕ and θ denote respectively the compositions

R[s]m
[
0

I

]

→ R[s]n ⊕ R[s]m→ M and R[s]p

⎡
⎣Ht

Jt

⎤
⎦
→ R[s]n ⊕ R[s]m→ M.

We thus arrive at the triple (M,ϕ, θ), whereM is a finitely generated R[s]-module, ϕ : R[s]m→ M is

an injective R[s]-homomorphism with torsion cokernel and θ : R[s]p→ M is an R[s]-
homomorphism such thatϕ−1θ is a proper rationalmatrix. (ϕ induces a bijective linearmapR(s)m→
M ⊗ R(s) and θ induces a linear map R(s)p→ M ⊗ R(s), and by ϕ−1θ we mean the composition

R(s)p→ M ⊗ R(s)→ R(s)m,

which can be viewed as a rational matrix.) We call such triples causal i/o Fliess models; they were

introduced by Fliess [6]. The main theorem in [6] claims: Any causal i/o Fliess model possesses a

Kalman realization; moreover, any two Kalman realizations are similar.

The purpose of this paper is to extend this result of Fliess to the ring case. This will be done using

a generalized version of Fuhrmann’s classical construction. (See Fuhrmann [8].)

Throughout, D is an arbitrary noetherian commutative ring, s an indeterminate, q a fixed positive

integer, and U is an arbitrary fixed module over D[s]. (The latter should be thought of as a function

space, which is needed to define trajectories.)

By a Fliess model with signal number q, we shall understand any pair (M,μ), whereM is a finitely

generated D[s]-module and μ : D[s]q→ M is a “generically" surjective homomorphism. This defini-

tion is slightly different from that given in Fliess andMounier [7], andwebelieve that it is a very natural

starting point for the theory of linear systems over a ring. Following Polderman andWillems [26] and

Willems [34,35], the input/output structure is not postulated in the definition. It should be emphasized

that postulating such a structure would be a strong restriction. The point is that a “componentwise

partition into inputs andoutputs" for Fliessmodels definedover a ringdoesnot always exist. In contrast

to the field case, existence of an input/output structure (not necessarily causal) is rather an exception

than a rule (see the discussion at the end of Section 2).

A Fliess model (M,μ) is said to be observable if μ is surjective. Observable Fliess models are of

particular interest as they include linear delay differential equations (LDDEs), which have attracted

much attention in recent years. We recall that in the case of LDDEs

D = R[δ] and U = C∞(R,R).

(Here δ = (δ1, . . . , δr) with indeterminates δ1, . . . , δr acting on U as delay operators; the indeter-

minate s acts as the differentiation operator.) An LDDE (with q unknowns) is an equation of the

form

Rw = 0 (w ∈ Uq),

where R ∈ R[δ, s]•×q. This can be regarded as an observable Fliess model. Indeed, if p is the row

number of R, then the module

M = R[δ, s]q/RtR[δ, s]p
together with the canonical epimorphism R[δ, s]q→ M is an observable Fliess model.

Remark. The idea of regarding an LDDE as a linear system over a ring is due to Kamen [16]. This point

of viewwas adopted then by many authors (see, e.g., Byrnes [3], Khargonekar [17], Morse [23], Sontag

[31]).
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LDDEs of the form

Py = Qu (u ∈ Um, y ∈ Up)

with P ∈ R[δ, s]p×p and Q ∈ R[δ, s]p×m such that det(P) is “monic" and P−1Q is “proper" were con-

sidered by Gluesing-Luerssen [12]. They correspond to (observable) causal i/o Fliess models. However,

as emphasized above, they constitute a small class of systems. The realization theory in this special

case is quite easy; Fuhrmann’s construction can be straightforwardly generalized to it. The reason

(why the theory is easy) is that state modules that appear in this case are projective. Far from it, in

general.

Perhaps the reader may find strange that no specific conditions are imposed on the module U .

Conditions should be imposed when one deals with the following question: What is a necessary and

sufficient condition for two Fliess models (or two state models) to have the same behavior? But this

important question will not be addressed here. For interesting results in this direction (for the case

of LDDEs) the reader is referred to Gluesing-Luerssen [11], Gluesing-Luerssen et al. [13] and Habets

[14].

State-space realization theory is among the first important topics studied in systems theory. Nu-

merous papers were written for the field case. Recently the concept of states has been studied in the

Willems behavioral setting (see Fuhrmann [9], Fuhrmann et al. [10], Rapisarda and Willems [28], and

also Lomadze [21].) The realization theory of transfer functions and input/output maps defined over

a ring has been developed in many papers (see, e.g., Eilenberg [5], Brewer et al. [4], Khargonekar [17],

Rouchaleau and Sontag [29], Rouchaleau et al. [30], Sontag [31]).

The content of the paper is as follows:

§1 Preliminaries

§2 Fliess models and AR-models

§3 Left and right state models

§4 From Fliess models to (right) state models

§5 From state models to Fliess models

§6 Equivalence theorem

§7 Behavioral equivalence

§8 State models of classical type

§9 State models corresponding to AR-models

§10 Two examples

Appendix A: “Coherent sheaves" over (D(s), D[s], O)
Appendix B: Fuhrmann’s realization over D

Appendix C: Connection with Fuhrmann’s realization

1. Preliminaries

Here we recall a few definitions and facts from algebra.

One knows well that the field F(s) of rational functions and the ring F(s)pr of proper rational

functions are indispensable in the theory of linear systems over a field F. We shall need things like

them.

A polynomial g ∈ D[s] is called monic if its leading coefficient is an invertible element of D. The

set of monic polynomials is a multiplicative subset in D[s], and the corresponding localization will

be denoted by D(s). Elements of D(s) will be called rational functions. Thus, by definition, a rational

function is a ratio f /g, where f is an arbitrary polynomial and g is amonic polynomial. Certainly,monic

polynomials are not zero-divisors. Therefore, the canonical homomorphism

D[s] → D(s), f �→ f /1

is an embedding. We shall identify D[s]with its image under this embedding.

A rational function f /g is called proper (resp., strictly proper) if deg(f ) � deg(g) (resp., deg(f ) <
deg(g)). The ring D(s)pr of proper rational functions will be denoted by O. Strictly proper rational

functions form an ideal of O. This ideal is principal and is generated by s−1. Notice that O/s−1O = D.
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By the Euclidean division, any rational function can bewritten in a uniqueway as a sumof a polynomial

and a strictly proper rational function. In other words, we have:

D(s) = D[s] ⊕ s−1O.

We remark that all the elements in 1+ s−1O are invertible in O, and consequently the ideal s−1O is

contained in the Jacobson radical of O (see Matsumura [22]).

Remark. The rings D(s) and D(s)pr are taken from the celebrated paper Quillen [27], where they have

played a very important role. (See also Lam [19, Ch. IV, Sect. 1].) In many papers on linear systems over

D similar rings, namely, the rings D((s−1)) (the ring of formal Laurent series in s−1) and D[[s−1]] (the
ring of formal series in s−1) are employed.

A homomorphism M1→ M2 of modules over D[s] will be said to be generically surjective (resp.,

bijective) if

M1 ⊗D[s] D(s)→ M2 ⊗D[s] D(s)

is surjective (resp., bijective).

There are two important functors

HomD(−, U) and −⊗DU.

We shall consider them on the category of finitely generated D-modules. (It will turn out that the first

one is more relevant.)

One has

HomD(D
n, U) = Un and Dn ⊗D U 	 Un.

Remark. In the classical linear systems theory the ground ring is a field F, and one deals (without loss

of generality) with finite-dimensional linear spaces of the form Fn. For this reason, the functors above

do not occur explicitly.

The following fact is well-known. (For convenience of the reader, we shall provide its proof.)

Lemma 1. Let X be a finitely generated projective D-module. Then, there is a canonical isomorphism

X ⊗D U 	 HomD(X
∗, U).

Proof. The isomorphism is established by taking x⊗ w toφ : X∗ → U defined by the formulaφ(y) =
y(x)w (y ∈ X∗). To see that this indeed is an isomorphism, consider an isomorphism X ⊕ X1 	 Dn,

where X1 is a module and n is an integer. (Such an isomorphism exists because X is projective.) We

have:

(X ⊕ X1)⊗D U = X ⊗D U ⊕ X1 ⊗D U and HomD((X ⊕ X1)
∗, U) = HomD(X

∗, U)

⊕HomD(X
∗
1 , U).

In view of HomD(D
n, U) = Un = Dn ⊗D U , these relations give an isomorphism

X ⊗D U ⊕ X1 ⊗D U 	 HomD(X
∗, U)⊕ HomD(X

∗
1 , U).

This implies what we want. �

Given a D-homomorphism A : X → Y , we let A∨ denote the homomorphism

HomD(A, U) : HomD(Y, U)→ HomD(X, U);
for simplicity, we shall write A for the canonical homomorphism

A⊗D U : X ⊗D U → Y ⊗D U.

If X is a D-module, then one denotes by X[s] the module X ⊗D D[s]. This is a module over D[s].
Every element of X[s] is uniquely represented as x0 ⊗ 1+ · · · + xl ⊗ sl . (Modules of the type X[s] are
called extended modules in Quillen [27].)
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For every D-module X , one may identify HomD[s](X[s], U) with HomD(X, U). (If u : X → U is a

D-homomorphism, then the map ũ defined by the formula

ũ(x0 ⊗ 1+ · · · + xl ⊗ sl) = u(x0)+ su(x1)+ · · · + slu(xl)

is a D[s]-homomorphism from X[s] into U . It is easily seen that u �→ ũ establishes an isomorphism.)

Likewise, one may identify X[s] ⊗D[s] U with X ⊗D U .

2. Fliess models and AR-models

A Fliessmodel (with signal number q) is a pair (M,μ) consisting of a finitely generatedD[s]-module

M and a generically surjective homomorphism μ : D[s]q→ M.

A morphism from one Fliess model (M1,μ1) to another Fliess model (M2,μ2) is a homomorphism

φ : M1→ M2 such that

μ2 = φ ◦ μ1.

Clearly, Fliess models form a category.

Let (M,μ)beaFliessmodel. Thehomomorphismμgives rise in anobviousway toahomomorphism

HomD[s](M, U)→ HomD[s](D[s]q, U). Certainly HomD[s](D[s]q, U) = Uq, and thus we have a canonical

homomorphism

HomD[s](M, U)→ Uq.

The module Bf = HomD[s](M, U) is called the full (or internal) behavior of the model and the homo-

morphism itself the manifestation map. The image of this map is called the external (or manifest)

behavior.

Remark. The functorHomD[s](−, U) has been introduced byMalgrange. First, its importance for linear

systems theory was recognized by Oberst [25].

In order to explain how the notions above are related with the classical ones, let us consider the

situation at the beginning of Introduction. We have a commutative diagram

R[s]n

⎡
⎣sI − Ft

−Gt

⎤
⎦

→ R[s]n ⊕ R[s]m → M → 0

[
0 Ht

I Jt

]
↑ ↑

R[s]m ⊕ R[s]p = R[s]m ⊕ R[s]p
with exact top row. Applying to this diagram the functorHomR[s](−, C∞(I)), where I is a time interval,

we get the commutative diagram

0 → HomR[s](M, C∞(I)) → C∞(I)n ⊕ C∞(I)m

[
sI − F −G]→ C∞(I)n

↓ ↓
[
0 I

H J

]

C∞(I)n ⊕ C∞(I)p = C∞(I)n ⊕ C∞(I)p

,

in which the top row is exact. It follows that the internal behavior HomR[s](M, C∞(I)) is canonically

isomorphic to the solution set of the differential equation

sx = Fx + Gu
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and the manifestation map is given by(
x

u

)
�→

(
u

Hx + Ju

)
.

We say that a Fliess model (M,μ) is controllable if M is projective (see Fliess and Mounier [7]).

Remark. In fact, there are several different kinds of controllability, and the controllability above is

strong controllability. There is a vast literature on this fundamental concept for LDDEs (see, e.g.,

Fliess and Mounier [7], Gluesing-Luerssen [11], Gluesing-Luerssen et al. [13], Mounier [24], Rocha

and Willems [28], Vettori and Zampieri [32,33]).

Themodel is observable ifμ is surjective. If this is the case, then themanifestationmap is injective,

and therefore the internal behavior can be identified with the external one.

An AR-model (with signal number q) is just a polynomial matrix R ∈ D[s]•×q. Two AR-models R1
and R2 are said to be equivalent if R2 = FR1 and R1 = GR2 for some polynomial matrices F and G. The

behavior of an AR-model R is defined to be the solution set of the equation

Rw = 0, w ∈ Uq.

(Needless to say that an LDDE is a special case of AR-model.)

One associates a Fliess model to an AR-model in a very natural way. Indeed, if R is an AR-model,

then the pair consisting of the cokernel Coker(Rt) and the canonical epimorphism of D[s]q onto this

cokernel is a Fliess model. A Fliess model obtained this way is observable, of course. Conversely, if

(M,μ) is observable, one can always find a polynomial matrix R ∈ D[s]•×q such that the sequence

D[s]p Rt→D[s]q μ→M→ 0,

where p is the row number of R, is exact.

AR-models and observable Fliess models are equivalent objects. More precisely, there is a one-to-

one correspondencebetweenequivalence classes ofAR-models and isomorphismclasses of observable

Fliess models.

Applying the functor HomD[s](−, U) to the sequence above, we get an exact sequence

0→ HomD[s](M, U)→ Uq R→ Up.

This tells us that the behavior of an AR-model and the (external) behavior of the corresponding Fliess

model coincide.

Let (M,μ) be a Fliess model. We say that (M,μ) admits an input/output structure if there are

an integer m, a permutation matrix �, a generically bijective homomorphism ϕ : D[s]m→ M and a

homomorphism θ : D[s]q−m→ M such that

(M,μ ◦�) = (M, [ϕ θ ]).
We see that for (M,μ) to admit an input/otput structure it is necessary that M ⊗ D(s) be a free

D(s)-module. (If D is a field, then so is D(s), and the condition is fulfilled automatically. But this is

not the case when D is not a field.) At this point, we should perhaps mention a relation with Quillen’s

theorem (see Theorem3 in Quillen [27]) stating that ifM is a finitely generated projectivemodule such

that M ⊗ D(s) is free over D(s), then M is free. (We remind that the famous Quillen–Suslin theorem

is an easy consequence of this theorem.) It follows that if (M,μ) is controllable, then it admits an

input/output structure if and only if it has a representation of the form (D[s]m, [R1 R2]), where R1 is

a nonsingular m× m matrix and R2 is an arbitrary m× (q− m) matrix. (A square matrix is called

nonsingular if its determinant is an invertible element ofD(s).) This fact was observed by Khargonekar

[17] in a somewhat different context.

3. Left and right state models

From the point of view that does not make distinction between inputs and outputs, there are two

kinds of state models (see, e.g., Fuhrmann et al. [10], Kuijper [18], Lomadze [20,21], Polderman and

Willems [26], Rapisarda and Willems [28], Willems [34,35]).
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A left state model is a quintuple (X, Y, A, B, C), where X , Y are finitely generated D-modules and

A, B : Y → X , C : Y → Dq are linear maps such that B is surjective and

[
B

C

]
is injective. The module X

is called the state module and Y the (left) internal variable module.

A right state model is a quintuple (X, Z, E, F, G), where X , Z are finitely generated D-modules and

E, F : X → Z , G : Dq→ Z are linearmaps such that E is injective and
[
E G

]
is surjective. Themodule

X is called the state module and Z the (right) internal variable module.

Remark. In Kuijper [18] right and left state models are referred to as P and DP representations,

respectively.

Example 1. Let (X, F, G, H, J) be a Kalman model over D with m inputs and p outputs, in other words,

a quintuple, where X is a finitely generated projective D-module and

F : X → X, G : Dm→ X, H : X → Dp, J : Dm→ Dp

are D-linear maps.

Associated with this system there is the following left state model(
X∗, X∗ ⊕ Dp,

[
I 0

]
,
[
Ft Ht

]
,

[−Gt −Jt
0 I

])

and the following right state model(
X∗, X∗ ⊕ Dm,

[
I

0

]
,

[
Ft

Gt

]
,

[
0 Ht

I Jt

])
.

Remark. Example 6 (in Section 7) explains why we use above the dualizing functor ∗.
Here are concrete examples of state models.

Example 2. Let D = R[δ].
(a) The quintuple (X, Y, A, B, C) with X = D3, Y = D4 and

A =
⎡
⎣1 0 0 0

0 1 0 0

0 0 1 0

⎤
⎦ , B =

⎡
⎣0 1 0 0

0 0 1 0

0 0 0 1

⎤
⎦ and C = [−δ 0 0 0

]

is a left state model.

(b) Let X = D3, and let Z be the module generated by the symbols a1, a2, a3 and a subject to the

following relation

δa = a1.

Define E, F, G by the following formulas

E(e1) = a1, E(e2) = a2, E(e3) = a3; F(e1) = a2, F(e2) = a3, F(e3) = 0; G(1) = a.

(Here e1, e2, e3 is the standard basis ofD3.) One can easily check that (X, Z, E, F, G) is a right statemodel.

Example 3. (a) Let D = R[δ1, δ2]. The quintuple (X, Y, A, B, C) with X = D, Y = D3 and

A = [
0 δ2 −δ1

]
, B = [−1 0 0

]
and C =

⎡
⎣δ1 0 0

0 δ1 0

0 0 δ1

⎤
⎦

is a left state model.

(b) Let X = D, and let Z be the module generated by the symbols a, b, c0 and c1 subject to the

following relations

δ1a = c1 and δ1b+ δ2c0 = 0.
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Define E, F, G by the following formulas

E(1) = c0; F(1) = c1; G(e1) = a, G(e2) = b, G(e3) = c0.

(Here again e1, e2, e3 is the standard basis of D3.) One can easily check that (X, Z, E, F, G) is a right state
model.

Assume that (X, Y, A, B, C) and (X, Z, E, F, G) are left and right state models, respectively. We shall

say that they form an exact couple if the sequence

0→ Y

⎡
⎢⎢⎣
A

B

C

⎤
⎥⎥⎦
→ X ⊕ X ⊕ Dq

[
E −F G

]
→ Z → 0 (1)

is exact. We then have, in particular, that EA+ GC = FB.

Example 4. The two state models associated with the classical linear system in Example 1 form an

exact couple.

Example 5. The two state models in Example 2 as well as in Example 3 form an exact couple.

Lemma 2. Let X, Y and Z be finitely generated A-modules and A, B : Y → X, C : Y → Dq, E, F : X →
Z, G : Dq→ Z linear maps such that the sequence (1) is exact. If one of the quintuples (X, Y, A, B, C)
and (X, Z, E, F, G) is a state model, then so is the other.

Proof. We have a commutative diagram

0→ Y → X ⊕ X ⊕ Dq → Z →0

B ↓ ↓ ↓
0→ X = X → 0

.

Applying the snake lemma (see Proposition 2.10 in Atiyah andMacdonald [1]), we obtain the following

exact sequence

X ⊕ Dq

[
E G

]
→ Z → Coker(B)→ 0;

whence

“B is surjective"⇔ “
[
E G

]
is surjective".

Likewise, from the commutative diagram

0 → X = X →0

↓ ↓ ↓ E

0→ Y → X ⊕ X ⊕ Dq → Z →0
,

we get the exact sequence

0→ Ker(E)→ Y

[
B

C

]

→ X ⊕ Dq.

It follows from this that

“

[
B

C

]
is injective" ⇔ “E is injective".

The proof is complete. �

Amorphismfromone left statemodel (X1, Y1, A1, B1, C1) toanother left statemodel (X2, Y2, A2, B2, C2)
is a pair consisting of D-linear maps α : X1→ X2 and β : Y1→ Y2 such that
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αA1 = A2β , αB1 = B2β and C1 = C2β.

Similarly, amorphismfromaright statemodel (X1, Z1, E1, F1, G1) toa right statemodel (X2, Z2, E2, F2, G2)
is a pair consisting of D-linear maps α : X1→ X2 and β : Z1→ Z2 such that

βE1 = E2α, βF1 = F2α and G2 = βG1.

Using the previous lemma, we can define in an obvious way functors from state models of one kind

to state models of the other kind. It is clear that these functors are inverse to each other, and thus we

have

Proposition 1. The two categories of state models are canonically equivalent.

4. From Fliess models to (right) state models

Suppose that we are given a Fliess model 	 = (M,μ). Let V be the module of fractions of M

defined by monic polynomials, and let i : M→ V be the canonical map given by i(x) = x/1. We have

a canonical D(s)-linear map D(s)q→ V , which is onto by definition; let N denote the image of Oq

under this map.

Define

X = {x ∈ M| i(x) ∈ s−1N} and Z = {z ∈ M| i(z) ∈ N}.
Next, define two canonical linear maps E, F : X → Z by the following formulas

E(x) = x and F(x) = sx.

For each a ∈ Dq, clearlyμ(a) belongs to Z . Hence, we also have a canonical linear map Dq→ Z , which

will be denoted by G.

We thus have a quintuple (X, Z, E, F, G).

Remark. The reader can notice that the construction above naturally generalizes the construction

given in the classical paper Fuhrmann [8] (see also Fuhrmann [9], Fuhrmann et al. [10].)

Theorem 1. (X, Z, E, F, G) is a right state model.

Proof. First of all, we need to show that X and Z are finitely generated D-modules. This is easy to do

once we have at our disposal Finiteness Theorem (see Appendix A). (A direct proof seems to be hard.)

Indeed, let F denote the quintuple (V, M, N, i, j), where j is the canonical inclusion map N→ V . This

is a sheaf. Moreover, this certainly is a coherent sheaf. It is clear that

X 	 H0F(−1) and Z 	 H0F.

By Finiteness Theorem, we get that X and Z are finitely generated modules.

Further, it is clear that E is injective. To see that the linear map
[
E G

] : X ⊕ Dq→ Z is surjective,

take any element z in Z . Then i(z) ∈ N. We can find a ∈ Dq and g ∈ Oq such that μ(a+ s−1g) = i(z).
Obviously x = z − μ(a) belongs to X , and we have z = E(x)+ G(a).

The proof is complete. �

The right statemodel that we have constructedwill be denoted by Sigma(	). Clearly, the construc-
tion is functorial. In other words, given amorphism	1→ 	2, there is a morphism between the state

representations

Sigma(	1)→ Sigma(	2).

Once the right state representation of a Fliess model is defined, the left state representation can be

defined using Lemma 2.
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Now, we want to show that a Fliess model can be reconstructed from its right state representation.

Let (M,μ) be a Fliess model, and let (X, Z, E, F, G) be its right state representation.

The canonical linear maps E, F determine the D[s]-homomorphism

sE − F : X[s] → Z[s],
and the canonical map Z → M gives rise in an obvious way to a D[s]-homomorphism

Z[s] → M.

For every x ∈ X , the element sE(x)− F(x) goes to sx − sx = 0 under the latter homomorphism. It

follows that the sequence

X[s] → Z[s] → M

is a complex.

The following proposition implies what we want.

Proposition 2. (a) The complex

0→ X[s] → Z[s] → M→ 0

is exact.
(b) The diagram

D[s]q = D[s]q
↓ ↓

Z[s] → M

is commutative.

Proof. (a) Exactness at X[s]:
This is obvious, because E : X → Z is injective.

Exactness at Z[s]:
Assume that an element z0 ⊗ 1+ z1 ⊗ s+ · · · + zl ⊗ sl ∈ Z[s] goes to zero. Then

z0 + sz1 + · · · + slzl = 0.

Set

x0 = −s−1z0, x1 = −(s−2z0 + s−1z1), . . . , xl−1 = −(s−lz0 + · · · + s−1zl−1).
Using the relation above, one can easily see that all these elements are states. One can check easily

that

−Fx0 = z0, Ex0 − Fx1 = z1, . . . , Exl−2 − Fxl−1 = zl−1, Exl−1 = zl.

It follows that

(sE − F)(x0 ⊗ 1+ x1 ⊗ s+ · · · + xl−1 ⊗ sl−1) = z0 ⊗ 1+ z1 ⊗ s+ · · · + zl ⊗ sl.

Exactness at M:

Take any m ∈ M. Because μ : D(s)q→ V is surjective (and because D(s) = sD[s] + O),

i(m) = n+ i(μ(a1s+ · · · + als
l))

for some n ∈ N and a1, . . . , al ∈ Dq. From this it follows that z = m− μ(a1s+ · · · alsl) ∈ Z . We can

see that

z ⊗ 1+ μ(a1)⊗ s+ · · · + μ(al)⊗ sl

goes tom.

(b) Obvious.

The proposition is proved. �



V. Lomadze, M.K. Zafar / Linear Algebra and its Applications 434 (2011) 1027–1057 1037

5. From state models to Fliess models

We begin with the following two lemmas.

Lemma 3. Let (X, Y, A, B, C) be a left state model. Then, the homomorphism[
sB− A

C

]
: Y[s] → X[s] ⊕ D[s]q (2)

is injective.

Proof. Let y0, . . . , yl ∈ Y . We have[
sB− A

C

]
(y0 ⊗ 1+ y1 ⊗ s+ · · · + yl ⊗ sl)

=
[−Ay0

Cy0

]
⊗ 1+

[
By0 − Ay1

Cy1

]
⊗ s+

[
Byl−1 − Ayl

Cyl

]
⊗ sl +

[
Byl
0

]
⊗ sl+1.

Assuming that the right hand side is zero, we obtain that

Byl = 0 and Cyl = 0, Byl−1 − Ayl = 0 and Cyl−1 = 0, . . . , By0 − Ay1 = 0 and Cy0 = 0.

Because

[
B

C

]
is injective, it follows that all yl, . . . , y1, y0 are zero.

The proof is complete. �

Lemma 4. Let (X, Z, E, F, G) be a right state model. Then, the homomorphism

sE − F : X[s] → Z[s] (3)

is injective.

Proof. Let x0, . . . , xl ∈ X . We have

(sE − F)(x0 ⊗ 1+ x1 ⊗ s+ · · · + xl ⊗ sl)

= −F(x0)⊗ 1+ (Ex0 − Fx1)⊗ s+ · · · + (Exl−1 − Fxl)⊗ sl + Exl ⊗ sl+1.

Assuming that the right hand side is zero, we obtain that

Exl = 0, Exl−1 = Fxl, . . . , Ex0 = Fx1.

Because E is injective, it follows that all xl, . . . , x1, x0 are zero.

The proof is complete. �

Theorem 2. Let (X, Y, A, B, C) be a left state model. Define L to be the cokernel of (2), and define λ to be

the composition

D[s]q→ X[s] ⊕ D[s]q→ L.

Then, (L, λ) is a Fliess model.

Proof. Consider the homomorphism of O-modules

B− s−1A : Y ⊗ O→ X ⊗ O.

We claim that this is surjective. Indeed,

(B− s−1A)⊗ O/s−1O : (Y ⊗ O)⊗ O/s−1O→ (X ⊗ O)⊗ O/s−1O
is the same as B : Y → X , and hence is surjective. By Nakayama’s lemma (see Matsumura [22]), our

homomorphism must be surjective. It follows that B− s−1A : Y(s)→ X(s) is surjective. Multiplying

this by s, we get that
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sB− A : Y(s)→ X(s)

is surjective.

Now, consider the commutative diagram

0→ 0 → D(s)q = D(s)q →0

↓ ↓ ↓
0→ Y(s) → X(s)⊕ D(s)q → L ⊗ D(s) →0

.

Applying the snake lemma, we obtain the following exact sequence

Y(s)→ X(s)→ Coker(λ⊗ D(s))→ 0,

from which we get that

Coker(λ⊗ D(s)) = 0.

Thus,

λ⊗ D(s) : D(s)q→ L ⊗ D(s)

is an epimorphism.

The proof is complete. �

Theorem 3. Assume (X, Z, E, F, G) is a right state model. Define M to be the cokernel of (3), and define μ
to be the composition

D[s]q→ Z[s] → M.

Then, (M,μ) is a Fliess model.

Proof. Consider the homomorphism[
E − s−1F G

]
: X ⊗ O⊕ Oq→ Z ⊗ O.

We claim that this is surjective. Indeed,[
E − s−1F G

]
⊗ O/s−1O : (X ⊗ O⊕ Oq)⊗ O/s−1O→ (Z ⊗ O)⊗ O/s−1O

is the same as
[
E G

] : X ⊕ Dq→ Z , and hence is surjective. Applying Nakayama’s lemma, we see

that our homomorphismmust be surjective. It follows that
[
E − s−1F G

]
: X(s)⊕ D(s)q→ Z(s) is

surjective. Hence,[
sE − F G

] : X(s)⊕ D(s)q→ Z(s)

is surjective. This, in turn, implies that

X(s)→ Coker(D(s)q→ Z(s))

is surjective. Now, consider the commutative diagram

0→ 0 → D(s)q = D(s)q →0

↓ ↓ ↓
0→ X(s) → Z(s) → M ⊗ D(s) →0

.

Applying the snake lemma, we obtain the following exact sequence

X(s)→ Coker(D(s)q→ Z(s))→ Coker(μ⊗ D(s))→ 0,

from which we get that

Coker(μ⊗ D(s)) = 0.
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Thus,

μ⊗ D(s) : D(s)q→ M ⊗ D(s)

is an epimorphism.

The proof is complete. �

6. Equivalence theorem

Our aim in this section is to show that Fliess models and state (right or left) models are equivalent

objects.

Proposition 3. Let (X, Y, A, B, C) and (X, Z, E, F, G) be left and right statemodels, respectively, and suppose

that they form an exact couple. Then, their Fliess models are canonically isomorphic.

Proof. Let (L, λ) and (M,μ) denote the corresponding Fliess models.

Consider the diagram

Y[s]

[
sB− A

C

]

→ X[s] ⊕ D[s]q
↓ ↓

X[s] sE−F→ Z[s]
with the vertical arrows given by B and

[
E −G]. The diagram commutes:

[
E −G] [sB− A

C

]
= sEB− EA− GC = sEB− FB = (sE − F)B.

So, there is a homomorphism L→ M making the diagram

0→ Y[s]

[
sB− A

C

]

→ X[s] ⊕ D[s]q → L →0

↓ ↓ ↓
0→ X[s] sE−F→ Z[s] → M →0

commutative. Because the left and themiddle vertical arrows here are surjective, by the snake lemma,

the homomorphism L→ M also is surjective. Further, by the same lemma, we have an exact sequence

0→ Ker(Y[s] → X[s])→ Ker(X[s] ⊕ D[s]q→ Z[s])→ Ker(L→ M)→ 0.

Therefore, to prove injectivity of L→ M it suffices to prove surjectivity of

Ker(Y[s] → X[s])→ Ker(X[s] ⊕ D[s]q→ Z[s]).
Let

x = x0 ⊗ 1+ x1 ⊗ s+ x2 ⊗ s2 + · · · + xl ⊗ sl ∈ X[s] and
w = w0 + w1s+ w2s

2 + · · · + wks
l ∈ D[s]q

be such that

Ex − Gw = 0.

Using (1), we can find y0, . . . , yl ∈ Y such that

(∀ 0� i � l) Ayi = −xi, Byi = 0, Cyi = wi.

Putting

y = y0 ⊗ 1+ y1 ⊗ s+ y2 ⊗ s2 + · · · + yk ⊗ sl,
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we have

By = 0 and

[
sB− A

C

]
y =

[
x

w

]
.

This proves the surjectivity, and thus the homomorphism L→ M is bijective.

Finally, we see from the diagram above that the square

D[s]q → L

↓ ↓
Z[s] → M

commutes, and this implies that the isomorphism L→ M determines an isomorphism

(L, λ) 	 (M,μ).

The proof is complete. �

In Section 3 we saw that, for every Fliess model 	, there is a canonical isomorphism

Phi(Sigma(	)) 	 	.

We leave to the reader to show that, for every right state model �, there is a canonical isomorphism

Sigma(Phi(�)) 	 �.

It follows that the category of Fliess models is canonically equivalent to that of right state models. The

latter, as we already know, is canonically equivalent to the category of left state models.

Thus, we have

Theorem 4. The are canonical categorical equivalences:
{Fliess models} ∼ {Left state models} ∼ {Right state models}.

7. Behavioral equivalence

We have seen that Fliess models and state models are equivalent from the purely mathematical

point of view. The aim of this section is to show that they are equivalent from the behavioral point of

view as well.

Let� = (X, Y, A, B, C) be a left state model, and let 	 = (M,μ) be the corresponding Fliess model.

The state model determines the diagram

D[s]q C← Y[s] sB−A→ X[s].
Applying to this diagram the functor HomD(−, U), we get

HomD(X, U)
sB∨−A∨→ HomD(Y, U)

C∨← Uq.

Associated with this there is an equation

B∨sx − A∨x + C∨w = 0.

The solution set of this equation, that is, the set

{(x, w) ∈ HomD(X, U)⊕ Uq | B∨sx − A∨x + C∨w = 0}
is called the full (or internal) behavior of � and is denoted by Bf (�). The canonical map

Bf (�)→ Uq,

induced by the projection HomD(X, U)⊕ Uq→ Uq, is called the manifestation map. Its image is

called the manifest (or external) behavior. (These definitions are based on Willems [35].) By the very

definition, we have an exact sequence
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0→ Bf (�)→ HomD(X, U)⊕ Uq→ HomD(Y, U).

Apply now HomD[s](−, U) to the exact sequence

Y[s] → X[s] ⊕ D[s]q→ M→ 0.

We then get an exact sequence

0→ HomD[s](M, U)→ HomD(X, U)⊕ Uq→ HomD(Y, U).

We can see that the diagram

HomD[s](M, U) 	 Bf (�)
↓ ↓
Uq = Uq

commutes, which means that � and 	 generate the same behavior.

Now, let � = (X, Z, E, F, G) be a right state model, and let 	 = (M,μ) be the corresponding Fliess

model. The state model determines the diagram

X[s] sE−F→ Z[s] G←D[s]q.
Applying to this the functor HomD(−, U), we get the diagram

Uq G∨←HomD(Z, U)
sE∨−F∨→ gfHomD(X, U).

Associated with this there is an equation{
sE∨z = F∨z
w = G∨z .

The solution set of E∨sz = F∨z is called the full (or internal) behavior of � and is denoted by Bf (�).
The canonical map

Bf (�)→ Uq,

induced by G∨, is called themanifestationmap. Its image is called themanifest (or external) behavior.

Consider the commutative diagram

0 → X[s] → Z[s] → M → 0

↑ ↑
D[s]q = D[s]q

,

inwhich the top row is exact. Applying to this diagram the functorHomD[s](−, U), we get the following

commutative diagram

0 → HomD[s](M, U) → HomD(Z, U) → HomD(X, U)
↓ ↓
Uq = Uq

.

The top row in this diagram is exact, and so we have a commutative diagram

HomD[s](M, U) 	 Bf (�)
↓ ↓
Uq = Uq

.

Thus, as above, � and 	 generate the same behavior.

We have proved the following

Theorem 5. A state (left or right) model has the same behavior as the corresponding Fliess model.

As we already know, if two state models form an exact couple, then their Fliess models are canon-

ically isomorphic. As a consequence of Theorem 5 we have

Corollary 1. Two state models are behaviorally equivalent if they form an exact couple.
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In the following examples we want to illustrate this corollary.

Example 6. Let (X, F, G, H, J) be as in Example 1. In view of Lemma 1, we may identify HomD(X
∗, U)

with X ⊗D U . The behavioral equation of the associated left state model is[
I

0

]
sx −

[
F

H

]
x +

[−G 0

−J I

] (
u

y

)
= 0;

similarly, the behavioral equation of the associated right state model is⎧⎪⎪⎨
⎪⎪⎩
[
I 0

]
s

(
x

u

)
= [

F G
] (x

u

)
(
u

y

)
=

[
0 I

H J

] (
x

u

) .

Both these equations can be rewritten as{
sx = Fx + Gu

y = Hx + Ju
.

The state models in the following two examples are observable. Remark that the manifestation

maps of observable models are injective, and consequently their full behaviors may be identified with

the manifest behaviors.

Example 7. (a) Consider the left state model of Example 2. Its behavioral equation is

s

⎛
⎜⎜⎝

0

x1
x2
x3

⎞
⎟⎟⎠−

⎛
⎜⎜⎝
x1
x2
x3
0

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝
δw
0

0

0

⎞
⎟⎟⎠ .

Eliminating the state variables, we obtain the manifest behavior

{w ∈ U| δs3w = 0}.
(b) Consider the right state model of Example 2. Since Z is generated by the symbols a1, a2, a3, a

satisfying the relation δa = a1, we have

HomD(Z, U) =
⎧⎪⎪⎨
⎪⎪⎩

⎛
⎜⎜⎝
z1
z2
z3
z

⎞
⎟⎟⎠ ∈ U4 | δz = z1

⎫⎪⎪⎬
⎪⎪⎭ .

The full behavior is equal to⎧⎪⎪⎨
⎪⎪⎩

⎛
⎜⎜⎝
z1
z2
z3
z

⎞
⎟⎟⎠ ∈ HomD(Z, U) | sz1 = z2, sz2 = z3, sz3 = 0

⎫⎪⎪⎬
⎪⎪⎭ .

This, in turn, is equal to⎧⎪⎪⎨
⎪⎪⎩

⎛
⎜⎜⎝
z1
z2
z3
z

⎞
⎟⎟⎠ ∈ U4 | δz = z1, sz1 = z2, sz2 = z3, sz3 = 0

⎫⎪⎪⎬
⎪⎪⎭ .

The manifest behavior is exactly the same as in (a).

Example 8. (a) Consider the left state model of Example 3. Its behavioral equation is⎡
⎣−I0

0

⎤
⎦ sx+

⎡
⎣ 0

δ2−δ1

⎤
⎦ x +

⎛
⎝ u

y1
y2

⎞
⎠ = 0.
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Eliminating x, we obtain the manifest behavior⎧⎨
⎩
⎛
⎝ u

y1
y2

⎞
⎠ ∈ U3 | δ1u = sy2, δ1y1 + δ2y2 = 0

⎫⎬
⎭ .

(b) Consider the right state model of Example 3. Since Z is generated by the symbols a, b, c0, c1
satisfying the relations δ1a = c1 and δ1b+ δ2c0 = 0, we have

HomD(Z, U) =
⎧⎪⎪⎨
⎪⎪⎩

⎛
⎜⎜⎝

x

y

z0
z1

⎞
⎟⎟⎠ ∈ U4 | δ1x = z1, δ1y+ δ2z0 = 0

⎫⎪⎪⎬
⎪⎪⎭ .

The full behavior is equal to⎧⎪⎪⎨
⎪⎪⎩

⎛
⎜⎜⎝

x

y

z0
z1

⎞
⎟⎟⎠ ∈ HomD(Z, U) | sz0 = z1

⎫⎪⎪⎬
⎪⎪⎭ =

⎧⎪⎪⎨
⎪⎪⎩

⎛
⎜⎜⎝

x

y

z0
z1

⎞
⎟⎟⎠ ∈ U4 | δ1x = z1, δ1y+ δ2z0 = 0, sz0 = z1

⎫⎪⎪⎬
⎪⎪⎭ .

Again, the manifest behavior is exactly the same as in (a).

8. State models of classical type

Our definition of the behavior of a state model uses the functor HomD(−, U) and is motivated by

Theorem 5. There is an alternative way for defining the behavior of a state model, which is based on

applying the functor −⊗D U: The behavior of a left state model (X, Y, A, B, C) can be defined via the

equation{
sBy= Ay

w = Cy
,

where y ∈ Y ⊗D U and w ∈ Uq; the behavior of a right state model (X, Z, E, F, G) can be defined via

the equation

sEx − Fx + Gw = 0,

where x ∈ X ⊗D U and w ∈ Uq.

Given a state model �, let us denote by BE(I)(�) the behavioral equation of � as defined in the

previous section and by BE(II)(�) the one as defined above.

In general, there is no relation between the twomethods in defining the behavior of a state model.

(It is worth noting that the first method is “contravariant" and the second one is “covariant".) We shall

now introduce a class of state models for which these methods are closely related; one is expressed

by the other.

Say that a left statemodel (X, Y, A, B, C) is of classical type if themodules X , Y are projective and the

homomorphism

[
B

C

]
is left invertible. Likewise, say that a right state model (X, Z, E, F, G) is of classical

type if the modules X , Z are projective and the homomorphism E is left invertible.

Notice that the state models associated with a Kalman model (see Example 1) are of classical type.

It is clear that if � = (X, Y, A, B, C) is a left state model of classical type, then its dual

�∗ = (X∗, Y∗, Bt , At , Ct)

is a right statemodel of classical type. Conversely, if� = (X, Z, E, F, G) is a right statemodel of classical

type, then its dual

�∗ = (X∗, Z∗, Ft , Et , Gt)

is a left state model of classical type. For every state model � of classical type, we clearly have
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(�∗)∗ = �.

Using Lemma 1, the reader can easily see that, for every state model � of classical type,

BE(II)(�) = BE(I)(�∗) and BE(I)(�) = BE(II)(�∗).

Remark. In case when D is a field F, all state models are of classical type, of course. Therefore, in

view of the relations above, the two methods to define the behaviors are equivalent. This explains the

absence of the first method in the linear systems theory over a field. One prefers to use the second

method (the “covariant" one), which is simpler and more direct.

9. State models corresponding to AR-models

As already remarked, AR-models are of particular interest. In this section we want to characterize

state models that correspond to them.

A left state model (X, Y, A, B, C) is called observable if

sB− A : Y[s] → X[s]
is surjective. A right state model (X, Z, E, F, G) is called observable if[

sE − F G
] : X[s] ⊕ D[s]q→ Z[s]

is surjective.

The following justifies the above definitions.

Proposition 4. Let (M,μ) be a Fliess model, and let (X, Y, A, B, C) and (X, Z, E, F, G) be the corresponding
left and right state models. The following conditions are equivalent:

(a) (M,μ) is observable;
(b) (X, Y, A, B, C) is observable;
(c) (X, Z, E, F, G) is observable.

Proof. (a)⇔ (b) Consider the commutative diagram

0→ Y[s] → X[s] ⊕ D[s]q → M →0

↓ ↓ ↓
0→ X[s] = X[s] → 0

.

Applying the snake lemma, we get that the sequence

D[s]q→ M→ Coker(Y[s] → X[s])→ 0

is exact; whence the assertion.

(a)⇔ (c) Consider the commutative diagram

0→ X[s] → X[s] ⊕ D[s]q → D[s]q →0

|| ↓ ↓
0→ X[s] → Z[s] → M →0

.

Applying the snake lemma, we get that the sequence

0→ Coker(X[s] ⊕ D[s]q→ Z[s])→ Coker(D[s]q→ M)→ 0

is exact; whence the assertion. �

An immediate consequence of the proposition is that statemodels corresponding to AR-models are

observable ones.
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Now,we shall give some characterization of observable statemodels in terms of linear algebra (over

D).

Proposition 5. A left state model (X, Y, A, B, C) is observable if and only if, for all sufficiently large k, the

homomorphism⎡
⎢⎢⎢⎢⎢⎢⎣

−A
B

. . .
. . .

−A
B

⎤
⎥⎥⎥⎥⎥⎥⎦
: Yk → Xk+1

is surjective.

Proof. From the proof of Theorem 2, we know that the homomorphism B− s−1A : Y ⊗ O→ X ⊗ O

is always surjective. Therefore, to say that sB− A : Y[s] → X[s] is surjective is the same as to say that

the sheaf homomorphism

O ⊗ Y → O(1)⊗ X (4)

is surjective. Notice that our linear map can be identified with

H0O(k)⊗ Y → H0O(k+ 1)⊗ X. (5)

Assume that (4) is surjective. Letting E denote the kernel, we then have an exact sequence

0→ E → O ⊗ Y → O(1)⊗ X → 0.

“Twisting" this sequence by k and passing to cohomology, we get the exact sequence

H0O(k)⊗ Y → H0O(k+ 1)⊗ X → H1E(k).

For all sufficiently large k, H1E(k) = 0 (see Theorem 7 in Appendix A). Hence, (5) is surjective for all

k� 0.

Conversely, assume that (5) is surjective for all k� 0. Letting E denote the image of (4) and F the

cokernel, we have an exact sequence

0→ E → O(1)⊗ X → F → 0.

Using the same argument as above, we find that

0→ H0E(k)→ H0O(k+ 1)⊗ X → H0F(k)→ 0

is an exact sequence for all k� 0. Noticing that (5) is the composition

H0O(k)⊗ Y → H0E(k)→ H0O(k+ 1)⊗ X,

we find that H0E(k)→ H0O(k+ 1)⊗ X is surjective for all k� 0. In view of the previous cohomo-

logical exact sequence, this implies that H0F(k) = 0 for all sufficiently large k. By Theorem 7 (see

Appendix A), F = 0.

The proposition is proved. �

Proposition 6. A right state model (X, Z, E, F, G) is observable if and only if, for all sufficiently large k, the

homomorphism⎡
⎢⎢⎢⎢⎢⎢⎣

−F G

E

. . .
. . .

. . .

−F
E G

⎤
⎥⎥⎥⎥⎥⎥⎦
: Xk−1 ⊕ Dqk → Zk

is surjective.
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Proof. Fromtheproof of Theorem3,weknowthat thehomomorphism [E − s−1F G] : X ⊗ O⊕ Oq→
Z ⊗ O is always surjective. Therefore, to say that [sE − F G] : X[s] ⊕ D[s]q→ Z[s] is surjective is the

same as to say that

O(−1)⊗ X ⊕ Oq→ O ⊗ Z

is surjective. Notice that our linear map can be identified with

H0O(k− 1)⊗ X ⊕ Dqk → H0O(k+ 1)⊗ X.

We can repeat the arguments in the proof of the previous proposition to complete the proof. �

10. Two examples

In this section we want to consider two very simple examples of LDDEs, just to illustrate the

construction in Section 4. We begin by the following evident lemma, which somewhat facilitates

the computations of the “X" and the “Z".

Let R ∈ D[s]p×q, and let (M,μ) be the corresponding Fliess model. By the very definition, we then

have an exact sequence

D[s]p Rt→D[s]q μ→M→ 0.

Let D((s−1)) be the ring of formal Laurent series, and define V by the exact sequence

D((s−1))p Rt→D((s−1))q→ V → 0.

Next, define ī to be the canonical mapM→ V and N the image of D[[s−1]]q under the canonical map

D((s−1))q→ V .

Lemma 5. We can compute the modules X and Z by the following formulas

X = {x ∈ M| ī(x) ∈ s−1N} and Z = {z ∈ M| ī(z) ∈ N}.
The point of the lemma is that it is easier to compute V and N than the “V" and the “N" in Section 4.

Example 9. Let D = R[δ], and consider the LDDE determined by δs3. The moduleM, as a linear space

over R, is equal to

δD⊕ δDs⊕ δDs2 ⊕ R[s].
Put

a1 = δ, a2 = δs, a3 = δs2, a = 1.

These are generators ofM with the following defining relations

δa = a1, sa1 = a2, sa2 = a3, sa3 = 0.

One easily finds

V = R((s−1)) and N = R[[s−1]].
We have

X = δD+ δDs+ δDs2 	 D3 and Z = δD+ δDs+ δDs2 + R 	 D3 ⊕ R.

The maps E, F : D3→ D3 ⊕ R are given respectively by

⎛
⎝x1
x2
x3

⎞
⎠→

⎛
⎜⎜⎝
x1
x2
x3
0

⎞
⎟⎟⎠ and

⎛
⎝x1
x2
x3

⎞
⎠→

⎛
⎜⎜⎝

0

x1
x2
0

⎞
⎟⎟⎠ ;
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the map G : D→ Z is given by

x→
⎛
⎜⎜⎝

0

0

0

x mod δ

⎞
⎟⎟⎠ .

The right state model that we obtain coincides with the one given in Example 2b).

Example 10. Let D = R[δ1, δ2], and consider the LDDE determined by

R =
[
δ1 0 −s
0 δ1 δ2

]
.

(The matrix is taken from Gluesing-Luerssen [12] (see Example 5.2.5).)

The submodule RtD[s]2 ⊆ D[s]3 consists of elements of the form⎛
⎝ δ1f

δ1g
gδ2 − sf

⎞
⎠ ,

where f , g ∈ D[s]. It is clear that every element inM = D[s]3/RtD[s]2 has a representative of the form⎛
⎝h1
h2
h

⎞
⎠ ,

where h1, h2 ∈ R[δ2][s] and h ∈ D[s]. It is clear also that two such columns are congruent modulo

RtD[s]2 if and only if they are equal. Thus, the module M, as a linear space over R, is equal to

R[δ2][s] ⊕ R[δ2][s] ⊕ D[s].
Let e1, e2, e3 be the canonical basis of D3, and let a, b, c denote their classes in M. Certainly, these are

generators ofM. We have

δ1e1 ≡ se3 mod RtD[s]2 and δ1e2 + δ2c ≡ 0 mod RtD[s]2.
Hence, a, b, c satisfy the following relations

δ1a = sc and δ1 + δ2c = 0.

And these are defining relations.

Likewise, one can easily finds that

V = R[δ2]((s−1))⊕ R[δ2]((s−1))⊕ D((s−1))
and the canonical homomorphism D((s−1))3→ V is given by⎛

⎝x

y

z

⎞
⎠ �→

⎛
⎜⎝ x(0, δ2, s

−1)
y(0, δ2, s

−1)
z − δ2g + sf

⎞
⎟⎠ ,

where f = δ−11 (x − x(0, δ2, s
−1)) and g = δ−11 (y− y(0, δ2, s

−1)). (Notice the entrance of the “s"!)

Further,

N = R[δ2][[s−1]] ⊕ R[δ2][[s−1]] ⊕ sD[[s−1]].
We get

X = D and Z = R[δ2] ⊕ R[δ2] ⊕ D⊕ sD.

Let a and b be as above, and put c0 = c and c1 = sc. These elements generate the module Z over D,

and satisfy the following relations
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δ1a = c1 and δ1b+ δ2c0 = 0.

(There are no other relations.) Further, one easily calculates E, F, G and obtains precisely the right

state model that we gave in Example 3b).
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Appendix A. “Coherent sheaves" over (D(s),D[s],O)

We regard the triple (D(s), D[s], O) as an algebraic analog of the projective line over D. (Intuitively,

the projective line consists of the “finite" domain and the “infinite" domain intersecting along the

“generic" domain. And one may think of rational functions as functions on the “generic" domain, of

polynomials as functions on the “finite" domain and of proper rational functions as functions on the

“infinite" domain.)

A sheaf (over (D(s), D[s], O)) is a quintuple (V, M, N, i, j), where V is a module over D(s), M and N

are respectively modules over D[s] and O, and i : M→ V and j : N→ V are respectively D[s]- and
O-homomorphisms such that the D(s)-homomorphisms

M ⊗D[s] D(s)→ V and N ⊗O D(s)→ V

are isomorphisms.

Remark. Traditionally, one obtains the projective line P1
D by “gluing" in a certain way two copies of

the affine line A1
D. One can find a formal definition in Lam [19], for example. A standard definition of

a sheaf over P1
D would be: A sheaf is a quintuple (V, M, N, i, j), where V is a module over D[s, s−1], M

and N are respectively modules over D[s] and D[s−1], and i : M→ V and j : N→ V are respectively

D[s]- and D[s−1]-homomorphisms such that the D[s, s−1]-homomorphisms

M ⊗D[s] D[s, s−1] → V and N ⊗D[s−1] D[s, s−1] → V

are isomorphisms.

In our opinion, the definition that we offer is more appropriate for purposes of linear systems

theory.

A sheaf is said to be coherent if its modules are finitely generated.

Example 11. O = (D(s), D[s], O, i, j), where i, j are the canonical inclusion maps, is a coherent sheaf.

Let F = (V, M, N, i, j) be a sheaf. Elements in V are called generic sections, elements in M finite

sections and elements in N infinite sections. A global section is a pair (x, y), where x ∈ M and y ∈ N

are such that i(x) = j(y). The set of global sections is denoted by �(F). This is a module over D.

Given a sheaf F and a D-module X , one defines in an obvious way F ⊗ X .

If F = (V, M, N, i, j) is a sheaf and k an integer, one defines a new sheaf

F(k) = (V, M, N, i, skj).

(By sk , we mean here the automorphism V → V given by multiplication by sk .) It should be pointed

out that this extremely simple operation is very much important.

Let F = (V, M, N, i, j) be a sheaf. We define the cohomologymodules H0F and H1F respectively as

the kernel and cokernel of the D-linear map

L ⊕M→ V, (x, y) �→ i(x)− j(y).

It should be emphasized that cohomology modules are modules over D. Notice that

H0(F) = �(F).
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Example 12. For n� 0, we have

H0O(n) 	 Dn+1 and H1O(−n− 2) 	 Dn+1.
For n < 0, we have

H0O(n) = 0 and H1O(−n− 2) = 0.

Let (V1, M1, N1, i1, j1) and (V2, M2, N2, i2, j2) be sheaves. A homomorphism between them is a triple

(φ, f , g) consisting of homomorphisms φ : V1→ V2, f : M1→ M2 and g : N1→ N2 such that the

following diagrams

M1 ⊗ D(s)
f⊗D(s)→ M2 ⊗ D(s)

↓ ↓
V1

φ→ V2

and

N1 ⊗ D(s)
g⊗D(s)→ N2 ⊗ D(s)

↓ ↓
V1

φ→ V2

commute.

It is worth noting that

Hom(O,F) = �(F).

One defines in an obvious way the kernels, images and cokernels of homomorphisms of sheaves.

Consequently, we have the notion of exact sequences of sheaves.

Proposition 7. A short exact sequence of sheaves

0→ F1→ F → F2→ 0

yields a long exact sequence of cohomologies

0→ H0F1→ H0F → H0F2→ H1F1→ H1F → H1F2→ 0.

Proof. Consider the commutative diagram

0→ M1 ⊕ N1 → M ⊕ N → M2 ⊕ N2 →0

↓ ↓ ↓
0→ V1 → V → V2 →0

The rows are exact, and so we can apply the snake lemma. �

Lemma 6. Let F = (V, M, N, i, j) be a sheaf.

(a) Given x ∈ M, there exists an integer k0 � 0 such that, for every k � k0, x extends to a global section

of F(k).
(b) Given y ∈ N, there exist an integer k0 � 0 and an invertible element g ∈ O such that, for every

k � k0, gy extends to a global section of F(k).

Proof. (a) We have

i(x) = j(y)

s−k0
for some k0 � 0 and y ∈ N. If k � k0, then

i(x) = skj(sk0−ky).
This means that (x, sk0−ky) is a global section of F(k).
(b) We have

i(x)

f
= j(y)
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for some monic polynomial f and y ∈ N. Let k0 denote the degree of f . Then f = sk0g, where g is an

invertible element of O. For every k � k0, we then have

i(sk−k0x) = skj(gy).

This means that (sk−k0x, gy) is a global section of F(k). �

Theorem 6. (Serre) Let F be a coherent sheaf. There exists k0 � 0 such that for every k � k0,F(k) is

generated by global sections.

Proof. Let F = (V, M, N, i, j). Select generator sets {x1, . . . , xm} and {y1, . . . , yn} of themodulesM and

N. Using the previous lemma, one can easily find an integer k0 � 0 and invertible elements g1, . . . , gn
such that for every k � k0 all elements x1, . . . , xm and g1y1, . . . , gnyn extend to global sections of F(k).
All these global sections certainly generate the sheaf F(k). �

The following is an immediate consequence of the theorem.

Lemma 7. Given a coherent sheaf F , there is an epimorphism

Or → F(k0).

In the following “lim" stands for “the direct limit". (The reader is referred to Atiyah andMacdonald

[1] for the notion of direct limit.) The following says, in particular, that knowledge of H0F(k) for all

sufficiently large k implies knowledge of F .

Lemma 8. Let F = (V, M, N, i, j) be a sheaf. Then,

M = lim
k

H0F(k) and N = lim
g monic

g−1H0F(deg(g)).

Proof. The assertion is true for F = O. Indeed, it is easily seen that

D[s] = ∪kH0O(k) and O = ∪g monicg
−1H0O(deg(g)).

To prove the general case consider an epimorphism Or → F(k0), which exists for some r � 0 and

some k0 � 0. We have epimorphisms of modules

D[s]r → M and Or → sk0N.

From these and from the commutative diagrams

limH0Or(k) → limH0F(k0 + k)
↓ ↓

D[s]r → M

and

lim 1
g
H0Or(deg(g)) → lim 1

g
H0F(k0 + deg(g))

↓ ↓
Or → sk0N

the assertion follows. (Here k runs over all nonnegative integers, and g over allmonic polynomials.) �

Theorem 7. Let F be a coherent sheaf.
(a) If H0F(k) = 0 for all sufficiently large k, then F = 0.
(b) For all sufficiently large k, H1F(k) = 0.

Proof. (a) Follows immediately from the previous lemma.

(b) Consider an epimorphism Or(−k0)→ F , which exists by Lemma 7. For every k, we have an

epimorphism

H1Or(k− k0)→ H1F(k).

Because H1O(k− k0) = 0 for all sufficiently large k (see Example 11), this completes the proof. �
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The following theorem, which also is due to Serre, expresses the most fundamental fact about

coherent sheaves.

Theorem 8 (Finiteness Theorem). The cohomology modules of a coherent sheaf are finitely generated.

Proof. Let F be a coherent sheaf. In view of Lemma 7, there is an exact sequence

0→ E → Or(−k0)→ F → 0.

Passing to cohomology, we get an exact sequence

0→ H0E → H0Or(−k0)→ H0F → H1E → H1Or(−k0)→ H1F → 0.

From this and from Example 11 it immediately follows that H1F is finitely generated.

The sheaf E clearly is coherent, and applying the sameargument to it,wefind thatH1E also is finitely

generated. In view of this and Example 11, our exact sequence yields that H0F is finitely generated.

The proof is complete. �

For the general theory of cohomologies of coherent sheaves the interested reader is referred to

Hartshorne [15].

Appendix B. Fuhrmann’s realization over D

In this appendix, which is self-contained, we revisit the main result of Gluesing-Luerssen [12].

Letm and p be integers such thatm+ p = q, and assume we have

P ∈ D[s]p×p, Q ∈ D[s]p×m with det(P) being monic and P−1Q being proper.

(This is precisely the starting point for the development in Gluesing-Luerssen [12].) Set

X = D[s]p ∩ s−1POp.

Call elements of X states of the equation Py = Qu.

Lemma 9. The module X is finitely generated and projective.

Proof. For sufficiently large k, we have POp ⊆ sk+1Op. Consequently, X is a submodule ofD[s]p ∩ skOp,

which is finitely generated of course.

Notice that X can be viewed as the kernel of the homomorphism

D[s]p ⊕ s−1POp→ D(s)p

given by

(
f

g

)
�→ g − f . This homomorphism is surjective because

D(s)p = PD(s)p = P(D[s]p + s−1Op) ⊆ D[s]p + s−1POp.

Further, themodules D[s]p ⊕ s−1POp and D(s)p are flat over D. (D[s] is flat because it is free; D(s) is
flat over D[s] (as a localization), and therefore also is flat; O can be viewed as a localization of D[s−1]
(with respect to 1+ s−1D[s−1]), and consequently is flat.) Hence, in view of the exact sequence

0→ X → D[s]p ⊕ s−1POp→ D(s)p→ 0,

X must be flat. (See Proposition 5 in Bourbaki [2], Ch. I, Sect. 2.) This proves the lemma because, for

finitely generated modules, projectiveness and flatness are equivalent properties. �

Let

π : POp→ Dp
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denote the canonical map taking z ∈ POp to the free coefficient of P−1z in the expansion at infinity.

This clearly is a D-linear map. It is worth noting that this map vanishes on s−1POp.

Define D-linear maps

F : X → X, G : Dm→ X, H : X → Dp, J : Dm→ Dp

by the following formulas

Fx = sx − Pπ(sx)
Gu = Qu− Pπ(Qu)
Hx = π(sx)
Ju = π(Qu).

Thanks of the inclusion X ⊆ D[s]p, there is a canonical D[s]-homomorphism χ : X[s] → D[s]p given

by the formula

χ(x0 ⊗ 1+ x1 ⊗ s+ · · · + xl ⊗ sl) = x0 + sx1 + · · · + slxl.

If x is a state, then[
χ P

] [sI − F

H

]
x = [

χ P
] ( Pπ(sx)
−π(sx)

)
= Pπ(sx)− Pπ(sx) = 0.

Because X[s] is generated by state elements, it follows from this that the composition

[
χ P

] [sI − F

H

]

is zero.

Proposition 8. (a) The complex

0→ X[s]

[
sI − F

H

]

→ X[s] ⊕ D[s]p
[
χ P

]
→ D[s]p→ 0

is exact.
(b) The square

D[s]m ⊕ D[s]p = D[s]m ⊕ D[s]p
[
G 0

−J I

]
↓ ↓ [−Q P

]

X[s] ⊕ D[s]p → D[s]p
is commutative.

Proof. (a) Exactnessat X[s]: This is obvious, because E : X → Z is injective.

Exactnessat X[s] ⊕ D[s]p: Suppose that an element(
x0 ⊗ 1+ x1 ⊗ s+ · · · + xl ⊗ sl

a0 ⊗ 1+ a1 ⊗ s+ · · · + al ⊗ sl

)
∈ X[s] ⊕ D[s]p

goes to zero. We then have the following relation

(x0 + Pa0)+ (x1 + Pa1)s+ · · · + (xl + Pal)s
l = 0.

Set

x̄0 =−s−1(x0 + Pa0),

x̄1 =−s−2(x0 + Pa0)− s−1(x0 + Pa0),
...

x̄l−1 =−s−l(x0 + Pa0)− · · · − s−1(xl−1 + Pal−1).
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Using the relation above, one can easily see that all these elements are states. We have

−sx̄0 = x0 +Pa0
x̄0 −sx̄1 = x1 +Pa1

...
x̄l−2 −sx̄l−1 = xl−1 +Pal−1
x̄l−1 = xl +Pal.

Remark that if x ∈ X and a ∈ Dp, then[
I − Pπ

π

]
x =

[
I

0

]
x,

[
I − Pπ

π

]
sx =

[
F

−H
]
x and

[
I − Pπ

π

]
(x + Pa) =

(
x

a

)

Applying therefore

[
I − Pπ

π

]
to the equalities above, we get

−
[

F

−H
]
x̄0 =

(
x0
a0

)
[
I

0

]
x̄0 −

[
F

−H
]
x̄1 =

(
x1
a1

)
...[

I

0

]
x̄l−2 −

[
F

−H
]
x̄l−1 =

(
xl−1
al−1

)
[
I

0

]
x̄l−1 =

(
xl
al

)
.

We can see that our element is equal to[
sI − F

H

]
(x̄0 ⊗ 1+ x̄1 ⊗ s+ · · · + x̄l−1 ⊗ sl−1).

Exactness at D[s]p: Take any h ∈ D[s]p. Because P : D(s)p→ D(s)p is bijective (and becauseD(s) =
D[s] + s−1O, we have

h = P(f + s−1g)
for some f ∈ D[s]p and g ∈ Op. Put

x = s−1Pg = h− Pf .

This belongs both to s−1Op and D[s]p; in other words, this is a state. We see that h is the image of

(
x

f

)
.

(b) Take arbitrary u ∈ Dm and y ∈ Dp. We have

[
χ P

] [ G 0

−J I

] (
u

y

)
=Gu+ Py− PDu = −Qu+ Pπ(Qu)+ Py− Pπ(Qu)

=−Qu+ Py = [−Q P
] (u

y

)
.

The commutativity follows.

The proposition is proved. �

Let B denote the solution set of the equation Py = Qu.

Theorem 9. The Kalman model (X, F, G, H, J) is a realization of Py = Qu. In other words, one has

B =
{(

u

y

)
∈ Um ⊕ Up | ∃ x ∈ X ⊗ U : sx = Fx + Gu, y = Hx + Ju

}
.
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Proof. Tensoring the diagram

D[s]m ⊕ D[s]p = D[s]m ⊕ D[s]p
↓ ↓

0 → X[s] → X[s] ⊕ D[s]p → D[s]p → 0

(in which the bottom row is exact and the square is commutative) by U , we obtain a diagram

Um ⊕ Up = Um ⊕ Up

↓ ↓
0 → X ⊗ U → X ⊗ U ⊕ Up → Up → 0

Here also the bottom row is exact and the square is commutative.

This diagram proves the theorem. Indeed, suppose that

(
u

y

)
∈ B. Due to commutativity of the

square,

(
Gu

y− Ju

)
is contained in the kernel of X ⊗ U ⊕ Up→ Up. Since the sequence is exact, there

exists a (unique) state trajectory x ∈ X ⊗ U such(
Gu

y− Ju

)
=
[
sI − F

H

]
x.

The implication “⊆" follows.

Suppose now that

(
u

y

)
is such that sx = Fx + Gu and y = Hx + Ju for some x ∈ X ⊗ U . Then

(
Gu

y− Ju

)
=
[
sI − F

H

]
x.

Because the right hand side goes to zero under the map X ⊗ U ⊕ Up→ Up, by commutativity of the

square,

(
u

y

)
goes to zero under the operator

[−Q P
]
. �

Remark. We remind that D is an arbitrary noetherian commutative ring and U is an arbitrary D[s]-
module. In Gluesing-Luerssen [12] the ground ring is a polynomial ring (over a field) and the function

space is a divisible module.

Appendix C. Connection with Fuhrmann’s realization

In this section we clarify connection with Fuhrmann’s realization.

We keep the assumptions and notations of the previous appendix.

Consider the sequence

0→ X[s] ⊕ D[s]m→ X[s] ⊕ D[s]m ⊕ D[s]p→ D[s]p→ 0, (6)

where the second and third arrows are given respectively by the matrices⎡
⎣sI − F −G

0 I

H J

⎤
⎦ and

[
χ −Q P

]
.

If x ∈ X and u ∈ Dm, then the composition of these two arrows sends

(
x

u

)
to

Pπ(sx)+ Qu− Pπ(Qu)− Qu− Pπ(sx)+ Pπ(Qu) = 0

It follows that our sequence is a complex.

Lemma 10. The complex (6) is exact.
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Proof. From Proposition 8, we can see that the homomorphism

[
sI − F

H

]
: X[s] → X[s] ⊕ D[s]p is left

invertible; in other words, S(sI − F)+ TH = I for some S : X[s] → X[s] and T : D[s]p→ X[s]. We

then have[
S SG − TJ T

0 I 0

] ⎡⎣sI − F −G
0 I

H J

⎤
⎦ = [

I 0

0 I

]
.

It follows that the second homomorphism is left invertible. Hence, it is injective and its cokernel is a

projective module. Let N denote this cokernel.

The third homomorphism is obviously surjective because
[
χ P

]
is surjective (see Proposition 8).

It follows that the induced homomorphism

N→ D[s]p
is surjective.

To complete the proof, we need to show that this is bijective. But this follows from two facts in

Bourbaki [2, Ch. II, Sect. 3] (see Theorem 1 and Corollary of Proposition 6). �

Proposition 9. There is a canonical homomorphism X∗[s] ⊕ D[s]m→ M such that the sequence

0→ X∗[s]

⎡
⎣sI − Ft

−Gt

⎤
⎦

→ X∗[s] ⊕ D[s]m→ M→ 0

is exact and the square

D[s]m ⊕ D[s]p = D[s]m ⊕ D[s]p
[
0 Ht

I Jt

]
↓ ↓

X∗[s] ⊕ D[s]m → M

is commutative.

Proof. Dualizing the sequence (6), we get an exact sequence

0→ D[s]p→ X∗[s] ⊕ D[s]m ⊕ D[s]p→ X∗[s] ⊕ D[s]m→ 0.

Consider the diagram

X∗[s] = X∗[s]
↓ ↓

0 → D[s]p → X∗[s] ⊕ D[s]m ⊕ D[s]p → X∗[s] ⊕ D[s]m → 0

in which the left and the right vertical arrows respectively are⎡
⎣ I

0

0

⎤
⎦ and

[
sI − Ft

−Gt

]
.

This diagram is commutative, andwe can apply the snake lemma.Doing thiswe get and exact sequence

0→ D[s]p→ D[s]m ⊕ D[s]p→ X∗[s] ⊕ D[s]m[
sI − Ft

−Gt

]
X∗[s]

→ 0,

which gives an isomorphism

M 	 X∗[s] ⊕ D[s]m[
sI − Ft

−Gt

]
X∗[s]

.
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This proves the proposition. �

The proposition tells us that(
X∗, X∗ ⊕ Dm,

[
I

0

]
,

[
Ft

Gt

]
,

[
0 Ht

I Jt

])
.

is a right state representation of (M,μ).
According to Example 6, the behavioral equation of this model is⎧⎪⎪⎨

⎪⎪⎩
[
I 0

]
s

[
x

u

]
= [

F G
] [x

u

]
[
u

y

]
=
[
0 I

H J

] [
x

u

] ,

which, as already noted, can be rewritten as{
sx = Fx + Gu

y = Hx + Ju
.
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