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0. Introduction

An important class of dynamical systems is formed by linear differential systems,which are defined

via polynomial differential operators (see Polderman and Willems [9]). The idea of this article is to

enlarge the class of linear differential systems by considering rational differential operators (that is,

operators that are rational in the differentiation operator). It was inspired by the works Willems and

Yamamoto [13,14], where rational differential operators have been proposed as new representations

for linear differential systems.

Let F be the field of real or complex numbers and s an indeterminate, and let T be an arbitrary

interval. Without loss of generality, we certainly may assume that T contains 0. Let us denote by U the
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function space C∞(T, F) and by ∂ the differentiation operator of this space. Besides of the differenti-

ation operator there is another important operator acting on U , namely, the integration operator

∫
: U → U,

which is defined by the formula

(

∫
f )(x) =

∫ x

0
f (ξ)dξ.

The relation ∂ ◦ ∫ = id suggests to define ∂−1 by setting

∂−1 =
∫

.

This, in turn, leads to the following evident definition

∂−n = (∂−1)n

for every n � 0.

Let now G be a rational matrix, say, of size p × q, and let

G = G−ns
n + · · · + G−1s + G0 + G1s

−1 + G2s
−2 + · · ·

be its expansion at infinity. We define the operator

G(∂) : Uq → Up

as

G−n∂
n + · · · + G−1∂ + G0I + G1∂

−1 + G2∂
−2 + · · · .

Thus, in our understanding, a rational differential operator is a usual map (not a "point-to-set"

map as in Willems and Yamamoto [13,14]). This, in fact, is a linear differential/integral operator with

constant coefficients.

We define the behavior Bh(G) of G to be the kernel of the operator G(∂), i.e., the solution set of the

equation

G(∂)w = 0.

For convenience of the reader, we recall that according to the above mentioned works of Willems and

Yamamoto, the behavior of G is the solution set of the differential equation

Q(∂)w = 0,

where Q is the numerator in a left coprime factorization of G.

The following simple examples illustrate the difference between the two approaches.

Example 1. Consider the rational function s−1(s2 − 1) = s − s−1. Its behavior is the solution set of

the differential/integral equation

y′ −
∫

y = 0,
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which is

{C(ex + e−x) | C ∈ R}. (1)

The behavior of s−1(s2−1) in the sense ofWillems and Yamamoto is the solution set of the differential

equation

y′′ − y = 0,

which is

{C1(ex + e−x) + C2(e
x − e−x) | C1, C2 ∈ R}. (2)

Notice that (ex + e−x)′ = ex − e−x , and therefore (2) is the differential closure of (1).

Example 2. Consider the rational function (s − 1)−1s2 = s + 1 + s−1 + s−2 + · · · . Its behavior is
the solution set of the differential/integral equation

y′ + y +
∫

y +
∫ 2

y +
∫ 3

y + · · · = 0,

which is

{C − Cx | C ∈ R}. (3)

The behavior of s2/(s− 1) in the sense ofWillems and Yamamoto is the solution set of the differential

equation

y′′ = 0,

which is

{C1 + C2x | C1, C2 ∈ R}. (4)

Clearly, (4) is the differential closure of (3).

Example 3. Let A be a proper rational matrix, and let A = D−1N be its left coprime factorization. The

behavior of G =
[
I −A

]
is the set

⎧⎨
⎩

⎛
⎝ u

y

⎞
⎠ | y = Au

⎫⎬
⎭ . (5)

It is clear that G = D−1
[
D −N

]
is a left coprime factorization; hence, the behavior of G in the sense

of Willems and Yamamoto is the set

⎧⎨
⎩

⎛
⎝ u

y

⎞
⎠ | D(∂)y = N(∂)u

⎫⎬
⎭ . (6)

As one knows from the classical linear system theory, (5) is the set of zero initial condition trajectories

in (6). Again, the differential closure of (5) is equal to (6).
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Remark. In viewof the above examples, it is tempting to think that, given a rational polynomialmatrix

G with left coprime factorization G = P−1Q , the differential closure of Bh(G) always coincides with

Bh(Q). This is indeed so in most cases, but not in general. This is so, for example, when the Wiener–

Hopf indices of a rational matrix are positive (see [7]). A simple example showing that the statement

is not true is as follows: The behavior of the rational function g = s/(s − 1) is {0}, while the behavior

of its numerator s is the set of constant functions.

We shall show how the solution sets of rational differential equations can be constructed explicitly.

It is interesting to note that the standard technique of partial fraction expansion works here well.

Our main goal, however, is to study the following question:When two rational matrices determine

the same linear system? The question is basic from the point of view of the "behavioral" philosophy

(see Willems [12]).

Recall that if R1 and R2 are polynomial matrices, then the solution sets of the equations

R1(∂)w = 0 and R2(∂)w = 0

are equal to each other if and only if there exist polynomial matrices A and B such that R2 = AR1 and

R1 = BR2. Different proofs of this fundamental theorem can be found in Polderman [8], Polderman

and Willems [9], Schumacher [11]. (A proof is given also in [4].)

The equivalence theorem that we shall present is a natural generalization of this result.

The reader is referred to Gottimukkala et al. [3] and Trentelman [10], where the same question is

studied in the context of Willems and Yamamoto [13,14].

Throughout, F, s and U will be as above. To avoid confusions, we shall use the symbol � to denote

the function that is identically 1 on the interval. We let O be the ring of proper rational functions, and

put t = s−1 . There is exactly one (continuous) action of O on U for which

tw =
∫

w.

An explicit definition is as follows. If g ∈ O and w ∈ U , then the product gw is defined by the formula

gw = b0w + b1

∫
w + b2

∫ 2

w + · · · + bn

∫ n

w + · · · ,

where b0, b1, b2, . . . , bn, . . . are the coefficients in the expansion of g at infinity (The reader can

easily prove that the series above converges uniformly on every compact neighborhood of 0.) This

action makes U into a module over O. This module is without torsion, and it is natural therefore to

consider its fraction space. We denote it byM and refer to its elements as Mikusinski functions. Thus,

by definition, aMikusinski function is a ratiow/g, wherew ∈ U and g ∈ O, �= 0. Two functionsw1/g1
and w2/g2 are equal if g2w1 = g1w2. We identify U with a subset in M via the canonical embedding

w �→ w/1. Every Mikusinski function can be represented as snw, where w ∈ U and n � 0. The

function s� is an analog of the Dirac’s delta; we shall denote it by δ. For every m � 0, smδ should be

interpreted as them-th derivative of δ. Finite linear combinations of derivatives of δ are called purely

impulsive functions. Let � denote the set of all purely impulsive functions. This is a module over F[s],
and clearly we have � = F[s]δ.

Given a proper rational function g, we define the L-transform L(g) by the formula

L(g) = g�.

By definition, the L-transform converts a proper rational function into a C∞-function. One can view it

as a kind of the inverse Laplace transform followed by the derivative.

The Newton–Leibniz formula

w =
∫

w′ + w(0)�,
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where w ∈ U , can be rewritten as

sw = w′ + sw(0)�.

This, by induction, yields a more general formula

snw = w(n) + (snw(0) + · · · + sw(n−1)(0))�. (7)

Using this, one easily obtains the decomposition

M = U ⊕ �,

which gives rise to the projection map � : M → U .
(The interested reader is referred to [6] for a more detailed account of the above version of

Mikusinski’s calculus.)

We shall need the convolution operation. The convolution of two functions u and v, written as u∗v,

is defined by the formula

(u ∗ v)(x) =
∫ x

0
u(x − ξ)v(ξ)dξ.

For later use, we recall the definition of cohomologies of nonsingular rational matrices. If D is a

nonsingular rational matrix, we define (see [4,6]) its cohomology spaces to be

H0(D) = F[s]p ∩ tDOp and H1(D) = F(s)p/(F[s]p + tDOp),

where p is the size of D. The reader can notice that H0 coincides with Fuhrmann’s polynomial model

construction (see Fuhrmann [1,2]). Letting D∗ = (D−1)tr , there holds

dimH0(D) = dimH1(D∗). (8)

(This is a consequence of Lemma 5 in [6].)

Given an integer sequence μ = (m1, . . . ,mp), we shall write sμ (resp., ∂μ) to denote the diagonal

matrix with smi (resp., ∂mi ) on the diagonal. We let

F[t]pμ = ⊕
i

F[t]<mi
,

where F[t]<mi
denotes the space of polynomials (in t) of degree < mi.

Concluding the introduction, we note that one can develop the discrete-time theory that is com-

pletely parallel to the continuous one. If one wants, one can use the axiomatic framework of [5] in

order to treat simultaneously both discrete- and continuous-time cases.

1. Linear differential/integral systems

Let G be a rational matrix of size p× q. Notice that if G is a proper rational matrix, then G(∂) is just
the operator

Uq → Up, w �→ Gw.

In general, we have the following:

Lemma 1. G(∂) is the composition

Uq G→ Mp �→ Up.
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Proof. By linearity, it suffices to show that, for every integer n, the operator ∂n is the same as the

composition

U sn→ M �→ U.

In the case when n � 0, this is immediate from (7); when n � 0, this is obvious. �

As a very useful consequence we have the following:

Corollary 1. There holds

Bh(G) = {w ∈ Uq | Gw ∈ �p}.
Remark that if G = P−1Q is a factorization, where P is a square nonsingular polynomial matrix and

Q an arbitrary rational (not necessarily polynomial) matrix, then

Bh(G) = {w ∈ Uq | Qw ∈ P�p} and Bh(Q) = {w ∈ Uq | Qw ∈ �p}.
Because P�p ⊆ �p, we obviously have Bh(G) ⊆ Bh(Q).

It should be pointed out that the equality

(G1G2)(∂) = G1(∂)G2(∂)

does not hold, in general. However, we have the following important

Lemma 2. Let P be a polynomial matrix and G an arbitrary rational matrix (such that the column number

of P is equal to the row number of G). Then

(PG)(∂) = P(∂) ◦ G(∂).

Proof. Letp×l and l×qbe the sizesofP andG, respectively.Wehave to showthat the twocompositions

Uq G→ Ml P→ Mp �→ Up and Uq G→ Ml �→ U l P→ Mp �→ Up

are equal to each other. For this, it suffices to show that

Ml P→ Mp �→ Up and Ml �→ U l P→ Mp �→ Up

are equal.

Take any x + y ∈ Ml with x ∈ U l and y ∈ �l . We then have

�P�(x + y) = �(P(x)) and �P(x + y) = �(P(x) + P(y)) = �(P(x)).

The lemma is proved. �

The proof of the following corollary is very easy.

Corollary 2. Let G1 and G2 be rational matrices. Suppose that there exists a polynomial matrix P such that

G2 = PG1. Then

Bh(G1) ⊆ Bh(G2).
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Let G1 and G2 be two rational matrices with the same column number q. We say that G1 and G2 are

strongly equivalent if there exist polynomial matrices A and B such that G2 = AG1 and G1 = BG2. It

immediately follows from the above corollary that two strongly equivalent rational matrices have the

same behavior.

If G is a rational matrix, say, of size p × q, we define its associated module to be

Ass(G) = Gtr
F[s]p.

Notice that this is a finitely generated F[s]-submodule of F(s)q.
It is clear that two rational matrices are strongly equivalent if and only if their associated modules

are equal. From this (and from the fact that the associated module is a finitely generated torsion free

module), one easily obtains the following useful

Lemma 3. Every rational matrix is strongly equivalent to a one with full row rank.

Spaces Uq, where q � 1, are called universums (seeWillems [12]). A subset B of an universumwill

be called a linear differential/integral system if there exists a rational matrix G such that

B = Bh(G).

Any such matrix will be called a representation of B.
In what follows, linear differential/integral systems will be referred to simply as linear systems.

2. Solving rational differential equations

In this section we describe a general procedure for solving rational differential equations. We shall

try to follow closely Chapter 3 in Polderman and Willems [9].

Before proceeding, we first want to discuss the issue of computing the L-transforms L(g) and the

products gu.

It is clear that L(1) = � and L(tn) = xn/n! for n � 1. More generally, we have

Lemma 4. For n � 1 and λ ∈ F,

L

(
s

(s − λ)n

)
= xn−1

(n − 1)! e
λx.

Proof. One knows well that

xn

n! ∗ u =
∫ n+1

u.

This can be rewritten as

L(tn) = tn+1u.

In particular, for every proper rational function g, we have

L(tn) ∗ L(g) = tn+1L(g).

Since tn+1L(g) = L(tn+1g), we get

L(tn) ∗ L(g) = L(ttng).
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From this, one easily gets the following general formula

L(f ) ∗ L(g) = L(tfg).

The proof of the lemma goes now as follows. For m = 1, the lemma is obvious: L(s/(s − λ)) =
L((1 − λt)−1) = eλx . Using induction and the above formula, we have

L

(
s

(s − λ)m+1

)
= L

(
t

s

s − λ

s

(s − λ)m

)
= eλx ∗ xm−1

(m − 1)! e
λx

=
∫ x

0

um−1

(m − 1)! e
λueλ(x−u)du = eλx

∫ x

0

um−1

(m − 1)!du = xm

m! e
λx.

The proof is complete. �
The lemma above permits us to compute all L-transforms in the complex case. Indeed, let g be an

arbitrary proper rational function, and let

g

s
= �

a

(s − λ)n

be the partial fraction expansion of g/s (which is a strictly proper rational function). Then

g = �
as

(s − λ)n
,

and hence

L(g) = �
axn−1

(n − 1)! e
λx.

We leave to the reader to consider the real case. One can see that the L-transforms of proper rational

functions are precisely Bohl functions (see Polderman and Willems [9]).

Given a proper rational function g, we shall mean by g(∞) the free coefficient of g in its expansion

at infinity and by gσ the shift of g, that is, gσ = s(g − g(∞)).

Lemma 5. Let g ∈ O and u ∈ U . Then

gu = g(∞)u + L(gσ ) ∗ u.

Proof. For n � 1, we have

(tnu)(x) = (

∫ n

u)(x) =
∫ x

0

(x − ξ)n−1

(n − 1)! u(ξ)dξ = (L(tn−1) ∗ u)(x), x ∈ T.

Hence,

tnu = L(tn−1) ∗ u = L((tn)σ ) ∗ u.

Thus, the statement is true in the case when g = tn with n � 1. It is obvious when g = 1. These two

spacial cases yield the general case when g = b0 + �n�1bnt
n. �
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Corollary 3. For n � 1 and λ ∈ F,

1

(s − λ)n
u = xn−1

(n − 1)! e
λx ∗ u.

Proof. This is immediate by the lemma because

1

(s − λ)n
(∞) = 0 and

(
1

(s − λ)n

)σ

= s

(s − λ)n
. �

This corollary together with the partial fraction expansion theorem permits us to compute in the

complex case all products gu with g ∈ O and u ∈ U . (Again, the real case is left to the reader.)

Let now

G(∂)w = 0. (9)

be a differential equation, where G is a rational matrix, say, of size p × q. We shall assume that G has

full row rank. (In view of Lemma 3, there is no loss of generality in such assumption.)

The cases p = q and p < q are possible.

Case p = q: Let G = UsμB be a Wiener–Hopf factorization (that is, a factorization, where U is a

unimodular polynomial matrix, μ a sequence of integers and B is a biproper rational matrix). The

matrix G is strongly equivalent to the matrix sμB. Hence, (9) is equivalent to the equation

∂μBw = 0, w ∈ Up.

This is easy to solve. Indeed, w is a solution if and only if Bw is a solution of the equation

∂μξ = 0, ξ ∈ Up.

This latter is a trivial equation; its solution set is equal to F[t]pμ�. Thus, we have the following:

Theorem 1. The mapping

x �→ L(B−1x)

establishes a bijection of F[t]pμ onto the solution set of (9).

Case p < q: To treat this case, we need the following:

Lemma 6. Up to order of the columns, the matrix G has the form (the so-called input/output form)

G =
[
−G2 G1

]
,

where G1 is a square nonsingular rational matrix and G2 a rational matrix satisfying the conditions:

• det(G1) �= 0;

• G
−1
1 G2 is a proper rational matrix.

Proof. We can find a proper rational matrix H such that the sequence

0 → Om H→ Oq G→ F(s)p,
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where m = q − p, is exact. This must be a left invertible proper rational matrix. Hence, it contains a

square biproper rational submatrix H1 of size p. Reorder (if necessary) the components in F
q, so that

HH
−1
1 =

⎡
⎣ I

A

⎤
⎦ ,

where I is the unit matrix of sizem × m and A is a proper rational matrix of size p × m. Our matrix G

can be written then as

G =
[
−G2 G1

]
,

where G1 is a square rational matrix of size p and G2 is a rational matrix of size p × m. In view of the

exact sequence

0 → Om

⎡
⎢⎢⎣ I

A

⎤
⎥⎥⎦

→ Om ⊕ Op

[
−G2 G1

]
→ F(s)p,

we have

G1A − G2 = 0.

Further, because
[
−G2 G1

]
is of full row rank, the sequence

0 → F(s)m

⎡
⎢⎢⎣ I

A

⎤
⎥⎥⎦

→ F(s)m ⊕ F(s)p

[
−G2 G1

]
→ F(s)p → 0.

is exact. From this, we see that the F(s)-linear map G1 : F(s)p → F(s)p is bijective; hence, det(G1) �=
0. From the equality above, we therefore have: G−1G2 = A.

The lemma is proved. �

Remark. We could write G = d−1R, where d is a nonzero polynomial and R a polynomial matrix, and

derive the lemma from Theorem 3.3.22 in Polderman and Willems [6].

Thus, we may assume that our matrix G has the special form given in the above lemma.

Rewrite our equation as

G1(∂)y = G2(∂)u.

It is clear that every solution of this equation can be represented in a unique way as the sum of a

particular solution and a solution of the equation G1(∂)y = 0.

Put A = G
−1
1 G2. Using Corollary 1, it is easy to see that (u, Au), where u ∈ Um, is a particular

solution. Indeed,

[
−G2 G1

] ⎡
⎣ u

Au

⎤
⎦ = 0 ∈ �p.
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We already know how to treat the equation G1(∂)y = 0. Letting G1 = UsμB be a Wiener–Hopf

factorization of G1, we thus have the following:

Theorem 2. The mapping⎛
⎝ u

x

⎞
⎠ �→

⎛
⎝ u

Au + L(B−1x)

⎞
⎠

establishes a bijection of Um ⊕ F[t]pμ onto the solution set of (9).

Example 4. Consider the equation

∂3 − 2∂2 + ∂

−2∂2 + 7∂ − 4
y = ∂2 − 1

∂
u,

which comes from the rational matrix
[
−g2 g1

]
, where

g1 = s3 − 2s2 + s

−2s2 + 7s − 4
and g2 = s2 − 1

s
.

We have

g1 = s ·
(

2s

s − 1
+ s

(s − 1)2
− 4

)−1

and g
−1
1 g2 = −2 + 1

s
+ 4

s2
+ 2

s − 1
.

We conclude that

C(2ex + xex − 4), C ∈ F

are the "homogeneous" solutions and the "input/output" relation between y and u is given by the

formula

yi/o(x) = −2u(x) +
∫ x

0
u(ξ)dξ + 4

∫ x

0
(x − ξ)u(ξ)dξ + 2

∫ x

0
ex−ξu(ξ)dξ.

3. Transfer function, initial conditions

In this section, we assign to a rational matrix two important invariants, called the transfer function

and the initial condition space. The importance of these invariants is due to Theorem 3, which is the

main result of the section.

A transfer function with signal number q is a submodule T ⊆ Oq such that Oq/T is free (see [4]). It

can be defined also as a submodule of the form T = E∩Oq, where E is anF(s)-linear subspace ofF(s)q.
For any submodule T ⊆ Oq, we let TU denote the set of all finite sums of trajectories guwith g ∈ T

and u ∈ U .
Let G be an arbitrary rational matrix of size p × q, say, and let B denote the behavior of G.

We define the transfer function of G to be

T = {g ∈ Oq | Gg = 0}.
In view of the exact sequence

0 → T → Oq G→ F(s)p,

this indeed is a transfer function.
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As we have remarked in Introduction, U is a torsion free module. One knows well that, for modules

over a principal ideal domain, the property of torsion freeness is equivalent to the property of flatness.

Therefore, tensoring the above sequence by U , we obtain an exact sequence

0 → T ⊗ U → Uq G→ Mp.

We see that the kernel of

Uq G→ Mp

is TU . As already remarked, B = {w ∈ Uq | Gw ∈ �p}; whence,

TU ⊆ B.

Trajectories of B that lie in TU are called transfer trajectories of G.

The initial condition space of G is defined to be

X = F[s]p ∩ tGOq.

Clearly, this is a finite-dimensional linear space (over F); its dimension is called the McMillan degree

of G.

Lemma 7. The image of B under the operator Uq G→ Mp is equal to Xδ.

Proof. By definition, the image is equal to �p ∩ GUq.

Let r denote the rank of G, and choose a full column rank rational matrix D such that GOq = DOr .

We then have

�p ∩ GUq = �p ∩ DU r = �p ∩ F(s)p� ∩ DU r .

We claim that F(s)p� ∩DU r = DOr
�. To show this, take any C such that CD = I. Ifw ∈ U r is such that

Dw ∈ F(s)p�, then w = CDw ∈ F(s)r�. Because U r ∩ F(s)r� = Or
�, it follows that w ∈ Or

�. The

claim is proved, and thus our image is equal to �p ∩ DOr
�.

Further, we have

�p ∩ DOr
� = (sF[s]p ∩ DOr)� = (F[s]p ∩ tGOq)δ = Xδ.

The proof is complete. �

Thus, the operator Uq G→ Mp induces a surjective map of Bh(G) onto Xδ. Composing this with the

evident bijective map Xδ → X , we obtain a canonical F-linear surjective map

B → X.

If w is a trajectory of G, then its image under this map is called the initial condition of w.

We have proved the following:

Theorem 3. There is a canonical exact sequence

0 → TU → B → X → 0.

Notice that transfer trajectories are precisely trajectories having zero initial condition.
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The frequency response of G is defined to be


 = {f ∈ Oq | Gf ∈ sF[s]p}.
It is clear that

B ∩ L(Oq) = L(
).

Proposition 1. B = TU + L(
).

Proof. Let w ∈ B, and let x be its initial condition. There is f ∈ 
 such that G(f ) = sx. Then L(f ) is a
trajectory with the same initial condition x. Hence, w − L(f ) ∈ TU .

This completes the proof. �

Remark. If we know the frequency response, we certainly know the transfer function. The proposi-

tion says therefore that knowledge of the frequency response (or, what is equivalent, the set of Bohl

trajectories) implies knowledge of the whole behavior.

The following corollary will be very helpful for us.

Corollary 4. Let G1 and G2 be two rational matrices (with the same column number), and let 
1 and 
2

be their frequency responses. Then

Bh(G1) ⊆ Bh(G2) ⇔ 
1 ⊆ 
2.

4. Duality theorem

Let G be a rational matrix of size p × q.

Consider the bilinear form

F[s]q × Uq → F

defined by the formula

〈f ,w〉 = (f tr(∂)w)(0).

Notice that this is the composition of the well-known pairing

F[s]q × Uq → U, (f ,w) �→ f tr(∂)w

and the canonical map

U → F, u �→ u(0).

In this section we are interested in computing the orthogonal of Bh(G) with respect to this bilinear

form.

For a subset X ⊆ F(s)q, let us write X− to denote the set of the polynomial parts of all elements in

X . We need the following technical:

Lemma 8. Let M be a finitely generated F[s]-submodule of F(s)q and E an F(s)-linear subspace of F(s)q

such that M ⊆ E. The following conditions are equivalent:

(a) E is the fraction space of M;

(b) E−/M− has finite dimension (over F).
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Proof. Consider the canonical epimorphism E → E−/M−.We claim that its kernel is equal toM+(E∩
tOq. Indeed, assume that x+ty ∈ E, where x ∈ F[s]q and y ∈ Oq, goes to zero. Then x+tz ∈ M for some

z ∈ Oq. BecauseM ⊆ E, wemust have y− z ∈ E. Hence, x+ ty = (x+ tz)+ t(y− z) ∈ M + (E ∩Oq).
The claim is proved, and thus we have a canonical isomorphism

E/(M + (E ∩ tOq)) � E−/M−.

The assertion follows now from Lemma 3 in [4]. �

Theorem 4 (Duality Theorem). There holds

Bh(G)⊥ = Ass(G)−.

Proof. We can easily reduce to the full row rank case. So, we shall assume that G has full row rank.

Choose D so that D−1G is right biproper rational matrix. Note that the initial condition space of G

is equal to

F[s]p ∩ tGOq = F[s]p ∩ tDOp = H0(D).

(Initial conditions are 0-dimensional cohomologies!)

Put

B = KerG(∂) and M = Ass(G).

We have to prove that

B⊥ = M−.

The inclusion "⊇" is easily verified. Indeed, take any x ∈ M−. Then x + ty = Gtrf for some y ∈ Oq

and f ∈ F[s]p. For each trajectory w of B, we have

〈x,w〉 = (Gtrf − ty)tr(∂)w(0) = (f tr(∂)G(∂)w)(0) − (tytrw)(0) = ((f tr(∂)0)(0) − 0 = 0.

Thus, B⊥ ⊇ M−.

Further, we have TU ⊆ B, and consequently B⊥ ⊆ (TU)⊥. We claim that

(TU)⊥ = E−,

where E = Gtr
F(s)p. Indeed, we have T = Ker(G) ∩ Oq. (Here, in this proof, by Ker(G) we mean the

set {u ∈ F(s)q | Gu = 0}.) Let Ker(G)◦ denote the orthogonal of Ker(G) with respect to the standard

bilinear form

F(s)q × F(s)q → F(s), (x, y) �→ xtry.

For every u ∈ Ker(G) and every v ∈ F(s)p, we have

utrGtrv = (Gu)trv = 0.

Hence,

E ⊆ Ker(G)◦.

Both these spaces have the same dimension over F(s), which is p. Therefore, we have

E = Ker(G)◦.
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The claim follows now from Lemma 11 and Lemma 8 in [4].

Thus, there is a tower

M− ⊆ B⊥ ⊆ E−.

We want to prove that

dim(E−/B⊥) = dim(E−/M−).

If we can prove this, it will follow that B⊥ = M−.

Consider the canonical bilinear form

(TU)⊥/B⊥ × B/TU → F.

This clearly is nondegenerate from the left. To see that it is nondegenerate from the right as well, take

an arbitrary ξ ∈ B such that 〈f , ξ 〉 = 0 for each f ∈ E−. Write ξ = ξ0 + y�, where ξ0 ∈ TU and

y ∈ Oq. By Lemma 11 in [4], 〈f , ξ0〉 = 0 for each f ∈ E−. It follows that

∀f ∈ E−, 〈f , y�〉 = 0.

We see that y� is orthogonal to E−. In view of Lemma 8 in [4], y ∈ T . Thus, our bilinear form is

nondegenerate, andwe conclude that the dimension of E−/B⊥ is equal to the dimension of B/TU . The
latter is equal to dimH0(D).

Further, GtrD∗ is a left invertible proper rational matrix. (This is because D−1G is a right invertible

proper rational matrix.) Therefore

GtrD∗Op = Gtr
F(s)p ∩ Oq = E ∩ Oq.

It is easily seen that Gtr : F(s)p → F(s)q induces an isomorphism

F(s)p

F[s]p + tD∗Op
� E

M + (E ∩ tOq)
.

The left side is none other thanH1(D∗); the right side, aswe saw in the proof of Lemma8, is canonically

isomorphic to E−/M−. Thus, dim(E−/M−) = dimH1(D∗).
Using the formula (8), we complete the proof. �

5. Equivalence theorem

As already remarked, two strongly equivalent rationalmatrices determine the samebehavior. How-

ever, the converse is not true.

Example 5. The rational functions 1 and t have the same behavior (which is {0}), but they are not

strongly equivalent.

To handle the equivalence problem, we have to introduce a somewhatweaker equivalence relation.

Let G1 and G2 be two rational matrices. Say that G1 is more powerful than G2 (and write G1 � G2)

if, for every nonnegative integer n, there exists a polynomial matrix P such that

snG2 − PG1

is a strictly proper rational matrix.

This concept naturally generalizes the one introduced inWillems [12]. Indeed, one can easily verify

that, in the case when both G1 and G2 are polynomial matrices, G1 is more powerful than G2 if and

only if there exists a polynomial matrix P such that G2 = PG1.
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Lemma 9. Let G1 and G2 be two rational matrices with the same column number q. Then

G1 � G2 ⇔ Ass(G2)− ⊆ Ass(G1)−.

Proof. Let r1 be the row number of G1 and r2 the row number of G2. Saying that Ass(G2)− ⊆ Ass(G1)−
is equivalent to saying that

Gtr
2 F[s]p2 ⊆ Gtr

1 F[s]p1 + tOq.

"⇒" Let (ei) be the canonical basis of F
1×r2 . For each n � 0, choose a polynomial matrix Pn such

that

snG2 − PnG1 ∈ tOr2×q.

Denote by Pn,i the i-th row of Pn. Then

sneiG2 − Pn,iG1 ∈ tO1×q,

and consequently

Gtr
2 s

netri − Gtr
1 P

tr
n,i ∈ tOq.

The assertion follows because the columns snetri form a basis of F[s]r2 .
"⇐" Left to the reader.

The lemma is proved. �

The lemma implies, in particular, that the "�" is a partial order.

Lemma 10 (Inclusion Lemma). Let G1 and G2 be two rational matrices (with the same column number).

Then

Bh(G1) ⊆ Bh(G2) ⇔ G1 � G2.

Proof. "⇒" This is immediate from Duality Theorem (and Lemma 9).

"⇐" In view of Corollary 4, it suffices to show that Bohl trajectories of G1 are trajectories of G2. Let

w be an arbitrary Bohl trajectory of G1. Then G2(∂)w is a Bohl function, and to show that it is zero it

suffices to show that all the coefficients in its Taylor expansion are zero.

Take i to be an arbitrary nonnegative integer, and choose a polynomial matrix P so that siG2 − PG1

is strictly proper. We then have

(∂ iG2(∂)w)(0) = (P(∂)G1(∂)w)(0) = (P(∂)0)(0) = 0.

The proof is complete. �

Two rational matrices will be said to be equivalent if each of them is more powerful than the other.

Two strongly equivalent rational matrices are equivalent, of course; but not conversely.

Example 6. The rational functions 1 and t are not strongly equivalent; but they are equivalent.

For polynomial matrices, it is clear that "equivalence" = "strong equivalence".

As an immediate consequence of Inclusion Lemma, we have the following:

Theorem 5 (Equivalence Theorem). Two rational matrices determine the same linear system if and only

if they are equivalent.
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It is interesting to compare this result with the main result of Gottimukkala et al. [3]. Let G1 and G2

be two rational matrices with the same column number q. By the theorem above, G1 and G2 have the

same behavior if and only if

Ass(G1)− = Ass(G2)−.

Theorem 6.3 in [3] says that G1 and G2 have the same behavior in the sense ofWillems and Yamamoto

if and only if

Ass(G1) ∩ F[s]q = Ass(G2) ∩ F[s]q.

6. Linear differential and integral systems

In the class of all rational matrices polynomial and proper rational matrices form two extreme

subclasses. Linear systems determined by polynomial matrices are called, as is well-known, linear

differential systems (see Polderman andWillems [9]). In an analogy, let us call linear systems that are

determined by proper rational matrices linear integral systems.

A natural question to ask is: What is special with linear differential systems and what is special

with linear integral systems?

To proceed, we need to recall the main result of [4].

Let S be an F-linear subspace of Uq. Letting T denote the submodule

{g ∈ Oq | gU ⊆ S} ⊆ Oq,

we define the relative dimension of S to be the dimension of S/TU (over F). Theorem 3 in [5] states

that S is the behavior of a polynomial matrix if and only if it satisfies the following two conditions:

(1) S is differentiation-invariant;

(2) S has finite relative dimension.

Lemma 11. The relative dimension of a linear system is finite; it is equal to the McMillan degree of any its

representation.

Proof. Let B a linear system, and let G be its representation. Let p× q be the size of G and T the transfer

function. We claim that

T = {g ∈ Oq | gU ⊆ B}.

The inclusion "⊆" is obvious. Indeed, if g ∈ T , then

∀ u ∈ U, G(gu) = (Gg)u = 0u = 0.

To show the inclusion "⊇", take any g ∈ Oq that does not belong to T , i.e., Gg �= 0. Choose a sufficiently

large integer n so that tnGg ∈ Op. We then have

G(gtn�) ∈ Op
�.

Hence, the trajectory gtn� does not lie in B. Consequently, g is not an element of the right side above.

The claim is proved.

It remains now to apply Theorem 3. �
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From this lemma and from the result that we have recalled, we obtain the following:

Proposition 2. A linear system is differential if and only if it is differentiation-invariant.

The case of linear integral systems is easier.

First, prove the following proposition that gives an intrinsic characterization of the transfer trajec-

tories of a linear system.

Proposition 3. Let G be a rational matrix, and let B be its behavior. Then

TU = {w ∈ B | tnw ∈ B ∀n � 0};
in other words, w ∈ B is a transfer trajectory if and only if all its n-fold integrals also are trajectories of B.

Proof. "⊆" is obvious. To prove "⊇", take any trajectory w of G and assume that its initial condition x

is not zero. Let x = a0s
n + · · · + an with a0 �= 0. Then

G(tn+1w) = tn+1xδ = (a0 + · · · + ant
n)�.

We see that tn+1w is not a trajectory of G. �

The proposition says that, if B is a linear system with transfer function T , then the biggest

integration-invariant subset in B is TU. It follows that linear systems that are integration-invariant

have the form TU .

Proposition 4. A linear system is integral if and only if it is integration-invariant.

Proof. "If" Let G be a proper rational matrix. Then saying that Gw is purely impulsive is the same as

saying that Gw is zero. Consequently, if T is the transfer function of G, then KerG(∂) = TU.
"Only if" Let B be a linear integral system. As we said above, B = TU , where T is a transfer function.

The module Oq/T is free. Therefore, letting p denote its rank, we can find a proper rational matrix G of

size p × q such that the sequence

0 → T → Oq G→ Op → 0

is exact. Tensoring this by U , we get an exact sequence

0 → T ⊗ U → Uq G→ Up → 0

As already remarked, G(∂) is the same as Uq G→ Up. Hence, G represents B = TU .
The proof is complete. �

Corollary 5. The mapping

T �→ TU

establishes a one-to-one correspondence between transfer functions and linear integral systems.

Proof. The mapping is injective due to the equality TU ∩ L(Oq) = L(T), which was shown in Section

5 of [4]. The surjectivity follows from the above proposition.

The proof is complete. �
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