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a b s t r a c t

Convolutional codes inherit from polynomials a natural structure of a filtered module,
which is a fundamental structure and therefore should be taken into account. Pursuing this
idea, we define higher-dimensional analogs of the predictable degree property, Forney’s
indices and overall constraint length; also, we address the important issue of minimality.
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1. Introduction

Multidimensional convolutional codes are natural generalizations of classical (one-dimensional) convolutional codes and
are used to transmit multidimensional data. They have been studied quite a bit in the literature and we refer the reader to
Fornasini and Valcher [5], Valcher and Fornasini [13], Weiner [14] andmore recent works Charoenlarpnopparut [2], Climent
et al. [3], Jangisarakul and Charoenlarpnopparut [7], Kitchens [8], Napp Avelli et al. [11,12], Zerz [15].

In this article, we would like to offer a new view-point on some fundamental issues of algebraic character related to
multidimensional convolutional codes.

Throughout, F is an arbitrary (finite) field and n a fixed positive integer. Let D1, . . . ,Dn be indeterminates and S =

F[D1, . . . ,Dn] the ring of polynomials in these indeterminates. We remind that the degree of a monomial Di1
1 . . .Din

n is the
sum i1 + · · · + in, and the degree of a (nonzero) polynomial f is the maximum of the degrees of the nonzero terms of f . (The
degree of the zero polynomial is defined to be −∞.) For every d ∈ Z, we shall write S≤d to denote the space of polynomials
of degree ≤ d. (It is worth noting that S≤d = {0} for every negative d.)

Following Weiner [14] and other authors, a convolutional code of length q is a submodule of Sq. (In dimension 1, all
convolutional codes are free, and therefore some authors impose the freeness condition. However, this condition is too
restrictive in higher dimensions.) A desirable property of a convolutional code is non-catastrophicity, butwe shall not require
this property in the sequel. (It can be shown that a convolutional code C ⊆ Sq is non-catastrophic if and only if polynomials
with nonzero constant term are not zero divisors on Sq/C .)

A convolutional code C ⊆ Sq gives rise to a family of block codes (C≤d)d≥0 defined as

C≤d = C ∩ Sq
≤d.
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These block codes are of great importance, and they form, what is called in Algebra, a filtration. As we shall see, they lead
naturally to integer invariants of C such as the input number, the overall constraint length and the Forney indices.

A representation (or a generator matrix) of a convolutional code C is a polynomial matrix G (with no zero column) such
that GSp = C , where p is the number of columns in G. The point of view we pursue in this article is that attention should be
focused exclusively on those representations that represent each C≤d individually, that is, those representations G for which

∀d ≥ 0, G(
p⨁

i=1

S≤d−ai ) = C≤d,

where p is the column number of G and a1, . . . , ap are the column degrees. This property is fundamental, and we call it the
predictable degree (PD) property. It is a higher dimensional analog of Forney’s classical predictable degree property.

By means of filtrations, we introduce the concept of minimality, and show that for a given convolution code there always
exists a unique (up to equivalence) minimal proper representation.We then give numerical characterizations of minimality;
namely, we show thatminimal proper representations are precisely those proper representations that have the least column
number or the least total column degree.

In some extent, we use in the article gradedmodules. The point is that convolutional codes admit a homogenization, which
captures the structure of a filteredmodule. Gradedmodules are easier toworkwith than filteredmodules, and there is a very
nice theory for them (see Eisenbud [4]). For a convenience of the reader, we recall in Appendix A a few facts about graded
modules.

This article is a simplified adapted version of [10]. The latter is quite involved and is addressed to system theorists, andwe
have thought it worthwhile tomake itsmost relevantmaterial available for the coding theory community in a self-contained
form.

2. Filtrations, and the PD property

Filtrations are widely used in Algebra (and in many other fields of Mathematics). In this paper, we consider filtrations on
modules (see Ch.III, §2.1 in Bourbaki [1]).

LetM be a module over S. A filtration on M is an ascending chain

M≤0 ⊆ M≤1 ⊆ M≤2 ⊆ · · ·

of linear subspaces ofM such that

M =

⋃
M≤d and DkM≤d ⊆ M≤d+1 ∀k, d.

A module with a filtration is called a filtered module.
By a twisting function of length p, we shall mean any function of [1, p], the set of integers from 1 to p, into Z+. If a is a

twisting function of length p, then, for f ∈ Sp with components f1, . . . , fp, we set

dega(f ) = max
i

{a(i) + deg(fi)}.

(When a = 0, we certainly get the usual degree deg(f ).)

Example 1. A twisting function a : [1, p] → Z+ determines on Sp a filtration consisting of the spaces

Sp[−a]≤d = {f ∈ Sp| dega(f ) ≤ d} (d ≥ 0).

The module Sp equipped with this filtration is denoted by Sp[−a]. (If a = 0, we shall write simply Sp instead of Sp[−0].)
A homomorphism of filtered modulesM → N is a module homomorphism u : M → N such that

∀d ≥ 0, u(M≤d) ⊆ N≤d.

Example 2. Let G be a polynomial matrix of size q × p and with column degree function a (i.e., the function that assigns to
every j ∈ [1, p] the degree of the jth column of G). Then, G determines a homomorphisms of filtered modules

Sp[−a] → Sq.

One has an obvious notion of isomorphisms between filtered modules. The following lemma can be found in [10]. (For
the sake of completeness, we present its proof.)

Lemma 1. Let a1 : [1, p1] → Z+ and a2 : [1, p2] → Z+ be two twisting functions. If

Sp1 [−a1] ≃ Sp2 [−a2],

then p1 = p2 and a1 = a2 (up to permutation).
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Proof. That p1 = p2 is obvious (since an isomorphism Sp1 [−a1] ≃ Sp2 [−a2] yields a module isomorphism Sp1 ≃ Sp2 ). Let
this common value denote by p.

Next, we certainly may assume that a1 and a2 are increasing functions. Suppose that a1 ̸= a2, and let i be the smallest
number such that a1(i) ̸= a2(i). Say that a1(i) < a2(i). Letting d = a1(i), we have:

Sp[−a1]≤d ≃ Sp[−a2]≤d.

But the left side here is equal to

S≤d−a1(1) ⊕ · · · ⊕ S≤d−a1(i−1) ⊕ F ⊕ · · ·

and the right side is

S≤d−a2(1) ⊕ · · · ⊕ S≤d−a2(i−1).

We get a contradiction. □

Definition. Let G be a polynomial matrix of size q × p and with column degree function a, and let C = GSp. Say that G has
the PD property if the linear map

Sp[−a]≤d
G

→ C≤d

is surjective for all d ≥ 0. A polynomial matrix having the PD property will be called proper.

Remark. In the classical 1-dimensional case, it is customary to introduce the concept of PD property for full column rank
polynomial matrices only. Here, the full column rank assumption is not made even when n = 1.

Example 3. Let n = 1 (and write D instead of D1). Consider the convolutional code

C = {

(
x
Dy

)
| x, y ∈ S}.

The following two polynomial matrices

G1 =

[
1 0
0 D

]
and G2 =

[
1 0 1
0 D D

]
are representations of C . The column degrees of these matrices are respectively (0, 1) and (0, 1, 1). It is easily seen that, for
each d ≥ 0,

G1(S≤d ⊕ S≤d−1) = C≤d and G2(S≤d ⊕ S≤d−1 ⊕ S≤d−1) = C≤d.

Hence, both of the matrices are proper. (Notice that the matrix G2 is not of full column rank !)

Example 4. Let n = 2, and consider the convolutional code

C = {

( x
D1x + D2y

x + y

)
| x, y ∈ S}.

(This is taken from Example 1 in Climent et al. [3].) The simplest representation of this code is the polynomial matrix[ 1 0
D1 D2
1 1

]
.

However, this does not have the PD property. Indeed, the codeword[ 1 0
D1 D2
1 1

](
D2

−D1

)
=

( D2
0

D2 − D1

)
belongs to C≤1, but this codeword cannot be obtained from a constant input.

Now, consider the matrix

G =

[ 1 D2 0
D1 0 D2
1 D2 − D1 1

]
.
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From the relations

G

[ 1 0
0 0
0 1

]
=

[ 1 0
D1 D2
1 1

]
and

[ 1 0
D1 D2
1 1

][
1 D2 0
0 −D1 1

]
= G,

one can see that G also represents C . We claim that it has the PD property. Indeed, assume that

( x
D1x + D2y

x + y

)
is a

codeword in C≤d. Denote by f and g the homogeneous d-parts of x and y, respectively. Since D1x + D2y ∈ S≤d, it follows
that D1f + D2g = 0. It is easily seen that f = D2h and g = −D1h for some h ∈ S≤d−1. We then have:( x − f

h
y − g

)
∈ S3

≤d−1 and G

( x − f
h

y − g

)
=

( x
D1x + D2y

x + y

)
.

Two proper representations G1 and G2 of a convolutional code C are said to be equivalent if there exists an isomorphism
Sp1 [−a1] → Sp2 [−a2] making the diagram

Sp1 [−a1]
G1
→ C

↓ ∥

Sp2 [−a2]
G2
→ C

commutative. (Here pi is the column number of Gi and ai the column degree function.) By Lemma 1, if G1 and G2 are
equivalent, then p1 = p2 and a1 = a2 (up to permutation).

3. The input number, the overall constraint length and the forney indices

LetM be a filtered module. If d ≥ 1, then

M≤d−1 + D1M≤d−1 + · · · + DnM≤d−1

is the part ofM≤d that contains nothing ‘‘essentially new’’. It is natural therefore to consider the quotients

Γd(M) =
M≤d

M≤d−1 + D1M≤d−1 + · · · + DnM≤d−1
.

Notice that these are linear spaces over F. (We put Γ0(M) = M0.)

Example 5. Let k and d be nonnegative integers. Then,

Γd(S[−k]) =

{
F when d = k;

{0} when d ̸= k.

The following theorem is important; it permits us to introduce important integer invariants in an intrinsic way.

Theorem1. If C is a convolutional code, then all the linear spacesΓd(C) have finite dimension. Moreover, they all are trivial except
for a finite number.

Proof. See Appendix B. □

Definition. Let C be a convolutional code. For every d ≥ 0, set

γC (d) = dim(Γd(C)),

and define the input number γ (C) of C and the overall constraint length δ(C) respectively by the formulas

γ (C) =

∑
d≥0

γC (d) and δ(C) =

∑
d≥0

dγC (d).

Call each d ≥ 0, for which γC (d) ̸= 0, a Forney index (or a constraint length) and the number γC (d) its multiplicity. Define
the memory as the maximal Forney index.

We close the section by the following proposition.

Proposition 1. Let C be a convolutional code, and let m be its memory. Then C can be recovered from C≤m.
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Proof.We have Γd(C) = 0 for all d > m. In other words, for all such d,

C≤d = C≤d−1 + D1C≤d−1 + · · · + DnC≤d−1.

From this, we can see that knowledge of C≤m implies knowledge of all C≤d with d > m. It remains to notice that, for every
nonnegative integer N ,

C =

⋃
d≥N

C≤d.

The proof is complete. □

4. Minimality

Let u : M → N be an epimorphism of filtered modules. Say that u is minimal if the linear map

Γd(u) : Γd(M) → Γd(N)

is bijective for all d ≥ 0.

Theorem 2. Let C be a convolutional code of length q. There exists a proper representation G such that the epimorphism

G : Sp[−a] → C,

where p is the column number of G and a the column degree function, is minimal. Moreover, such a representation is uniquely
determined (up to equivalence).

Proof. (Existence) We construct a canonical proper representation of C extending the ‘‘greedy’’ construction presented in
Section 4 of Forney et al. [6].

Let d be any nonnegative integer. Choose elements in C≤d that define a basis of Γd(C). Clearly they all have degree d since
they do not belong to C≤d−1. These elements are columns in Sp, and hence they form a polynomial matrix of size q × γ (d),
which we denote by Gd. (For simplicity, we write γ (d) instead of γC (d).) Remark that Gd can be viewed as a linear map
Fγ (d)

→ C≤d that induces an isomorphism

Fγ (d)
≃ Γd(C).

Varying d, we get a matrix

G =
[

G0 G1 G2 · · ·
]
.

Because γ (d) = 0 for all but finitely many d, this in fact is a finite matrix. It determines a homomorphism of filteredmodules

G :

⨁
k

S[−k]γ (k)
→ Sq.

We are going to show that G is a minimal proper representation of C .
Put

Vd =

⨁
k

S[−k]γ (k)
≤d = Sγ (0)

≤d ⊕ Sγ (1)
≤d−1 ⊕ · · · ⊕ Sγ (d−1)

≤1 ⊕ Sγ (d)
≤0 .

We claim that[
G0 G1 · · · Gd

]
: Vd → C≤d

is surjective for each d ≥ 0. This is so when d = 0 since, by construction, G0 : Fγ (0)
→ C≤0 is bijective. Assume that the

surjectivity holds for d − 1 with d ≥ 1. For every k ≥ 1, S≤k = S≤k−1 + D1S≤k−1 + · · · + DnS≤k−1, and using this, we can
easily see that

Vd = (Vd−1 + D1Vd−1 + · · · + DnVd−1) + Sγ (d)
≤0 .

By the induction assumption, it follows that the image of Vd−1 + D1Vd−1 + · · · + DnVd−1 under
[

G0 G1 · · · Gd−1
]
is

equal to

C≤d−1 + D1C≤d−1 + · · · + DnC≤d−1.

Next, by construction, the image of Sγ (d)
≤0 = Fγ (d) under Gd is the complement of the above space to C≤d. The claim is proved.

Now, the filtered module
⨁

S[−k]γ (k) can be rewritten as Sp[−a], where p =
∑

γ (k) and a : [1, p] → Z+. (The function
a is uniquely determined up to permutation.) Then, the homomorphism G takes the form

Sp[−a] → Sq.
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Minimality is obvious. Indeed, by Example 5,

Γd(
⨁

S[−k]γ (k)) = Fγ (d)

and, as already remarked, the linear map Gd : Fγ (d)
→ C≤d induces an isomorphism

Fγ (d)
≃ Γd(C).

(Uniqueness) See Appendix B. □

Any G satisfying the condition of Theorem 2 is called a minimal proper representation of C .
If G is a polynomial matrix, we let γ (G) denote the number of columns of G and δ(G) the total column degree of G (i.e., the

sum of all its column degrees.)

Theorem 3. Let C be a convolutional code of length q, and let G be any its proper representation. Then

γ (G) ≥ γ (C) and δ(G) ≥ δ(C).

The following three conditions are equivalent:
(a) G is minimal;
(b) γ (G) = γ (C);
(c) δ(G) = δ(C).

Proof. Let p be the column number of G and a the column degree function. For each d ≥ 0, let γG(d) denote the number of
values of a equal to d. Then

γ (G) =

∑
γG(d) and δ(G) =

∑
dγG(d).

In view of Example 5, γG(d) = dimΓd(Sp[−a]). And because the linear map Γd(Sp[−a]) → Γd(C) is surjective, we get
γG(d) ≥ γC (d). We therefore have

γ (G) =

∑
γG(d) ≥

∑
γC (d) = γ (C),

and likewise

δ(G) =

∑
dγG(d) ≥

∑
dγC (d) = δ(C).

Certainly, (b) and (c) hold if and only if γG(d) = γC (d) for every d. But this, in turn, is equivalent to bijectivity of all the linear
maps Γd(Sq[−a]) → Γd(C).

The proof is complete. □

Corollary 1. The Forney indices of a convolutional code are equal to the column degrees of any its minimal proper representation.

Proof. As shown in the above proof, if G is a minimal proper representation of a convolutional code C , then γC (d) = γG(d)
for every d.

This implies what we want. □

Corollary 2. (a) A minimal proper representation is a one that has minimal column number (among all proper representations).
(b) A minimal proper representation is a one that has minimal total column degree (among all proper representations).

Remark. In dimension 1, the property of minimality and the property of having full column rank are equivalent for proper
polynomial matrices. But this is not the case in higher dimensions. (See the following example.)

Example 6. Let C and G be as in Example 4.We have seen that G is a proper representation, i.e., the linearmaps S3
≤d−1 → C≤d

are surjective for all d ≥ 0. Now, we claim that G is minimal (though it is not of full column rank). First of all, C≤0 = {0} and,
consequently, the isomorphism Γ0(S3[−1]) ≃ Γ0(C) is trivial. Next, for d ≥ 2, we have

C≤d = G(S3
≤d−1) = G(S3

≤d−2 + D1S3≤d−2 + D2S3≤d−2)
= G(S3

≤d−2) + D1G(S3≤d−2) + D2G(S3≤d−2) = C≤d−1 + D1C≤d−1 + D2C≤d−1,

and consequently, Γd(C) = {0}. So, for all d ≥ 2, we have trivial isomorphisms Γd(S3[−1]) ≃ Γd(C). Further, S3≤0 = F3, and
it is easily seen that the linear map F3

→ C≤1 is not only surjective, but injective as well. Hence, we have an isomorphism
Γ1(S3[−1]) ≃ Γ1(C). We see that C has the input number 3, the Forney indices (1, 1, 1), and its overall constraint length is
equal to 3.
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Appendix A. Graded modules

Introduce an extra (‘‘homogenizing’’) indeterminate D0, and define

T = F[D0,D1, . . . ,Dn].

Let I denote the ideal of T generated by D0,D1, . . . ,Dn. This is a maximal ideal and T/I = F.
A graded module over T is a module M together with a gradation, i.e., a sequence M0,M1,M2, . . . of F-linear subspaces

of M such that

M = ⊕Md and DkMd ⊆ Md+1 ∀k, d.

A twisting function a of length p determines on T p the gradation consisting of the spaces

T p(−a)d = {f ∈ T p
| deg(fi) = d − a(i)} (d ≥ 0).

The module T p equipped with this gradation will be denoted by T p(−a).
A graded free module is a one that is isomorphic to a graded module of the form T p(−a).
A homomorphism of graded modules M → N is a module homomorphism u : M → N such that u(Md) ⊆ Nd for all

d ≥ 0.
Given a graded moduleM , we set M = M/IM . The following lemma plays a key role in the theory of graded modules.

Lemma 2 (‘‘Nakayama’s Lemma’’). Let M be a graded module over T . If M = {0}, then M = {0}.

Proof. Assume not, and take a homogeneous elementm ∈ M of the smallest degree. Since elements of I have degree > 0, it
is clear thatm /∈ IM . And we getM ̸= {0}. □

A homomorphism u : L → M of graded modules induces in an obvious way a linear map L → M , denoted by u. A
homomorphism u is called minimal if u is bijective.

Corollary 3. Let u : L → M be a homomorphism of graded modules. Then u is an epimorphism if and only if so is u.

Proof. Let N denote the cokernel of u. The exact sequence L → M → N → 0 yields the exact sequence L → M → N → 0,
and the statement follows by Nakayama’s Lemma. □

Corollary 4. Let u : F1 → F2 be a homomorphism of graded free modules. Then u is an isomorphism if and only if so is u.

Proof. We need to show the ‘‘If’’ part. By the previous corollary, u is surjective. Next, because F1 and F2 are free, rk(F1) =

dim(F1) = dim(F2) = rk(F2). It follows that Ker(u) has rank 0. On the other hand, Ker(u) is torsion free (as a submodule of a
free module). We conclude that Ker(u) = {0}. □

If M is a graded module, for every d ≥ 0, we set

Γd(M) =
Md

D0Md−1 + D1Md−1 + · · · + DnMd−1
.

Lemma 3. If M is a finitely generated graded module, then all the spaces Γd(M) have finite dimension and all of them are trivial
except for finitely many d.

Proof. M is a finitely generated graded module. Hence, it is finite-dimensional as a linear space over F. This completes the
proof sinceM = ⊕d≥0Γd(M). □

If u : L → M is a homomorphism of graded modules, then, for each d ≥ 0, we have a canonical linear map
Γd(u) : Γd(L) → Γd(M). Saying that u : L → M is minimal is the same as saying that all the linear maps Γd(u) are bijective.

Appendix B. Proofs of Theorem 1 and uniqueness part of Theorem 2

The homogenization in degree d is the bijective linear map

S≤d → Td : f ↦→ Dd
0f (D1/D0, . . . ,Dn/D0).

Example 7. The homogenization in degree 4 of the polynomial 2D3
1Dn + 1 is 2D3

1Dn + D4
0 and the homogenization in degree

5 is 2D0D3
1Dn + D5

0.
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If C ⊆ Sq is a convolutional code, the homogenization Ch of C is defined to be

Ch
=

⨁
d≥0

Ch
d ,

where Ch
d is the image of C≤d = C ∩ Sq

≤d under the homogenization operator Sq
≤d → T q

d . This is a graded submodule of T q

(a ‘‘homogeneous’’ convolutional code of length q).
If G is a polynomial matrix with column number p and column degree function a, the homogenization of G is defined

to be

Gh
= G(D1/D0, . . . ,Dn/D0)diag(D

a(1)
0 , . . . ,Da(p)

0 ).

Lemma 4. Let C ⊆ Sq be a convolutional code, and let G be its representation with column number p and column degree function
a. Then

(a) G is a proper representation if and only if GhT p(−a) = Ch;
(b) the homomorphism G : Sp[−a] → C is minimal if and only if so is the homomorphism Gh

: T p(−a) → Ch.

Proof. The first assertion follows from the commutative diagrams

Sp[−a]≤d
G

→ Sq
≤d

↓ ↓

T p(−a)d
Gh
→ T q

d

(d ≥ 0).

The second one follows from the commutative diagrams

Γd(Sp[−a])
Γd(G)
→ Γd(C)

↓ ↓

Γd(T p(−a))
Γd(Gh)
→ Γd(Ch)

(d ≥ 0).

The proof is complete. □

Proof of Theorem 1. It is easily seen that Γd(C) ≃ Γd(Ch). The graded module Ch is finitely generated by Hilbert’s basis
theorem (see Theorem 4.1 in Ch. IV of Lang [9]), and it remains to apply the previous lemma. □

Proof of Uniqueness Part of Theorem 2. Suppose that G1, G2 are two minimal proper representations of C . Let p1, p2
be their column numbers and a1, a2 the column degree functions. The homogenizations of these matrices determine the
homomorphisms of graded modules

Gh
1 : T p1 (−a1) → Ch and Gh

2 : T p2 (−a2) → Ch.

In view of Lemma 4, these homomorphisms are minimal. Because T p1 (−a1) is free and because Gh
2 is surjective, we can find

a homomorphism U : T p1 (−a1) → T p2 (−a2) of graded modules that makes the diagram

T p1 (−a1)
Gh1
→ Ch

U ↓ ∥

T p2 (−a2)
Gh2
→ Ch

commutative. Using this diagram, we can see that Gh
2U = Gh

1. It follows that U is an isomorphism. Then, by Corollary 4,
U also is an isomorphism. Now, U is, in fact, a homogeneous polynomial matrix. Putting D0 = 1 in this matrix, we get an
isomorphism Sp1 [−a1] ≃ Sp2 [−a2], which, in turn, determines an equivalence between G1 and G2.

The proof is complete. □
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