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Abstract

We study boundary-contact problems for elliptic equations (and systems) with interfaces that have edge
singularities. Such problems represent continuous operators between weighted edge spaces and subspaces
with asymptotics. Ellipticity is formulated in terms of a principal symbolic hierarchy, containing interior,
transmission, and edge symbols. We construct parametrices, show regularity with asymptotics of solutions
in weighted edge spaces and illustrate the results by boundary-contact problems for the Laplacian with
jumping coefficients.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction and formulation of the problems

1.1. Edge boundary-contact problems

This paper is aimed at studying boundary-contact problems with singularities at the interfaces.
Problems of this kind have been investigated by several authors, in different context, partly under
specific assumptions on the geometry or the involved dimensions, cf. Lemrabet [14], Escauri-
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aza, Fabes, and Verchota [6], Torres and Welland [21], Chkadua [3,4], Li and Vogelius [13],
Li and Nirenberg [12], Nicaise and Sändig [16] (numerical method), Heinrich, Nicaise and
Weber [8] (the Fourier-finite-element method and singular functions of non-tensorial type), Ka-
panadze and Schulze [10] (the latter paper studies the case with conical singularities at the
interfaces).

In the present paper we study the case with edge singularities: let G be a bounded domain in
the Euclidean space (first of any dimension, in the example below of dimension 3) of the form
G = G+ ∪ G− ∪ S for open subdomains G± of G such that G+ ∩ G− = S is an interface of
codimension 1. More precisely, we assume that ∂G+ = S, S ∩ ∂G = ∅, which has the conse-
quence that ∂G− = S ∪ ∂G. Starting from a pair of elliptic systems of differential operators A±
of order μ in G± (with smooth coefficients up to the respective boundaries) our problems have
the form

A±u± = f± in G±, (1)

T u− = h on ∂G, (2)

T+u+ + T−u− = g on S. (3)

Here T is (Shapiro–Lopatinskij) elliptic with respect to the operator A−, and T± are trace
operators of the form T± = t(T±,j )j=1,...,N ,

T±,j u± := (B±,j u±)|S (4)

for differential operators B±,j of order mj with smooth coefficients, defined in a tubular neigh-
borhood V of S in G. The restriction to S refers to the corresponding plus or minus side. The trace
operator T = t(T1, . . . , TN ′) is given in an analogous form, i.e., Tju− = Bju−|∂G for smooth dif-
ferential operators of order m′

j in a collar neighborhood of ∂G. The numbers N and N ′ are known
from the context. For instance, if A± are L × L systems of operators of order 2m in dimension
� 3, then we have N = 2mL and N ′ = mL (under some standard conditions on the principal
symbols of the operators near S and ∂G, respectively, see Agmon, Douglis, and Nirenberg [1]).
For our approach is not essential whether we consider scalar operators or systems.

As it was mentioned above the main focus of the paper is the case when G± are manifolds
with edges Y ⊂ S and boundary; in this case S itself is a closed manifold with edge singularity Y .
So, we assume that

(i) ∂G±\Y and Y are C∞ manifolds, and dimY = q;
(ii) every y ∈ Y has a neighborhood modeled on a wedge Ξ�± × Ω , where Ξ�± := (R+ × Ξ±)/

({0} × Ξ±) for a certain closed compact C∞ manifold Ξ± = Ξ±(y), dimΞ± = n and an
open set Ω ⊂ R

q .

The behavior of solutions far from S is known from the standard theory of elliptic boundary
value problems when we assume ∂G to be smooth. To illustrate the situation we mainly look
at the case of scalar operators. Note also that when S is smooth the problem (1)–(3) represents
continuous operators
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A =

⎛⎜⎜⎝
A+ 0
0 A−

T+ T−
0 T

⎞⎟⎟⎠ :
Hs(G+)

⊕
Hs(G−)

→

Hs−μ(G+)

⊕
Hs−μ(G−)

⊕⊕N
l=1 Hs−ml− 1

2 (S)

⊕⊕N ′
j=1 H

s−m′
j − 1

2 (∂G)

(5)

for arbitrary s > max{ml + 1
2 ,m′

j + 1
2 } (in the system case we would have everywhere the C

L-
valued analogues of the Sobolev spaces). Such transmission problems are well investigated, cf.
[15], or [17, Section 4.3.3], and [10, Section 3.2].

If S has an edge singularity Y it is adequate to replace the standard Sobolev spaces by
weighted edge spaces and subspaces with asymptotics. Let us introduce more convenient no-
tation. We set W± = G±, then S = ∂W+ = W−\∂G. By virtue of the nature of the singular
charts in the above condition (ii) we can interpret the set W±\Y as a subspace of a space W±
that is locally near Y modeled on open stretched wedges of the form [0,1) × Ξ± × Y , where
r ∈ [0,1) is the axial variable of the respective cone with Ξ± as the base manifold. The exam-
ple is Section 3.2 will concern the case dimΞ± = 1, and we then assume that Ξ+ = [0, α] and
Ξ− = [α,2π] for 0 < α < π .

For the interface S we use the following local representation [0,1) × Σ × Y (more details
will be explained below). The global stretched ‘surface’ S obtained from S by blowing up the
singularity near Y then has the property

∂W+,reg = Sreg, ∂W−,reg = Sreg ∪ ∂G,

where subscript ‘reg’ denotes the stretched space minus the bottom r = 0. There are now
weighted edge spaces Ws,γ (W±) and Ws,γ (S) of smoothness s and weight γ (and subspaces
with asymptotics for r → 0, also to be introduced below). Then our boundary-contact problem
locally represents continuous operators

A :
Ws,γ (W+)

⊕
Ws,γ (W−)

→

Ws−μ,γ−μ(W+)

⊕
Ws−μ,γ−μ(W−)

⊕⊕N
l=1 Ws−ml− 1

2 ,γ−ml− 1
2 (S)

⊕⊕N ′
j=1 H

s−m′
j − 1

2 (∂G)

(6)

for arbitrary s > max{ml + 1
2 ,m′

j + 1
2 } and γ ∈ R.

We assume that A± near r = 0 are operators of edge-degenerate type. This includes the case
of operators with smooth coefficients up to the interface from the respective side which easily
follows by introducing polar coordinates transversal to Y . Moreover, the trace operators T±,j

(in (4)) are assumed to be of the form of a composition of an edge-degenerate differential opera-
tor B±,j with the restriction to int S, cf. the formulas (11), (12) below.

The program of the paper is to solve problems of type (1)–(3) in terms of a parametrix con-
struction under a natural condition of ellipticity (referring to the weights). We show regularity
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and obtain asymptotics of solutions in weighted edge spaces. The necessary material will be
given in Section 2. The result will be applied to example, cf. Section 3.2 which could be easily
generalized to, say, second order elliptic equations.

1.2. The principal symbolic structure

Recall that when S is smooth (and also the coefficients of the involved operators up to the
interface) the ellipticity of A refers to a principal symbolic hierarchy

σ(A) := (
σψ(A+), σψ(A−), σtr(A), σ∂(A)

)
,

where A is regarded as an operator (5). The first two components σψ(A±) are the homoge-
neous principal symbols of the operators A± over intΞ± (smooth up to respective boundaries).
The boundary symbol σ∂(A) := t(σ∂(A−)σ∂(T )) comes from the standard calculus of boundary
value problems. Recall that when (x′, t) is a local splitting of variables in a collar neighborhood
∂G × [0,1) of the boundary, with the covariables (ξ ′, τ ), then

σ∂(A−)(x′, ξ ′) := σψ(A−)(x′,0, ξ ′,Dt )

interpreted as an operator family σ∂(A−)(x′, ξ ′) :Hs(R+) → Hs−μ(R+). If T = t(T1, . . . , TN ′)
is given in terms of expressions Tku− = Bku−|∂G we set

σ∂(Tk)(x, ξ ′)f := (
σψ(Bk)(x

′,0, ξ ′,Dt )f
)∣∣

t=0

and σ∂(T ) := t(σ∂(Tk))k=1,...,N ′ .
The principal transmission symbol σtr(A) is defined as follows: let us choose a tubular neigh-

borhood V ⊂ G of S, set V± := V ∩ Ξ±, and let ε :V− → V+ be defined by ε(x′, t) = (x′,−t).
Then we can pass to the operator

AV+ :=
⎛⎜⎝ A+|intV+ 0

0 ε∗(A−|intV−)

T+ ε∗T−

⎞⎟⎠ .

Here

ε∗(A−|intV−) := (ε∗)−1A−|intV−ε∗, (7)

with ε∗ being the function pull back under ε and

(ε∗T−)u := (ε∗B−,j |intV−u)|S (8)

for a function u on V+. Then the operator AV+ represents a boundary value problem on V+ with
the boundary symbol

σ∂(AV+)(x′, ξ ′) :
Hs(R+)

⊕
Hs(R+)

→

Hs−μ(R+)

⊕
Hs−μ(R+)

⊕
Cμ

, (x′, ξ ′) ∈ T ∗S\0. (9)
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Now we obtain σtr(A) (the so-called principal transmission symbol of A) from σ∂(AV+) by
applying the push forward (ε−1)∗ to the operators of the second column of (9) from R+ to R−,
similarly as the relation between operators (7), (8). This gives rise to an operator family

σtr(A)(x′, ξ ′) :
Hs(R+)

⊕
Hs(R−)

→

Hs−μ(R+)

⊕
Hs−μ(R−)

⊕
C

μ

, (x′, ξ ′) ∈ T ∗S\0. (10)

The transmission problem (5) is called elliptic if the symbols σψ(A±)(x, ξ) are non-vanishing
for all (x, ξ) ∈ T ∗G±\0 and if (9) and (10) are bijective operators for all sufficiently large s. For
more details, cf. [10].

Let us now return to our singular configuration (i.e., S has an edge singularity Y ). Denote by
Areg the restriction of the operator (6) to distributions in the complement of Y . Then σ(Areg) is
as before. Close to the edge singularity we have to add a so-called principal edge symbol σ∧(A),
which comes from the theory of pseudo-differential boundary value problems on a manifolds
with edges. As noted before by inserting polar coordinates (r,φ, y) we pass to the stretched
domains [0,1) × Ξ± × Y . Then we obtain the operators A± in the form

A± = r−μ
∑

k+|β|�μ

a±
jβ(r, y)(−r∂r )

k(rDy)
β (11)

with coefficients a±
kβ(r, y) ∈ C∞(R+ × Y,Diffμ−(k+|β|)(Ξ±)). Here Diffν(·) denotes the space

of all differential operators of order ν on the manifold in the brackets. Similarly, for the trace
operators T± we assume

T± =
t(

rint Sr−ml
∑

k+|β|�mj

b±
j,kβ(r, y)(−r∂r )

k(rDy)
β

)
j=1,...,N

, (12)

with coefficients b±
j,kβ(r, y) ∈ C∞(R+ × Y,Diffmj −(k+|β|)(Ξ±)), and rint S denotes the operator

of restriction to intS.
The representation of the operators in edge degenerate form is just the reason for the con-

tinuity of (6) in weighted edge spaces. The typical Fuchs type differentiation −r∂r in (11)
can be regarded as a Mellin operator with symbol z, i.e., −r∂r = M−1zM, where Mu(z) =∫ ∞

0 rz−1u(r) dr is the Mellin transform. Then the variable z will often be considered on the
‘weight line’

Γβ = {z ∈ C: Re z = β}
for some β ∈ R. The Mellin transform will also be applied to vector-valued functions on R+,
first with compact support and then extended various function and distribution spaces. A Mellin
pseudo-differential operator with respect to some weight γ ∈ R is defined as follows:

opγ

M(h)u(r) := (2π)−1
∫∞∫ (

r ′

r

) 1
2 −γ+i�

h

(
r, r ′, 1

2
− γ + i�

)
u(r ′)dr ′

r ′ d�,
0



D. Kapanadze, B.-W. Schulze / J. Differential Equations 234 (2007) 26–53 31
where h(r, r ′, z) is a parameter-dependent (operator-valued) amplitude function with covariables
z ∈ Γ1/2−γ . Writing

h̃±(r, y, z, η̃) :=
∑

k+|β|�μ

a±
kβ(r, y)zkη̃β

∣∣∣
η̃=rη

then the Mellin amplitude functions in our case have the form

h±(r, y, z, η) = h̃±(r, y, z, η̃)|η̃=rη.

Similarly we have

h′±(r, y, z, η) = h̃′±(r, y, z, η̃)|η̃=rη :=
t(

rΣ
∑

k+|β|�mj

b±
kβ(r, y)zkη̃β

)
j=1,...,N

∣∣∣
η̃=rη

.

Then A± = Opy(a±), where

a±(y, η) = r−μ op
γ− 1

2
M (h±) = r−μ

∑
k+|β|�μ

a±
kβ(r, y)(−r∂r )

j (rη)β (13)

and Opy(a)u(y) := ∫∫
ei(y−y′)ηa(y, η)u(y′) dy d-η, d-η := (2π)1−q dη.

Writing T± = diag(r−mj )Opy(op
γ− n

2
M (h′±)) we obtain that the operator A close to r = 0 has

the form

A = m(r)Opy

(
op

γ− n
2

M (h)
)

for a matrix m(r) := diag(r−μ, r−μ,diag(mj )) and the matrix of Mellin amplitude functions
h(r, y, z, η) = h̃(r, y, z, η̃)|η̃=rη where

h̃(r, y, z, η̃) :=
⎛⎝ h̃+(r, y, z, η̃) 0

0 h̃−(r, y, z, η̃)

h̃′+(r, y, z, η̃) h̃′−(r, y, z, η̃)

⎞⎠ . (14)

The function h̃(r, y, z, η) is smooth up to r = 0 and takes values in the space of transmission
problems on Sn with respect to the subdivision Sn = Ξ+ ∪Ξ− with the interface Σ = Ξ+ ∩Ξ−.
The adequate choice of γ depends on the so-called principal edge symbol σ∧(A)(y, η) which is
in our case is defined by the expression

σ∧(A)(y, η) := m(r)op
γ− n

2
(
h̃(0, y, z, rη)

)
.
M
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This is an operator function parametrized by (y, η) ∈ Y × (Rq\{0}), acting as

σ∧(A)(y, η) :
Ks,γ (Ξ∧+)

⊕
Ks,γ (Ξ∧−)

→

Ks−μ,γ−μ(Ξ∧+)

⊕
Ks−μ,γ−μ(Ξ∧−)

⊕⊕N
l=1 Ks−ml− 1

2 ,γ−ml− 1
2 (Σ∧)

(15)

where Ks,γ (X∧) denote weighted Sobolev spaces on the cone X∧ = R+ × X (where X stands
for Ξ± or Σ ), of smoothness s ∈ R and weight γ ∈ R (concerning the definition, cf. Section 2.1
below). The operators σ∧(A)(y, η) take values in the transmission cone algebra with a corre-
sponding symbolic structure. The ellipticity of A also requires the bijectivity of (15) for all
(y, η) ∈ Ω × (Rq\{0}). However, this cannot be expected to hold true without additional in-
formation. The necessary and sufficient condition for the Fredholm property of (15) is that the
subordinate principal conormal symbol

σMσ∧(A)(y, z) = h̃(0, y, z,0) :
Hs(Ξ+)

⊕
Hs(Ξ−)

→

Hs−μ(Ξ+)

⊕
Hs−μ(Ξ−)

⊕⊕N
l=1 Hs−ml− 1

2 (Σ)

(16)

is invertible for all z with Re z = n+1
2 − γ .

Summing up a boundary-contact problem (6) with an interface S with edge singularity has a
principal symbolic hierarchy

σ(A) = (
σψ(A+), σψ(A−), σtr(Areg), σ∧(A), σ∂(A)

)
, (17)

where σtr(Areg) was defined before.

1.3. Outline of the results

In this paper we study boundary-contact problems A which are elliptic with respect to σ(A),
that is, σψ(A±) are non-vanishing as usual, and the other components are bijective families.
The precise conditions are given in Definition 3.1. The new results are as follows. We construct
parametrices within an ‘algebra’ of pseudo-differential boundary-contact problems with a similar
principal symbolic structure as (17), cf. Theorem 3.3. The operators act in weighted edge spaces
and subspaces with asymptotics. We single out a specific subalgebra of so-called Green operators
(the notation comes from Boutet de Monvel’s calculus [2]), combined with asymptotic data close
to the edge. Outside any neighborhood of the edge these operators are smoothing (and of some
type), while close to edge they are pseudo-differential with so-called Green symbols, acting in
weighted spaces on the infinite cones, cf. the notation in Section 3.3.

Green operators are the left-over terms in parametrices, and their continuity in weighted edge
spaces with asymptotics in the image gives rise to the regularity of solutions with asymptotics,
cf. Theorem 3.4. A reference for the technique from Boutet de Monvel’s calculus are the mono-
graphs Rempel, Schulze [17], Grubb [7], or Schulze [20]; the latter also contains many details
on (pseudo-differential) edge operators, including the role of the operator-valued edge symbolic
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structure. Another reference is the author’s joint paper [10]. It contains an accessible exposition
on pseudo-differential transmission problems with parameters, which is systematically employed
here.

2. Boundary-contact operators

2.1. Cone Sobolev spaces with asymptotics

Let X be a C∞ manifold of dimension n and denote by L
μ
cl(X;R

l) the space of all parameter-
dependent (with parameter λ ∈ R

l) classical pseudo-differential operators on X in its natural
Fréchet topology. We first consider the case that X is closed, compact.

Let Hs,γ (X∧) for s, γ ∈ R denote the completion of C∞
0 (X∧) with respect to the norm{

1

2πi

∫
Γ(n+1)/2−γ

∥∥Rs(Im z)Mu(z)
∥∥2

L2(X)
dz

}1/2

.

Here, Rs(�) is a parameter-dependent elliptic operator belonging to the space Ls
cl(X;R) that in-

duces isomorphisms Rs(�) :Ht(X) → Ht−s(X) for all t, s ∈ R. Hs(X) is the standard Sobolev
space on X of smoothness s ∈ R, and H 0(X) is identified with L2(X).

In the present paper a cut-off function on R+ is any real-valued function ω ∈ C∞
0 (R+) such

that ω = 1 near 0. We then define

Ks,γ
(
X∧) := {

ωu + (1 − ω)v: u ∈Hs,γ
(
X∧)

, v ∈ Hs
cone

(
X∧)}

for any cut-off function ω. Here we used a version of weighted Sobolev spaces Hs
cone(X

∧) that
are standard ones near infinity, for details, cf. [20]. In particular, for X = Sn (the unit sphere
in R

n+1) we have (1 − ω)Hs
cone(X

∧) = (1 − ω)Hs(Rn+1). We endow the spaces Ks,γ (X∧) with

a Hilbert space structure in a natural way. Observe that when we set κλ :u(r, x) → λ
n+1

2 u(λr, x)

for λ ∈ R+, we obtain a strongly continuous group of isomorphisms operating on Ks,γ (X∧).

Remark 2.1. We will also need these spaces in the variant when X is a compact C∞ manifold
with boundary. In this case we first consider the double 2X (obtained by gluing together two
copies X± of X along the common boundary ∂X together to a closed compact C∞ manifold; we
then identify the original X with X+). Then we define

Ks,γ
(
X∧) := {

u|(intX)∧ : u ∈Ks,γ
(
(2X)∧

)}
.

In particular, we have the spaces Ks,γ (Ξ∧±), and (13) induce families of continuous operators

a±(y, η) :Ks,γ
(
Ξ∧±

) →Ks−μ,γ−μ
(
Ξ∧±

)
are continuous for all s, γ ∈ R.

Here we always assume the coefficients a±
kβ in (13) to be independent of r for large r , which

is adequate in our context. The families a±
kβ are C∞ in (y, η), and they are operator-valued

symbols in the following sense: If E is a Hilbert space and {κλ}λ∈R+ a strongly continuous group
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of isomorphisms on E, κλκδ = κλδ for all λ, δ ∈ R+, we say that E is endowed with a group
action. Given Hilbert spaces E and Ẽ with group actions {κλ}λ∈R+ and {κ̃λ}λ∈R+ , respectively,

Sμ
(
Ω × R

q;E, Ẽ
)

(18)

will denote the subspace of all a(y, η) ∈ C∞(Ω × Rq,L(E, Ẽ)) such that

sup
y∈K,η∈Rq

〈η〉−μ+|β|∥∥κ̃−1
〈η〉D

α
y Dβ

η a(y, η)κ〈η〉
∥∥
L(E,Ẽ)

is finite for every K ⊂ Ω and all multi-indices α,β ∈ N
q . Here 〈η〉 = (1 + |η|2)1/2. Note that

we obtain an equivalent definition of (18) when we replace η by, for instance, a C∞ function
η → [η] that is strictly positive and satisfies [η] = |η| for |η| > C for a C > 0.

A function a(μ)(y, η) ∈ C∞(Ω × (Rq\{0}),L(E, Ẽ)) is called (‘twisted’) homogeneous in
η �= 0 of order μ if

a(μ)(y,λη) = λμκ̃λa(μ)(y, η)κ−1
λ (19)

for all (y, η) ∈ Ω × (Rq\{0}), λ ∈ R+. Note that when χ(η) is an arbitrary excision function in
R

q (i.e., in C∞(Rq), zero in a neighborhood of the origin, 1 for |η| > R for some R > 0) we
have χ(η)a(μ)(y, η) ∈ Sμ(Ω × Rq;E, Ẽ) when a(μ) is homogeneous in the former sense. This
gives rise to

S
μ
cl

(
Ω × R

q;E, Ẽ
)
, (20)

the subspace of (18) of all elements a(y, η) which admit an asymptotic expansion into terms of
the kind χ(η)a(μ−j)(y, η), with homogeneous functions a(μ−j)(y, η) of order μ − j , j ∈ N. In
this case we set

σ∧(a)(y, η) := a(μ)(y, η).

The concept of operator-valued symbols in that sense is very close to the scalar case where
E = Ẽ = C and the group actions are trivial (i.e., identity operators for all λ ∈ R+).

The definition has a generalization to pairs of Fréchet spaces E and Ẽ. For instance, let Ẽ

be defined as a projective limit lim←−j∈N
Ẽj of Hilbert spaces Ẽj with continuous embeddings

Ẽj+1 ↪→ Ẽj ↪→ ·· · ↪→ Ẽ0 such that Ẽ0 is endowed with a group action {κλ}λ∈R+ such that
{κλ|Ẽj }λ∈R+ defines a group action Ẽj for every j . Then Ẽ is said to be equipped with the group
action {κλ}λ∈R+ . We have the spaces S

μ

(cl)(Ω × R
q;E, Ẽj ) for all j , and S

μ

(cl)(Ω × R
q;E, Ẽ) is

the projective limit of these spaces over j (subscript ‘(cl)’ means that we are talking about the
classical or the general case).

We are interested in subspaces Ks,γ

P (X∧) of Ks,γ (X∧) with asymptotics for r → 0 of type P ,
i.e.,

u(r, x) ∼
∑ mj∑

cjk(x)r−pj logk r
j k=0
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with pj ∈ C, mj ∈ N, and coefficients cjk that we control as elements in certain finite-
dimensional subspaces Lj ⊂ C∞(X). In this connection we set

P = {
(pj ,mj ,Lj )

}
j=0,...,N

(21)

and assume that πCP := {pj }j=0,...,N ⊂ {z: Re z < n+1
2 −γ }. We may talk about finite or infinite

asymptotics. In the finite case we fix a weight interval Θ = [0, ϑ) for some ϑ > 0 and set

Ks,γ
Θ

(
X∧) := lim←−

j∈N

Ks,γ+ϑ− 1
1+j

(
X∧)

.

This space is regarded as the subspace of functions which are flat of order Θ with respect to the
reference weight γ . Assuming N to be finite for finite Θ and πCP ⊂ {z: n+1

2 − γ − ϑ < Re z <
n+1

2 − γ } we form the space

EP

(
X∧) :=

{
ω(r)

N∑
j=0

mj∑
k=0

cjk(x)r−pj logk r: cjk ∈ Lj for 0 � k � mj , 0 � j � N

}

which is of finite dimension and contained in K∞,γ (X∧). We then define

Ks,γ

P

(
X∧) := Ks,γ

Θ

(
X∧) + EP

(
X∧)

(22)

(which is a direct sum). In the case of infinite Θ we admit N to be ∞ and assume in this case
Repj → −∞ as j → ∞. Then, setting Pk = {(p,m,L) ∈ P : Rep > n+1

2 − γ − (1 + k)} and
Θk := [0,1 + k), k ∈ N, we have the spaces Ks,γ

Pk
(X∧) and define

Ks,γ

P

(
X∧) = lim←−

k∈N

Ks,γ

Pk

(
X∧)

in the Fréchet topology of the projective limit.
Let P be an asymptotic type of the kind (21), associated with (γ,Θ) (i.e., a weight plus a

fixed (finite or infinite) weight interval Θ = [0, ϑ)), and set

Sγ

P

(
X∧) := {

ωu + (1 − ω)v: u ∈K∞,γ

P

(
X∧)

, v ∈ S
(
R+,C∞(X)

)}
. (23)

This is a (nuclear) Fréchet space. Recall that the spaces Ks,γ (X∧) with the group action

{κλ}λ∈R+ , defined by κλ :u(r, x) → λ
n+1

2 u(λr, x), λ ∈ R+.
The space of Sγ

P (X∧) can be represented as a projective limit of Hilbert spaces contained in

K∞,γ (X∧), in which {κλ}λ∈R+ , κλ :u(r, x) → λ
n+1

2 u(λr, x), λ ∈ R+, are group actions. Accord-
ing to our general notation {κλ}λ∈R+ is a group action in (23). For references below we also form
the spaces

Sγ
(
X∧) := {

ωu + (1 − ω)v: u ∈K∞,γ
(
X∧)

, v ∈ S
(
R+,C∞(X)

)}
.

The definitions of the spaces Ks,γ

P (X∧), Sγ

P (X∧) for the case of smooth manifold X with
smooth boundary ∂X are analogous. For details see [20] or [9].
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2.2. Edge spaces with asymptotics

Let E be a Hilbert space equipped with a group action {κλ}λ∈R+ .

Definition 2.2. The space Ws(Rq,E) for s ∈ R is the completion of S(Rq,E) (the Schwartz
space of E-valued functions) with respect to the norm

{∫
〈η〉s∥∥κ−1(η)û(η)

∥∥2
E

}1/2

.

Here κ(η) = κ〈η〉 and û(η) is the Fourier transform in R
q .

If E = lim←−j∈N
Ej is a Fréchet space written as a projective limit of Hilbert spaces Ej with

continuous embeddings Ej+1 ↪→ Ej , and let {κλ}λ∈R+ be a group action on E0 which restricts to
group actions on Ej for every j . In that case we have continuous embeddings Ws(Rq,Ej+1) ↪→
Ws(Rq,Ej ), and we write

Ws
(
R

q,E
) = lim←−

j∈N

Ws
(
R

q,Ej
)
.

Similarly as standard Sobolev spaces we also have ‘comp’ and ‘loc’ versions Ws
comp(Ω,E) and

Ws
loc(Ω,E) for any open set Ω ⊂ R

q . More details on the nature of abstract edge spaces may be
found in [19] or [20].

Let X be a compact C∞ manifold with boundary ∂X and apply Definition 2.2 to the
spaces Ks,γ (X∧), Ks,γ ((∂X)∧) with group actions κ

(n)
λ u(r, x) = λ(n+1)/2u(λr, x) for u ∈

Ks,γ (X∧) and κ
(n−1)
λ u(r, x′) = λn/2v(λr, x′) for v ∈ Ks,γ ((∂X)∧), respectively. Then the spaces

Ws,γ (X∧ × R
q) := Ws(Rq,Ks,γ (X∧)) and Ws,γ ((∂X)∧ × R

q) := Ws(Rq,Ks,γ ((∂X)∧)) are
called edge spaces of smoothness s and weight γ .

We now introduce subspaces of Ws,γ (X∧ × R
q) � u(r, x, y) with asymptotics for r → 0,

which are discrete and constant with respect to the edge variable y.
Note that we can write Ks,γ

P (X∧) as a projective limit of {κλ}λ∈R+ -invariant Hilbert
spaces Ek , k ∈ N, which gives us the edge spaces Ws(Rq,Ek) with continuous embeddings
Ws(Rq,Ek+1) ↪→Ws(Rq,Ek) for all k, and then we define

Ws,γ

P

(
X∧ × R

q
) := Ws

(
R

q,Ks,γ

P

(
X∧))

(24)

as the projective limit lim←−k∈N
Ws(Rq,Ek) with the corresponding Fréchet structure. It can easily

be proved that (24) is independent of the specific choice of the sequence {Ek}k∈N.
To characterize the singular functions of the edge asymptotics we first observe that when E is

a Hilbert (or Fréchet space) with group action, we have canonical isomorphisms

T (η) := F−1κ−1
〈η〉F :Ws

(
R

q,E
) → Hs

(
R

q,E
)

for all s ∈ R, cf. [19]. Let E = E0 ⊕ E1 be a direct decomposition of E into closed subspaces,
not necessarily invariant under the group action {κλ}λ∈R+ on E. We then obtain Hs(Rq,E) =
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Hs(Rq,E0) ⊕ Hs(Rq,E1) which generates a direct decomposition

Ws
(
R

q,E
) = T −1Hs

(
R

q,E0
) ⊕ T −1Hs

(
R

q,E1
)

(25)

into closed subspaces.
Let us apply this construction to the space E = Ks,γ

P (X∧), decomposed as (22) with E0 =
Ks,γ

Θ (X∧), E1 = EP (X∧), for an element P as in (21), where the weight interval Θ is finite. The
space Ks,γ

Θ (X∧) is closed with respect to {κλ}λ∈R+ ; which gives us

T −1Hs
(
R

q,Ks,γ
Θ

(
X∧)) = Ws

(
R

q,Ks,γ
Θ

(
X∧))

,

also denoted by Ws,γ
Θ (X∧ × R

q). However, EP (X∧) is not preserved under the group action, but
we can form

Vs
P

(
X∧ × R

q
) := T −1EP

(
X∧)

which is as a closed subspace of Ws,γ

P (X∧ ×R
q). In other words, we have a direct decomposition

Ws,γ

P

(
X∧ × R

q
) = Ws,γ

Θ

(
X∧ × R

q
) + Vs

P

(
X∧ × R

q
)

into a component of distributions of edge-flatness Θ and a space of singular functions with
discrete (and constant in y) edge asymptotics of type P .

Remark 2.3. Every f (r, x, y) ∈ Ws,γ

P (X∧ × R
q) for a (discrete) asymptotic type P of the

kind (21), Θ = [0, ϑ) finite (i.e., N < ∞), can be written in the form

f (r, x, y) = fsing(r, x, y) + fΘ(r, x, y)

for singular functions

fsing(r, x, y) =
N∑

j=0

mj∑
k=0

F−1
η→y[η] n+1

2 ω
(
r[η])cjk(x)

(
r[η])−pj logk

(
r[η])v̂jk(η)

with suitable vjk ∈ Hs(Rq), coefficients cjk ∈ Lj , 0 � k � mj , for all j , and a flat remainder
fΘ(r, x, y) ∈ Ws,γ

Θ (X∧ × R
q). Note that in the case s = ∞ we may write

fsing(r, x, y) =
N∑

j=0

mj∑
k=0

ω(r)cjk(x)wjk(y)r−pj logk r

mod W∞,γ
Θ (X∧ × R

q) = H∞(Rq,K∞,γ
Θ (X∧)) with elements wjk ∈ H∞(Rq).

One may ask to what extent our notation of singular functions of the edge asymptotics depends
on the choice of the function η → [η]. One can prove, cf. [9], that when p(η) is any other
element of C∞(Rq) such that c1[η] � p(η) � c2[η] for all η ∈ R

q , with constants c1 < c2, then
fsing(r, x, y) can be reformulated into an equivalent expression with p(η) in place of [η] and
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other coefficients cjk , vjk , mod Ws,γ
Θ (X∧ × R

q). Also the choice of ω is unessential modulo
such flat remainders.

Let us return to our configuration. Asymptotics of solutions (also to be expressed explicitly for
specific examples) will be formulated in terms of the spaces Ws,γ

P+ (Ξ∧+ ×R
q)⊕Ws,γ

P− (Ξ∧− ×R
q),

i.e., for given γ ∈ R such that our operator is Fredholm, the components of a solution u(r,φ, y) =
t(u+(r,φ, y), u−(r,φ, y)) can be written as

u±(r,φ, y) =
N∑

j=0

m±,j∑
k=0

F−1
η→y[η] n+1

2 ω
(
r[η])c±,jk(φ)

(
r[η])−p±,j logk

(
r[η])v̂±,jk(η)

+ u±,Θ(r,φ, y)

for asymptotic types P± = {(p±,j ,m±,j ,L±,j )}j∈N, coefficients c±,jk ∈ L±,j , v±,jk ∈ Hs(Rq)

for all j and 0 � k � m±,j and flat remainder u±,Θ .

2.3. Mellin quantization of transmission symbols

Our next objective is to establish some pseudo-differential formalities which express the struc-
ture of parametrices of our boundary-contact problems for differential operators.

Similarly as in the calculus of boundary value problems in a domain with edges the main in-
formation comes from a neighborhood of the edge. In localized form we have (stretched) wedges
Ξ± × Rq and Σ∧ × Rq , respectively, with Rq being the local model of the edge of dimension q ,
and Ξ± and Σ are the base manifolds of the respective model cones.

By assumption there is a closed compact C∞ manifold M such that Ξ± ⊂ M are compact
C∞ manifolds with common boundary Σ = Ξ+ ∩ Ξ−, M := Ξ+ ∪ Ξ−. It will be convenient
to formulate operators for the case that Σ has only one connected component (although in the
example below we have M = S1 with Ξ+ = [0, α], Ξ− = [α,2π] for 0 < α < π with Σ con-
sisting of two point φ = 0 and φ = α; the corresponding modification will be straightforward).
The main ingredient of the symbolic structure of parametrices of elliptic boundary-contact prob-
lems are parameter-dependent transmission problems of the class Bμ,d(Ξ+,Ξ−;R

l), μ ∈ Z,
d ∈ N, where λ ∈ R

l is parameter (in our case needed for the case l = 1,2). The spaces
Bμ,d(Ξ+,Ξ−;R

l) consist of families

p(λ) :Hs(Ξ+) ⊕ Hs(Ξ−) ⊕ Hs− 1
2 (Σ) → Hs−μ(Ξ+) ⊕ Hs−μ(Ξ−) ⊕ Hs−μ− 1

2 (Σ) (26)

s > d − 1
2 , cf. also (16). The precise definition is given in [10]. The technique in connec-

tion with transmission problems in the case of smooth interfaces is close to the calculus of
pseudo-differential boundary value problems with the transmission property, see [2,5,7,17]. For
convenience we consider block matrices p(λ) = (pij (λ))i,j=1,2,3 such that the entries are scalar
and of order as in the formula (26); more precisely, p11(λ) is of order μ, p31(λ) of order μ + 1

2 ,
etc. In general, we may have larger matrices with entries of arbitrary orders. However this case
only needs trivial modifications and will be tacitly used later on. Let us also note that in the
pseudo-differential characterization of boundary and transmission problems we have to expect
trace and potential entries at the same time (in contrast to (16)) where we only have trace terms;
the potential terms are generated in parametrices.

The spaces Bμ,d(Ξ+,Ξ−;R
l) are Fréchet, and there are subspaces B

μ,d
G (Ξ+, Ξ−;R

l) of
so-called Green elements where p11(λ) ∈ L−∞(intΞ+;R

l), p22(λ) ∈ L−∞(intΞ−;R
l).
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Remark 2.4. There is a straightforward analogue of the spaces Bμ,d(Ξ+, Ξ−;R
l) for the case

of non-compact Ξ± with common boundary Ξ+ ∩ Ξ−, decomposing a manifold M . Then the
Sobolev spaces in (26) have to be replaced by corresponding ‘comp’ and ‘loc’ variants. Spaces
of transmission operators in the non-compact case will occur in the versions Bμ,d(Ξ∧+,Ξ∧−;Rl)

and

Bμ,d
(
Ξ∧+ × R

q,Ξ∧− × R
l
)
. (27)

Motivated by the form of (11), (12) we consider, in particular, families of operators

p(r, y,�, η) := p̃(r, y, r�, rη) (28)

for p̃(r, y, �̃, η̃) ∈ C∞(R+ × Rq,Bμ,d(Ξ+,Ξ−;R
1+q

�̃,η̃
)) (the weight factors r−μ, etc., in front

of the operators (11), (12) are ignored for the moment). In contrast to the case of differential
transmission problems as in Section 1.2 we have not at once associated families (14) that are
holomorphic in z, but we need a so-called Mellin quantization to pass from p to families h of
that kind. In order to formulate a corresponding result we need to say what we understand by a
holomorphic family of transmission problems.

By Bμ,d(Ξ+,Ξ−;C×R
q) for any q ∈ N we denote the space of all h(z, η) ∈ A(C,Bμ,d(Ξ+,

Ξ−;R
q)) such that

h(β + i�, η) ∈ Bμ,d
(
Ξ+,Ξ−;R

1+q
�,η

)
for every β ∈ R, uniformly in compact β-intervals. The space Bμ,d(Ξ+,Ξ−; C×R

q) is Fréchet
as well. So we can talk about C∞ functions in (r, η) ∈ R+ × R

q with values there.

Theorem 2.5. [10, Theorem 3.10] Given any p̃(r, y, �̃, η̃) ∈ C∞(R+ × R
q,Bμ,d(Ξ+,Ξ−;

R
1+q

�̃,η̃
)) there exists an h̃(r, y, z, η̃) ∈ C∞(R+ × R

q,Bμ,d(Ξ+, Ξ−;C × R
q)) such that

p(r, y,�, η) defined by (28) and h(r, y, z, η) := h̃(r, y, z, rη) satisfy the relation

opr (p)(y, η) = opδ
M(h)(y, η) mod C∞(

R
q,B−∞,d

(
Ξ∧+,Ξ∧−;R

q
))

for every δ ∈ R.

Observe that op
γ− n

2
M (h)(y, η) ∈ C∞(Rq,Bμ,d(Ξ∧+ ,Ξ∧−;R

q)) and

op
γ− n

2
M (h)(y, η) :Hs

(
Ξ∧+

) ⊕Hs
(
Ξ∧−

) ⊕Hs− 1
2
(
Σ∧)

→ Hs−μ
(
Ξ∧+

) ⊕Hs−μ
(
Ξ∧−

) ⊕Hs−μ− 1
2
(
Σ∧)

are continuous operators for all s > d − 1
2 .

Remark 2.6. If p and h are as in Theorem 2.5 and

p0(r, y,�, η) := p̃(0, y, r�, rη), h0(r, y, z, η) := h̃(0, y, z, rη)
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we also have

opr (p0)(y, η) = opδ
M(h0)(y, η) mod C∞(

R
q,B−∞,d

(
Ξ∧+,Ξ∧−;R

q
))

.

Transmission amplitude functions in (y, η) ∈ R
q × R

q (as variables and covariables on the
edge) are defined as follows. Let ωj (r), j = 1,2,3, be cut-off functions such that ω2 ≡ 1 on
suppω1 and ω1 ≡ 1 on suppω3. Moreover, let σ(r), σ̃ (r) be other cut-off functions. Then we
form

a(y, η) := σ(r)r−μ
{
ω1

(
r[η])op

γ− n
2

M (h)(y, η)ω2
(
r[η])

+ (
1 − ω1

(
r[η]))opr (p)(y, η)

(
1 − ω3

(
r[η]))}σ̃ (r). (29)

Similarly as before in the case of differential transmission problems we have

a(y, η) ∈ Sμ
(
R

q × R
q;E, Ẽ

)
with

E = Ks,γ
(
Ξ∧+

) ⊕Ks,γ
(
Ξ∧−

) ⊕Ks− 1
2 ,γ− 1

2
(
Σ∧)

,

Ẽ = Ks−μ,γ−μ
(
Ξ∧+

) ⊕Ks−μ,γ−μ
(
Ξ∧−

) ⊕Ks−μ− 1
2 ,γ−μ− 1

2
(
Σ∧)

.

The space of symbols refers to the group action

κλ :u+(r, ·) ⊕ u−(r, ·) ⊕ v(r, ·) → λ
n+1

2 u+(λr, ·) ⊕ u−(λr, ·) ⊕ v(λr, ·). (30)

This allows us to form Opy(a). Observe that when we consider the family of (pseudo-
differential) transmission problems r−μp̃(r, y, rDr, rDy) (obtained by applying the operator
convention based on the Fourier transform in (r, y) ∈ R+ × R

q ) we have

σ(r)r−μp̃(r, y, rDr, rDy)σ̃ (r) = Opy(a) mod B−∞,d
(
Ξ∧+ × R

q,Ξ∧− × R
q
)
.

Thus p → Opy(a) can be regarded as a quantization of the {transmission problem on
(Ξ+,Ξ−)}-valued amplitude function r−μp(r, y,�, η), now based on the Mellin transform in
r-direction near r = 0. At the same time we took holomorphic representatives in the quantiza-
tion in r near 0. In order to reflect asymptotic phenomena in the pseudo-differential context we
therefore add so-called smoothing Mellin plus Green symbols. The definitions will be given in
Section 3.3 below. The similar construction for the step r−μp → a(y, η) may be found in [18].

Let us now describe the principal symbolic structure of the operator functions a(y, η).
From the definition we see that a(y, η) ∈ C∞(Rq,Bμ,d(Ξ∧+ ,Ξ∧−; R

q)). Writing a(y, η) =
(aij (y, η))i,j=1,2,3 we have that a11(y, η) ∈ C∞(Rq, L

μ
cl(intΞ∧+;Rq)), and a22(y, η) ∈ C∞(Rq,

L
μ
cl(intΞ∧−;R

q)), where the operators have the transmission property at the interface Σ∧.
Let σψ,±(a) denote the parameter-dependent (with parameter η ∈ R

q ) homogeneous principal
symbol of a11(y, η) and a22(y, η), respectively, with the + sign for the first, the − sign for the
second operator. Let us consider, for instance, the plus case. We have σψ,+(a) ∈ C∞(T ∗Ξ∧+ ×



D. Kapanadze, B.-W. Schulze / J. Differential Equations 234 (2007) 26–53 41
R
q\0) (with additional smoothness in y ∈ R

q and 0 denoting the covector (�, ξ, η) = 0). In
addition in the splitting of variables (r, x, y) ∈ R+ × Ξ+ × R

q we have the representation

σψ,+(a)(r, x, y,�, ξ, η) = r−μσ̃ψ,+(a)(r, x, y, r�, ξ, rη)

for a homogeneous function σ̃ψ,+(a)(r, x, y, r�, ξ, rη) in (�̃, ξ, η̃) �= 0, smooth up to r = 0. In a
similar manner we have σψ,−(a) together with σ̃ψ,−(a).

In order to define the principal transmission symbol of a(y, η) we consider a tubular neighbor-
hood V ⊂ M of Σ , V ∼= Σ × (−1,1), set V± = Ξ± ∩ V and define a reflection diffeomorphism
ε :V ∧− → V ∧+ by ε(r, x′, t) := (r, x′,−t), x′ ∈ Σ . This allows us to pass to the operators

aV ∧+ (y, η) := diag
(
id, (ε∗)−1, id

)
a(y, η)|V ∧ diag(id, ε∗, id).

We thus obtain a family of (pseudo-differential) boundary-value problems aV ∧+ (y, η) on V ∧+ with
the boundary Σ∧. As such it is a principal boundary symbol

σ∂(aV ∧+ )(r, x′, y, �, ξ ′, η) :Hs(R+) ⊕ Hs(R+) ⊕ C → Hs−μ(R+) ⊕ Hs−μ(R+) ⊕ C,

s > d − 1
2 ; here (x′, ξ ′) denotes the points in T ∗Σ , and the definition refers to (�, ξ ′, η) �= 0.

Passing to

σtr(a)(r, x′, y, �, ξ ′, η) := diag(id, ε∗, id)σ∂(aV ∧+ )(r, x′, y, �, ξ ′, η)diag
(
id, (ε∗)−1, id

)
we obtain the homogeneous principal transmission symbol of a of order μ, namely,

σtr(a)(r, x′, y, �, ξ ′, η) :Hs(R+) ⊕ Hs(R−) ⊕ C → Hs−μ(R+) ⊕ Hs−μ(R−) ⊕ C.

From the definition it follows that there is another operator function σ̃tr(a)(r, x′, y, �̃, ξ ′, η̃), ho-
mogeneous in (�̃, ξ ′, η̃) �= 0 and smooth up to r = 0, such that

σtr(a)(r, x′, y, �, ξ ′, η) = r−μσ̃tr(a)(r, x′, y, r�, ξ ′, rη).

2.4. The algebra of boundary-contact operators

The category of operators A that we observe in this section are a pseudo-differential analogue
of the boundary-contact problems of Section 1.1. Because of the expected shape of parametrices
of elliptic elements and in order to carry out compositions within our class of operators we start
from 4 × 4 block matrices A = (Aij )i,j=1,...,4 which contains trace and potential operators with
respect to S, and ∂G at the same time. Our operators will be continuous as maps

A :Ws,γ

(P+)(W+) ⊕Ws,γ

(P−)(W−) ⊕Ws− 1
2 ,γ− 1

2
(S)

(
S,C

L
) ⊕ Hs− 1

2
(
∂G,C

I ′)
→Ws−μ,γ−μ

(Q+) (W+) ⊕Ws−μ,γ−μ

(Q−) (W−) ⊕Ws−μ− 1
2 ,γ−μ− 1

2
(T )

(
S,C

N
) ⊕ Hs−μ− 1

2
(
∂G,C

J ′)
(31)

for all s > d − 1
2 . Subscripts ‘(P±)’, etc., mean that we have continuity between spaces with (or

without) the corresponding asymptotic types.
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We will concentrate on the regularity of solutions with asymptotics, starting from solutions
in weighted edge spaces without asymptotics. This allows us to ignore any extra edge entries
of trace and potential type with respect to Y (those may occur in the general edge pseudo-
differential calculus). The regularity including the smoothness s would require observing also
these conditions; however, this is voluminous; so we ignore this aspect here. In order to un-
derstand the typical contributions to the asymptotics it is enough to consider operators close to
the edge, i.e., the localized on a (stretched) ‘wedge’ of the form M∧ × Rq for M = Ξ+ ∪ Ξ−
with Σ = Ξ+ ∩ Ξ−. Since ∂G does not intersect the edge we omit the components referring
to ∂G (although the smoothing operators in the global edge calculus may also contribute asymp-
totic information). In other words the essential information is coming from 3 × 3 block matrices
(Aij )i,j=1,2,3.

Remark 2.7. As noted before in the pseudo-differential descriptions we mainly content our-
selves with scalar entries, especially, L = N = 1, because the entries of larger block matrices are
completely characterized by this case.

In the localized situation we have W+ = (R+ × Ξ±) × R
q (with Y being identified with R

q )
and S = (R+ × Σ) × R

q . To unify some notation we set W = R+ × M × R
q which is a

stretched wedge, subdivided into W±, i.e., W = W+ ∪W− with S = W+ ∩W−. Then a (pseudo-
differential) boundary-contact operator on W has the form

A = Opy(a + m + g) +Aint + C (32)

where a(y, η) is an amplitude function of the form (29) with respect to the spaces E and Ẽ,
furthermore, m(y,η) is a smoothing Mellin symbol of the form (47) below, and g(y, η) is a
Green symbol, cf. Section 3.3. For convenience, we always assume that the involved amplitude
functions are independent of y for large |y|. Moreover, let

Aint ∈ (1 − σ)Bμ,d
(
Ξ∧+ × R

q,Ξ∧− × R
q
)
(1 − ˜̃σ),

where σ(r) is as in (29) and ˜̃σ is another cut-off function such that σ ≡ 1 on supp ˜̃σ . There is
no reason to admit a particularly general behavior of Aint for large r or |y|; therefore, we simply
assume that the operators are continuous in the above mentioned edge spaces.

The operator C is smoothing. For type d = 0 such operators are characterized by the following
properties: C induces continuous operators

C :Ws,γ (W+) ⊕Ws,γ (W−) ⊕Ws′,γ− 1
2 (S)

→ W∞,γ−μ

Q+ (W+) ⊕W∞,γ−μ

Q− (W−) ⊕W∞,γ−μ− 1
2

T (S)

for all s > 1
2 , s′ ∈ R, with certain asymptotic types Q±, T depending on C; a similar behavior is

required for the formal adjoint C∗. For arbitrary d ∈ N the structure is

C = C0 +
d∑

Cj diag
(
Dj,0,0

)
(33)
j=1
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for smoothing Cj of type 0, 0 � j � d , and a first order differential operator D which differenti-
ates in normal direction to Σ (= ∂Ξ±), cf. the above local description of W±.

Observe that when ω(y, y′) ∈ C∞(Rq × R
q) is a function which is equal to 1 in a neighbor-

hood of diag(Rq × R
q) and 0 outside another neighborhood of the diagonal, then the operator

Opy

(
(1 − ω)(a + m + g)

)
(34)

is smoothing in the above mentioned sense.
Let us also note that an evident global analogue of smoothing operators in the edge calculus

on G with the given boundary-contact configuration, encodes global asymptotic properties of
solutions, contributed by remainders after the local characterization of asymptotics.

Operators of the form (32) will be called (local) boundary-contact operators. Let μ = ordA
(the order of A). Compositions between such operators are possible if one factor is properly
supported in a suitable sense (which is an obvious modification of a corresponding notion in the
scalar pseudo-differential calculus). For instance, Op(ω(a + m + g)) with ω(y, y′) as above, is
properly supported with respect to (y, y′)-variables. Moreover, Aint can be replaced by a properly
supported representative in the class (1 − σ)Bμ,d(Ξ∧+ × R

q,Ξ∧− × R
q)(1 − ˜̃σ) modulo some

smoothing operator G of the kind (33).
Given an operator A of the form (32) we set

σ(A) = (
σψ,+(A), σψ,−(A), σtr(A), σ∧(A)

)
(35)

where σψ,±(A) := σψ,±(a) + σψ,±(Aint), σtr(A) := σtr(a) + σtr(Aint), and σ∧(A) := σ∧(a +
m + g), cf. the notation in Section 3.3. Apart from the principal symbol (35) our operators also
have a subordinate (complete) conormal symbols σM(A); it will be defined in Section 3.3 below.

Remark 2.8. In the latter definition we used the fact that the space of transmission op-
erators Bμ,d(Ξ∧+ × R

q,Ξ∧− × R
q) has principal interior symbols σψ,±(·) as functions on

T ∗(Ξ∧± × R
q)\0 as usual (smooth up to Σ∧ × R

q from the respective sides) and a principal
transmission symbol σtr(·) parametrized by T ∗(Σ × R

q)\0, which is a natural analogue of the
transmission symbol (10) in the case of differential transmission problems. Observe that also the
elements (32) belong to Bμ,d(Ξ∧+ × R

q,Ξ∧− × R
q), and they have a specific ‘edge-degenerate’

structure near the edge R
q . The definition of the class of all operators (32) is independent of the

choice of the cut-off functions σ , σ̃ , ˜̃σ .

Clearly in the global calculus on G the tuple of the symbol σ(A) also contains a corresponding
principal boundary symbol σ∂(A) associated with the boundary ∂G.

Theorem 2.9. The composition of two boundary-contact operators A and Ã (one of them prop-
erly supported) is again an boundary-contact operator, where ord(AÃ) = ordA + ord Ã and
σ(AÃ) = σ(A)σ (A) (with componentwise composition).

Definition 2.10. A boundary-contact operator (32) is called Green (of order μ and type d) if
both a(y, η) and m(y,η) in (32) vanish, and Aint ∈ (1 −σ)B−∞,d (Ξ∧+ ×R

q,Ξ∧− ×R
q)(1 − ˜̃σ).
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Remark 2.11. A boundary-contact operator G is Green if and only if

(i) G ∈ B−∞,d (Ξ∧+ × R
q,Ξ∧− × R

q);
(ii) σM(A) ≡ 0 (cf. the corresponding notation in Section 3.3).

Proposition 2.12.

(i) Let G be as in Definition 2.10 (associated with the weights γ , γ −μ and the weight data Θ).
Then G induces continuous operator

G :Ws,γ (W+) ⊕Ws,γ (W−) ⊕Ws− 1
2 ,γ− 1

2 (S)

→ Ws−μ,γ−μ

Q+ (W+) ⊕Ws−μ,γ−μ

Q− (W−) ⊕Ws−μ− 1
2 ,γ−μ− 1

2
T (S) (36)

for every s > d − 1
2 , with asymptotic types Q± and T , associated with the weight data

(γ − μ,Θ) and (γ − μ − 1
2 ,Θ), respectively (Q± and T depending on G).

(ii) If A or Ã in Theorem 2.9 is a Green operator, then so is the composition.

Proof. A Green operator can be equivalently characterized by G = Opy(g) + C for a Green
symbol g(y, η), cf. the notation of Section 3.3, and a smoothing operator C, cf. formula (33).
Since C has the desired mapping property, the assertion follows from the fact that g(y, η) is an
operator-valued symbol (48) between the spaces E and Ẽ (given in connection with (48)) with
group action (30), and

Opy(g) :Ws
(
R

q,E
)
κ

→Ws−μ
(
R

q, Ẽ
)
κ
, (37)

κ = {κλ}, is continuous. Subscripts ‘κ’ indicate edge spaces modeled on E with the group ac-
tion κ , cf. Definition 2.2. Now the space on the left of (37) just coincides with the space on the
left of (36) while the space on the right of (37) which is equal to

Ws−μ
(
R

q,Sγ−μ

Q+
(
Ξ∧+

)) ⊕Ws−μ
(
R

q,Sγ−μ

Q−
(
Ξ∧−

)) ⊕Ws−μ− 1
2
(
R

q,Sγ−μ− 1
2

T

(
Σ∧))

(where the Ws -spaces refer to the ‘standard’ group actions on the respective spaces) are contin-
uously embedded into ones on the right of (36). �
3. Asymptotics of solutions

3.1. Ellipticity and regularity of solutions

We now turn to the ellipticity of boundary-contact problems. The structures can be motivated
by the fact that the pseudo-differential representatives in the algebra of boundary-contact (or
transmission) operators formulate in advance the structure of parametrices of elliptic problems
for differential operators, while the weighted edge spaces a priori formulate the nature of elliptic
regularity of solutions (with or without asymptotics). To see the results in principle it suffices to
assume that the operators are 3 × 3 block matrices with scalar entries, cf. Remark 2.7. A simple
modification then admits the study of arbitrary block matrices (also several kinds of row and
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column matrices where some components may simply disappear). As in the preceding sections
the dimension of Ξ± may be arbitrary; here for convenience > 1.

Definition 3.1. A boundary-contact operator A of the form (32) of order μ ∈ Z and type d ∈ N on
a stretched wedge W = W+ ∪ W− (with scalar entries) is called elliptic (with respect to a fixed
weight γ ∈ R) if the components of the principal symbolic hierarchy (35) have the following
properties:

(i) The interior symbols σψ,±(A) do not vanish on T ∗(W±,reg)\0; similarly, we have
σ̃ψ,±(A)(r, x, y,�, ξ, η) �= 0 for all (�, ξ, η) �= 0, up to r = 0;

(ii) the transmission symbol σtr(A) defines a family of bijections

σtr(A) :Hs(R+) ⊕ Hs(R−) ⊕ C → Hs−μ(R+) ⊕ Hs−μ(R−) ⊕ C

parametrized by the points of T ∗(Sreg)\0; similarly, σ̃tr(A)(r, x′, y, �, ξ ′, η) are bijections
for all (�, ξ ′, η) �= 0, up to r = 0;

(iii) the edge symbol σ∧(A), parametrized by (y, η) ∈ T ∗
R

q\0, defines a family of Fredholm
operators

σ∧(A) :Ks,γ
(
Ξ∧+

) ⊕Ks,γ
(
Ξ∧−

) ⊕Ks− 1
2 ,γ− 1

2
(
Σ∧)

→ Ks−μ,γ−μ
(
Ξ∧+

) ⊕Ks−μ,γ−μ
(
Ξ∧−

) ⊕Ks−μ− 1
2 ,γ−μ− 1

2
(
Σ∧)

.

The conditions (ii), (iii) are required for all s > max(μ,d) − 1
2 ; they are then independent

of s.

Remark 3.2. Condition (iii) in Definition 3.1 together with (i), (ii) is equivalent to the bijectivity
of the subordinate conormal symbol

σMσ∧(A)(y, z) :Hs(Ξ+) ⊕ Hs(Ξ−) ⊕ Hs− 1
2 (Σ)

→ Hs−μ(Ξ+) ⊕ Hs−μ(Ξ−) ⊕ Hs−μ− 1
2 (Σ)

for any (and, then, equivalently, all) s > max(μ,d) − 1
2 , for all y ∈ R

q and all z ∈ Γ(n+1)/2−γ ,
n = dimΞ±.

Observe that we have σMσ∧(A)(y, z) ∈ C∞(Rq,M
μ,d
R (Ξ+,Ξ−)) for some Mellin asymp-

totic type R as described in Section 3.3 below. Recall that the role of the conormal symbols for
the asymptotics of solution in the simpler case of conical singularities has been emphasized in
the work of Kondratyev [11].

The y-wise inverse (σMσ∧(A)(y, z)) defines a family in M
−μ,max(d−μ,0)
S (Ξ+, Ξ−), where the

Mellin asymptotic type S may depend on y. We do not study this effect here; this would require
continuous asymptotic types or refined version of variable and pointwise discrete asymptotic
types, cf. [19] or [9]. Therefore, in the following Theorems 3.3 and 3.4 we assume that S is
independent of y.
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Theorem 3.3. Let A be a boundary-contact operator which is elliptic of order μ and type d in
the sense of Definition 3.1. Then there exists an elliptic (properly supported) boundary-contact
operator P of order −μ and type max(d − μ,0) (with respect to the weight γ − μ) which is a
parametrix of A in the sense that

I −PA= Gl and I −AP = Gr

are Green operators of order 0 and types dl = max(μ,d) and dr = max(d − μ,0), respectively.

Proof. First observe that the operator A is elliptic in Bμ,d(Ξ∧+ × R
q,Ξ∧− × R

q) with re-
spect to σψ,± and σtr. We use the fact that there is then a (properly supported) parametrix
P1 ∈ B−μ,max(d−μ,0)(Ξ∧+ × R

q,Ξ∧− × R
q) of A such that σψ,±(P1) = σψ,±(A)−1, σtr(P1) =

σtr(A)−1. We now improve P1 near the edge R
q , i.e., near r = 0, by setting

P := Opy(b + l + g) + (1 − σ)P1(1 − ˜̃σ). (38)

Here b(y, η) is given by

b(y, η) := σ(r)rμ
{
ω1

(
r[η])op

γ−μ− n
2

M (f )(y, η)ω2
(
r[η])

+ (
1 − ω1

(
r[η]))opr (t)(y, η)

(
1 − ω3

(
r[η]))}σ̃ (r)

with cut-off functions σ , σ̃ , ω1, ω2, ω3 as in (29), and

t (r, y, �, η) = t̃ (r, y, r�, rη) (39)

for a suitable t̃ (r, y, r�, rη) ∈ C∞(R+ × R
q,B−μ,e(Ξ+,Ξ−;R

1+q)), e := max(d − μ,0)

and an associated f (r, y, z, η) = f̃ (r, y, z, rη), f̃ (r, y, z, rη) ∈ C∞(R+ × R
q,B−μ,e(Ξ+,Ξ−;

C × R
q)) in the sense of Theorem 2.5. Moreover, l(y, η) is a suitable Mellin edge symbol of

analogous form as (47) below, here with −μ and γ − μ instead of μ and γ , respectively. The
choice of l will be explained later on in this proof.

In order to construct the operator family (39) (which we only need in a neighborhood of r = 0,
since the operators (32) are independent of the cut-off functions σ , σ̃ , etc., modulo smoothing
elements) we first recall that the essential contribution to A near the edge is given by the operator
function

r−μp̃(r, y, r�, rη) (40)

for p̃(r, y, �̃, η̃) ∈ C∞(R+ × R
q,Bμ,d(Ξ+,Ξ−;R

1+q)). Let us ignore for the moment the way
to obtain (32) in terms of (40) and Theorem 2.5. From the assumption of ellipticity with re-
spect to σψ,± and σtr (including the σ̃ψ,± and σ̃tr objects up to r = 0) we know that p̃(r, y, �̃, η̃)

is parameter-dependent elliptic in Bμ,d(Ξ+,Ξ−;R
1+q)) with the parameters �̃, η̃, for every

(r, y) ∈ R+ ×R
q (up to r = 0). This allows us to construct a parameter-dependent elliptic family

p̃(−1)(r, y, �̃, η̃) ∈ C∞(R+ × R
q,B−μ,e(Ξ+,Ξ−;R

1+q)) such that for the pointwise composi-
tion (in (r, y) ∈ R+ × R

q ) we have

p̃(−1)(r, y, �̃, η̃)p̃(r, y, �̃, η̃) = 1 + c̃(r, y, �̃, η̃) (41)
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for an element c̃(r, y, �̃, η̃) ∈ C∞(R+ × R
q,B−1,max(μ,d)(Ξ+,Ξ−;R

1+q)). In the following
considerations we carry out operators in terms of Leibniz products of operator functions de-
pending on (r, y, r�, rη) which imitate compositions of associated pseudo-differential operators
Opr,y(·) with such amplitude functions. Denoting the Leibniz multiplication between such oper-
ator functions b and c by #, i.e.,

b(r, y, r�, rη) # c(r, y, r�, rη) ∼
∑

α∈N1+q

1

α!
(
∂α
�,ηb(r, y, r�, rη)

)
Dα

r,yc(r, y, r�, rη)

(with ∂ indicating differentiation without the factor i−1) we see some very convenient properties.
In the asymptotic summation the ‘edge-degenerate’ shape of the terms remains preserved, and
also the representative modulo an operator function of order −∞ can be chosen in such a way
that it is smooth in the first r-variable up to zero. Another feature of this kind of operations is
that {rμb(r, y, r�, rη)} # {r−μc(r, y, r�, rη)} is of analogous behavior, i.e., the extra r-powers
are canceling out, such that there only remain smooth terms in the first r-variable up to zero.
From (41) it follows that{

rμp̃(−1)(r, y, r�, rη)
}{

r−μp̃(r, y, r�, rη)
} = 1 + c̃(r, y, r�, rη).

This implies that{
rμp̃(−1)(r, y, r�, rη)

}
#

{
r−μp̃(r, y, r�, rη)

} = 1 + c̃1(r, y, r�, rη)

for a c̃1(r, y, r�, rη) of analogous property as c̃(r, y, r�, rη). There is now a d̃1(r, y, r�, rη),
again of the same structure, such that{

1 + d̃1(r, y, r�, rη)
}

#
{
1 + c̃1(r, y, r�, rη)

} = 1 + k̃(r, y, r�, rη)

for a k̃(r, y, r�, rη) ∈ B−∞,max(μ,d)(Ξ+,Ξ+;R
1+q). This gives us

[{
1 + d̃1(r, y, r�, rη)

}
#

{
rμp̃(−1)(r, y, r�, rη)

}]
#

{
r−μp̃(r, y, r�, rη)

}
= 1 + k̃(r, y, r�, rη).

The expression in [. . .] is nothing other than rμt̃(r, y, r�, rη) with an operator function
t̃ (r, y, �̃, η̃) as required. As announced before we want to express our parametrix near r = 0
in a form analogous to (32). Since in the final result we admit Green remainders of order 0 the
only point is to find the Mellin amplitude function l(y, η) which is expected to be of the form

l(y, η) = rμω
(
r[η]) k∑

j=0

rj
∑

|α|�j

op
γj −μ− n

2
M (ljα)(y)ηαω̃

(
r[η]) (42)

for suitable γj such that γ − j � γj � γ (especially, γ0 = γ ) and smoothing Mellin symbols
ljα ∈ C∞(Rq,M

−∞,e
(Ξ+,Ξ−)) with certain Mellin asymptotic types Rjα . The main issue is
Rjα
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to find l0 := l00; the other ljα then follow afterwards. Similarly as in the general edge operator
calculus we have

σMσ∧(b)(y, z + μ)σMσ∧(a)(y, z) = 1 + h0(y, z + μ)

for some h0(y, z) ∈ C∞(Rq,M
−∞,max(μ,d)
R (Ξ+,Ξ−)) and certain R. The principal conormal

symbol of b(y, η) has the form σMσ∧(b)(y, z) = f̃ (0, y, z,0). This gives us(
1 + h0(y, z + μ)

)−1
f̃ (0, y, z + μ,0) = (

σMσ∧(a)(y, z)
)−1

.

We have (1 + h0(y, z + μ))−1 − 1 = k0(y, z + μ) ∈ C∞(Rq,M
−∞,max(μ,d)
R (Ξ+,Ξ−)); here

and in the sequel by R we denote different Mellin asymptotic types. We have l0(y, z) :=
k0(y, z)f̃ (0, y, z,0) ∈ C∞(Rq,M

−∞,e
R (Ξ+,Ξ−)). The inevitability of σMσ∧(a)(y, z) for all

z ∈ Γn+1
2 −γ

shows us that l0(y, z + μ) has no poles on the weight line Γn+1
2 −(γ−μ)

. Thus we

can form (42) with the constructed l0(y, z) and unknown Mellin symbols ljα(y, z) for j > 0,
|α| � j . In any case it follows that

σMσ∧
[
(b + l) #y a

]
(y, z) = 1

for all y ∈ R
q , z ∈ C; here #y denotes the Leibniz multiplication of (operator-valued) amplitude

functions in y. The complete conormal symbol of b(y, η) + l(y, η) has the form

l(y, z, η) :=
(

1

j !
(

∂j

∂rj
f̃ (r, y, z, rη)

)∣∣∣∣
r=0

+
∑

|α|�j

ljα(y, z)ηα

)
0�j�k

;

we see that the components are polynomials in η of order j . Similarly, a(y, η) has the complete
conormal symbol

f (y, z, η) :=
(

1

j !
(

∂j

∂rj
h̃(r, y, z, rη)

)∣∣∣∣
r=0

+
∑

|α|�j

fjα(y, z)ηα

)
0�j�k

.

The sequence e(y, z, η) of conormal symbols of (b + l) #y a then follows by a combination of #y

with the Mellin translation product in z, cf., analogously, [20, Theorem 2.4.15] or [22]. Setting
e(y, z, η) = (1,0, . . . ,0) we obtain (since l0(y, z) is already calculated and f (y, z, η) is given by
the original operator) a recursive formula to uniquely determine the components ljα for j > 0 and
|α| � j . This allows us to form (42) for any choice of cut-off functions ω, ω̃ (and of the function
η → [η]). Any other choice generates remainders in form of Green symbols g(y, η) of order −μ,
cf. the corresponding observation in Section 3.3 below. Thus, without loss of generality we may
assume that σ(r)ω(r[η]) = ω(r[η]) and σ̃ (r)ω̃(r[η]) = ω̃(r[η]) for all r ∈ R+, η ∈ R

q with σ , σ̃
being the cut-off functions in the expression for b(y, η). In order to obtain a properly supported
parametrix also near r = 0 we choose a cut-off factor ω(y, y′) as mentioned in connection with
(34) and observe that for every Green symbol g1(y, η) (here of order −μ) there is another Green
symbol g(y, η) such that

P0 := Opy

(
ω(b + l + g1)

) = Op(b + l + g) + C (43)
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for a smoothing operator C (cf. the notation in Section 2.4). Since in the final parametrix we
accept Green remainders of order zero the expression (38) with the above mentioned P1 and (43)
gives us a left parametrix of A. In a similar manner we find a right parametrix modulo a Green
remainder. Thus our parametrix is two-sided; this completes the proof. �

We now formulate the regularity of solutions u to elliptic boundary-contact equations Au = f

with asymptotics.

Theorem 3.4. Let A be an elliptic boundary-contact operator of order μ ∈ Z and type d ∈ N,

and let u ∈Ws,γ (W+) ⊕Ws,γ (W−) ⊕Ws− 1
2 ,γ− 1

2 (S) be a solution of

Au = f ∈ Ws−μ,γ−μ

Q+ (W+) ⊕Ws−μ,γ−μ

Q− (W−) ⊕Ws−μ− 1
2 ,γ−μ− 1

2
T (S)

for some s > max(μ,d) − 1
2 and asymptotic types Q± and T , associated with the weight data

(γ − μ,Θ) and (γ − μ − 1
2 ,Θ), respectively, Θ = [0, k + 1) for any k ∈ N. Then we have

u ∈Ws,γ

P+ (W+) ⊕Ws,γ

P− (W−) ⊕Ws− 1
2 ,γ− 1

2
S (S)

for resulting asymptotic types P± and S, associated with the weight data (γ,Θ) and (γ − 1
2 ,Θ),

respectively.

Proof. Applying Theorem 3.3 the operator A has a (properly supported) parametrix P . From
Au = f we obtain PAu = (I − Gl )u = Pf . According to (31) the function Pf is of the same
smoothness as u and has asymptotics. By virtue of Proposition 2.12 also Glu is of the required
smoothness and has asymptotics. �
Remark 3.5. Definition 3.1 easily extends to the case of boundary-contact operators (including
systems in the upper left corner) with an arbitrary number of trace and potential transmission
conditions; those may also have different orders, cf. the examples in Section 1.2. We then have
corresponding analogues of Theorems 3.3, 3.4, and of the auxiliary structures in Section 3.3.

3.2. An example

Let us consider a simple example, namely,

A+ = �|W+ , A− = c�|W− (44)

for a constant c �= 0, with � being the Laplace operator in R
3, and

T± = t(T±,1, T±,2) for T±,1u := ±u|int S and T±,2u := ∂

∂ν±
u|int S, (45)

where ν± are the outward normal directions to the boundaries of W±\{0}.
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Theorem 3.6. The boundary-contact operator

A =
⎛⎝ A+ 0

0 A−
T+ T−

⎞⎠
is elliptic for all γ ∈ R\{1 − π

π−α
j : j ∈ Z}.

Proof. The ellipticity conditions (i), (ii) of Definition 3.1 are obviously satisfied for our problem
and also the condition on the Mellin asymptotic type S. It remains to find the non-bijectivity
points for the corresponding conormal symbol, cf. Remark 3.2.

The Laplace operator in polar coordinates r−2{∂2
φ + (−r∂r )

2 − (rDy)
2} gives rise to the prin-

cipal edge and conormal symbols

σ∧(�)(η) = r−2{∂2
φ + (−r∂r )

2 − (rη)2}
and

σMσ∧(�)(z) = ∂2
φ + z2,

respectively. Then (16) has the form

σMσ∧(A)(z) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

z2 + ∂2
φ 0

0 c(z2 + ∂2
φ)

r ′
0 −r ′

0

r ′
0∂φ r ′

0∂φ

r ′
α −r ′

α

r ′
α∂φ r ′

α∂φ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
:
Hs(Ξ+)

⊕
Hs(Ξ−)

→

Hs−2(Ξ+)

⊕
Hs−2(Ξ−)

⊕
C

2

⊕
C

2

(46)

where Ξ+ = [0, α], Ξ− = [α,2π]. The admissible weight γ for our boundary-contact problem
follows from the set D of those points z ∈ C where h(z) in not bijective. Calculations in [10]
shows that D = { π

π−α
j}j∈Z. Since dimΞ± = 1 we obtain γ ∈ R\{1 − π

π−α
j : j ∈ Z}. �

Theorem 3.4 can be specialized to the present situation. In particular, let u ∈ Ws,γ (W+) ⊕
Ws,γ (W−) ⊕ Ws− 1

2 ,γ− 1
2 (S) be a solution of Au = 0. Then near the edge, in the splitting of

variables (r,φ, y) we obtain asymptotics of u(r,φ, y) = t(u+(r,φ, y), u−(r,φ, y)) of the form

u±(r,φ, y)

∼
∑

j∈Z\0, π
π−α

j<1−γ

F−1
η→y[η]ω(

r[η])c±,j (φ)
(
r[η])− π

π−α
j
v̂±,j (η)

+F−1
η→y[η]ω(

r[η])c±,00(φ)v̂±,00(η) +F−1
η→y[η]ω(

r[η])c±,01(φ) log
(
r[η])v̂±,01(η)

with coefficients c±,j , c±,00, c±,01 ∈ C∞(Ξ±), v±,j , v±,00, v±,01 ∈ Hs(R). The second two
terms only occur in the case γ < 1.
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3.3. The asymptotic contribution in transmission operators

As we saw in Section 3.1 the asymptotics of solutions to an elliptic boundary-contact
problem is ‘generated’ by a specific ingredient of the parametrices, namely, by Mellin opera-
tors with meromorphic amplitude functions. In the present case they take values in the space
B−∞,d (Ξ+,Ξ−) of smoothing transmission operators of type d on the base Ξ+ ∪ Ξ− with re-
spect to the interface Σ . Recall that the parameter-dependent analogue B−∞,d (Ξ+,Ξ−;R

l) is
defined as S(Rl ,B−∞,d (Ξ+,Ξ−)). If U ⊂ C is an open set and E a Fréchet space, by A(U,E)

we denote the space of all holomorphic functions in U with values in E.
A sequence R = {(rj , nj ,Nj )}j∈Z of triples rj ∈ C, nj ∈ N, Nj ⊂ B−∞,d (Ξ+,Ξ−) is

called a Mellin asymptotic type if πCR := {rj }j∈Z intersects every strip {z: c < Re z < c′},
c < c′, in a finite set, and if Nj is a finite-dimensional subspace of operators of finite
rank. Then M

−∞,d
R (Ξ+,Ξ−) denotes the subspace of all f (z) ∈ A(C\πCR,B−∞,d (Ξ+,Ξ−))

such that (χRf )(β + i�) ∈ B−∞,d (Ξ+,Ξ−;R�) for every β ∈ R, uniformly in compact β-
intervals (where χR is an arbitrary πCR-excision function, i.e., χR ∈ C∞(C), χR(z) = 0 for
dist(πCR,z) < c0, χR(z) = 1 for dist(πCR,z) > c1 for certain 0 < c0 < c1), and, moreover, f (z)

is meromorphic with poles at rj of multiplicity nj + 1 and Laurent coefficients at (z − rj )
−(k+1)

belonging to Nj for 0 � k � nj . Let M
μ,d
R (Ξ+,Ξ−) := M

μ,d

O (Ξ+,Ξ−) + M
−∞,d
R (Ξ+,Ξ−)

where M
μ,d

O (Ξ+,Ξ−) := B−∞,d (Ξ−,Ξ+;C), cf. Section 2.3.
We now fix a weight interval Θ = [0, k + 1), k ∈ N, and form operator functions

m(y,η) := r−μω
(
r[η]) k∑

j=0

rj
∑

|α|�j

op
γj − n

2
M (fjα)(y)ηαω̃

(
r[η]) (47)

for arbitrary cut-off functions ω, ω̃, and fjα ∈ C∞(Rq,M
−∞,d
Rjα

(Ξ+,Ξ−)) for certain Mellin
asymptotic types Rjα and weight γj such that γ − j � γj � γ for all and πCRjα ∩Γn+1

2 −γj
= ∅.

Every such m(y,η) defines a C∞ family in (y, η) ∈ R
q × R

q of continuous operator m(y,η) :
E → Ẽ for

E = Ks,γ

(P+)

(
Ξ∧+

) ⊕Ks,γ

(P−)

(
Ξ∧−

) ⊕Ks− 1
2 ,γ− 1

2
(S)

(
Σ∧)

and

Ẽ = K∞,γ−μ

(Q+)

(
Ξ∧+

) ⊕K∞,γ−μ

(Q−)

(
Ξ∧−

) ⊕K∞,γ−μ− 1
2

(T )

(
Σ∧)

for arbitrary s > d − 1
2 and asymptotic types P±, S, with some resulting asymptotic types Q±, T

(associated with the weight data (γ,Θ) and (γ − μ,Θ), respectively), determined by the choice
of Mellin asymptotic types Rjα (similarly as before, subscripts ‘(P±)’, etc., indicate subspaces
with asymptotics of type P± or without asymptotics). Observe that we have

m(y,η) ∈ S
μ(

R
q × R

q;E, Ẽ
)
,
cl
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based on the group action (30). The homogeneous principal part of m(y,η) is given by

σ∧(m)(y, η) = r−μω
(
r|η|) k∑

j=0

rj
∑
|α|=j

op
γj − n

2
M (fjα)(y)ηαω̃

(
r|η|),

(y, η) ∈ T ∗
R

q\0. The analogue of symbols of the kind (47) in standard boundary value problems
are well investigated. We do not consider here all the useful properties. Let us only observe that
when we change the cut-off functions ω, ω̃ or the weights γjα we only change m(y,η) by a
so-called Green symbol. The definition is as follows.

A C∞ family in (y, η) ∈ R
q × R

q of operators g(y, η) is called a Green symbol of order μ

and type d = 0 if it represents a symbol

g(y, η) ∈ S
μ
cl

(
R

q × R
q;E, Ẽ

)
(48)

for E := Ks,γ (Ξ∧+) ⊕ Ks,γ (Ξ∧−) ⊕ Ks− 1
2 ,γ− 1

2 (Σ∧) and Ẽ := Sγ−μ

Q+ (Ξ∧+) ⊕ Sγ−μ

Q− (Ξ∧−) ⊕
Sγ−μ− 1

2
T (Σ∧) for asymptotic types Q±, T depending on g (and associated with the weight

data (γ − μ,Θ) and (γ − μ − 1
2 ,Θ), respectively), for all real s > − 1

2 , and if the pointwise
adjoint g∗(y, η) satisfies an analogous condition with respect to spaces of opposite weights and
corresponding asymptotic types P±, S in the image. Moreover, a Green symbol g(y, η) of order
μ and type d ∈ N is an operator family of the form

g(y, η) = g0(y, η) +
d∑

j=1

gj (y, η)diag
(
Dj,0,0

)
for arbitrary Green symbols gj (y, η) of order μ and type 0 and a first order differential operator
D of similar meaning as in (33) (i.e., differentiating transversally to Σ ). By σ∧(g)(y, η), (y, η) ∈
T ∗

R
q\0, we denote the homogeneous principal component of g(y, η) of order μ.

Remark 3.7. Let g(y, η) be a Green symbol which is independent of y for |y| > C for a constant
C > 0. Then G = Opy(g) is a Green operator in the sense of Definition 2.10.

We now define the complete conormal symbol σM(A) belonging to a boundary contact opera-
tor A of the form (32). The symbols a(y, η) and m(y,η) are given by (29) and (47), respectively.
In (47) we have fixed a weight strip Θ = [0, k + 1). We set

σM(A) :=
(

1

j !
(

∂j

∂rj
h̃(r, y, z, rη)

)∣∣∣∣
r=0

+
∑

|α|�j

fjα(y, z)ηα

)
0�j�k

.

The definition is motivated in a similar manner as in the general calculus of operators on a
configuration with edges.

Remark 3.8. If A and Ã are as in Theorem 2.9 the complete conormal symbol σM(AÃ) can be
computed in terms of σM(A) and σM(Ã) as the Leibniz–Mellin translation product.



D. Kapanadze, B.-W. Schulze / J. Differential Equations 234 (2007) 26–53 53
References

[1] S. Agmon, A. Douglis, L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equa-
tions satisfying general boundary conditions II, Comm. Pure Appl. Math. 17 (1964) 35–92.

[2] L. Boutet de Monvel, Boundary problems for pseudo-differential operators, Acta Math. 126 (1971) 11–51.
[3] O. Chkadua, Some boundary-contact problems of elasticity theory with mixed boundary conditions outside the

contact surface, Math. Nachr. 188 (1997) 23–48.
[4] O. Chkadua, Solvability and asymptotics of solutions of crack-type boundary-contact problems of couple-stress

elasticity, Georgian Math. J. 10 (3) (2003) 427–465.
[5] G.I. Eskin, Boundary Value Problems for Elliptic Pseudodifferential Equations, Math. Monogr., vol. 52, Amer.

Math. Soc., Providence, RI, 1980, Transl. of Nauka, Moskva, 1973.
[6] L. Escauriaza, E. Fabes, G. Verchota, On a regularity theorem for week solutions to transmission problems with

internal Lipschitz boundaries, Proc. Amer. Math. Soc. 115 (4) (1992) 1069–1076.
[7] G. Grubb, Functional Calculus of Pseudo-Differential Boundary Problems, Birkhäuser, Boston, 1996.
[8] B. Heinrich, S. Nicaise, B. Weber, Elliptic interface problems in axisymmetric domains I: Singular functions of

non-tensorial type, Math. Nachr. 186 (1997) 147–165.
[9] D. Kapanadze, B.-W. Schulze, Crack Theory and Edge Singularities, Math. Appl., vol. 561, Kluwer Academic,

Dordrecht, 2003.
[10] D. Kapanadze, B.-W. Schulze, Boundary-contact problems for domains with conical singularities, J. Differential

Equations 217 (2) (2005) 456–500.
[11] V.A. Kondratyev, Boundary value problems for elliptic equations in domains with conical points, Tr. Mosk. Mat.

Obs. 16 (1967) 209–292.
[12] Y. Li, L. Nirenberg, Estimates for elliptic systems from composite material, Comm. Pure Appl. Math. 56 (7) (2003)

892–925.
[13] Y. Li, M. Vogelius, Gradient estimates for solutions to divergence form elliptic equations with discontinuous coef-

ficients, Arch. Ration. Mech. Anal. 153 (2) (2000) 91–151.
[14] K. Lemrabet, An interface problem in a domain of R

3, J. Math. Anal. Appl. 63 (1978) 549–562.
[15] P.A. Myshkis, On an algebra generated by two-sided pseudodifferential operators on a manifold, Uspekhi Mat.

Nauk 31 (4) (1976) 269–270.
[16] S. Nicaise, A.-M. Sändig, Transmission problems for the Laplace and elasticity operators: Regularity and boundary

integral formulation, Math. Models Methods Appl. Sci. 9 (1999) 855–898.
[17] S. Rempel, B.-W. Schulze, Index Theory of Elliptic Boundary Problems, Akademie-Verlag, Berlin, 1982.
[18] E. Schrohe, B.-W. Schulze, A symbol algebra for pseudodifferential boundary value problems on manifolds

with edges, in: Differential Equations, Asymptotic Analysis, and Mathematical Physics, in: Math. Res., vol. 100,
Akademie-Verlag, Berlin, 1997, pp. 292–324.

[19] B.-W. Schulze, Pseudo-Differential Operators on Manifolds with Singularities, North-Holland, Amsterdam, 1991.
[20] B.-W. Schulze, Boundary Value Problems and Singular Pseudo-Differential Operators, Wiley, Chichester, 1998.
[21] R.H. Torres, G.V. Welland, The Helmholtz equation and transmission problems with Lipschitz interfaces, Indiana

Univ. Math. J. 42 (4) (1993) 1457–1485.
[22] I. Witt, Explicit algebras with Leibniz–Mellin translation product, Preprint 99/2, Institut für Mathematik, Uni Pots-

dam, 1999.


