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We prove the unique existence of solutions for different types of
boundary value problems of wave diffraction by a half-plane with
a screen or a crack perpendicular to the boundary. Representa-
tions of the solutions are also obtained upon the consideration of
some associated operators. This is done in a Bessel potential spaces
framework and for complex (non-real) wave numbers. The inves-
tigation is mostly based on the construction of explicit operator
relations, the potential method, and a factorization technique for
a certain class of oscillating Fourier symbols which naturally arise
from the problems.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

The physical motivations behind the present study arise from the problem of acoustic and electro-
magnetic time-harmonic plane wave diffraction by a strip interacted with the boundary. In particular,
we deal with boundary value problems for the Helmholtz equation, where the strip is located in the
O xz-plane (when adopting the Cartesian axes O xyz) and perpendicular to y-axis – which may be
viewed as a boundary of an obstacle. Throughout this work we assume that the material is invariant
in the z-direction. Thus, in effect, the geometry of the problem is two-dimensional, which leads us
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from the strip to a finite interval [0,a[, a > 0. The problem is formulated for the complex (non-real)
wave number case and worked out in a framework of Bessel potential spaces.

Boundary value problems for the Helmholtz equation in singular configurations have been stud-
ied by several authors, partly focused on special cases, under extra assumptions on the geometry
or the underlying dimensions. Other concrete wave diffraction problems which have been stud-
ied in the literature and have some common points with our problem can be found, for instance,
in the works of Castro, Kapanadze, Krutitskii, Malyuzhinets, Meister, Merzon, Moura Santos, Penzel,
Rottbrand, dos Santos, Speck, Teixeira and others (cf. [2,6,7,13,21,24–32]). In special, Dirichlet and
Neumann problems for the dissipative Helmholtz equation in exterior planar domains bounded by
several closed curves and several open arcs (or cracks) have been studied in [17–19], and boundary
value problems for the 2D Laplace equation in exterior domains bounded by several closed curves
and several double-sided open arcs with a Dirichlet boundary condition on the whole boundary or
with setting either Dirichlet or Neumann boundary conditions on different parts of the boundary have
been studied in [20,22,23].

To treat the problems (mathematically formulated in the next section) we start by applying the so-
called potential method (in Section 3), which allows us to equivalently reduce the original problems
to the integro-differential equations on the boundary. It turns out that these equations are equivalent
to some others characterized by Wiener–Hopf plus and minus Hankel operators. Moreover, these op-
erators have oscillating Fourier symbols (see Section 4), which are additionally investigated. Namely,
explicit appropriate factorizations of the representatives at infinity of those Fourier symbols are ob-
tained and, therefore, uniqueness and existence results are concluded (in the last section). For all this
the use of operator relations in Section 5 revealed to be fundamental, which allows us to associate
a certain matrix Wiener–Hopf operator with Wiener–Hopf plus and minus Hankel operators. Addition-
ally, we represent solutions of the wave diffraction problems with a screen or a crack perpendicular
to the boundary by single and double layer potentials within Bessel potential spaces, and an improve-
ment of the smoothness space parameters is exhibited for which the existence and uniqueness of
solution (and continuous dependence on the data) is still guaranteed.

2. Formulation of the problems

In this section we establish the general notation which will already allow the mathematical for-
mulation of the problem.

As usual, S(Rn) denotes the Schwartz space of all rapidly vanishing functions and S ′(Rn) the dual
space of tempered distributions on R

n . The Bessel potential space Hs(Rn), with s ∈ R, is formed by

the elements ϕ ∈ S ′(Rn) such that ‖ϕ‖Hs(Rn) = ‖F−1(1 + |ξ |2)s/2 ·Fϕ‖L2(Rn) is finite. As the notation
indicates, ‖ · ‖Hs(Rn) is a norm for the space Hs(Rn) which makes it a Banach space. Here, F =Fx�→ξ

denotes the Fourier transformation in R
n .

For a given Lipshitz domain D, on R
n , we denote by H̃ s(D) the closed subspace of Hs(Rn) whose

elements have supports in D, and Hs(D) denotes the space of generalized functions on D which have
extensions into R

n that belong to Hs(Rn). The space H̃ s(D) is endowed with the subspace topology,
and on Hs(D) we introduce the norm of the quotient space Hs(Rn)/H̃ s(Rn \D). Throughout the paper
we will use the notation R

n± := {x = (x1, . . . , xn−1, xn) ∈ R
n: ±xn > 0}. Note that the spaces H0(Rn+)

and H̃0(Rn+) can be identified, and we will denote them by L2(R
n+).

Let Ω := {(x1, x2) ∈R
2: x1 > 0, x2 ∈ R}, Γ1 := {(x1,0): x1 ∈R}, and Γ2 := {(0, x2): x2 ∈R}. Let fur-

ther C := {(x1,0): 0 < x1 < a} ⊂ Γ1 for a certain positive number a and ΩC := Ω \C . Clearly, ∂Ω = Γ2
and ∂ΩC = Γ2 ∪ C .

For our purposes below we introduce further notations: Ω1 := {(x1, x2) ∈ R
2: x1 > 0, x2 > 0}

and Ω2 := {(x1, x2) ∈ R
2: x1 > 0, x2 < 0}, then ∂Ω j = S j ∪ S , for j = 1,2, where S := {(x1,0):

x1 � 0} ⊂ Γ1, S1 := {(0, x2): x2 � 0} ⊂ Γ2, and S2 := {(0, x2): x2 � 0} ⊂ Γ2. Finally, we introduce
the following unit normal vectors n1 = −−−−−−→

(0,−1) on Γ1 and n2 = −−−−−−→
(−1,0) on Γ2.

Let ε ∈ [0, 1
2 ). We are interested in studying the problem of existence and uniqueness of an ele-

ment u ∈ H1+ε(ΩC), such that
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(
� + k2)u = 0 in ΩC, (1)

and u satisfies one of the following four representative boundary conditions:

[u]±C = g±
0 on C, and [u]+S j

= h j on S j, (2)

[u]±C = g±
0 on C, and [∂n2 u]+S j

= f j on S j, (3)

[∂n1 u]±C = g±
1 on C, and [u]+S j

= h j on S j, (4)

[∂n1 u]±C = g±
1 on C, and [∂n2 u]+S j

= f j on S j, (5)

for j = 1,2. Here the wave number k ∈ C \ R is given. The elements [u]+S j
and [∂n2 u]+S j

denote the

Dirichlet and the Neumann traces on S j , respectively, while by [u]±C we denote the Dirichlet traces
on C from both sides of the screen and by [∂n1 u]±C we denote the Neumann traces on C from both
sides of the crack.

Throughout the paper on the given data we assume that h j ∈ H1/2+ε(S j), f j ∈ H−1/2+ε(S j),
for j = 1,2, and g±

i ∈ H1/2−i+ε(C), for i = 0,1. Furthermore, we suppose that they satisfy the fol-
lowing compatibility conditions:

χa
(

g+
0 − g−

0

) ∈ rC H̃1/2+ε(C), (6)

χa
(

g+
1 − g−

1

) ∈ rC H̃−1/2+ε(C), (7)

and

χ0
(

g+
0 − rCh1 ◦ ei π

2
)
,χ0

(
g−

0 − rCh2 ◦ e−i π
2
) ∈ rC H̃1/2+ε(C), (8)

χ0
(

g+
1 + rC f1 ◦ ei π

2
)
,χ0

(
g−

1 − rC f2 ◦ e−i π
2
) ∈ rC H̃−1/2+ε(C). (9)

Here, rC denotes the restriction operator to C and χa(x) := χ0(a − x), where χ0 ∈ C∞([0,a]), such
that χ0(x) ≡ 1 for x ∈ [0,a/3] and χ0(x) ≡ 0 for x ∈ [2a/3,a].

From now on we will refer to:

• Problem PD–D as the problem characterized by (1), (2), (6), and (8);
• Problem PD–N as the one characterized by (1), (3), (6);
• Problem PN–D as the one characterized by (1), (4), (7);
• Problem PN–N as the one characterized by (1), (5), (7), and (9).

As about the just stated compatibility conditions, note that they are necessary conditions to the
well-posedness of the corresponding problems. Note also that, the compatibility conditions (7) and (9)
included in Problems PN–D and PN–N are additional restrictions only for ε = 0.

3. The fundamental solution and potentials

We start this section by proving the uniqueness result for the problems in consideration.

Theorem 3.1. The problems PD–D , PN–D , PD–N , and PN–N have at most one solution.

Proof. The proof is standard and uses the Green formula (being sufficient to consider the case ε = 0).
Let R be a sufficiently large positive number and B(R) be the disk centered at the origin with
radius R . Set ΩR := ΩC ∩ B(R). Note that the domain ΩR has a piecewise smooth boundary S R
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including both sides of C and denote by n(x) the outward unit normal vector at the non-singular
points x ∈ S R .

Let u be a solution of the homogeneous problem. Then the first Green identity for u and its
complex conjugate u in the domain ΩR , together with zero boundary conditions on S R yields∫

ΩR

[|∇u|2 − k2|u|2]dx =
∫

∂ B(R)∩Ω

(∂nu)u dS R . (10)

Note that, since �m k �= 0, the integral
∫
∂ B(R)∩Ω

(∂nu)u dS tends to zero as R → ∞. Indeed, in (R, φ)

polar coordinates we have

∫
∂ B(R)∩Ω

(∂nu)u dS = R

π
2∫

− π
2

(∂nu)u dφ = R lim
δ1,δ2→0+

π
2 −δ2∫

δ1− π
2

(∂nu)u dφ

and we take into account that the solution u ∈ H1(Ω) of the Helmholtz equation exponentially decays
at infinity. Therefore passing to the limit as R → ∞ in (10) it follows∫

ΩC

[|∇u|2 − k2|u|2]dx = 0.

From the real and imaginary parts of the last identity, we obtain∫
ΩC

[|∇u|2 + (
(�m k)2 − (�e k)2)|u|2]dx = 0,

−2(�e k)(�m k)

∫
ΩC

|u|2 dx = 0.

Thus, for the condition �m k �= 0, it follows from the last two identities that u = 0 in ΩC . �
Now, without lost of generality we assume that �m k > 0; the complementary case �m k < 0 runs

with obvious changes. Let us denote the standard fundamental solution of the Helmholtz equation
(in two dimensions) by

K(x) := − i

4
H (1)

0

(
k|x|),

where H(1)
0 (k|x|) is the Hankel function of the first kind of order zero (cf. [14, §3.4]). Furthermore, we

introduce the single and double layer potentials on Γ j :

V j(ψ)(x) =
∫
Γ j

K(x − y)ψ(y)dyΓ j, x /∈ Γ j,

W j(ϕ)(x) =
∫
Γ j

[
∂n j(y)K(x − y)

]
ϕ(y)dyΓ j, x /∈ Γ j,
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where j = 1,2 and ψ , ϕ are density functions. Note that for j = 1 sometimes we will write R instead
of Γ1. In this case, for example, the single layer potential defined above has the form

V 1(ψ)(x1, x2) =
∫
R

K(x1 − y, x2)ψ(y)dy, x2 �= 0.

Let us first consider the operators V := V 1 and W := W1.

Theorem 3.2. (See [7].) The single and double layer potentials V and W are continuous operators

V : Hs(R) → Hs+1+ 1
2
(
R

2±
)
, W : Hs+1(R) → Hs+1+ 1

2
(
R

2±
)

(11)

for all s ∈R.

Clearly, a similar result holds true for the operators V 2 and W2.
Let us now recall some properties of the above introduced potentials. The following limit relations

are well known (cf. [7]):

[
V (ψ)

]+
R

= [
V (ψ)

]−
R

=: H(ψ),
[
∂n V (ψ)

]±
R

=:
[
∓1

2
I

]
(ψ),

[
W (ϕ)

]±
R

=:
[
±1

2
I

]
(ϕ),

[
∂n W (ϕ)

]+
R

= [
∂n W (ϕ)

]−
R

=: L(ϕ), (12)

where

H(ψ)(z) :=
∫
R

K(z − y)ψ(y)dy, z ∈R, (13)

L(ϕ)(z) := lim
R

2+�x→z∈R
∂n(x)

∫
R

[
∂n(y)K(y − x)

]
ϕ(y)dy, z ∈R, (14)

and I denotes the identity operator.
In our further reasoning we will make a convenient use of the even and odd extension operators

defined by

�eϕ(y) =
{

ϕ(y), y ∈R±,

ϕ(−y), y ∈R∓,
and �oϕ(y) =

{
ϕ(y), y ∈R±,

−ϕ(−y), y ∈R∓,

respectively.

Remark 3.3. (See [13].) The following operators

�e : Hε+ 1
2 (R±) −→ Hε+ 1

2 (R), �o : rR± H̃ε+ 1
2 (R±) −→ Hε+ 1

2 (R),

�o : Hε− 1
2 (R±) −→ Hε− 1

2 (R), �e : rR± H̃ε− 1
2 (R±) −→ Hε− 1

2 (R)

are continuous for all ε ∈ [0,1/2).
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Lemma 3.4. (See [7].) If 0 � ε < 1/2, then

rΓ2 ◦ V ◦ �oψ = 0, rΓ2 ◦ W ◦ �oϕ̃ = 0,

rΓ2 ◦ ∂n2 V ◦ �eψ̃ = 0, rΓ2 ◦ ∂n2 W ◦ �eϕ = 0

for all ψ ∈ Hε− 1
2 (S), ψ̃ ∈ rS H̃ε− 1

2 (S), ϕ ∈ Hε+ 1
2 (S), and ϕ̃ ∈ rS H̃ε+ 1

2 (S).

Note that analogous results are valid for the operators V 2 and W2.

4. The problems in the form of Wiener–Hopf plus Hankel equations

In the present section, we will equivalently write our problems in the form of single equations
characterized by Wiener–Hopf plus Hankel operators. In view of this, the use of the pseudodifferential
operators introduced in the last section together with an appropriate use of odd and even extension
operators will be crucial. In addition, the reflection operator J given by the rule

Jψ(y) = ψ(−y) for all y ∈R,

will also play an important role here.
The boundary value problem PD–D can equivalently be rewritten in the following form: Find u j ∈

H1+ε(Ω j), j = 1,2, such that

(
� + k2)u j = 0 in Ω j, (15)

[u j]+S j
= h j on S j, (16)

[u1]+C = g+
0 , [u2]−C = g−

0 on C, (17)

and

[u1]+Cc − [u2]−Cc = 0, [∂n1 u1]+Cc − [∂n1 u2]−Cc = 0 on Cc, (18)

where Cc = S \ C .
Let us consider the following functions

u1 = 2W2
(
�eh1

) + 2W1
(
�o(�+g+

0 − [
2W2

(
�eh1

)]+
S
) + �o(rSϕ)

)
in Ω1 (19)

and

u2 = 2W2
(
�eh2

) − 2W1
(
�o(�+g−

0 − [
2W2

(
�eh2

)]−
S
) + �o(rSϕ)

)
in Ω2, (20)

where ϕ is an arbitrary element of the space H̃
1
2 +ε(Cc) and �+ g+

0 ∈ H
1
2 +ε(S) is any fixed extension

of g+
0 ∈ H

1
2 +ε(C), while �+ g−

0 ∈ H
1
2 +ε(S) denotes the extension of g−

0 ∈ H
1
2 +ε(C) which satisfies

the condition rCc (�+ g+
0 − �+ g−

0 ) = 0. Note that such extension exists due to the compatibility con-
dition (6). Note also that, the compatibility conditions (8) ensure us that �+ g+

0 − [2W2(�
eh1)]+S and

�+ g−
0 − [2W2(�

eh2)]−S are elements of rS H̃
1
2 +ε(S) and therefore we may apply the extension opera-

tor �o .
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Using the results from Section 3 it is easy to verify that u j belong to the spaces H1+ε(Ω j) and
satisfy Eqs. (15)–(17). Moreover, on Cc we have

[u1]+Cc − [u2]−Cc = 0.

Therefore it remains to satisfy the condition

[∂n1 u1]+Cc − [∂n1 u2]−Cc = 0,

which together with (19) and (20) leads us to the following equation

rCcL
(
�orSϕ

) = Φ, (21)

where

Φ = 1

2
rCc

(
∂n1 W2

(
�eh2 − �eh1

)
−L

(
�o(�+g+

0 + �+g−
0 − [

2W2
(
�eh1

)]+
S − [

2W2
(
�eh2

)]−
S
)))

.

Thus we need to investigate the invertibility of the operator

rCcL�orS : H̃
1
2 +ε

(
Cc) −→ H− 1

2 +ε
(
Cc).

With the help of the operator J and the shift convolution operators F−1τ±a · F (where we re-
call that F denotes the Fourier transformation and τb(ξ) := eibξ , ξ ∈ R), we equivalently reduce the
problem to the invertibility of the operator

rR+
(
L−LF−1τ−2a ·F J

) = rR+F−1τ−a ·FL�orR+F−1τa ·F : H̃
1
2 +ε(R+) −→ H− 1

2 +ε(R+).

Let us note here that due to Theorem 3.1 and having in mind the exhibited limit relations of the
potentials, we already know that Ker rR+ (L−LF−1τ−2a ·F J ) = {0}.

The boundary value problem PD–N can equivalently be rewritten in the following form: Find u j ∈
H1+ε(Ω j), j = 1,2, such that

(
� + k2)u j = 0 in Ω j,

[∂n2 u j]+S j
= f j on S j,

[u1]+C = g+
0 , [u2]−C = g−

0 on C,

and

[u1]+Cc − [u2]−Cc = 0, [∂n1 u1]+Cc − [∂n1 u2]−Cc = 0 on Cc .

For this problem let us consider the following functions

u1 = −2V 2
(
�o f1

) + 2W1
(
�e(�+g+

0 + rSϕ
))

in Ω1 (22)

and
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u2 = −2V 2
(
�o f2

) − 2W1
(
�e(�+g−

0 + rSϕ
))

in Ω2, (23)

where ϕ is an arbitrary element of the space H̃
1
2 +ε(Cc), while �+ g±

0 are above introduced extensions
of g±

0 .
Similarly as above, the boundary conditions on Cc leads us to the following equation

rCcL
(
�erSϕ

) = Φ, (24)

where

Φ = 1

2
rCc

(
V 2

(
�o f1 − �o f2

) −L
(
�e(�+g+ + �+g−)))

.

Thus we need to investigate the invertibility of the operator

rCcL�erS : H̃
1
2 +ε

(
Cc) −→ H− 1

2 +ε
(
Cc).

As previously, with the help of the operators J and F−1τ±a ·F , we are able to equivalently trans-
form this second problem into the invertibility of the operator

rR+
(
L+LF−1τ−2a ·F J

) = rR+F−1τ−a ·FL�erR+F−1τa ·F : H̃
1
2 +ε(R+) −→ H− 1

2 +ε(R+).

Again, let us note here that due to Theorem 3.1 and having in mind the exhibited limit relations
of the potentials, we already know that Ker rR+ (L+LF−1τ−2a ·F J ) = {0}.

The boundary value problem PN–D can equivalently be rewritten in the following form: Find u j ∈
H1+ε(Ω j), j = 1,2, such that (

� + k2)u j = 0 in Ω j, (25)

[u j]+S j
= h j on S j, (26)

[∂n1 u1]+C = g+
1 , [∂n1 u2]−C = g−

1 on C, (27)

and

[u1]+Cc − [u2]−Cc = 0, [∂n1 u1]+Cc − [∂n1 u2]−Cc = 0 on Cc,

where Cc = S \ C .
Let us consider the following functions

u1 = 2W2
(
�eh1

) − 2V 1
(
�o(�+g+

1 + rSψ
))

in Ω1 (28)

and

u2 = 2W2
(
�eh2

) + 2V 1
(
�o(�+g−

1 + rSψ
))

in Ω2, (29)

where ψ is an arbitrary element of the space H̃− 1
2 +ε(Cc) and �+ g+

1 ∈ H− 1
2 +ε(S) is any fixed ex-

tension of g+
1 ∈ H− 1

2 +ε(C), while �+ g−
1 ∈ H− 1

2 +ε(S) denotes the extension of g−
1 ∈ H− 1

2 +ε(C) which
satisfies the condition rCc (�+ g+

1 −�+ g−
1 ) = 0. Note that such extension exists due to the compatibility

condition (7).
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Using the results from Section 3 it is easy to verify that u j belong to the spaces H1+ε(Ω j) and
satisfy Eqs. (25)–(27). Moreover, on Cc we have

[∂n1 u1]+Cc − [∂n1 u2]−Cc = 0.

Therefore it remains to satisfy the condition

[u1]+Cc − [u2]−Cc = 0,

which together with (28) and (29) leads us to the following equation

rCcH
(
�orSψ

) = Ψ, (30)

where

Ψ = 1

2
rCc

(
W2

(
�eh1 − �eh2

) −H
(
�o(�+g+

1 + �+g−
1

)))
.

Thus we need to investigate the invertibility of the operator

rCcH�orS : H̃− 1
2 +ε

(
Cc) −→ H

1
2 +ε

(
Cc).

With the help of the operator J and the shift convolution operators F−1τ±a · F , we equivalently
reduce the problem to the invertibility of the operator

rR+
(
H−HF−1τ−2a ·F J

) = rR+F−1τ−a ·FH�orR+F−1τa ·F : H̃− 1
2 +ε(R+) −→ H

1
2 +ε(R+).

Let us note here that due to Theorem 3.1 and having in mind the exhibited limit relations of the
potentials, we already know that Ker rR+ (H−HF−1τ−2a ·F J ) = {0}.

The boundary value problem PN–N can equivalently be rewritten in the following form: Find u j ∈
H1+ε(Ω j), j = 1,2, such that

(
� + k2)u j = 0 in Ω j,

[∂n2 u j]+S j
= f j on S j,

[∂n1 u1]+C = g+
1 , [∂n1 u2]−C = g−

1 on C,

and

[u1]+Cc − [u2]−Cc = 0, [∂n1 u1]+Cc − [∂n1 u2]−Cc = 0 on Cc .

For this problem let us consider the following functions

u1 = −2V 2
(
�o f1

) − 2V 1
(
�e(�+g+

1 + 2
[
∂n1 V 2

(
�o f1

)]+
S
) + �e(rSψ)

)
in Ω1 (31)

and

u2 = −2V 2
(
�o f2

) + 2V 1
(
�e(�+g−

1 + 2
[
∂n1 V 2

(
�o f2

)]−) + �e(rSψ)
)

in Ω2, (32)
S
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where ψ is an arbitrary element of the space H̃− 1
2 +ε(Cc), while �+ g±

1 are above introduced exten-
sions of g±

1 . Note also that, the compatibility conditions (9) ensure us that �+ g+
1 + 2[∂n1 V 2(�

o f1)]+S
and �+ g−

1 + 2[∂n1 V 2(�
o f2)]−S are elements of rS H̃− 1

2 +ε(S) and therefore we may apply the extension
operator �o .

Similarly as above, the boundary conditions on Cc lead us to the following equation

rCcH
(
�erSψ

) = Ψ, (33)

where

Ψ = 1

2
rCc

(
V 2

(
�o f2 − �o f1

)
−H

(
�e(�+g+ + �+g− + [

∂n1 V 2
(
�o f1

)]+
S + [

∂n1 V 2
(
�o f2

)]−
S
)))

.

Thus we need to investigate the invertibility of the operator

rCcH�erS : H̃− 1
2 +ε

(
Cc) −→ H

1
2 +ε

(
Cc).

As previously, with the help of the operators J and F−1τ±a ·F , we are able to equivalently trans-
form this second problem into the invertibility of the operator

rR+
(
H+HF−1τ−2a ·F J

) = rR+F−1τ−a ·FH�erR+F−1τa ·F : H̃− 1
2 +ε(R+) −→ H

1
2 +ε(R+).

We observe that due to Theorem 3.1 and having in mind the exhibited limit relations of the po-
tentials, we already know that Ker rR+(H+HF−1τ−2a ·F J ) = {0}.

5. Analysis of Wiener–Hopf plus and minus Hankel operators

In this section we will consider general operators with the global structure of Wiener–Hopf plus
and minus Hankel operators, and we will recall – in an appropriate framework for our purposes –
some known operator relations between these operators and Wiener–Hopf operators.

In view of this, let us also recall that two bounded linear operators T and S (acting between
Banach spaces) are said to be equivalent if T = E S F for some boundedly invertible operators E and F .
In such a case we will write T ∼ S . In addition, when the use of identity extension operators is needed
in combination with the related operators T and S , such corresponding relations are denominated
(toplinear) equivalence after extension relations (see [1,12] for a detailed description about such operator
relations).

Let us define

Λs±(ξ) := (ξ ± i)s = (
1 + ξ2) s

2 exp
{

si arg(ξ ± i)
}
,

with a branch chosen in such a way that arg(ξ ± i) → 0 as ξ → +∞, i.e., with a cut along the negative
real axis (see Example 1.7 in [15] for additional information about the properties of these functions).
In addition, we will also use the notation

ζ(ξ) := Λ−(ξ)

Λ+(ξ)
= ξ − i

ξ + i
, ξ ∈R.



L.P. Castro, D. Kapanadze / J. Differential Equations 254 (2013) 493–510 503
Lemma 5.1. (See [15, §4].) Let s, r ∈ R, and consider the operators

Λs+(D) = (D + i)s,

Λs−(D) = rR+(D − i)s�(r),

where (D ± i)±s =F−1(ξ ± i)±s ·F , and �(r) : Hr(R+) → Hr(R) is any bounded extension operator in these
spaces (which particular choice does not change the definition of Λs−(D)).

These operators arrange isomorphisms in the following space settings

Λs+(D) : H̃r(R+) → H̃r−s(R+),

Λs−(D) : Hr(R+) → Hr−s(R+)

(for any s, r ∈R).

Bearing in mind the purpose of this section, let A = Op(a) = F−1a · F and B = Op(b) be pseu-

dodifferential operators of order μ ∈ R; thus, 〈·〉−μa, 〈·〉−μb ∈ L∞(R), where 〈ξ〉 := (1 + ξ2)
1
2 . Then

C± := A ± B J arrange continuous maps

rR+ C± : H̃ s(R+) → Hs−μ(R+) (34)

for all s ∈R. In addition, assume also that a−1 exists and so 〈·〉μa−1 ∈ L∞(R).
Lemma 5.1 allows us to construct an equivalence relation between rR+ C± and

rR+C± : L2(R+) → L2(R+), (35)

which is explicitly given by the following identity

rR+C± := Λ
s−μ
− rR+ C±Λ−s+ = rR+(A± B J ), (36)

where

A := (D − i)s−μ A(D + i)−s and B := (D − i)s−μB J (D + i)−s J . (37)

Indeed, due to the fact that Λ
s−μ
− : Hs−μ(R+) → L2(R+) and Λ−s+ : L2(R+) → H̃ s(R+) are invertible

operators (cf. Lemma 5.1), the identity (36) shows that

rR+ C± ∼ rR+C±. (38)

Note that

Λs+(−ξ) = Λs−(ξ)esπ i, Λs−(−ξ) = Λs+(ξ)e−sπ i

which in particular allow us to describe the operators A and B and their symbols in the following
way

A = Op(ã), ã(ξ) = Λ
s−μ
− (ξ)a(ξ)Λ−s+ (ξ),

B = Op(b̃), b̃(ξ) = Λ
s−μ
− (ξ)b(ξ)Λ−s+ (−ξ) = Λ

−μ
− (ξ)b(ξ)e−sπ i .
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Further, let us consider a pseudodifferential operator Op(Ξ) with 2 × 2 matrix symbol

Ξ(ξ) =
(

α11(ξ) α12(ξ)

α21(ξ) α22(ξ)

)
(39)

with

α11(ξ) = ã(ξ) − b̃(ξ)
(
ã(−ξ)

)−1
b̃(−ξ)

= Λ
s−μ
− (ξ)a(ξ)Λ−s+ (ξ) − Λ

s−μ
− (ξ)b(ξ)

(
a(−ξ)

)−1
b(−ξ)Λ−s+ (ξ), (40)

α12(ξ) = −b̃(ξ)
(
ã(−ξ)

)−1 = −Λ
s−μ
− (ξ)b(ξ)

(
a(−ξ)

)−1
Λ

−s+μ
+ (ξ)e(s−μ)π i,

α21(ξ) = (
ã(−ξ)

)−1
b̃(−ξ) = esπ iΛs−(ξ)

(
a(−ξ)

)−1
b(−ξ)Λ−s+ (ξ),

α22(ξ) = (
ã(−ξ)

)−1 = Λs−(ξ)
(
a(−ξ)

)−1
e(2s−μ)π iΛ

−s+μ
+ (ξ). (41)

Under the above conditions on a and b, it is straightforward to conclude that

rR+ Op(Ξ) : [L2(R+)
]2 → [

L2(R+)
]2

(42)

is a continuous operator. Moreover, the determinant of the symbol of this operator is always nonzero.
Indeed, we have for the determinant of the corresponding 2 × 2 matrix symbol

det Ξ(ξ) = α11(ξ)α22(ξ) − α21(ξ)α12(ξ)

= ζ 2s−μ(ξ)
a(ξ)

a(−ξ)
e(2s−μ)π i �= 0 (43)

for all ξ ∈R.
The importance of operator rR+ Op(Ξ) is clarified in the next result.

Theorem 5.2. (See [8, §6].)

(i) The operators

rR+C± = rR+A± rR+B J : L2(R+) → L2(R+)

(defined in (35)–(37)) are both invertible if and only if the operator rR+ Op(Ξ) (given in (42)) is invertible.
(ii) The operators rR+C+ and rR+C− have both the Fredholm property if and only if rR+ Op(Ξ) has the Fred-

holm property. In addition, when in the presence of the Fredholm property for these three operators, their
Fredholm indices satisfy the identity

Ind rR+C+ + Ind rR+C− = Ind rR+ Op(Ξ). (44)

In fact, this theorem is a consequence of a stronger fact which basically states that rR+ Op(Ξ) is
(toplinear) equivalence after extension with a diagonal matrix operator whose diagonal entries are
the operators rR+C+ and rR+C− . Moreover, it is interesting to clarify that all the necessary opera-
tors to identify such (toplinear) equivalence after extension relation can be built in an explicit way
(see [9–12]).
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6. Final conclusions

In this final section we would like to consider all the operators which we have equivalently asso-
ciated with our problems in the above sense, and look for their invertibility.

Considering the general structure of the Wiener–Hopf operator in the last section, for the cases
under study, we have

rR+ Op(Ξ) : [L2(R+)
]2 → [

L2(R+)
]2

(45)

so that A =L and B =LOp(τ−2a) or A =H and B =HOp(τ−2a). Therefore, having in mind that our
goal is to analyze the invertibility of such operator, in a first stage we will start by studying its Fred-
holm property. In view of this, it is important to recall the complete symbol of the pseudodifferential
operators H and L (cf. [7,8]):

σ(H)(ξ) = − i

2w(ξ)
and σ(L)(ξ) = − iw(ξ)

2
, (46)

where w = w(ξ) := (�2 + ρ2)
1
4 (cos α

2 + i sin α
2 ), with

� = �(ξ) := (�e k)2 − (�m k)2 − ξ2,

ρ := 2(�e k)(�m k)

and

α :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

arctan ρ
|�| if � > 0, ρ > 0,

π
2 if � = 0, ρ > 0,

π − arctan ρ
|�| if � < 0, ρ > 0,

π if ρ = 0,

2π − arctan |ρ|
|�| if � > 0, ρ < 0,

3π
2 if � = 0, ρ < 0,

π + arctan |ρ|
|�| if � < 0, ρ < 0.

(47)

Now we provide detailed arguments for the operators A =H and B =HOp(τ−2a) with s = − 1
2 +ε,

μ = −1. The remaining case can be treated analogously with obvious changes in the corresponding
places.

Computing formulas (40)–(41) for the present case (and using in particular the fact that ω(ξ) =
ω(−ξ)), we obtain

Ξ(ξ) = Ξp(ξ) =
(

0 −iζ
1
2 +ε(ξ)τ−2a(ξ)eεπ i

−iζ− 1
2 +ε(ξ)τ2a(ξ)eεπ i 2iω(ξ)Λ

− 1
2 +ε

− (ξ)Λ
− 1

2 −ε
+ (ξ)e2επ i

)
. (48)

We then realize that Ξp belongs to the very general C∗-algebra of the semi-almost periodic two
by two matrix functions on the real line ([SAP(R)]2×2); see [33]. We recall that [SAP(R)]2×2 is the
smallest closed subalgebra of [L∞(R)]2×2 that contains the (classical) algebra of (two by two) almost
periodic elements ([AP]2×2) and the (two by two) continuous matrices with possible jumps at infinity.

Due to a known characterization of the structure of [SAP(R)]2×2 (see [3,4,33]), we can choose
a continuous function on the real line, say γ , such that γ (−∞) = 0, γ (+∞) = 1 and

Ξp = (1 − γ )(Ξp)l + γ (Ξp)r + (Ξp)0



506 L.P. Castro, D. Kapanadze / J. Differential Equations 254 (2013) 493–510
where (Ξp)0 is a continuous two by two matrix function with zero limit at infinity, and (Ξp)l
and (Ξp)r are matrices with almost periodic elements, uniquely determined by Ξp , and that in our
case have the following form (due to the behavior of Ξp at ±∞):

(Ξp)l =
(

0 iτ−2ae−επ i

iτ2ae−επ i −2

)
,

(Ξp)r =
(

0 −iτ−2aeεπ i

−iτ2aeεπ i −2e2επ i

)
.

In here, it is worth noting that we had in consideration that ω(ξ) → i|ξ | as ξ → ±∞, and

ζ ν(ξ) → 1 as ξ → ∞,

and

ζ ν(ξ) → e−2πνi as ξ → −∞.

For a given Banach algebra (with unit element) M, by GM we will denote the collection of all
invertible elements of M.

Definition 6.1. (See, e.g., [16] or §6.3 in [5].) An invertible almost periodic matrix function Φ ∈
G[AP]2×2 admits a canonical right AP-factorization if

Φ = Φ−Φ+, (49)

where Φ± ∈ G[AP±]2×2, with AP± denoting the intersection of AP with the non-tangential limits of
functions in H∞(C±) (the set of all bounded and analytic functions in C±).

Proposition 6.2. (Cf., e.g., [5, Proposition 2.22].) Let A ⊂ (0,∞) be an unbounded set and let

{Iα}α∈A = {
(xα, yα)

}
α∈A

be a family of intervals Iα ⊂ R such that |Iα | = yα − xα → ∞ as α → ∞. If ϕ ∈ AP, then the limit

M(ϕ) := lim
α→∞

1

|Iα|
∫
Iα

ϕ(x)dx

exists, is finite, and is independent of the particular choice of the family {Iα}.

Definition 6.3. (i) For any ϕ ∈ AP, the number that has just been introduced in Proposition 6.2, M(ϕ),
is called the Bohr mean value (or simply the mean value) of ϕ . In the matrix case the Bohr mean value
is defined entry-wise.

(ii) For a matrix function Φ ∈ G[AP]2×2 admitting a canonical right AP-factorization (49), we may
define the new matrix

d(Φ) := M
(
Φ−)

M
(
Φ+)

, (50)

which is known as the geometric mean of Φ .
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It is worth mention that (50) is independent of the particular choice of the (canonical) right AP-
factorization of Φ , and that this definition is consistent with the corresponding one for the scalar case
(which can be defined in a somehow more global way).

Theorem 6.4. For 0 � ε < 1/2, the operator rR+ Op(Ξp) : [L2(R+)]2 → [L2(R+)]2 , with Ξp given by (48),
is a Fredholm operator with zero Fredholm index.

Proof. The matrices (Ξp)l and (Ξp)r admit the following right canonical AP-factorizations:

(Ξp)l =
(− 1

2 e−2επ i − 1
2 iτ−2ae−επ i

0 1

)(
1 0

iτ2ae−επ i −2

)
, (51)

(Ξp)r =
(− 1

2
1
2 iτ−2ae−επ i

0 1

)(
1 0

−iτ2aeεπ i −2e2επ i

)
(52)

(in which the necessary factor properties are evident; cf. Definition 6.1).
Having built the factorizations (51)–(52), we can now apply Theorem 3.2 in [16] or Theo-

rem 10.11 in [5] in view of evaluating about the Fredholm property for rR+ Op(Ξp). Indeed, within
our case of Ξp ∈ G[SAP(R)]2×2 and whose local representatives at infinity admit canonical right AP-
factorizations (51)–(52), applying that theorems we have that rR+ Op(Ξp) is a Fredholm operator if
and only if

sp
[
d−1((Ξp)r

)
d
(
(Ξp)l

)] ∩ (−∞,0] = ∅,

where sp[d−1((Ξp)r)d((Ξp)l)] stands for the set of eigenvalues of the matrix d−1((Ξp)r)d((Ξp)l) :=
[d((Ξp)r)]−1d((Ξp)l).

Noticing that directly from the definition of Bohr mean value we have M(1/2) = 1/2, M(1) = 1,
M(−2) = −2, M(τ2a) = 0 and M(τ−2a) = 0, it follows

d
(
(Ξp)l

) = M

[(− 1
2 e−2επ i − 1

2 iτ−2ae−επ i

0 1

)]
M

[(
1 0

iτ2ae−επ i −2

)]
=

(− 1
2 e−2επ i 0

0 1

)(
1 0
0 −2

)
=

(− 1
2 e−2επ i 0

0 −2

)
, (53)

d
(
(Ξp)r

) = M

[(− 1
2

1
2 iτ−2ae−επ i

0 1

)]
M

[(
1 0

−iτ2aeεπ i −2e2επ i

)]
=

( 1
2 0
0 −2e2επ i

)
. (54)

As a consequence,

d−1((Ξp)r

)
d
(
(Ξp)l

) =
(

e−2επ i 0
0 e−2επ i

)
and

sp
[
d−1((Ξp)r

)
d
(
(Ξp)l

)] ∩ (−∞,0] = {
e−2επ i} ∩ (−∞,0] = ∅, (55)
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which allows us to conclude that rR+ Op(Ξp) : [L2(R+)]2 → [L2(R+)]2 is a Fredholm operator (for the
case in consideration of 0 � ε < 1/2).

The zero Fredholm index is obtained from the formula (cf. Theorem 10.21 in [5])

Ind rR+ Op(Ξp) = − ind[det Ξp] −
2∑

k=1

(
1

2
−

{
1

2
− 1

2π
arg ξk

})
,

where ind[detΞp] denotes the Cauchy index of the determinant of Ξp , the numbers ξ1, ξ2 ∈ C \
(−∞,0] are the eigenvalues of the matrix d−1((Ξp)r)d((Ξp)l) and {·} stands for the fractional part
of a real number. �

From the proof of this last result, and in particular from (55), we realize that if we would allow
the case ε = 1/2 then our operators would not have the Fredholm property (and therefore would not
be invertible operators).

Corollary 6.5. Let 0 � ε < 1
2 . The Wiener–Hopf plus and minus Hankel operators

rR+
(
L±LF−1τ−2a ·F J

) : H̃
1
2 +ε(R+) −→ H− 1

2 +ε(R+), (56)

rR+
(
H±HF−1τ−2a ·F J

) : H̃− 1
2 +ε(R+) −→ H

1
2 +ε(R+) (57)

(which characterize our four problems) are invertible operators.

Proof. Bearing in mind the equivalence relation between the operators (34) and (35), we have for the
operators associated with our two problems:

dim CoKer rR+
(
H±HF−1τ−2a ·F J

) = dim CoKer rR+C±, (58)

dim Ker rR+
(
H±HF−1τ−2a ·F J

) = dim Ker rR+C±. (59)

From Theorems 5.2 and 6.4, we obtain that rR+C+ and rR+C− are Fredholm operators. Moreover,
recalling that Ker rR+ (H ± HF−1τ−2a · F J ) = {0}, from identities (44), (58)–(59) and Theorem 6.4 it
follows

0 = Ind rR+C+ + Ind rR+C−

= Ind rR+
(
H+HF−1τ−2a ·F J

) + Ind rR+
(
H−HF−1τ−2a ·F J

)
= (

0 − dim CoKer rR+
(
H+HF−1τ−2a ·F J

))
+ (

0 − dim CoKer rR+
(
H−HF−1τ−2a ·F J

))
.

Thus, we have

dim CoKer rR+
(
H+HF−1τ−2a ·F J

) = −dim CoKer rR+
(
H−HF−1τ−2a ·F J

) = 0

and so we reach to the conclusion that both operators in (56) are invertible.
Similarly, we obtain the invertibility results for both operators in (57). �
Due to a direct combination of the results of Sections 3 and 4, and Corollary 6.5, we now obtain

the main conclusion of the present work for the problems in consideration.
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Theorem 6.6. Let 0 � ε < 1
2 .

(i) The problem PD–D has a unique solution which is representable as a pair (u1, u2) defined by the formu-
las (19), (20), where ϕ is the unique solution of Eq. (21).

(ii) The problem PD–N has a unique solution which is representable as a pair (u1, u2) defined by the formu-
las (22), (23), where ϕ is the unique solution of Eq. (24).

(iii) The problem PN–D has a unique solution which is representable as a pair (u1, u2) defined by the formu-
las (28), (29), where ψ is the unique solution of Eq. (30).

(iv) The problem PN–N has a unique solution which is representable as a pair (u1, u2) defined by the formu-
las (31), (32), where ψ is the unique solution of Eq. (33).

References

[1] G. Bart, V.E. Tsekanovskii, Matricial coupling and equivalence after extension, in: Oper. Theory Adv. Appl., vol. 59, 1992,
pp. 143–160.

[2] M.A. Bastos, A. Moura Santos, A.F. dos Santos, Wave diffraction by a strip grating: The two-straight line approach, Math.
Nachr. 269/270 (2004) 39–58.

[3] G. Bogveradze, L.P. Castro, On the Fredholm property and index of Wiener–Hopf plus/minus Hankel operators with piece-
wise almost periodic symbols, Appl. Math. Inform. Mech. 12 (1) (2007) 25–40.

[4] G. Bogveradze, L.P. Castro, On the Fredholm index of matrix Wiener–Hopf plus/minus Hankel operators with semi-almost
periodic symbols, Oper. Theory Adv. Appl. 181 (2008) 143–158.

[5] A. Böttcher, Yu.I. Karlovich, I.M. Spitkovsky, Convolution Operators and Factorization of Almost Periodic Matrix Functions,
Oper. Theory Adv. Appl., vol. 131, Birkhäuser Verlag, Basel, 2002.

[6] L.P. Castro, D. Kapanadze, Diffraction by a strip and by a half-plane with variable face impedances, in: Oper. Theory Adv.
Appl., vol. 181, 2008, pp. 159–172.

[7] L.P. Castro, D. Kapanadze, Dirichlet–Neumann–impedance boundary-value problems arising in rectangular wedge diffraction
problems, Proc. Amer. Math. Soc. 136 (2008) 2113–2123.

[8] L.P. Castro, D. Kapanadze, Exterior wedge diffraction problems with Dirichlet, Neumann and impedance boundary condi-
tions, Acta Appl. Math. 110 (2010) 289–311.

[9] L.P. Castro, A.S. Silva, Invertibility of matrix Wiener–Hopf plus Hankel operators with symbols producing a positive numer-
ical range, Z. Anal. Anwend. 28 (1) (2009) 119–127.

[10] L.P. Castro, A.S. Silva, Fredholm property of matrix Wiener–Hopf plus and minus Hankel operators with semi-almost peri-
odic symbols, Cubo 12 (2) (2010) 217–234.

[11] L.P. Castro, F.-O. Speck, Regularity properties and generalized inverses of delta-related operators, Z. Anal. Anwend. 17 (1998)
577–598.

[12] L.P. Castro, F.-O. Speck, Relations between convolution type operators on intervals and on the half-line, Integral Equations
Operator Theory 37 (2000) 169–207.

[13] L.P. Castro, F.-O. Speck, F.S. Teixeira, Explicit solution of a Dirichlet–Neumann wedge diffraction problem with a strip,
J. Integral Equations Appl. 5 (2003) 359–383.

[14] D. Colton, R. Kress, Inverse Acoustic and Electronic Scattering Theory, Springer-Verlag, Berlin, 1998.
[15] G. Èskin, Boundary Value Problems for Elliptic Pseudodifferential Equations, American Mathematical Society, Providence,

RI, 1981.
[16] Yu.I. Karlovich, I.M. Spitkovskiı̌, Factorization of almost periodic matrix-valued functions and the Noether theory for certain

classes of equations of convolution type, Math. USSR Izv. 34 (1990) 281–316.
[17] P.A. Krutitskii, The Dirichlet problem for the 2-D Helmholtz equation in a multiply connected domain with cuts, ZAMM Z.

Angew. Math. Mech. 77 (12) (1997) 883–890.
[18] P.A. Krutitskii, The Neumann problem for the 2-D Helmholtz equation in a multiply connected domain with cuts, Z. Anal.

Anwend. 16 (2) (1997) 349–361.
[19] P.A. Krutitskii, The Neumann problem for the 2-D Helmholtz equation in a domain, bounded by closed and open curves,

Int. J. Math. Math. Sci. 21 (2) (1998) 209–216.
[20] P.A. Krutitskii, The 2-dimensional Dirichlet problem in an external domain with cuts, Z. Anal. Anwend. 17 (2) (1998) 361–

378.
[21] P.A. Krutitskii, The Neumann problem in a 2-D exterior domain with cuts and singularities at the tips, J. Differential Equa-

tions 176 (2001) 269–289.
[22] P.A. Krutitskii, The mixed harmonic problem in an exterior cracked domain with Dirichlet condition on cracks, Comput.

Math. Appl. 50 (5–6) (2005) 769–782.
[23] P.A. Krutitskii, On the mixed problem for harmonic functions in a 2D exterior cracked domain with Neumann condition on

cracks, Quart. Appl. Math. 65 (1) (2007) 25–42.
[24] P.A. Krutitskii, The Helmholtz equation in the exterior of slits in a plane with different impedance boundary conditions on

opposite sides of the slits, Quart. Appl. Math. 67 (1) (2009) 73–92.
[25] A.I. Komech, N.J. Mauser, A.E. Merzon, On Sommerfeld representation and uniqueness in scattering by wedges, Math. Meth-

ods Appl. Sci. 28 (2005) 147–183.



510 L.P. Castro, D. Kapanadze / J. Differential Equations 254 (2013) 493–510
[26] G.D. Malyuzhinets, Excitation, reflection and emission of surface waves from a wedge with given face impedances (in En-
glish) Sov. Phys. Dokl. 3 (1959) 752–755; translation from Russian original Dokl. Akad. Nauk SSSR 121 (1959) 436–439.

[27] E. Meister, F. Penzel, F.-O. Speck, F.S. Teixeira, Some interior and exterior boundary value problems for the Helmholtz
equation in a quadrant, Proc. Roy. Soc. Edinburgh Sect. A 123 (1993) 275–294.

[28] E. Meister, F. Penzel, F.-O. Speck, F.S. Teixeira, Some interior and exterior boundary-value problems for the Helmholtz
equation in a quadrant, Oper. Theory Adv. Appl. 102 (1998) 169–178.

[29] E. Meister, K. Rottbrand, Elastodynamical scattering by N parallel half-planes in R3, Math. Nachr. 177 (1996) 189–232.
[30] A.E. Merzon, F.-O. Speck, T.J. Villalba-Vega, On the weak solution of the Neumann problem for the 2D Helmholtz equation

in a convex cone and Hs regularity, Math. Methods Appl. Sci. 34 (2011) 24–43.
[31] A. Moura Santos, N.J. Bernardino, Image normalization of Wiener–Hopf operators and boundary-transmission value prob-

lems for a junction of two half-planes, J. Math. Anal. Appl. 377 (2011) 274–285.
[32] A. Moura Santos, F.-O. Speck, Sommerfeld diffraction problems with oblique derivatives, Math. Methods Appl. Sci. 20 (1997)

635–652.
[33] D. Sarason, Toeplitz operators with semi-almost periodic symbols, Duke Math. J. 44 (1977) 357–364.


	Wave diffraction by a half-plane with an obstacle perpendicular to the boundary
	1 Introduction
	2 Formulation of the problems
	3 The fundamental solution and potentials
	4 The problems in the form of Wiener-Hopf plus Hankel equations
	5 Analysis of Wiener-Hopf plus and minus Hankel operators
	6 Final conclusions
	References


