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ON THE DISCRETE PROBLEM OF WAVE DIFFRACTION BY SEMI-INFINITE

RIGID CONSTRAINT

DAVID KAPANADZE

Abstract. The discrete problem of wave diffraction by a semi-infinite rigid constraint is revised
in view of its well-posedness upon wave numbers belonging to the stop-band. The problem is

analyzed with the help of difference potentials and Toeplitz operators in the space of square summable

sequences. We obtain the result of the unique solvability and derive the representation formula of
solutions.

1. Introduction

This paper is motivated on the one hand by the discrete analogue of diffraction by a Sommer-
feld ‘soft’ half-plane ribbon [1, 8, 9, 14] and on another hand by application areas of recent interest:
metamaterials and analog circuits [7, 12, 16]. As an example of such an application, let us consider
two-dimensional passive propagation media that can be used for signal processing and filtering. As-
sume that these media consist of a lattice of repeated cells of a single type at the fine-scale. By way of
illustration, we can take a lossy host microstrip line network periodically loaded with series capacitors
and shunt inductors as shown in Figure 1. This type of inductor-capacitor lattice is referred to as
a negative-refractive-index transmission-line (NRI-TL) metamaterial [4, 6], or simply, left-handed 2D
metamaterial. Assume that the number of unit cells in this slab is large enough to make it prohibi-
tively expensive to solve numerically for the voltage/current at every cell in the lattice until the system
reaches a steady-state. As a simplifying strategy, it can be anticipated that the limiting case, when
the lattice is effectively infinite, is more amenable to analysis and provides a good approximation of
the steady-state output at the exterior boundary. Thus, we suppose that monochromatic inputs are
applied on the input nodes lying on the half-line, cf. Figure 1.

Figure 1. The unit cell of the lossy 2-D inductor-capacitor TL. The conductance G
and resistance R account for the losses inherent to the series capacitor C and shunt
inductor L.

Mathematical modeling of such wave diffraction problems leads us to study a discrete 2D Helmholtz
equation with input data prescribed on a semi-infinite row of lattice sites. When one interested in
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an analysis of regular processes in which waves corresponding to the microstructural scales can be
neglected, then the continuum limit of corresponding equations can be investigated. In this case, we
arrive at the famous problem in applied mathematics, the Sommerfeld ‘soft’ plane problem [9, 14].
It is well known that the classical continuum model of wave diffraction can be considered only as of
the slowly-varying approximation of a discrete or structured material. Therefore there is an obvious
necessity to avoid continuum limits and instead analyze directly the discrete Helmholtz diffraction
problems. Moreover, the development of computers and programming softwares preserves high interest
in numerical discretizations of the continuum wave equation too.

It worth mentioning that in contrast to [17], where the analogous problem was studied by Sharma
using the discrete Wiener–Hopf method, we propose another method of investigation and provide
rigorous analysis of the problem in view of its well-posedness upon wave numbers belonging to the
stop-band. Namely, we derive the unique solvability result and solutions representation formula in the
space of square-summable sequences with the help of difference potentials and Toeplitz operators.

2. Basic Notations and Formulation of the Problem

Following the customary notation in mathematics, let Z, Z+, N, R, and C denote the set of integers,
positive integers, non-negative integers, real numbers and complex numbers, respectively. We denote
by e1 = (1, 0), e2 = (0, 1) the standard base of the square lattice Z2 (= Z× Z).

For any point x = (x1, x2) ∈ Z2 we define the 4-neighbourhood F 0
x as the set of points {(x1 −

1, x2), (x1 + 1, x2), (x1, x2 − 1), (x1, x2 + 1)} and the neighbourhood Fx as F 0
x

⋃
{x}. We say that

R ⊂ Z2 is a region if there exist disjoint nonempty subsets R̊ and ∂R of R such that

(a) R = R̊ ∪ ∂R,

(b) if x ∈ R̊ then Fx ⊂ R,

(c) if x ∈ ∂R then there is at least one point y ∈ F 0
x such that y ∈ R̊.

Clearly, the subsets R̊ and ∂R are not defined uniquely by R, but henceforth, for a given region
R in Z2 it will always be assumed that R̊ and ∂R are also given and fixed. Then we say that x
is an interior (boundary) point of R if x ∈ R̊ (x ∈ ∂R). Further, a region R ⊂ Z2 is said to be
connected if for any y, z ∈ R there exists a sequence x(1), . . . , x(n) ∈ R with x(1) = y and x(n) = z,
such that for all 0 ≤ i ≤ n − 1, |x(i) − x(i+1)| = 1. By the definition, a region R with one interior
point x is connected and coincides with Fx. Denote by SN a region defined as a discrete square
([−N,N ]2 ∩Z2)\{(N,N), (−N,N), (−N,N), (N,−N)}, N ∈ Z+, where S̊N := [−N + 1, N − 1]2 ∩Z2

and ∂SN := SN\S̊N will be fixed throughout the paper.
A boundary point y ∈ ∂R is said to be

a left point if y + e1 ∈ R̊,

a right point if y − e1 ∈ R̊,

a top point if y − e2 ∈ R̊,

a bottom point if y + e2 ∈ R̊.

The union of all left (right, top, and bottom) points is denoted by ∂Rl (∂Rr, ∂Rt, and ∂Rb, respec-
tively) and called a side of the boundary ∂R. Note that a boundary point y may simultaneously be
a left, right, top, and bottom point. Thus, ∂Rl, ∂Rr, ∂Rt and ∂Rb may overlap each other. Clearly,
∂R is the union of its four sides, ∂R = ∂Rl ∪ ∂Rr ∪ ∂Rt ∪ ∂Rb.

Let Γ := {(x1, 0) : x1 ∈ N} and Ω̊ := Z2\Γ. Then we set ∂Ω = Γ and Ω = Ω̊ ∪ ∂Ω. Describing
the problem and assumptions mentioned in the Introduction, we suppose that there is an inductor
connecting each node x ∈ Ω̊ to a common ground plane, and there is a capacitor connecting each
node x ∈ Ω̊ to its four nearest neighbors (x1 ± 1, x2 ± 1) (cf., Figure 1). Assume that all inductances,
capacitances, resistances and all conductances are equal to L, C, R and G, respectively. Note that L,
C, R, and G are positive constants. Then Kirchhoffs laws of voltage and current (while suppressing
the explicit dependence on time t) imply the following second-order equation for the voltage U(x)
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across the inductor at node x:

LC
d2

dt2
(∆dU(x)) + (RC +GK)

d

dt
(∆dU(x)) +RG(∆dU(x)) = U(x). (1)

Here, ∆d denotes the discrete Laplacian defined as follows:

∆dU(x) =

2∑
i=1

(U(x+ ei) + U(x− ei))− 4U(x). (2)

We specify that (1) holds for all x ∈ Ω̊, and we have the time-dependent boundary condition along
the boundary ∂Ω,

U(y) = f(y)e−ιωt on Γ, (3)

where ι denotes the imaginary unit, and f ∈ `2(Γ) is a given square-summable function (in fact, a
sequence) on Γ.

We assume that at time t = 0 the functions U(x) and all its derivatives are zero for all x ∈ Ω̊.
Then, as t increases, the boundary term causes a wave to propagate into the lattice, and the system
approaches steady state. At this point the solution is given by U(x) = u(x)e−ιωt. Substituting this
expression into (1) and (3), for the discrete Helmholtz equation in Ω, we obtain the following problem:

(∆d + k2 + ιε)u(x) = 0, in Ω̊, (4a)

u(y) = f(y), on Γ, (4b)

where k and ω are related through the formula

k2 =
LCω2 −RG

(LCω2 −RG)2 + (RC +GL)2

and

ε =
RC +GL

(LCω2 −RG)2 + (RC +GL)2
.

Thus, we are interested in studying the problem of the existence and uniqueness of a square-
summable function u on Z2, i.e., u ∈ `2(Z2) such that u(x) satisfies the discrete Helmoltz equation
(4a) with ε > 0 and the boundary condition (4b). From now on, we will refer to this problem as
Problem PD.

3. Green’s Representation Formula

Let R be a region in Z2. As it has already been mentioned above, y ∈ ∂R may be a point of
intersection of several sides of ∂R. However, in our arguments presented below, it will always be clear
which of the sides requires consideration. Under this condition we define the discrete derivative in the
outward normal direction

Tu(y) = u(y)− u(y − νy), y ∈ ∂R,
where νy is −e1 (e1, e2 or −e2) if y is an element of ∂Rl (∂Rr, ∂Rt, or ∂Rb).

Let R be a finite region. Then we have discrete analogues of Green’s first and second identities [10]:∑
x∈R̊

(∇+
d u(x) · ∇+

d v(x) +∇−d u(x) · ∇−d v(x) + u(x)∆dv(x)) =
∑
y∈∂R

u(y)Tv(y), (5)

and ∑
x∈R̊

(u(x)∆dv(x)− v(x)∆du(x)) =
∑
y∈∂R

(u(y)Tv(y)− v(y)Tu(y)). (6)

Here, we denote by
∑
y∈∂R the following sum:∑

y∈∂R

:=
∑
y∈∂Rr

+
∑
y∈∂Rl

+
∑
y∈∂Rt

+
∑
y∈∂Rb

,

and the discrete gradients ∇+
d and ∇−d are defined as follows:

∇+
d u(x) :=

(
u(x+ e1)− u(x)
u(x+ e2)− u(x)

)
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and

∇−d u(x) :=

(
u(x− e1)− u(x)
u(x− e2)− u(x)

)
.

The next step in deriving Green’s representation formula is introduction of Green’s function. Denote
by G(x− y) the Green’s function for (4a) centered at the point x and evaluated at y. Then G(x− y)
satisfies

(∆d + k2 + ιε)G(x− y) = δx,y, (7)

where δx,y is the Kronecker delta. The lattice Green’s function G is quite well known (cf., e.g., [5,11,13])
and can be written in the following form

G(x) = G(x1, x2) =
1

4π2

π∫
−π

π∫
−π

e−ι(x1ξ1+x2ξ2)

σ(ξ1, ξ2; k, ε)
dξ1dξ2, (8)

or, equivalently, as

G(x) = G(x1, x2) =
1

π2

π∫
0

π∫
0

cos(x1ξ1) cos(x2ξ2)

σ(ξ; k, ε)
dξ1dξ2, (9)

where
σ(ξ; k) = k2 + ιε− 4 + 2 cos ξ1 + 2 cos ξ2

= k2 + ιε− 4 sin2 ξ1
2
− 4 sin2 ξ2

2

= k2 + ιε− 8 + 4 cos2 ξ1
2

+ 4 cos2 ξ2
2

= k2 + ιε− 4 + 4 cos
ξ1 + ξ2

2
cos

ξ1 − ξ2
2

, ξ = (ξ1, ξ2).

(10)

Notice that if k2 ∈ C\[0, 8], then σ 6= 0 and, consequently, G(x) in (8) is well defined. In this case,
G(x) decays exponentially when |x| → ∞. Finally, notice that G(x− y) = G(y − x), and we denote it
by G(x; y).

For any function ϕ : ∂R→ C, we define the difference single- and double-layer potentials as follows:

V ϕ(x) =
∑
y∈∂R

G(x; y)ϕ(y), for all x ∈ Z2, (11)

and
Wϕ(x) =

∑
y∈∂R

(
TG(x; y) + δx,y

)
ϕ(y), for all x ∈ Z2, (12)

respectively. The role of the summand δx,y is clarified by the following result [10]: for every x ∈ R̊,
we have

(∆d + k2 + ιε)V ϕ(x) = 0 and (∆d + k2 + ιε)Wϕ(x) = 0. (13)

Theorem 3.1 (cf. [10]). Let R be a finite region. If u is a solution to the discrete Helmholtz equation

in R̊, then at any point x ∈ R̊, we have a discrete Green’s representation formula

u(x) = Wu(x)− V (Tu)(x). (14)

4. Uniqueness and Existence Results

We strat this section by proving the following uniqueness result.

Theorem 4.1. The PD has at most one solution.

Proof. Let N be a sufficiently large positive number and set Ω̊N = S̊N ∩ Ω̊. Let u be a solution of the
homogeneous problem. Then the first Green’s identity (5) for u and its complex conjugate ū in the

region Ω̊N , together with zero boundary conditions on ∂Ω̊N , yields∑
x∈Ω̊N

(|∇+
d u(x)|2 + |∇−d u(x)|2 − (k2 + ιε)|u(x)|2) =

∑
y∈∂S̊N

u(y)Tu(y). (15)
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From the real and imaginary parts of the last identity, we obtain

−ε
∑
x∈Ω̊N

|u(x)|2 = =m
∑

y∈∂S̊N

u(y)Tu(y).

Note, since u ∈ `2(Z2), there is a monotonic sequence of positive numbers {Nj} such that Nj →∞
as j →∞ and

lim
j→∞

∑
y∈∂S̊Nj

u(y)Tu(y) = 0. (16)

Indeed, due to u ∈ `2(Z2), we find that the sum
∞∑
N=0

∑
y∈∂S̊Nj

|u(y)|2

is finite. This fact in particular implies that there exists a monotonic sequence of positive numbers
{Nj} such that Nj →∞ as j →∞ and∑

y∈∂S̊Nj

|u(y)|2 = ō(N−1
j )

and consequently, ∑
y∈∂S̊Nj

|Tu(y)|2 = ō(N−1
j ).

Further, applying the Cauchy-Schwarz inequality for every Nj , we get∣∣∣∣ ∑
y∈∂S̊Nj

u(y)Tu(y)

∣∣∣∣ ≤ ( ∑
y∈∂S̊Nj

|u(y)|2
) 1

2
( ∑
y∈∂S̊Nj

|Tu(y)|2
) 1

2

= ō(N−1
j ) as j →∞,

and therefore we obtain (16).
Since the expressions under the sum on the left-hand side of the equalities in (15) are non-negative,

have that this sum is monotonic with respect to N . This observation together with (16) implies∑
x∈Z2

|u(x)|2 = lim
N→∞

∑
x∈R̊N

|u(x)|2 = 0.

Thus it follows from the last identity that u ≡ 0 in Z2. �

Now we are ready to show the existence result. Let us look for a solution to Problem P in the
following form

u(x) = V ϕ(x) =
∑
y∈Γ

G(x; y)ϕ(y), (17)

where ϕ(y) ∈ `2(Γ) is an unknown function. Then, due to the discrete Youngs inequality (cf. [15,
Lemma 3.3.30]), together with a fact ϕ(y)δx,y ∈ `2(Z2), we conclude that u ∈ `2(Z2). Moreover, (13)
implies that u is a solution to the discrete Helmoltz equation (4a). Further, we need to satisfy the
boundary condition (4b) which yields

∞∑
y1=0

G(x1 − y1, 0)ϕ(y1) = f(x1), x1 ∈ N,

or equivalently,
AΦ = F, (18)

where

A =


G(0, 0) G(−1, 0) G(−2, 0) . . .
G(1, 0) G(0, 0) G(−1, 0) . . .
G(2, 0) G(1, 0) G(0, 0) . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .


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is a Toeplitz matrix, and

Φ =


ϕ0

ϕ1

ϕ2

...

 , F =


f0

f1

f2

...

 .

Now it remains to show that the Toeplitz operator A is invertible in `2(N) spaces.

Theorem 4.2. The operator A : `2(Γ)→ `2(Γ) is invertible.

Proof. Notice that

G(x1, 0) =
1

4π2

π∫
−π

π∫
−π

e−ιx1ξ1

α(ξ1) + 2 cos ξ2
dξ1dξ2 =

1

2π

π∫
−π

ã(ξ1)e−ιx1ξ1dξ1,

where

α(ξ) = α(ξ; k) = k2 + ιε− 4 + 2 cos ξ1

and

ã(ξ1) =
1

2π

π∫
−π

dξ2
α(ξ1; k) + 2 cos ξ2

=
1

2πι

∮
C

dz

z2 + α(ξ1)z + 1
.

Here, C is the positively oriented complex unit circle. From the residue theory, we derive

ã(ξ1) =
1

2πι

∮
C

dz

(z − zint(ξ1))(z − zext(ξ1))
=

1

zint(ξ1)− zext(ξ1)
,

where zint(ξ1) and zext(ξ1) are the roots of the polynomial z2 + α(ξ1)z + 1 such that |zint(ξ1)| < 1,
|zext(ξ1)| > 1 and zint(ξ1)zext(ξ1) = 1.

Then the symbol of the Toeplitz matrix A = T (a) is given by

a(z) = a(eιξ1) = ã(ξ1) = ã(Arg(z)), z = eιξ1 .

Let us show that zint(ξ1)− zext(ξ1) /∈ R. Indeed, if zint(ξ1)− zext(ξ1) ∈ R, then

(zint − zext)2 = (zint + zext)
2 − 4zintzext = α2 − 4

= (k2 − 4 + 2 cos ξ1)2 − ε2 − 4 + 2ιε(k2 − 4 + 2 cos ξ1)

implies

k2 − 4 + 2 cos ξ1 = 0.

In this case we have α = ιε and the roots of the quadratic equation are pure imaginary

zint = ι

√
ε2 + 4− ε

2
, zext = ι

−
√
ε2 + 4− ε

2
,

and consequently zint − zext /∈ R.
This observation, in particular, implies =m a(z) 6= 0 and therefore <e ιa(z) 6= 0. The latter shows

that there is ε > 0 such that <e ιa(z) ≥ ε a.e. on the complex unit circle, thus a(z) is sectorial. Since
a is sectorial, due to the Brown-Halmos theorem, the operator A = T (a) is invertible (cf. [3, Theorem
2.17], [2]). �

From the direct combination of the results obtained above we have the main conclusion for the
problems under consideration.

Theorem 4.3. Problem P is uniquely solvable. Its solution can be represented as a difference potential
(17), where ϕ ∈ `2(Γ) is a unique solution of equation (18).
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