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MEASURING THE NONCOMMUTATIVITY OF DG-ALGEBRAS

T. Kadeishvili UDC 512.66

Many constructions that successfully work for commutative DG-algebras fail in the noncommutative
case. There exists a classical tool, namely the Steenrod ∪1-product, which measures the noncommutativity
of a DG-algebra (A, d, ·). It satisfies the condition

d(a ∪1 b) = da ∪1 b+ a ∪1 db+ a · b− b · a (1)

(the signs are ignored in the entire text). The existence of ∪1 guarantees the commutativity of H(A).
But this structure is too pure for most applications. A ∪1-product satisfying only condition (1) cannot
compensate the commutativity. In many constructions, we need some deeper properties of ∪1, for example,
the compatibility with the product of A

a ∪1 (b · c) = b · (a ∪1 c) + (a ∪1 b) · c (2)

(the Hirsch formula) is needed.
In this article, we use a multiplication in the bar construction

µ : BA⊗BA→ BA,

which turns the DG-coalgebra BA into a DG-Hopf algebra, as a tool which compensates the commuta-
tivity of A. In fact, such a multiplication is uniquely determined by a collection of operations

{Epq : (
⊗pA)⊗ (⊗q A)→ A, p, q = 0, 1, 2, 3, . . . }

subject to certain compatibility conditions. In particular, the binary component E11 : A⊗A → A satis-
fies condition (1); therefore, it can be considered as a ∪1-product measuring the noncommutativity of A.
For convenience, we call such an object (A, ·, d, {Epq}) the Hirsch algebra since the defining properties of
operations Epq in fact generalize the classical Hirsch formula (2). Actually, this structure is a particular
case of the notion of B∞-algebra [2,7], which is defined as a structure on A granting that BA becomes a

DG-Hopf algebra. In fact, this structure consists of a new differential d̃ : BA→ BA and new multiplica-
tion µ̃ : BA⊗BA→ BA. A Hirsch algebra is the case where the standard differential of bar construction
remains unchanged.

The most important particular case of Hirsch algebra is the structure known as the homotopy G-
algebra [6, 23]. In this case, all Epq’s except for E01 and E1k, k = 0, 1, 2, 3, . . . , are zero. Thus, it is a
DG-algebra with ∪1-product and some sequence of cochain operations{

E1k : A⊗
(⊗k A)→ A, k = 1, 2, 3, . . . , E11 = ∪1

}

satisfying certain compatibility conditions. Some constructions and results that are valid for commutative
DG-algebras are also valid for homotopy G-algebras. This structure arises in some important cases,
namely, there exist explicit formulas for operations E1,k in the following cases:

(i) in the cochain complex of a topological space C∗(X);
(ii) in the Hochschild cochain complex C∗(A,A) of the algebra A;
(iii) in the cobar construction ΩH of a DG-Hopf algebra H, in particular, in the cobar construction of

the bar construction ΩBA of the algebra A.
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We note that in all of these three cases the starting operation E11 = ∪1 is classical: the Steenrod
∪1-product in C∗(X), the Gerstenhaber circle product in C∗(A,A) [5], and the Adams ∪1-product in ΩH
[1]. The suitable tails, i.e., the higher operations E1k, were actually constructed in [2] for C

∗(X) and in
[6,7,13,23] for C∗(A,A).

Below, we give some applications of these structures.
Section 1 starts with the study of the structure of a product in the bar construction, which motivates

the notion of a Hirsch algebra. Then we give a comparison of this structure with the B(∞)-algebra
structure, DG-Lie algebra structure, homotopy G-algebra structure, and strong homotopy commutative
(shc) algebra structure. In concluding Sec. 1, we describe two versions of the notion of twisting element
(the first version controls deformations of algebras and the second version is related to the degeneracy of
A∞-algebra structures) and the suitable notion of their (gauge) transformation in a homotopy G-algebra.

In Sec. 2, the above-mentioned three examples of homotopy G-algebra are given.
In Sec. 3, we present some applications: multiplicative twisted tensor products, deformation of

algebras, and degeneracy of A(∞)-algebras.
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1. Hirsch Algebras

1.1. Products in the bar construction. Let (A, d, ·) be a DG-algebra with the differential d : A∗ →
A∗+1 (cochain algebra) and let

BA = T c(s−1A) = Λ + s−1A+ s−1A⊗ s−1A+ s−1A⊗ s−1A⊗ s−1A+ . . .

be its bar construction (here s−1A is the desuspension of A, i.e., (s−1A)n = An+1, and T c is the tensor
coalgebra functor). By definition, BA is a DG-coalgebra with the differential

d(a1 ⊗ · · · ⊗ an) =
∑
k

±a1 ⊗ · · · ⊗ dak ⊗ · · · ⊗ an +
∑
k

±a1 ⊗ · · · ⊗ ak · ak+1 ⊗ · · · ⊗ an,

the coproduct ∇ : BA→ BA⊗BA defined by the formula

∇(a1 ⊗ · · · ⊗ an) =
n∑
k=0

(a1 ⊗ · · · ⊗ ak)⊗ (ak+1 ⊗ · · · ⊗ an),

and the counit 1Λ ∈ Λ ⊂ BA.
We are interested in the structure of multiplications

µ : BA⊗BA→ BA

that turn BA into a DG-Hopf algebra, i.e., we require that µ must be an associative DG-coalgebra map,
which has the unit element 1Λ ∈ Λ ⊂ BA.

Since the tensor coalgebra BA = T c(s−1A) is cofree, each map of graded coalgebras

µ : BA⊗BA→ BA

is uniquely determined by the projection

E = pr ·µ : BA⊗BA→ BA→ A.

Moreover, each homomorphism E : BA ⊗ BA → A of degree +1 determines a graded coalgebra map
µE : BA⊗BA→ BA by the rule

µE =
∞∑
k=0

(E ⊗ · · · ⊗E)∇kBA⊗BA,
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where ∇kBA⊗BA : BA⊗BA→
⊗k(BA⊗BA) is the k-fold iteration of the standard coproduct

∇BA⊗BA = (id⊗T ⊗ id)(∇⊗∇) : BA⊗BA→
⊗2(BA⊗BA),

T : BA⊗BA→ BA⊗BA is interchange map, and ∇k is the k-fold iteration of a coproduct ∇:

∇0 = ε, ∇1 = id, ∇2 = ∇, ∇k = (∇k−1 ⊗ id)∇.

The map µE is a chain map (i.e., it is a map of DG-coalgebras) if and only if E is a twisting cochain
in the sense of E. Brown, i.e., if it satisfies the condition

dE +EdBA⊗BA = E ∪E,

where the ∪-product in Hom(BA⊗BA,A) is given by

f ∪ g = µ(f ⊗ g)∇;

again, since the tensor coalgebra BA = T c(s−1A) is cofree, the condition dBAµE = µEdBA⊗BA holds if
and only if it holds after the projection on A, i.e., if pr ·dBAµE = pr ·µEdBA⊗BA, but this condition is
nothing other than the Brown condition.

The same argument shows that the product µE is associative if and only if the condition

pr ·µE(µE ⊗ id) = pr ·µE(id⊗µE)

holds or, taking the relation E = pr ·µE into account, we obtain

E(µE ⊗ id) = E(id⊗µE).

Thus, we can summarize that any multiplication µ : BA ⊗ BA → BA, which specifies on BA the
structure of a DG-Hopf algebra, is induced by a homomorphism

E : BA⊗BA→ BA

of degree +1, which satisfies the followng conditions:

dAE +E(dBA ⊗ id+ id⊗dBA) = E ∪E (3)

(i.e., E is a twisting cochain) and

E(µE ⊗ id) = E(id⊗µE) (4)

(this implies the associativity of µ).
Each twisting cochain E : BA⊗BA→ BA has components

E01 E10
E02 E11 E20

E03 E12 E21 E30
. . . . . . . . . . . . . . . . . . . . .

,

where Epq is the restriction of E to
(⊗p s−1A)⊗ (⊗q s−1A). Thus, a twisting cochain can be considered

as a collection of multioperations

Epq :
(⊗p s−1A)⊗ (⊗q s−1A)→ A.

The value of Epq on the element (s
−1a1⊗· · ·⊗s−1ap)⊗ (s−1b1⊗· · ·⊗s−1bq) ∈ (⊗ps−1A)⊗ (⊗qs−1A)

is denoted by Epq(a1 ⊗ · · · ⊗ ap|b1 ⊗ · · · ⊗ bq).
The above requirements on µE imply some restrictions on the collection {Epq}.
First, it is easy to verify that the element 1Λ ∈ Λ ⊂ BA is the unit for the multiplication µE if and

only if

E01 = E10 = id, E0k = Ek0 = 0, k > 1. (5)
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Thus, each multiplication on BA with the unit 1Λ is induced by the collection of operations

E01 = id E10 = id
E11

E12 E21
E13 E22 E31

. . . . . . . . . . . . . . . . . . . . . ,

(6)

We investigate how condition (3) influences low-dimensional Epq’s.

The restriction on
(⊗1A)⊗ (⊗1A) gives

dAE11(a|b) +E11(dAa|b+ a|dAb) = a · b− b · a,

i.e., the operation E11 is a ∪1-product, which measures the noncommutativity of A.

The restriction to
(⊗1A)⊗ (⊗2A) gives
dAE12(a|b⊗ c) +E12(dAa|b⊗ c+ a|dAb⊗ c+ a|b⊗ dAc)

= E11(a|bc) + bE11(a|c) +E11(a|b)c
(7)

or, using the notation E11(a|b) = a ∪1 b,

dAE12(a|b⊗ c) +E12(dAa|b⊗ c+ a|dAb⊗ c+ a|b⊗ dAc)

= a ∪1 (bc) + b(a ∪1 c) + (a ∪1 b)c;

this means that ∪1 satisfies the so-called right Hirsch formula up to homotopy and the appropriate
homotopy is the operation E12.

The restriction of (3) to
(⊗2A)⊗ (⊗1A) gives

dAE21(a⊗ b|c) +E21(dAa⊗ b|c+ a⊗ dAbc+ a⊗ b|dAc)

= E11(ab|c) + aE11(b|c) +E11(a|c)b

or, using the notation E11(a|b) = a ∪1 b,

dAE21(a⊗ b|c) +E21(dAa⊗ b|c+ a⊗ dAb|c+ a⊗ b|dAc)

(ab) ∪1 c+ a(b ∪1 c) + (a ∪1 c)b;
(8)

this means that ∪1 satisfies the so-called left Hirsch formula up to homotopy and the appropriate homotopy
is the operation E21.

Generally, the restriction of (3) to (
⊗mA)⊗ (⊗nA) gives

dAEm,n(a1 ⊗ · · · ⊗ am|b1 ⊗ · · · ⊗ bn) +
∑
i

Em,n(a1 ⊗ · · · ⊗ dAai ⊗ · · · ⊗ am|b1 ⊗ · · · ⊗ bn)

+
∑
i

Em,n(a1 ⊗ · · · ⊗ am|b1 ⊗ · · · ⊗ dAbi ⊗ · · · ⊗ bn)

= a1Em−1,n(a2 ⊗ · · · ⊗ am|b1 ⊗ · · · ⊗ bn) +Em−1,n(a1 ⊗ · · · ⊗ am−1|b1 ⊗ · · · ⊗ bn)am

+b1Em,n−1(a1 ⊗ · · · ⊗ am|b2 ⊗ · · · ⊗ bn) +Em,n−1(a1 ⊗ · · · ⊗ am|b1 ⊗ · · · ⊗ bn−1)bm

+
∑
i

Em−1,n(a1 ⊗ · · · ⊗ ai · ai+1 ⊗ · · · ⊗ am|b1 ⊗ · · · ⊗ bn)

+
∑
i

Em,n−1(a1 ⊗ · · · ⊗ am|b1 ⊗ · · · ⊗ bi · bi+1 ⊗ · · · ⊗ bn)

+
∑

p=1,...,m−1,
q=1,...,n−1

Ep,q(a1 ⊗ · · · ⊗ ap|b1 ⊗ · · · ⊗ bq) · Em−p,n−q(ap+1 ⊗ · · · ⊗ am|bq+1 ⊗ · · · ⊗ bn).

(9)
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Now we investigate how the associativity condition (4) influences the components Epq.

The restriction to
(⊗1A)⊗ (⊗1A)⊗ (⊗1A) gives

E11(E11(a1|a2)|a3)−E11(a1|E11(a2|a3)) = E12(a1|a2 ⊗ a3) +E12(a1|a3 ⊗ a2)

−E21(a1 ⊗ a2|a3) +E21(a2 ⊗ a1|a1)

or

(a1 ∪1 a2) ∪1 a3 − a1 ∪1 (a2 ∪1 a3) = E12(a1|a2 ⊗ a3) +E12(a1|a3 ⊗ a2)

−E21(a1 ⊗ a2|a3) +E21(a2 ⊗ a1|a1);
(10)

note that this condition plays an important role in the definition in the desuspension of a Hirsch algebra
of DG-Lie algebra structure (see below).

Remark. Thus, the operations E12 and E21, which initially are tools for measuring the deviations from
the Hirsch formulas (see (7) and (8)), simultaneously measure the deviation from the associativity of the
∪1-product.

Generally, the restriction of (3) to
(⊗k A)⊗ (⊗lA)⊗ (⊗mA) gives

l+m∑
r=1

∑
l1+···+lr=l
m1+···+mr=m

Ekr(a1 ⊗ · · · ⊗ ak|El1m1(b1 ⊗ · · · ⊗ bl1 |c1 ⊗ · · · ⊗ cm1)⊗ . . .

⊗Elrmr(bl1+···+lr−1+1 ⊗ · · · ⊗ bl|cm1+···+mr−1+1 ⊗ · · · ⊗ cm)

=
k+l∑
s=1

∑
k1+···+ks=k
l1+···+ls=l

Esm(Ek1l1(a1 ⊗ · · · ⊗ ak1 |b1 ⊗ · · · ⊗ bl1)⊗ . . .

⊗Eksls(ak1+···+ks−1+1 ⊗ · · · ⊗ ak|bl1+···+ls−1+1 ⊗ · · · ⊗ bl)|c1 ⊗ · · · ⊗ cm).

(11)

We summarize the obtained results in the following theorem.

Theorem 1. A multiplication µ : BA⊗BA→ BA, which turns the bar construction BA into a DG-Hopf
algebra, specifies on A the set of multioperations (6) Em,n : (

⊗mA)⊗ (⊗nA)→ A satisfying conditions
(5), (9), and (11).

In particular, the operation E11 is a ∪1-product, which measures the noncommutativity of A and
satisfies both (left and right) Hirsch formulas up to homotopy.

A DG-algebra endowed with such a structure is called a Hirsch algebra. This name is inspired by the
fact that the defining conditions (9) and (11) can be considered as generalizations of the classical Hirsch
formula

(a · b) ∪1 c = a · (b ∪1 c) + (a ∪1 c) · b.

This structure is a particular case of a B∞-algebra (see below).

1.2. Levels of noncommutativity. We distinguish between various levels of “noncommutativity” of
A according to the form of the appropriate twisting cochain E.

Level 1. If the twisting cochain E has the form

E01 = id E10 = id
0

0 0
0 0 0

. . . . . . . . . . . . . . . . . . . . .

,
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i.e., E has just two nonzero components E01 = id and E10 = id, then (1) implies that A is a strictly
commutative DG-algebra.

Level 2. Suppose that E has the form

E01 = id E10 = id
E11

0 0
0 0 0

. . . . . . . . . . . . . . . . . . . . .

,

i.e., E has just three nonzero components E01 = id, E10 = id, and E11. In this case, A is endowed with
the “strict” ∪1-product a ∪1 b = E1,1(a⊗ b), condition (9) yields

dA(a ∪1 b) = dAa ∪1 b+ a ∪1 dAb+ ab− ba,

a ∪1 (bc) = b(a ∪1 c) + (a ∪1 b)c,

(ab) ∪1 c = a(b ∪1 c) + (a ∪1 c)b,

(a ∪1 c) · (b ∪1 d) = 0,

and condition (11) means the associativity ∪1:

a ∪1 (b ∪1 c) = (a ∪1 b) ∪1 c.

As we have seen, we have very strong restrictions on the ∪1-product. The trivial example of a DG-
algebra with such a strict ∪1-product is (H∗(SX,Z2), d = 0) with a∪1 b = 0 if a 	= b and a∪1a = Sq|a|−1a.
Another example (S. Saneblidze) is C∗(SX,CX), where SX is the suspension and CX is the cone of a
space X.

Level 3. This is the “one-line” case where E has the form

E01 = id E10 = id
E11

E12 0
E13 0 0

. . . . . . . . . . . . . . . . . . . . .

, (12)

i.e., all components of E are zero except for E01, E10, and E1k, k = 1, 2, 3, . . . . We note that this case is
especially interesting in this article.

In this case, condition (9) breaks into two conditions:

dAE1,k(a|b1 ⊗ · · · ⊗ bk) +E1,k(dAa|b1 ⊗ · · · ⊗ bk)

+
∑
i

E1k(a|b1 ⊗ · · · ⊗ dAbi ⊗ · · · ⊗ bk)

= b1E1k(a|b2 ⊗ · · · ⊗ bk) +
∑
i

E1k(a|b1 ⊗ · · · ⊗ bibi+1 ⊗ · · · ⊗ bk) +E1k(a|b1 ⊗ · · · ⊗ bk−1)bk

(13)

at
(⊗1A)⊗ (⊗kA) and

a1E1,k(a2|b1 ⊗ · · · ⊗ bk) +E1,k(a1 · a2|b1 ⊗ · · · ⊗ bk) +E1,k(a1|b1 ⊗ · · · ⊗ bk)a2

=
∑

p=1,...,k−1

Ep,1(a1|b1 ⊗ · · · ⊗ bp) ·E1,m−p(a2|bp+1 ⊗ · · · ⊗ bk) (14)

at
(⊗2A)⊗ (⊗kA); at (⊗n>2A)⊗ (⊗k A), the condition is trivial.
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In this case, the associativity condition (11) has the form∑
o≤i1≤···≤ij≤m

∑
m1+···+mr=m

E1r(a|c1 ⊗ · · · ⊗ ci1 ⊗E1m1(b1|ci1+1 ⊗ · · · ⊗ ci1+m1)⊗ . . .

⊗cij ⊗E1rmj (bl|cm1+···+mj−1+1 ⊗ · · · ⊗ cm) = E1m(E1l(a|b1 ⊗ · · · ⊗ bl)|c1 ⊗ · · · ⊗ cm).

(15)

Actually, the structure of this level coincides with the notion of homotopy G-algebra (see below).
Note that we can also consider the case where

E01 = id E10 = id
E11

0 E21
0 0 E31

. . . . . . . . . . . . . . . . . . . . .

(level 3′) with suitable conditions.

Level 4. We consider the case of a twisting cochain E = {Epq} with no other restrictions but (5), (9),
and (11). This is nothing other than the Hirsch algebra structure defined above.

1.3. B∞-algebra. The notion of B∞-algebra was introduced in [2,7] as an additional structure on a DG-
algebra (A, ·, d), which turns the tensor coalgebra T c(s−1A) = BA into a DG-Hopf algebra. Therefore, it
requires a new differential

d̃ : BA→ BA,

which should be a coderivation with respect to the standard coproduct of BA, and a new associative
multiplication

µ̃ : (BA, d̃)⊗ (BA, d̃)→ (BA, d̃),

which should be a map of DG-coalgebras with 1Λ ∈ Λ ⊂ BA as a unit element.
It is known (see, e.g., [11, 14, 19]) that such d̃ specifies on A the structure of an A∞-algebra in

the sense of Stasheff [20], namely, a sequence of operations
{
mi :

⊗iA→ A, i = 1, 2, 3, . . .} subject to
appropriate conditions.

As for the new multiplication µ̃, it follows from the above considerations that it is induced by a
sequence of operations {Epq} satisfying (5), (11), and the modified condition (9) with involved A∞-algebra
structure {mi}.

Thus, the Hirsch algebra structure (the above-mentioned Level 4 and, consequently, other levels), in
fact, is a particular B∞-algebra structure on A, where the standard differential of the bar construction

dB : BA → BA does not change, i.e., d̃ = dB (in this case, the corresponding A∞-algebra structure is
degenerate: {m1 = dA, m2 = µA, m3 = 0, m4 = 0, . . . }).

Let us mention that a sequence of cochain operations {Epq} satisfying (5) and (9) (but not (11),
i.e., the induced product in the bar construction is not strictly associative) was constructed in [16] for
the singular cochain complex of a topological space C∗(X) by using acyclic models, the initial condition
E01 = E10 = id and E0k = Ek0 = 0 for k > 1, determining a twisting cochain E uniquely up to equivalence
of twisting cochains in this case.

1.4. DG-Lie algebra structure in a Hirsch algebra. Let (A, d, ·, {Epq}) be a Hirsch algebra; then
there appears a structure of a DG-Lie algebra in the desuspension s−1A: although ∪1 = E11 is not
associative, condition (10), which is a particular case of condition (11), implies the pre-Jacobi identity

a ∪1 (b ∪1 c)− (a ∪1 b) ∪1 c = a ∪1 (c ∪1 b)− (a ∪1 c) ∪1 b,

which guarantees that the commutator

[a, b] = a ∪1 b− b ∪1 a
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satisfies the Jacobi identity. In addition, condition (1) implies that [ , ] : Ap ⊗ Aq → Ap+q−1 is a chain
map.

The structure of a Hirsch algebra on A induces the structure of the Gerstenhaber algebra (G-algebra)
on homology H(A) [6], which is defined as a commutative graded algebra (H, ·) with a Lie bracket

[ , ] : Hp ⊗Hq → Hp+q−1

of degree −1, i.e., a graded Lie-algebra structure on the desuspension s−1H, which is a biderivation:

[ab, c] = a[b, c] + [a, c]b

(this is a graded version of a Poisson algebra).
The existence of this structure in the homology H(A) of a Hirsch algebra (A, d, ·, {E1k}) can be

proved as follows. As was mentioned above, s−1A is a DG-Lie algebra if A is a Hirsch algebra. Thus,
there appears the structure of graded Lie algebra on s−1H(A). The Hirsch formulas (7) and (8) (up to
homotopy) imply that the induced Lie bracket is a biderivation.

1.5. Homotopy G-algebra. A Hirsch algebra of particular type of level 3 is known as a homotopy
G-algebra.

In [6, 23], a homotopy G-algebra is defined as a DG-algebra (A, d, ·) with a given sequence of multi-
braces a{a1, . . . , ak}, which, in our notation, we regard as a sequence of operations

E1k : A⊗
(⊗k A)→ A, k = 1, 2, 3, . . . ,

which, together with E01 = id, satisfies conditions (5) and (13)–(15).
The name homotopy G-algebra is motivated by the fact that this structure induces the structure of

Gerstenhaber algebra (G-algebra) on homology H(A).
As was mentioned above, such a sequence defines a twisting cochain

E : BA⊗BA→ A;

conditions (13) and (14) mean nothing other than that E satisfies condition (3) and, consequently, defines
a product on the bar construction µE : BA⊗ BA→ BA. We emphasize that this twisting cochain E is
of special type; it is of level 3, i.e., it is a “one-line” twisting cochain like (12): all its components, except
perhaps E1k, are zero.

1.6. Strong homotopy commutative algebras. The notion of a strong homotopy commutative al-
gebra (shc-algebra) as a tool for measuring the noncommutativity of DG-algebras was used in [9,17,22],
etc.

An shc-algebra is a DG-algebra (A, d, ·) with a twisting cochain

Φ : B(A⊗A)→ A,

which satisfies certain conditions (up to homotopy) of associativity and commutativity (actually, Φ induces
a DG-algebra map ΩB(A⊗A)→ A).

We note that the fact that an shc-structure measures the noncommutativity of A is the result only of
the existence of the twisting cochain Φ and not of the homotopy commutativity of it: in [17, Proposition
4.8], the ∪1-product in A is defined in terms of Φ by the formula

a ∪1 b = Φ[(1⊗ a)⊗ (b⊗ 1) + (a⊗ 1)⊗ (1⊗ b)].

There is the shuffle map (a DG-coalgebra map)

Sh : BA⊗BA→ B(A⊗A);

thus, each shc-algebra structure, i.e., twisting cochain Φ, induces a twisting cochain E = Φ ◦ Sh : BA ⊗
BA → A of level 4 in the above description, which, in fact, is an almost Hirsch-algebra structure on A:
we cannot expect the strict associativity of the product in BA induced by E since Φ is associative only
up to homotopy.
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Conversely, the shuffle map Sh is a weak equivalence of DG-coalgebras; thus, it induces a bijection
between equivalence classes of twisting cochains E : BA⊗BA→ A and Φ : B(A⊗A)→ A. This means
that to each twisting cochain E (to a Hirsch algebra structure), there corresponds a class of twisting
cochains Φ (class of shc-algebra structures) such that E ∼ Φ ◦ Sh.

We note that, as a rule, an shc-algebra structure (i.e., the twisting cochain Φ) is constructed by
using acyclic models; hence, it is not uniquely determined and thus there is no guarantee that the induced
E = Φ ◦ Sh will be of level 3 (i.e., of “one-line” form consisting just of components E1k). Therefore, the
induced structure is not generally a homotopy G-algebra. We emphasize that for the homotopy G-algebra
structure (for the twisting cochain E), there are explicit formulas in the particular cases mentioned above.

2. Twisting Elements

2.1. Twisting elements in homotopy G-algebras. There is a very useful notion of twisting element
introduced by Brown in [4]. Roughly speaking, for a cochain algebra C∗, a twisting element is defined
as a 1-dimensional element a ∈ C1 such that da = aa. Later, Berikashvili in [3] (see also [17, 19] in
various contexts) introduced an equivalence relation in the set of all twisting elements Tw(C∗), namely,
he introduced the action of the group G of invertible elements in C0 on the set Tw(C∗) by the formula

g ∗ a = g · a · g−1 + dg · g−1.

The set of orbits D(C∗) = Tw(C∗)/G is a functor on C∗ with very interesting properties (for example,
D sends weak equivalences to isomorphisms), which has important applications in the homology theory
of fibrations.

In this section, we construct an analogue of the notion of twisting element for homotopy G-algebras
(and the appropriate group action), replacing the product in the equation da = aa by the ∪1-product.

Let (C∗,∗, d, ·, {E1,k}) be a bigraded homotopy G-algebra. We mean the following:

d(Cm,n) ⊂ Cm+1,n, Cm,n · Cp,q ⊂ Cm+p,n+q,

E1,k(C
m,n|Cp1,q1 ⊗ · · · ⊗ Cpk,qk) ⊂ Cm+p1+···+pk−k,n+q1+···+qk .

Below, we introduce two versions of the notion of twisting elements in a homotopy G-algebra and
the appropriate group actions. The first version controls the degeneracy of A∞-algebra structures and
the second version controls deformations of algebras.

Version 1. A twisting element in C∗,∗ is the element

m = m3 +m4 + · · ·+mp + . . . ; mp ∈ Cp,2−p,

satisfying the condition dm = E1,1(m|m) = m ∪1m. This condition can be rewritten in the form

dmp =

p−1∑
i=3

mi ∪1m
p−i+2. (16)

In particular, dm3 = 0, dm4 = m3 ∪1 m3, dm5 = m3 ∪1 m4 + m4 ∪1 m3, . . . . The set of all twisting
elements is denoted by Tw(C∗,∗).

Consider the set G = {g = g2 + g3 + · · · + gp + . . . , gp ∈ Cp,1−p}. This set is a group with respect
to the operation

g ∗ g = g + g +
∞∑
k=1

E1,k(g|g ⊗ · · · ⊗ g); (17)

in particular,

(g ∗ g)2 = g + g2, (g ∗ g)3 = g3 + g3 + g2 ∪1 g
3,

(g ∗ g)3 = g4 + g3 + g2 ∪1 g
3 + g3 ∪1 g

2 +E1,2(g
2|g2 ⊗ g2).
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This operation is associative and has the unit e = 0+0+. . . , and the opposite g−1 can be found inductively
from the equation g ∗ g−1 = e.

The group G acts on the set Tw(C∗,∗) by the rule g ∗m = m, where

m = m+ dg + g · g +E1,1(g|m) +
∞∑
k=1

E1,k(m|g ⊗ · · · ⊗ g); (18)

in particular,

m3 = m3 + dg2, m4 = m4 + dg3 + g2 · g2 + g2 ∪1m
3 +m3 ∪1 g

2,

m5 = m5 + dg4 + g2 · g3 + g3 · g2 + g2 ∪1m
4 + g3 ∪1m

3 +m3 ∪1 g
3 +m4 ∪1 g

2 +E1,2(m
3|g2 ⊗ g2).

Note that, although on the right-hand side of this formula, m participates, but it has lower dimension
than m on the left-hand side; thus, the components of m can be found from this equation inductively.
The resulting m is also a twisting element. We denote by D(C∗,∗) the set of orbits Tw(C∗,∗)/G.

This group action allows us to perturb twisting elements. Let gn ∈ Cn,1−n be an arbitrary element.
Then for

g = 0 + · · ·+ 0 + gn + 0 + . . . ,

the twisting element m = g ∗m has the form

m = m3 + · · ·+mn + (mn+1 + dgn) +m
n+2 +mn+3 + . . . .

For an arbitrary twisting element m = m3 +m4 + . . . , the first component m4 ∈ C3,−1 is a cocycle.
If its class in the cohomology module H3,−1(C∗,∗) is zero, then m3 = dg2 for some g2 ∈ C2,−1. Perturbing
m by g = g2 + 0+ 0 + . . . , we can eliminate the first component m3, i.e., we obtain the twisting element
m ∼ m, which has the form

m = 0 +m4 +m5 + . . . ;

now the component m4 becomes a cocycle. If its class is zero, then we can eliminate it, etc. Finally, we
obtain the following proposition.

Proposition 1. If, for a bigraded homotopy G-algebra C∗,∗, all homology modules Hn,2−n(C∗,∗) are trivial
for n ≥ 3, then D(C∗,∗) = 0, i.e., each twisting element is equivalent to the trivial twisting element.

Version 2. In this case, we define a twisting element by the formula

b = b1 + b2 + · · ·+ bn + . . . , bn ∈ C
2,n,

where

dbn =
n−1∑
i=2

bi ∪1 bn−i.

In particular,
db1 = 0, db2 = b1 ∪1 b1, db3 = b1 ∪1 b2 + b2 ∪1 b1, etc.

The set of all twisting elements is denoted by Tw′(C).
We consider the group

G′ = {g = g1 + g2 + · · ·+ gp + . . . , gp ∈ C
1,p}

with the operation

g′ ∗ g = g′ + g +
∞∑
k=1

E1,k(g
′|g ⊗ · · · ⊗ g).

In particular,

(g′ ∗ g)1 = g
′
1 + g1, (g

′ ∗ g)2 = g
′
2 + g2 + g

′
1 ∪1 g1,

(g′ ∗ g)3 = g
′
3 + g3 + g

′
1 ∪1 g2 + g

′
2 ∪1 g1 +E1,2(g

′
1|g1 ⊗ g1).
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As above, this operation is associative and has the unit e = 0 + 0 + . . . , and the opposite element
g−1 can be found inductively from the equation g ∗ g−1 = e.

The group G′ acts on the set Tw′(C∗,∗) by the rule g ∗ b = b′, where

b′ = b+ dg + g · g +E1,1(g|b) +
∞∑
k=1

E1,k(b
′|g ⊗ · · · ⊗ g); (19)

in particular,

b′1 = b1 + dg1, b
′
2 = b2 + dg2 + g1 · g1 + g1 ∪1 b2 + b

′
1 ∪1 g1,

b′3 = b3 + dg3 + g1 · g2 + g2 · g1 + g1 ∪1 b2 + g2 ∪1 b1 + b
′
1 ∪1 g2 + b

′
2 ∪1 g1 +E1,2(b

′
1|g1 ⊗ g1).

The components of b′ can be found from this equation inductively. The resulting b′ is also a twisting
element. We denote by D′(C∗,∗) the set of orbits Tw′(C∗,∗)/G′.

As above, this group action allows us to perturb twisting elements, and we obtain the following
proposition.

Proposition 2. If for a bigraded homotopy G-algebra C∗,∗, all homology modules H2,n(C∗,∗) are trivial
for n ≥ 1, then D′(C∗,∗) = 0, i.e., each twisting element is equivalent to the trivial twisting element.

2.2. Twisting elements in a DG-Lie algebra. There is a modified notion of twisting element in a
DG-Lie algebra (L, d, [ , ]). This is an element a ∈ L1 such that da = 1

2 [a, a] (in the literature, this
equation is called the Maurer–Cartan equation or master equation). A systematic investigation of this
notion can be found in [10].

As was described above, for a homotopy G-algebra (C, ·, d{E1k}) in the desuspension s
−1A, there

appears the structure of a DG-Lie algebra with the bracket [a, b] = a ∪1 b− b ∪1 a. Note that if C∗,∗ is a
bigraded homotopy G-algebra, then s−1C∗,∗, where (s−1C∗,∗)p,q = Cp−1,q, is a bigraded DG-Lie algebra.

Suppose that m = m3 +m4 + · · · +mp + . . . , mp ∈ Cp,2−p, is a twisting element in A of Version 1.
The defining equation dm = m ∪1 m can be rewritten in terms of brackets as dm =

1
2 [m,m]; therefore,

the same m can be considered as a Lie twisting element.
The same is true for a twisting element b = b1 + b2 + · · · + bn + . . . , bn ∈ C2,n, of Version 2: the

condition db = b ∪1 b in terms of brackets becomes db =
1
2 [b, b].

The following question of Huebschmann remains unsolved: How to rewrite formulas (18) and (19) of
transformation of twisting elements in terms of brackets.

3. Examples of Hirsch Algebras

3.1. Cochain algebra of a simplicial set. An example of a Hirsch algebra is the cochain complex
C∗(S) of a 1-reduced simplicial set S. In [2], Baues constructed the strictly associative product in BA,
where A = C∗(S). Examining the appropriate twisting cochain, one can obtain that it is a “one-line”
cochain of Level 3; thus, it forms the structure of a Hirsch algebra.

3.2. Hochschild cochain complex. Let A be an algebra and M be a two-sided module on A. The
Hochschild cochain complex C∗(A;M) of Awith coefficients inM is defined as Cn(A;M) = Hom(⊗nA,M)
with the differential δ : Cn−1(A;M)→ Cn(A;M) given by the formula

δf(a1 ⊗ · · · ⊗ an) = a1f(a2 ⊗ · · · ⊗ an)

+
n−1∑
k=1

f(a1 ⊗ · · · ⊗ ak−1 ⊗ akak+1 ⊗ · · · ⊗ an) + f(a1 ⊗ · · · ⊗ an−1)an.

If M is an algebra over A, then in the Hochschild complex, there appears the ∪-product

f ∪ g(a1 ⊗ · · · ⊗ an+m) = f(a1 ⊗ · · · ⊗ an) · g(an+1 ⊗ · · · ⊗ an+m),

which turns C∗(A;M) into a cochain algebra.
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We focus our attention on the case M = A. In [13], explicit formulas for operations, which specify
on the Hochschild cochain complex C∗(A;A) the structure of a homotopy G-algebra, are given. We
describe this structure below. Note that the same operations were described in [7] for constructing the
B(∞)-algebra structure on C∗(A;A) (see also [6,23].

In [5], Gerstenhaber defined the product f ◦ g in the Hochschild complex C∗(A,A) by the formula

f ◦ g(a1 ⊗ · · · ⊗ an+m−1)

=
n−1∑
k=0

f(a1 ⊗ · · · ⊗ ak ⊗ g(ak+1 ⊗ · · · ⊗ ak+m)⊗ ak+m+1 ⊗ · · · ⊗ an+m−1).

The Gerstenhaber product has the following properties:

δ(f ◦ g) = δf ◦ g + f ◦ δg + f ∪ g − g ∪ f,

(f ∪ g) ◦ h = f ∪ (g ◦ h) + (f ◦ h) ∪ g.

This means that the product f ◦g has the properties of a ∪1-product: if we use the notation f ◦g = f ∪1 g,
then the first condition gives the standard condition on the ∪1 product:

δ(f ∪1 g) = δf ∪1 g + f ∪1 δg + f ∪ g − g ∪ f,

and the second condition gives the left Hirsch formula

(f ∪ g) ∪1 h = f ∪ (g ∪1 h) + (f ∪1 h) ∪ g.

As for the right Hirsch formula, there is a different kind of ∪1-product of a cochain and a couple of
cochains: for f ∈ Cp(A;A), g ∈ Cq(A;A), and h ∈ Cr(A;A), we define f ∪1 (g, h) ∈ Cp+q+r−2(A;A) by

(f ∪1 (g, h))(a1 ⊗ · · · ⊗ ap+q+r−2)

=
∑
k,l

f(a1 ⊗ · · · ⊗ ak ⊗ g(ak+1 ⊗ · · · ⊗ ak+q)⊗ ak+m+1 ⊗ . . .

⊗al ⊗ h(al+1 ⊗ · · · ⊗ al+r)⊗ al+r+1 ⊗ · · · ⊗ ap+q+r−2).

A straightforward verification shows that the ∪1-product in Cp(A;A) satisfies the right Hirsch formula
up to homotopy and the appropriate homotopy is f ∪1 (g, h), i.e., the condition

δ(f ∪1 (g, h)) + δf ∪1 (g, h) + f ∪1 (δg, h) + f ∪1 (g, δh)

= f ∪1 (g ∪ h) + g ∪ (f ∪1 h) + (f ∪1 g) ∪ h

holds.
Let us mention also the following property of the introduced product: the product f∪1(g, h) measures

the nonassociativity of the ∪1-product:

f ∪1 (g ∪1 h)− (f ∪1 g) ∪1 h = f ∪1 (g, h) + f ∪1 (h, g). (20)

Remark. In [5] (see also [21]), a DG-Lie algebra structure was introduced in the desuspension of the
Hochschild complex s−1C∗(A;A). Actually, the Lie bracket [f, g] is the commutator of the ∪1-product:
[f, g] = f ∪1 g− g∪1 f . Although the ∪1-product is not associative, condition (20) allows us to verify that
the Jacobi identity holds.

In [13], the author defined the generalized ∪1-products of a Hochschild cochain and a sequence of
cochains:

(f ∪1 (g1, . . . , gi))(a1 ⊗ · · · ⊗ an)

=
∑
f(a1 ⊗ · · · ⊗ ak1 ⊗ g1(ak1+1 ⊗ . . . ak1+n1)⊗ · · · ⊗ aki ⊗ gi(aki+1 ⊗ . . . aki+ni)⊗ · · · ⊗ an).

A straightforward verification shows that the collection {E1k} given by

E1k(f |g1 ⊗ · · · ⊗ gk) = f ∪1 (g1, . . . , gk)
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satisfies conditions (5) and (13)–(15); thus it forms the structure of a homotopy G-algebra on the
Hochschild complex C∗(A;A).

3.3. Cobar construction of a Hopf algebra. As the third example of a Hirsch algebra, we present
the cobar construction of a Hopf algebra.

The cobar construction ΩA of a coalgebra (A,∇ : A→ A⊗A) is the DG-algebra

ΩA = T (A) = Λ +A+A⊗A+A⊗A⊗A+ . . .

with the product

(a1 ⊗ · · · ⊗ ap) · (ap+1 ⊗ · · · ⊗ ap+q) = a1 ⊗ · · · ⊗ ap+q

(i.e., it is a free graded algebra generated by A) and the differential

dΩ(a1 ⊗ · · · ⊗ an) =
∑
i

a1 ⊗ · · · ⊗ ∇ai ⊗ · · · ⊗ an.

What additional structure appears on ΩA if A is a Hopf algebra, i.e., if it is equipped additionally
with a product A ⊗ A → A, which is a coalgebra map? It is shown in [1] that if the ground ring is Z2,
then there exists a ∪1-product in ΩA given by the formula

(a1 ⊗ · · · ⊗ ap) ∪1 (b1 ⊗ · · · ⊗ bq) =
∑
i

a1 ⊗ · · · ⊗ ai−1 ⊗ a
(1)
i · b1 ⊗ · · · ⊗ a

(q)
i · bq ⊗ ai+1 ⊗ · · · ⊗ ap,

where ∇q(ai) = a
(1)
i ⊗ · · · ⊗ a

(q)
i is the q-fold iteration of ∇ and a · b is the product in A. It is clear that

this ∪1-product is functorial on the category of Hopf algebras.
Let us introduce the following notation. For a ∈ A and b1⊗· · ·⊗bq ∈

⊗q A, we define a∨(b1⊗· · ·⊗bq) ∈⊗q A as follows:
a(1) · b1 ⊗ · · · ⊗ a

(q) · bq.

Thus, the definition of the Adams ∪1-product has the form

(a1 ⊗ · · · ⊗ ap) ∪1 (b1 ⊗ · · · ⊗ bq) =
∑
i

a1 ⊗ · · · ⊗ ai−1 ⊗ ai ∨ (b1 ⊗ · · · ⊗ bq)⊗ ai+1 ⊗ · · · ⊗ ap.

Below we show that there exist functorial operations

E1k : (ΩA)⊗
(⊗k ΩA)→ ΩA

with E11 = ∪1, which satisfy conditions (13), (14), and (4), i.e., which form the structure of a homotopy
G-algebra on ΩA.

There is a formula for the operation E1k. Let α = a1 ⊗ · · · ⊗ an ∈ ΩA and β1, β2, . . . , βk ∈ ΩA; then
we define

E1k(α|β1 ⊗ · · · ⊗ βk) =
∑
a1 ⊗ · · · ⊗ ai1−1 ⊗ ai1 ∨ β1 ⊗ ai1+1 ⊗ . . .

⊗aik−1 ⊗ aik ∨ βk ⊗ aik+1 ⊗ · · · ⊗ an,
(21)

where the summation is taken over all 1 ≤ i1 < · · · < ik ≤ n. It is clear that E1k(α|β1 ⊗ · · · ⊗ βk) = 0 if
n < k.

Remark. The way of obtaining this formula is as follows. We take the initial condition E1k(a1|β1⊗· · ·⊗
βk) = 0 and extend the products E1k(a1 ⊗ a2|β1 ⊗ · · · ⊗ βk) by using condition (14).

Theorem. The operations E1k : (ΩA)⊗
(⊗k ΩA)→ ΩA given by (21) are functorial on the category of

Hopf algebras and satisfy conditions (13), (14), and (4); thus they form the structure of a Hirsch algebra
on ΩA.
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4. Applications

4.1. Multiplicative twisted tensor product. In this section, we present the result of [15]: the con-
struction of a multiplicative version of Brown’s [4] twisted tensor product.

4.1.1. Twisting cochains. Let (C, d,∇ : C → C ⊗ C) be a DG-coalgebra and (A, d, µ : A ⊗ A → A)
be a DG-algebra (the differentials d : C → C and d : A→ A are assumed to be of degree +1). A twisting
cochain is a homomorphism

ϕ : C → A

of degree 1 satisfying the condition

dϕ+ ϕd = ϕ ∪ ϕ. (22)

The given twisting cochain ϕ : C → A determines the following three important maps:

(1) A DG-coalgebra map fϕ : C → BA from C to the bar construction BA given by the rule

fϕ =
∞∑
n=0

(ϕ⊗ · · · ⊗ ϕ)∇n,

where ∇0 = ε : C → Λ is the coaugmentation, ∇1 = id, and ∇n = (∇n−1 ⊗ id)∇ is the iteration of
the coproduct ∇.

(2) A DG-algebra map gϕ : ΩC → A from the cobar construction ΩC to A given by the rule

gϕ|⊗nC = µ
n(ϕ⊗ · · · ⊗ ϕ),

where µ0 : Λ→ A is the unit of A, µ1 = id, and µn = µ(µn−1⊗ id) is the iteration of the product µ.

Remark. Let us denote by T (C,A) the set of all twisting cochains ϕ : C → A. Then the assignments
ϕ �−→ fϕ and ϕ �−→ gϕ form the bijections

HomDG-alg(ΩC,A)←→ T (C,A)←→ HomDG-Coalg(C,BA),

which realize the adjunction of the functors B and Ω.

(3) A twisted differential dϕ : A⊗ C → A⊗ C given by the rule

dϕ(a⊗ c) = da⊗ c+ a⊗ dc+ ϕ ∩ (a⊗ c),

where

ϕ ∩ (a⊗ c) = (µ⊗ id)(id⊗ϕ⊗ id)(id⊗∇).

The tensor product A⊗C equipped with the differential dϕ is called a twisted tensor product and is
denoted by A⊗ϕC (this notion belongs to Brown [4]). This construction has substantial applications
in the homology theory of fibrations.

4.1.2. Multiplicative twisting cochains (commutative case). Now suppose that (C, d,∇, µ) is a
DG-Hopf algebra and (A, d, µ) is a commutative DG-algebra. Then the bar construction BA is a DG-Hopf
algebra with respect to the shuffle product µSh : BA⊗BA→ BA.

A twisting cochain ϕ : C → A is called multiplicative if, in addition to the standard Brown condi-
tion (22), the following condition holds:

ϕ(ab) = ηa · ϕ(b) + ϕ(a) · η(b)

(this notion was introduced by Prute in [18]). This condition is equivalent to the condition of fϕ : C → BA
being a map of DG-Hopf algebras. Note that this condition can be reformulated in the following form: ϕ
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factors through indecomposables QC = C/C+ · C+, i.e., there exists ψ such that the diagram (see [14])

C A

QC

�ϕ

�
ψ

�
�

��

is commutative.
On the other hand, the tensor product A ⊗ C is a graded algebra (since C and A are algebras).

When is the twisted differential dϕ compatible with this product? As is shown in [18], this happens if ϕ
is multiplicative.

4.1.3. Multiplicative twisting cochains (noncommutative case). The result of this section was
announced in [15].

Assume that (C, d,∇, µ) is a DG-Hopf algebra and (A, d, µ, {E1,k}) is a homotopy G-algebra. Then,
as we know, there appears the product µE : BA⊗BA→ BA in the bar construction BA.

A twisting cochain ϕ : C → A is called multiplicative if, in addition to the standard Brown condition
(22), the following condition holds:

ϕ(ab) = ηa · ϕ(b) + ϕ(a) · η(b) +E11(ϕ(a)|ϕ(b))

+E12(ϕ(a)|(ϕ ⊗ ϕ)∇
2(b)) +E13(ϕ(a)|(ϕ ⊗ ϕ⊗ ϕ)∇

3(b)) + . . . .
(23)

This condition is equivalent to the condition of fϕ : C → BA being multiplicative, i.e., a map of DG-Hopf
algebras.

Generally, even if ϕ is multiplicative in this sense, the twisted differential dϕ is not a derivation with
respect to the standard multiplication of tensor product A ⊗ C. There appears the need to twist the
multiplication in A⊗C. There is a formula for this twisted multiplication:

µϕ = (µA ⊗ µC)(1⊗E1,∗ ⊗ 1⊗ 1)(1 ⊗ 1⊗ fϕ ⊗ 1⊗ 1)(1 ⊗ 1⊗∇⊗ 1)(1 ⊗ T ⊗ 1).

Direct inspections prove the following theorem.

Theorem 2. Let (C, d,∇, µ) be a DG-Hopf algebra, (A, d, µ, {E1,k}) be a homotopy G-algebra, and ϕ :
C → A be a multiplicative twisting cochain (i.e., it satisfies (22) and (23)). Then the twisted differential
dϕ : A⊗C → A⊗C is a derivation with respect to the twisted multiplication µϕ : (A⊗C)⊗(A⊗C)→ A⊗C,
i.e., the twisted tensor product (A⊗ C, dϕ, µϕ) is a DG-algebra.

4.2. Deformation of algebras. This is just an illustrative application. Using the homotopy G-algebra
structure, the notion of twisting element, and gauge transformation, we obtain the well-known result of
Gerstenhaber [5].

Let (A, ·) be an algebra over a field k, k[[t]] be the algebra of formal power series in variable t, and
A[[t]] = A⊗ k[[t]] be the algebra of formal power series with coefficients in A.

A deformation of an algebra (A, ·) is defined as a sequence of homomorphisms

Bi : A⊗A→ A, i = 0, 1, 2, . . . , B0(a⊗ b) = a · b,

satisfying the associativity condition∑
i+j=n

Bi(a⊗Bj(b⊗ c)) =
∑
i+j=n

Bi(Bj(a⊗ b)⊗ c) (24)

for all n ≥ 1.
Such a sequence determines the star product

a � b = a · b+B1(a⊗ b)t+B2(a⊗ b)t
2 +B3(a⊗ b)t

3 + · · · ∈ A[[t]],
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which can be naturally extended to a k[[t]]-bilinear product

� : A[[t]]⊗A[[t]]→ A[[t]],

and condition (24) guarantees that this product is associative.
Two deformations {Bi} and {B′i} are called equivalent if there exists a sequence of homomorphisms

{gi : A→ A; i = 0, 1, 2, . . . ; g0 = id}

such that ∑
r+s=n

gr(Bs(a⊗B) =
∑

i+j+k=n

B′i(gj(a)⊗ gk(b)). (25)

In this case, the sequence {gi} determines the power series

g = id+g1t+ g2t
2 + · · · =

∑
git
i : A→ A[[t]];

therefore, the appropriate natural k[[t]]-linear map (A[[t]], �) → (A[[t]], �′) is a multiplicative isomorphism.
A deformation {Bi} is called trivial if {Bi} is equivalent to {B0, 0, 0, . . . }. In this case, the deformed

algebra (A[[t]], �) is isomorphic to A[[t]]. An algebra A is called rigid if each deformation is trivial.
As was mentioned above, the Hochschild complex C∗(A,A) for an algebra A is a homotopy G-algebra.

Then the tensor product

C∗(A,A)[[t]] = C∗(A,A) ⊗ k[[t]]

is a bigraded Hirsch algebra:

Cp,q = Cp(A,A) · tq, d(f · tq) = δf · tq, f · tp ∪ g · tq = (f ∪ g) · tp+q,

E1k(f · t
p|g1 · t

q1 ⊗ · · · ⊗ gk · t
qk) = E1k(f |g1 ⊗ · · · ⊗ gk) · t

p+q1+···+qk .

Each deformation
{
Bi :
⊗iA→ A, i = 1, 2, 3, . . .} can be interpreted as a twisting element B =

B1 · t+B2 · t2 + · · · ∈ C2,∗: the associativity condition (24) can be rewritten in the form

δBn · t
n =

∑
i+j=n

Bi · t
i ∪1 Bj · t

j .

If two deformations are equivalent, then the appropriate Hochschild twisting elements B and B′ are
also equivalent and condition (25) can be rewritten in the form

B′ = B + δg + g ∪ g + g ∪1 B +
∞∑
k=1

E1,k(B
′|g ⊗ · · · ⊗ g).

Thus, the set of equivalence classes of deformations is bijective to D′(C∗,∗). It is clear that

Hp,q(C∗,∗) = Hochp(A,A) · tq;

then Proposition 2 implies the result of Gerstenhaber: if Hoch2(A,A) = 0, then A is rigid.

4.3. Degeneracy of A(∞)-algebras. In this section, we study the problem of degeneracy of an A(∞)-
algebra structure by using the homotopy G-algebra structure in the Hochschild complex. Actually, these
results are given in [13,14].

509



4.3.1. A(∞)-algebras. The notion of A(∞)-algebra was introduced by Stasheff in [20]. This notion
generalizes the notion of DG-algebra.

An A(∞)-algebra is a graded module M with a given sequence of operations{
mi :

(⊗iM)→M, i = 1, 2, . . . , degmi = 2− i
}
,

which satisfies the condition

∑
i+j=n+1

n−j∑
k=0

mi(a1 ⊗ · · · ⊗ ak ⊗mj(ak+1 ⊗ · · · ⊗ ak+j)⊗ · · · ⊗ an) = 0. (26)

In particular, for the operation m1 : M → M we have degm1 = 1 and m1m1 = 0; thus, m1 can be
considered as a differential on M . The operation m2 : M ⊗ M → M has degree 0 and satisfies the
condition

m1m2(a1 ⊗ a2) +m2(m1a1 ⊗ a2) +m2(a1 ⊗m1a2) = 0,

i.e., m2 can be considered as a multiplication on M and m1 is a derivation with respect to it. Thus,
(M,m1,m2) is a DG-algebra (maybe nonassociative). For the operation m3, we have degm3 = −1 and

m1m3(a1 ⊗ a2 ⊗ a3) +m3(m1a1 ⊗ a2 ⊗ a3) +m3(a1 ⊗m1a2 ⊗ a3)

+m3(a1 ⊗ a2 ⊗m1a3) +m2(m2(a1 ⊗ a2)⊗ a3) +m2(a1 ⊗m2(a2 ⊗ a3)) = 0;

thus, the product m2 is homotopy associative and the appropriate chain homotopy is m3 (some authors
call A(∞)-algebras strong homotopy associative DG-algebras).

The main meaning of defining condition (26) of an A(∞)-algebra (M, {mi}) is as follows. The
sequence of operations {mi} determines on the bar construction

BM = T c(s−1M) = Λ + s−1M + s−1M ⊗ s−1M + s−1M ⊗ s−1M ⊗ s−1M + . . .

a coderivation

dm(a1 ⊗ · · · ⊗ an) =
∑
k,j

a1 ⊗ · · · ⊗ ak ⊗mj(ak+1 ⊗ · · · ⊗ ak+j)⊗ · · · ⊗ an),

and the Stasheff condition (26) is equivalent to dmdm = 0; thus, (BM,dm) is a DG-coalgebra called a bar
construction of the A(∞)-algebra (M, {mi}).

A morphism of A(∞)-algebras f : (M, {mi})→ (M ′, {m′i}) is defined as a DG-coalgebra map of the
bar constructions

f : B(M, {mi})→ B(M
′, {m′i}),

which (since the tensor coalgebra T c(s−1M) is cofree) is uniquely determined by the projection

f : B(M, {mi})→ B(M
′, {m′i})→M

′,

which, in fact, is a collection of homomorphisms{
fi :
(⊗iM)→M ′, i = 1, 2, . . . , deg fi = 1− i

}
,

subject to some conditions (see, e.g., [12,14]). In particular, f1m1 = m1f1, i.e., f1 : (M,m1)→ (M ′,m′1) is
a chain map. We define a weak equivalence of A(∞)-algebras as a morphism {fi}, where f1 is a homology
isomorphism.

An A(∞)-algebra (M, {mi}) is called minimal if m1 = 0; in this case, (M,m2) is a strictly associative
graded algebra. Assume that

f : (M, {mi})→ (M
′, {m′i})

is a weak equivalence of minimal A(∞)-algebras. Then f1 : (M,m1 = 0) → (M ′,m′1 = 0), which
by definition is a weak equivalence, is an isomprphism. It is easy to verify that in this case f is an
isomorphism of A(∞)-algebras; thus, a weak equivalence of minimal A(∞)-algebras is an isomorphism.
This fact motivates the word minimal in this notion.
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Now assume that (H, {mi}) is a minimal (m1 = 0) A(∞)-algebra. Such an A(∞)-algebra is called
degenerate if it is isomorphic to the A(∞)-algebra (M, {0,m2, 0, 0, . . . }), i.e., to the ordinary associative
graded algebra (M,m2). We discuss below the problem of degeneracy of such A(∞)-algebras.

4.3.2. Hochschild cohomology and A(∞)-algebra structures. Assume that (H,µ : H ⊗H → H)
is a graded algebra. We consider the Hochschild cochain complex of H with coefficients in itself, which is
bigraded in this case: Cm,n(H,H) = Homn (

⊗mH,H). It is clear that the coboundary operator δ maps
Cm,n(H,H) to Cm+1,n(H,H). Let us denote the nth homology module of the complex (C∗,k(H,H), δ)
by Hochn,k(H,H).

In addition, for f ∈ Cm,n(H,H) and g ∈ Cp,q(H,H), one has f ∪ g ∈ Cm+p,n+q(H,H) and f ∪1 g ∈
Cm+p−1,n+q(H,H). Moreover, the above constructed operations {E1k}, which form the structure of a
homotopy G-algebra on the Hochschild complex, behave with bigrading as follows:

E1k(f |g1 ⊗ · · · ⊗ gk) ∈ C
m+p1+···+pk−k,n+q1+···+qk(H,H);

thus, the Hochschild complex C∗,∗(H,H) is a bigraded homotopy G-algebra in this case.
Now assume that (H, {mi}) is a minimal (m1 = 0) A(∞)-algebra with m2 = µ. Each operation

mi :
(⊗iH) → H can be considered as a Hochschild cochain in Ci,2−i(H,H). Condition (26) can be

rewritten as

δmk =
k−1∑
i=3

mi ∪1mk−i+2;

thus, m = m3 +m4 + . . . is a twisting element in C
∗,∗(H,H) and, therefore, each minimal A(∞)-algebra

structure on H can be considered as a Hochscild twisting element and vice versa.
Assume that (H, {mi}) and (H, {m′i}) are two minimal A(∞)-algebras. Then the appropriate twisting

elements m and m′ lie in the same orbit if and only if A(∞)-algebras (H, {mi}) and (H, {m′i}) are
isomorphic: if m′ = p ∗ m, then {pi} : (H, {mi}) → (H, {m′i}) with p0 = id is an isomorphism of
A(∞)-algebras. Thus, using Proposition 1, we obtain the following theorem.

Theorem 3. If, for a graded algebra (H,µ), its Hochschild cohomology modules Hochn,2−n(H,H) are
trivial for n ≥ 3, then each minimal A(∞)-algebra structure {mi} on H is degenerate, i.e., there exists
an isomorphism of A(∞)-algebras

(H, {mi}) ∼= (H, {m2 = µ, 0, 0, . . . }).

4.3.3. A(∞)-algebra structure in homologies of a DG-algebra. Let (A, d, µ) be a DG-algebra and
(H(A), µ∗) be its homology algebra. Although the product in H(A) is associative, there appears the
structure of a (generally nondegenerate) minimal A(∞)-algebra, which extends the usual structure of a
graded algebra of H(A). Namely, in [12] the following result was proved (see also [8,19]).

Theorem 4. If for a DG-algebra, all homology Λ-modules Hi(A) are free, then there exist the structure
of a minimal A(∞)-algebra (H(A), {mi}) on H(A) and a weak equivalence of A(∞)-algebras

{fi} : (H(A), {mi})→ (A, {m1 = d,m2 = µ, 0, 0, . . . })

such that m1 = 0, m2 = µ
∗, and f∗1 = idH(A). This structure is unique up to isomorphism in the category

of A(∞)-algebras.

In particular, such an A(∞)-algebra structure appears in cohomologies of a space or in homologies of a
topological group of an H-space. It is clear that the cohomology algebra (or Pontryagin algebra) equipped
with such an A(∞)-algebra structure carries more information about the space than the cohomology
algebra itself. Some applications of this structure are given in [12,14].

Therefore, the cases where this additional structure is not needed are especially interesting; in these
cases, the A(∞)-algebra (H(A), {mi}) is degenerate and a DG-algebra A is called formal. Theorem 3
gives a sufficient condition of formality of A in terms of the Hochschild cohomology of H(A).
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