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FREE RESOLUTIONS FOR DIFFERENTIAL MODULES OVER
DIFFERENTIAL ALGEBRAS

T. Kadeishvili and P. Real UDC 512.661.4

Abstract. A free resolution (R, d + h) → (M, d) for a DG-module (M, d) over a DG-algebra (A, d) is
constructed in the sense of a perturbation of the differential in a free bigraded resolution (R, d) → M of
the underlying graded module M over an underlying graded algebra A.
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Introduction

To obtain a differential homological algebra, i.e., to construct a free resolution for a differential graded
(DG) module (M,dM ) over a DG-algebra (A, dA), the bar resolution

α : (A⊗B(A)⊗M,dH) −→M

of the underlying graded module M over the underlying graded algebra A is usually taken, first with the
horizontal differential

dH
(
a[a1| · · · |an]m

)
= a · a1[a2| · · · |an] +

∑

k

±a[a1| · · · |ak · ak+1| · · · |an
]
m± a[a1| · · · |an−1]an ·m.

Then the differentials dA and dM automatically induce a suitable perturbation of dH – the vertical dif-
ferential

dV
(
a[a1| · · · |an]m

)
= dAa1[a1| · · · |an] +

∑

k

±a[a1| · · · |dAak| · · · |an
]
m± a[a1| · · · |an]dMm,

so that
α : (A⊗B(A)⊗M,dH + dV ) −→ (M,dM )

is a resolution of (M,dM ) over (A, dA). This happens since the bar resolution is too large and functorial
in a certain sense, which implies that dA and dM induce a perturbation h = dV , which, in general, is not
the case for smaller resolutions.

In this paper, we present the method of constructing the resolutions of differential graded (DG)-modules
over DG-algebras.

Translated from Sovremennaya Matematika i Ee Prilozheniya (Contemporary Mathematics and Its Applications),
Vol. 43, Topology and Its Applications, 2006.
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We are doing it in the spirit of Gugenheim et al. [3, 4] that a differential homological algebra is obtained
from a homological algebra by perturbing bigraded objects to graded filtered objects (citation from [5]).

Namely, to construct a free resolution of a DG-module (M,dM ) over a DG-algebra (A, dA), we, for-
getting for a moment about the differentials dA and dM , begin with a free bigraded resolution of M over
A:

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

M2
α←−−−− R2,0

d←−−−− R2,1 ←−−−− · · ·
M1

α←−−−− R1,0
d←−−−− R1,1 ←−−−− · · ·

M0
α←−−−− R0,0

d←−−−− R0,1 ←−−−− · · ·

, (0.1)

where each column R∗,q is a free A-module, i.e., R∗,q = A⊗ V∗,q for a certain free graded Λ-module V∗,q,
dd = 0, αd = 0, and each row is acyclic. In this case, the total complex (Rn, d), Rn =

∑

p+q=n
Rp,q, of the

bigraded complex {Rp,q, d}, together with α, is a free A-resolution of M . There is a large source of such
resolutions, starting from minimal (which exists under some conditions on A) till, say, maximal in some
sense, bar resolution A⊗B(A)⊗M .

Now we assume that A and M are equipped with differentials dA and dM , respectively. The main result
of our paper is the following theorem.

Theorem 1. There exists a perturbed differential (d+h) on R∗,∗ such that the perturbation h : R∗ → R∗−1

consists of components

hkp,q : Rp,q −→ Rp−k,q+k−1, p, q = 0, 1, 2, . . . ; k = 1, 2, . . . , p,

so that the same α forms a free resolution of (M,dM ) over (A, dA), i.e.,

α : (R∗, d+ h) −→ (M,dM )

is a weak equivalence of DG− (A, dA)-modules.

Here we note that the perturbation h is not uniquely defined. We describe the freedom in the construc-
tion of h and prove the suitable comparison theorem.

In the case where the ground ring Λ is a field, the bigraded resolution (0.1) is not only acyclic, but also
contractible: there exist Λ-homomorphisms

β∗ : M∗ −→ R∗,0, sp,∗ : Rp,∗ −→ Rp,∗+1, p = 0, 1, . . . ,

such that

αβ = idM , βα+ ds = idR∗,0 , sd+ ds = id .

This actually means that we have a contraction

(M,β, α, (R∗, d), s),

where d and α preserve the action of A, but β and s are just Λ-mappings. In this case, it is possible to
present explicit formulas for h in terms of the above contraction.

As is seen from the theorem, the perturbation h consists of vertical h1
p,q down and right hk>1

p,q compo-
nents. In the bar resolution, the perturbation h = dV has only a vertical component h1. The following
simple example shows the necessity of these down and right components in the general case.

Example 1. Let Λ = Z, A = Z (nongraded and nondifferential) and

(M,dM ) =
(
Z2

d′M←−−−− Z4
d′′M←−−−− Z2

0←−−−− 0 ←−−−− · · · )
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with nontrivial d′M and d′′M . Take the following bigraded resolution of M over A = Z:

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

M2 =Z2
α2←−−−− R2,0 =Z d2←−−−− R2,1 =Z ←−−−− 0 ←−−−− · · ·

M1 =Z4
α1←−−−− R1,0 =Z d1←−−−− R1,1 =Z ←−−−− 0 ←−−−− · · ·

M0 =Z2
α0←−−−− R0,0 =Z d0←−−−− R0,1 =Z ←−−−− 0 ←−−−− · · · ,

(0.2)

where d0(x) = 2x, d1(x) = 4x, and d2(x) = 2x. Taking into account the differential dM , we can construct
(not canonically) vertical components of the perturbation h

h1
1,0 : R1,0 = Z −→ R0,0 = Z; h1

2,0 : R2,0 = Z −→ R1,0 = Z;

h1
1,1 : R1,1 = Z −→ R0,1 = Z; h1

2,1 : R2,1 = Z −→ R1,1 = Z,

satisfying
d′Mα1 = α0h

1
1,0, d′′Mα2 = α1h

1
2,0, h1

1,0d1 = d0h
1
1,1, h1

2,0d2 = d1h
1
2,1.

For example, we can take

h1
1,0(x) = x; h1

2,0(x) = 2x; h1
1,1(x) = 2x; h1

2,1(x) = x.

But the compositions h1
1,0h

1
2,0 and h1

1,1h
1
2,1 cannot be trivial and, therefore, (d + h) : R∗ → R∗ is not

a differential. To correct this, we have to take one more component h2
2,0 : R2,0 = Z → R0,1 = Z,

h2
2,0(x) = x. Then (d+h)(d+h) = 0 is guaranteed and (R, d+h)→ (M,dM ) is a chain mapping inducing

an isomorphism in the homology.

The method of constructing of resolutions for differential modules described above differs from another
method passing through the homology used for the construction of free resolutions for DG − Λ-modules
by Berikashvili in [1] and for constructing free models for commutative DG-algebras by Halperin and
Stasheff in [5]. To obtain a free resolution (model) for a differential object (M,d), they first take a free
bigraded resolution α : (R, d)→ H(M) of a nondifferential object H(M) and, perturbing the differential
d, obtain a free resolution α′ : (R, d+ h)→ (M,d).

Unfortunately, this method – passing through the homology – is not effective in the case of interest to
us (to construct a free resolution for the DG-module (M,dM ) over a DG-algebra (A, dA)): in general, the
homology H(M) is not an A-module.

Our approach is inspired by the approach of Huebschmann from [7], where a small resolution of a finite
metacyclic group is constructed, and by the blowing-up perturbation lemma from [8], where a small model
for a DG-algebra is constructed. This lemma allows one to transport perturbations from a smaller object
to a larger one (from M to (R, d) in our case), in contrast to the basic perturbation lemma.

In Sec. 1, bigraded resolutions in the nondifferential situation, for a graded module over a graded
algebra, are presented. In Sec. 2, the perturbation h is constructed, which gives a resolution for a
differential graded module over a differential graded algebra. The suitable comparison theorem is proved,
and the freedom in the construction of h is studied. In the final section, we consider Koszul resolutions.

1. Free Resolution for a Graded Module over a Graded Algebra

In this section, we prepare the grounds for the next: construct a bigraded resolution for a graded
module over a graded algebra. This material is quite standard.

Let A = {An≥0} be a graded algebra with unit and M = {Mn≥0} be a graded A-module, i.e., the
following structure mappings are given:

μ : Ap ⊗Aq −→ Ap+q, a⊗ a′ −→ a · a′;
ν : Ap ⊗Mq −→Mp+q, a⊗m −→ a ·m,
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satisfying the standard conditions

a · (a′ · a′′) = (a · a′) · a′′, a · (a′ ·m) = (a · a′) ·m, 1A ·m = m.

A free graded A-module over a free graded Λ-module V = {Vn} is just the tensor product A ⊗ V ; it
has the standard universal property (see, e.g., [10, VI, 8.2]): for a graded A-module M and a morphism
of graded Λ-modules ψ : V → M there exists a unique morphism of graded A-modules fψ : A⊗ V → M
such that fψ(1⊗ v) = ψ(v). In fact, fψ = ν(id⊗ψ).

A differential graded A-module (DG−A-module) is a graded A-module M equipped with a differential
dM : M∗ →M∗−1, satisfying dMdM = 0, which is, in addition, a derivation, i.e., dM (a ·m) = (−1)dimaa ·
dM (m).

A free resolution (or resolution) of a graded A-module M (a free A-resolution of M) is defined as a
DG − A-module (R, d), whose underlying graded A-module R is free, together with a weak equivalence
of DG−A-modules (R, d)→ (M,dM = 0).

Below, we present such a free resolution of a special type, the so-called bigraded resolution.
By the bigraded free resolution of a graded A-module M , we mean a bigraded complex

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

M2
α←−−−− R2,0

d←−−−− R2,1 ←−−−− · · ·

M1
α←−−−− R1,0

d←−−−− R1,1 ←−−−− · · ·

M0
α←−−−− R0,0

d←−−−− R0,1 ←−−−− · · · ,
where each column R∗,q is a free A-module, dd = 0, αd = 0, and each row is acyclic. In this case, we have
a weak equivalence of graded A-modules (r, d)→ (M,dM ) = 0, where (R, d), Rn =

∑

p+q=n
Rp,q is the total

complex of the bigraded complex {Rp,q, d}.
The freeness of each column R∗,q means that it is the tensor product of A∗ and a certain free graded

vector space V∗,q, and, therefore, having a bigraded free resolution, we actually have a generating bigraded

free Λ-module {Vp,q} and Rp,q =
p∑

i=0
Ai ⊗ Vp−i,q (actually, we have trigraded Ri,j,k = Ai ⊗ Vj,k and

Rp,q =
∑

i+j=p
Ri,j,q).

Remark 1. We emphasize here that, in general, if R is the total complex of a certain bigraded A-module
Rp,q, then an arbitrary differential on R can have many components

dkp,q : Rp,q −→ Rp−k−1,q+k, k = −q,−q + 1, . . . ,−1, 0, 1, . . . , p− 1,

and also the mapping α : R → M can have components αp,q : Rp,q → Mp+q, but here, in a bigraded
resolution, we have only a horizontal differential, having just components d−1

p,q , and α is also horizontal,
i.e., it has only the components αp,0.

The way to construct such a resolution is standard, based on the following lemma.

Lemma 1. For a graded A-module M there exist a free graded Λ-module V and a homomorphism of
graded Λ-modules ψ : V → M such that the mapping of graded A-modules α : A ⊗ V → M given by
α(a⊗ v) = aψ(V ) is surjective.

Using this lemma, it is easy to construct a free bigraded A-resolution R∗,∗ = A⊗ V∗,∗ → M of M : let
V∗,0 be V from the lemma, and let Rp,0 =

∑

i+j=p
Ai⊗Vj,0; then Ker(α : R∗,0 →M) is an A-module as well

and, using the lemma for Kerα, we obtain the surjective d : R∗,1 = A⊗ V∗,1 → Kerα, etc.

Proof. We present two constructions for V and ψ, one very simple but large and another more complex
but smaller.
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Large construction. Let V be a free graded Λ-module which covers M , i.e., there exists an “onto”
mapping of graded Λ-modules ψ : V → M . Then A ⊗ V is a free graded A-module, and the graded
A-module mapping α : A⊗ V →M is onto.

Small construction. Now we assume that A is connected, i.e., A0 = Λ.
Let QM = M/(A>0 · M) be the graded module of indecomposables of M , so that (QM)n =

Mn/
( n−1∑

k=0

An−k ·Mk

)
.

Let us take any free graded Λ-module V which covers QM , i.e., there exists a surjective mapping
φ : V → QM . Because of freeness of V , we can construct ψ : V → M such that pψ = φ, where
p : M → QM is the standard projection.

It remains to show that α : A⊗ V →M given by α(a⊗ v) = a · ψ(v) is onto.

Let us denote R = A ⊗ V , i.e., Rn =
n∑

k=0

An−k ⊗ Vk. We are going to prove the surjectivity of

αn : Rn →Mn by induction on n.
For n = 0, we have: R0 = V0, (QM)0 = M0 and α0 = ψ0 = φ0 is surjective by definition.
Now we suppose that

αk : Rk =
k∑

s=0

Ak−s ⊗ Vs −→Mk

is surjective for k < n. Multiplying by An−k, we obtain that
k∑

s=0

An−k ·Ak−s ⊗ Vs −→ An−k ·Mk

is also surjective and, therefore,
k∑

s=0

An−s ⊗ Vs −→ An−k ·Mk (1.1)

is also surjective.
Now we take any m ∈Mn. Since

φn : Vn → (QM)n = Mn

/( n−1∑

k=0

An−k ·Mk

)

is surjective, there exists v ∈ Vn such that pψ(v) = p(m) and, therefore, m − ψ(v) ∈
n−1∑

k=0

An−k ·Mk.

But each An−k ·Mk is covered by the image of (1.1); therefore, there exists x ∈
n−1∑

k=0

An−k ·Mk such that

m = ψ(v) + α(x) = α(v + x).
Both constructions allow one to produce free bigraded A-resolutions for M , a large one, using the first

construction on each step and a small one, using the second.

Among various free A-resolutions of M , there are two remarkable ones — a minimal resolution and a
bar resolution — which we describe now.

1.1. Minimal resolution. Here we assume that Λ is a field and A is connected. If, for a graded
A-module M , we construct the above-mentioned small resolution, taking as V in Lemma 1 the graded
vector space of indecomposables QM itself (and the same at all subsequent steps), we obtain even smaller,
so-called minimal resolution.

Definition 1. A DG − A-module (R, d) is minimal if for any r ∈ R the value of the differential d(r) is
decomposable, i.e., d(r) ∈ A>0 ·R.
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This is the A-module version of Sullivan’s notion of minimal commutative DG-algebra.
Let us consider what the minimality means for free R, i.e., for R = A⊗ V .
First, we examine the structure of a differential d : A ⊗ V → A ⊗ V . Because of the freeness, d is

defined by the restriction γ = di : V → A⊗V → A⊗V . Moreover, any Λ-homomorphism γ : V → A⊗V
of degree −1 defines a derivation dγ = (μA ⊗ id)(id⊗γ) which is a differential, i.e., dγdγ = 0 if and only
if dγdγi = 0, or

(μA ⊗ id)(id⊗γ)γ = 0. (1.2)

Because of the connectedness of A, we have

A⊗ V = V ⊕A>0 ⊗ V,
and, therefore, γ is the sum of two components, γ = γ1 + γ2,

γ1 : V −→ V, γ2 : V −→ A>0 ⊗ V,
which are called linear and quadratic parts, respectively.

It follows from (1.2) that γ1γ1 = 0 and, therefore, (V, γ1) is a DG vector space over Λ.
Now we turn back to minimality. It is easy to observe that in terms of components, the minimality of

(A⊗ V, dγ) means nothing other than γ1 = 0.
Now we similarly examine the structure of a mapping of free graded A-modules f : A⊗ V → A⊗ V ′.

Because of the freeness, f is determined by β = fi : V → A ⊗ V ′. Moreover, any Λ-homomorphism
β : V → A ⊗ V ′ of degree 0 defines a mapping of graded A-modules fβ = (μA ⊗ id)(id⊗β) which is a
chain mapping, i.e., dγ′fβ = fβdγ if and only if dγ′fβi = fβdγi, or

(μA ⊗ id)(id⊗γ′)β = (μA ⊗ id)(id⊗β)γ. (1.3)

Since A⊗ V ′ = V ′ ⊕A>0 ⊗ V ′, β is the sum of two components, β = β1 + β2,

β1 : V −→ V ′, β2 : V −→ A>0 ⊗ V ′,

the linear and quadratic parts, respectively.
It follows from (1.3) that γ′1β1 = β1γ1, so β1 : (V, γ1)→ (V ′, γ′1) is a chain mapping.
We omit the proofs of the following two standard statements.

Proposition 1. A mapping of DG−A-modules

fβ : A⊗ V −→ A⊗ V ′

is a weak equivalence if and only if the linear component

β1 : (V, γ1) −→ (V ′, γ′1)

is a weak equivalence.

Proposition 2. A mapping of graded A-modules

fβ : A⊗ V −→ A⊗ V ′

is an isomorphism if and only if the linear component

β1 : V −→: V ′

is an isomorphism.

Corollary 1. Any weak equivalence of minimal free DG−A-modules is an isomorphism.

Proof. If fβ : A⊗V → A⊗V ′ is a weak equivalence, then, by Proposition 1, β1 : (V, γ1 = 0)→: (V ′, γ′1 = 0)
is a weak equivalence, but since γ1 = γ′1 = 0, β1 is an isomorphism and, therefore, by Proposition 2, fβ is
also an isomorphism.
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Now we can construct a minimal resolution for a graded A-module M using the small construction
from the proof of Lemma 1. If Λ is a field, there is no need to pass to free graded Λ-modules V∗,∗. It is
possible to take Vn,0 = (QM)n and ψn : (QM)n →Mn to be a section of pn in the exact sequence

0 −→
n−1∑

k=0

An−k ·Mk −→Mn
pk−→ (M)n −→ 0,

so that in this case R0,0 = (QM)0 = M0 and

Rn,0 =
n∑

k=0

An−k ⊗ (QM)k,

the mapping αn : Rn,0 →Mn being given by

αn(an−k ⊗ vk,0) = an−kψk(vk,0),

where vk,0 ∈ Vk,0 = (QM)k.

Proposition 3. Kerαn ⊂
n−1∑

k=0

An−k ⊗ (QM)k, i.e., Kerαn has no (indecomposable) components in

(QM)n ⊂ Rn,0.

Proof. Take any rn,0 =
n∑

k=0

xk ∈ Rn,0 with xk ∈ An−k ⊗ (QM)k and suppose that rn,0 ∈ Kerαn, i.e.,

n∑

k=0

αn(xk) = 0. (1.4)

By the definition of αn, we have αn(xk) ∈ An−k ·Mk; therefore, acting on (1.4) by pn, we obtain (since
pnαn(xk) = 0 for k < n)

0 = pnαn(xn) = pnψn(xn) = xn.

This proposition allows us to show that the obtained free A-resolution is minimal. Indeed, Im(d :
Rn,1 → Rn,0) = Ker(αn : Rn,0 → Mn), but according to the above proposition, Kerαn consists only of
decomposable elements. Clearly, the same argument proves the decomposability of further differentials
d : Rn,q → Rn,q−1.

It follows from the standard comparison theorem and Theorem 4 that the minimal resolution for M is
unique up to an isomorphism of DG−A-modules.

Remark 2. If A is a free commutative graded algebra, then the minimal resolution is the well-known
Koszul resolution.

1.2. Bar resolution. In addition to the minimal resolution, there is one more remarkable resolution.
This is the so-called two-sided bar construction

A⊗B(A)⊗M −→M,

where B(A) is the reduced bar construction of A. The bigraduation here is given by a[a1|...|aq]m ∈ Rp,q,
where p = |a|+ ∑

k

|ak|+ |m|, a, ak ∈ A, m ∈M .

This resolution appears when we use the large construction from the proof of Lemma 1, taking M itself
as V (and the same on subsequent steps).

The remarkable property of this resolution is that it is functorial in M and A, which gives some
advantages in the case where A and M are equipped with differentials (see the Introduction).
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2. Free Resolution for a DG-Module over a DG-Algebra

Now we assume that (A, dA : A∗ → A∗−1) is a connected differential graded algebra (DGA-algebra),
i.e., An = 0 for n < 0 and A0 = Λ.

Let (M,dM ) be a DG-module over (A, dA) (we say DG− (A, dA)-module), i.e., the action A⊗M →M

is a chain mapping: dM (a ·m) = dA(a) ·m+ (−1)|a|a · dM (m).
Let us forget for a moment about the differentials dA and dM and consider a free bigraded resolution

of the underlying graded module M over the underlying graded algebra A

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

M2
α←−−−− R2,0

d←−−−− R2,1 ←−−−− · · ·

M1
α←−−−− R1,0

d←−−−− R1,1 ←−−−− · · ·

M0
α←−−−− R0,0

d←−−−− R0,1 ←−−−− · · ·

;

here each column R∗,q is a free A-module, i.e., Rp,q =
p∑

i=0
Ai⊗ Vp−i,q for a certain free bigraded Λ-module

{Vp,q}. Since A0 = Λ, we have

Rp,q = Vp,q ⊕ (A1 ⊗ Vp−1,q)⊕ · · · ⊕ (Ap ⊗ V0,q) (2.1)

and, therefore, Rp,q is a direct sum of the indecomposable part Vp,q and decomposable part Up,q =
p∑

i=1
Ai⊗

Vp−i,q.
Since the resolution differential d : Rp,∗ → Rp,∗−1 is an A-mapping, i.e., d(a · v) = (−1)|a|a · d(v), we

have

d(Ai ⊗ Vp−i,q) ⊂
p∑

j=i

Aj ⊗ Vp−j,q−1,

and, therefore, the decomposable part (Up,∗, d) is a subcomplex in (Rp,∗, d).
Now we assume that both A and M are equipped with differentials dA and dM , respectively. Our aim

is to construct on R∗,∗ a perturbed differential (d + h) : R∗ → R∗−1 such that (R∗, d + h) becomes a
DG− (A, dA)-module and the same α remains a weak equivalence

α : (R∗, d+ h) −→ (M,dM ).

Our perturbation h : R∗ → R∗−1 will consist of components {hkp,q}, where

hkp,q : Rp,q −→ Rp−k,q+k−1, p, q = 0, 1, 2, . . . ; k = 1, 2, . . . , p, (2.2)

i.e., d+ h in R∗,∗ will have only horizontal (the differential d), vertical (the components h1
p,q), and down

and right (the components hk>1
p,q ) components.

Theorem 2. On R∗,∗, there exists a perturbed differential (d + h) such that the perturbation h consists
of components hkp,q, see (2.2), so that the same α forms a free resolution of (M,dM ) over (A, dA), i.e.,

α : (R∗, d+ h) −→ (M,dM )

is a weak equivalence of (A, da)-modules.

The construction of the perturbation h will be based on the relative form of the standard comparison
theorem of the homological algebra.

Relative comparison theorem. Suppose that

(U, d) = U−1
d−1←−−−− V0 ⊕ U0

d0←−−−− V1 ⊕ U1 ←−−−− · · ·
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is a DG − Λ-module, where (U∗, d) ⊂ (U, d) is a sub-DG − Λ-module with U−1 = U−1, and the direct
complement V∗ is a free graded Λ-module. Also, assume that an acyclic DG− Λ-module

(R, d) = R−1
d−1←−−−− R0

d0←−−−− R1 ←−−−− · · ·
is given and that F : U−1 → R−1 is a Λ-homomorphism, already lifted to a mapping of DG− Λ-modules
f∗ : (U∗, d)→ (R∗, d), i.e., f−1 = F .

(1) Then there exists a lifting of F on the whole U

F∗ : (U, d) −→ (R, d)

extending f∗.
(2) Suppose that

F ′
∗ : (U, d) −→ (R, d)

is another lifting of F and that H : U∗ :→ R∗+1 is a homotopy between the restrictions F∗|U∗ and F ′∗|U∗;
then there exists an extension of H on the whole U∗, which realizes the homotopy between F and F ′.

Proof. In order that d + h be a correct differential satisfying the needed conditions, a perturbation h
should have certain properties, which we now consider.

1. To agree with the action of (A, dA) on R∗, the differential d+ h should satisfy

(d+ h)(a · r) = dA(a) · r + (−1)|a|a · (d+ h)(r). (2.3)

Having in mind (2.1), we construct h∗∗,∗ on the indecomposable part V∗,∗ of R∗,∗ and extend it on the
decomposable part U∗,∗ by the rules

h1
p,q(ai ⊗ vp−i,q) = dA(ai)⊗ vp−i,q + (−1)|ai|ai · h1

p−i,q(vp−i,q), (2.4)

hk>1
p,q (ai ⊗ vp−i,q) = (−1)|ai|ai · hkp−i,q(vp−i,q). (2.5)

Then condition (2.3) is automatically satisfied.
2. For (d + h) to be a differential, i.e., for (d + h)(d + h) = 0, a perturbation {hkp,q} should satisfy

Brown’s condition [2] dh+ hd+ hh = 0 (i.e., h must be a twisting element). This condition, in terms of
components, looks as follows:

dhkp,q + hkp,q−1d = −
k−1∑

i=1

hk−ip−i,q+i−1h
i
p,q. (2.6)

Let us denote by Φk
p,q the right-hand side of Eq. (2.6):

Φk
p,q = −

k−1∑

i=1

hk−ip−i,q+i−1h
i
p,q : Rp,q −→ Rp−m,q+m−2.

Then the condition dh+ hd = hh can be rewritten as

dhkp,q + hkp,q−1d = Φk
p,q. (2.7)

3. Finally, we note that in order that α be a chain mapping, a perturbation should satisfy the condition

αh1
p,0 = dMα. (2.8)

We will construct the collection {hkp,q} by induction on k satisfying the conditions (2.2), (2.4), (2.5),
(2.8), and (2.7).

For k = 1, let us first consider the 1st and 0th rows of the bigraded resolution

M1
α1←−−−− R1,0 = V1,0 ⊕ U1,0

d←−−−− R1,1 = V1,1 ⊕ U1,1 ←−−−− · · ·

M0
α0←−−−− R0,0 = V0,0

d←−−−− R0,1 = V 0, 0 ←−−−− · · ·
,

where U1,q = A1 ⊗ V1,q.
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We write

dMα1(a1 ⊗ v0,0) = dM (a1 · α0(v0,0)) = dM (a1) · α0(v0,0)± a1 · dM (v0,0) = 0,

i.e., the zero mapping 0 : U1,∗ → R0,∗ lifts dM : M1 → M0; therefore, we are in the situation of part one
of the relative comparison theorem. Thus, there exists an extension of 0 : U1,∗ → R0,∗, a chain mapping
h1

1,∗ : R1,∗ → R0,∗, i.e., h1
1,∗ satisfies the conditions

h1
1,∗(a1 ⊗ v0,∗) = 0, α0h

1
1,0 = dMα1, dh1

1,q>0 = h1
1,q−1d;

these are exactly conditions (2.4), (2.8), and (2.7) for k = 1 and p = 1, respectively.
Now we suppose that h1

k,∗ are constructed for k < p.
We consider the pth and (p− 1)th rows of the bigraded resolution

Mp
αp←−−−− Rp,0 = Vp,0 ⊕ Up,0 d←−−−− Rp,1 = Vp,1 ⊕ Up,1 ←−−−− · · ·

Mp−1
αp−1←−−−− Rp−1,0

d←−−−− Rp−1,1 ←−−−− · · ·
,

where Up,q =
p∑

i=1
Ai ⊗ Vp−i,q.

The already defined h1
k<p,∗ determine h1

p,∗|Up,∗ : Up,∗ → Rp,∗ by condition (2.4):

h1
p,q(ai ⊗ vp−i,q) = dA(ai)⊗ vp−i,q + (−1)|ai|h1

p−i,q(vp−i,q).

A routine verification shows that, actually, h1
p,∗ : Up,∗ → Rp,∗ is a chain mapping lifting dM : Mp →

Mp−1.
Thus, we are in the situation of part one of the relative comparison theorem. Thus, there exists a chain

mapping
h1
p,∗ : Rp,∗ −→ Rp,∗

lifting dM and extending h1
p,∗|Up,∗, and, therefore, it satisfies

h1
p,q(ai ⊗ vp−i,q) = dA(ai)⊗ vp−1,q + ai · h1

p−i,q),

αp−1h
1
p,0 = dMαp, dh1

p,q>0 = h1
p,q−1d;

these are exactly conditions (2.4), (2.8), and (2.7) for k = 1, respectively. This completes the construction
of components h1

p,q.
Until we go to the next step of the induction, we note that the constructed vertical components h1∗,∗

are well connected with the horizontal differential d, but h1∗,∗h1∗,∗ = 0 is not guaranteed and, therefore,
d+h1∗,∗ is not a differential. The meaning of the next component h2∗,∗ is that h1∗,∗h1∗,∗ is homotopic to zero
and h2∗,∗ is the suitable homotopy.

Now we suppose that hkp,q are constructed for k < n satisfying (2.4), (2.5), (2.8), and (2.7) for k = 1.
Note that, in this case, Φn

p,q are also defined.
A standard routine calculation, using just (2.7), shows that

dΦn
p,0 = 0, dΦn

p,q = Φn
p,q−1d.

This means that
Φn
p,∗ : Rp,∗ −→ Rp−n,∗+n−2

is a chain mapping (of degree n− 2) lifting the zero mapping 0 : Mp → Rp−n,n−3.
As above, we are going to construct hnp,∗ by induction on p starting, of course, from p = n.
Take the nth row and the part of the 0th row of the bigraded resolution

Mn
αn←−−−− Rn,0 =Vn,0 ⊕ Un,0 d←−−−− Rn,1 =Vn,1 ⊕ Un,1 ←−−−− · · ·

R0,n−3
d←−−−− R0,n−2

d←−−−− R0,n−1 ←−−−− · · ·
,
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where Un,q =
n∑

i=1
Ai ⊗ Vn−i,q.

As mentioned above,

Φn
n,∗ : Rn,∗ −→ R0,∗+n−2

is a chain mapping (of degree n − 2) lifting the zero mapping 0 : Mn → R0,n−3. Moreover, it is not
difficult to calculate just by dimensional reasoning that the restriction of Φn

n,∗ on decomposable Un,∗ is
zero. Thus, by the second part of the relative comparison theorem, Φn

n,∗ is homotopic to the zero, and the
suitable homotopy hnn,∗ : Rn,∗ → R0,∗+n−1 can be chosen so that the restriction of hnn,∗ on decomposable
Un,∗ is zero. Thus, we have hnn,∗ satisfying

hnn,q(ai ⊗ vn−i,q) = 0, dhnn,q>0 + hnn,q−1d = Φn
n,q,

which are exactly conditions (2.5) and (2.7) for k = n and p = n, respectively.
Now we suppose that hnk,∗ are constructed for k < p. Note that these components determine hnp,q on

the decomposable Up,q by (2.5):

hnp,q(ai ⊗ vp−i,q) = (−1)|ai|ai · hnp−i,q(vp−i,q);
therefore, what remains is to define hnp,q on Vp,q.

Take the pth row and the part of the (p− n)th row of the bigraded resolution

Mp
αp←−−−− Rp,0 =Vp,0 ⊕ Up,0 d←−−−− Rp,1 =Vp,1 ⊕ Up,1 ←−−−− · · ·

Rp−n,n−3
d←−−−− Rp−n,n−2

d←−−−− Rp−n,n−1 ←−−−− · · ·
,

where Up,q =
n∑

i=1
Ai ⊗ Vp−i,q.

As is mentioned above,

Φn
p,∗ : Rp,∗ −→ Rp−n,∗+n−2

is a chain mapping (of degree n−2) lifting the zero mapping 0 : Mp → Rp−n,n−3. Of course, the restriction
on decomposable

Φn
p,∗ : Up,∗ −→ Rp−n,∗+n−2

is also a chain mapping lifting the zero mapping. Moreover, conditions (2.5) and (2.7) which are satisfied
by the components hk<np,q allow one to verify that

(dhnp,q + hnp,q−1d)(ai ⊗ vp−i,q) = Φn
p,q(ai ⊗ vp−i,q), i = 1, 2, . . . , p,

i.e., already existing hnp,∗|Up,∗ realizes the homotopy of Φn
p,∗|Up,∗ to zero. Then by part two of the relative

comparison theorem, this homotopy can be extended to the whole Rp,∗, and we obtain hnp,∗ : Rp,∗ →
Rp−n,∗+n−1 satisfying the conditions

hnp,q(ai ⊗ vp−i,q) = (−1)|ai|ai · hnp−i,q(vp−i,q),
and

dhnp,q + hnp,q−1d = Φn
p,q,

which are exactly conditions (2.5) and (2.7) for k = n. This completes the construction of the perturbation
h.

Thus, we have obtained the collection hkp,q satisfying Brown’s condition dh = hh. Thus, (d+h)(d+h) =
0.
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The differential (d + h) preserves the action of (A, d) on R, i.e., satisfies (d + h)(a · v) = dA(a) · v +
(−1)|a|a · (d+ h)(v). Indeed,

(d+ h)(a · v) = d(a · v) + (h1 + h>1)(a · v)
= (−1)|a|a · d(v) + dA(a) · v + (−1)|a|a · h1(v) + (−1)|a|a · h>1(v)

= dA(a) · v + a · (d+ h)(v).

Moreover, α : (R∗, d+ h) −→M∗ is a chain mapping. Indeed,

α(d+ h) = α(d+ h1 + h>1) = αh1 = dMα.

Finally, we mention that since d is horizontal and h goes down and right, the perturbed differential
(d + h) preserves the filtration Fp(R∗,∗) = {R≤p,∗}, and the standard spectral sequence argument shows
that α is a weak equivalence. This completes the proof of the theorem.

Remark 3. For the bar resolution

α : (A⊗B(A)⊗M,dH −→M

of the underlying graded module M over the underlying graded algebra A, the resolution (horizontal)
differential is given by

dH
(
a[a1| · · · |an]m

)
= a · a1[a2| · · · |an]

+
∑

k

±a[a1| · · · |ak · ak+1| · · · |an
]
m± a[a1| · · · |an−1]an ·m

and as the perturbation h, we can take the vertical differential

dV
(
a[a1| · · · |an]m

)

= dAa1[a1| · · · |an] +
∑

k

a
[
a1| · · · |dAak| · · · |an

]
m+ a[a1| · · · |an]dMm;

actually, h = h1 and all higher components hk>1 are trivial.

2.1. Comparison theorem. Suppose that α : (R, d) → M and α′ : (R′, d′) → M are two bigraded
A-resolutions of M .

Using the standard arguments of comparison of free resolutions, based on the above-mentioned relative
comparison theorem, it is possible to construct a morphism of bigraded modules

{
f0
p,q : Rp,q −→ R′

p,q

}
,

which defines a mapping of DG−A-modules f0 : (R, d)→ (R′, d′) and α′f0 = α.
Having the differentials dA and dM in A and M , respectively, we can construct perturbations in each

of these two bigraded resolutions and obtain filtered resolutions α : (R, d + h) → (M,dM ) and α′ :
(R′, d′ + h′)→ (M,dM ).

Theorem 3. There exists a collection of homomorphisms
{
fkp,q : Rp,q −→ R′

p−k,q+k, p, q = 0, 1, 2, . . . ; k = 1, 2, . . . , p
}

(2.9)

such that, together with {f0
p,q}, it defines a mapping of DG − A-modules f =

∞∑

k=0

fkp,q : (R∗, d + h) →
(R′∗, d′ + h′).

Proof. In order that f be a mapping of DG−A-modules, a collection f∗∗,∗ should satisfy certain conditions,
which we now consider.

1. First of all, f should be a mapping of graded A-modules, i.e.,

f(a · r) = a · f(r). (2.10)
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Having in mind (2.1), we construct f∗∗,∗ first on V∗,∗, and then extend it on R∗,∗ by the rule

fkp,q(ai ⊗ vp−i,q) = ai · fkp−i,q(vp−i,q). (2.11)

Then condition (2.10) will be automatically satisfied.
2. To be a chain mapping, i.e., for

(d′ + h′)f = f(d+ h), (2.12)
a collection f∗∗,∗ should satisfy

d′fkp,q +
k−1∑

i=0

h′k−ip−i,q+if
i
p,q = fkp,q−1d+

k∑

i=1

fk−ip−i,q+ih
′i
p,q (2.13)

or, denoting

Ψk
p,q = fkp,q−1d+

k∑

i=1

fk−ip−i,q+ih
′i
p,q −

k−1∑

i=0

h′k−ip−i,q+if
i
p,q,

this condition can be rewritten as
d′fkp,q = Ψk

p,q. (2.14)
3. Finally, the condition α′f = α in terms of components has the form

α′f0
p,q = α, (2.15)

and, therefore, it is actually a property of given f0
p,q.

A collection {fkp,q} satisfying the conditions (2.9), (2.11), and (2.14) can be constructed exactly by the
same induction as in the proof of Theorem 2, which we omit here.

2.2. Equivalence of perturbations. As is seen from the above inductive process of construction of
h, there is some freedom in choosing the components hkp,q on each step, so that the perturbation h is not
uniquely defined. Here we describe this freedom, introducing, following [1], the set D(M) — the set of
equivalence classes of perturbations.

Thus, as above, let M be a graded A-module and α : (R, d) → M be its free bigraded A-resolution,
i.e., α : Rk,0 →Mk and d : Rp,q → Rp,q−1.

Now we introduce the following class of A-endomorphisms:

G =
{
(id +f) : R∗ −→ R∗

}

of the totalization R∗ of the bigraded A-module R∗,∗, where f consists (is the sum) only of the following
components: {

fkp,q : Rp,q −→ Rp−k,q+k, p, q = 0, 1, 2, . . . ; k = 1, 2, . . . , p
}
,

i.e., there are only the identity and down and right components in f .
It is not difficult to verify that
(i) each (id +f) ∈ G is an isomorphism;
(ii) for (id +f), (id +g) ∈ G, the composition (id +f)(id +g) = (id +f + g + fg) also belongs to G.
Therefore, G is a group with respect to the composition operation.
Now let P be the set of all perturbations h = {hkp,q} on (R∗,∗, d), satisfying (2.2), (2.4), (2.5), and (2.6).
The group G acts on P as follows:

(id +f) ∗ h = (id +f)h(id +f)−1 + (df − fd)(id +f)−1. (2.16)

We have to show that h′ = (id +f) ∗h belongs to P . It is clear that h′ satisfies (2.2), since f acts down
and right. To show that h′ satisfies (2.6), let us rewrite (2.16) as

h− h′ = h′f + fh+ df − fd (2.17)

or
(d+ h′)(id +f) = (id +f)(d+ h), (2.18)
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so that the isomorphism (id +f) is a chain mapping and, therefore, it is easy to conclude that (d+h′)(d+
h′) = 0, which is equivalent to (2.6). It is also clear that d + h′ is an A-derivation (i.e., it satisfies (2.4)
and (2.5)), since d+ h has this property and id +f is an isomorphism of DG−A-modules. Thus, h′ ∈ P .

Denote by DR(M) the set of orbits of P with respect to the action of G. We will call perturbations
from the same orbit equivalent.

Now we are able to describe the freedom in the construction of h corresponding to a given differential
dM .

Proposition 4. Let hkp,q and h′kp,q be two perturbations satisfying conditions (2.2), (2.4), (2.5), (2.6), and
(2.8). Then these perturbations are equivalent.

Remark 4. Actually, the equivalence of h and h′ means that there exists an isomorphism of (A, dA)-
resolutions (id +f) : (R∗, d+h)→ (R∗, d+h′), for which α′(id +f) = α. Therefore, different perturbations
define isomorphic free resolutions.

Proof. This proposition is an immediate consequence of Proposition 3, taking R = R′ and f0 = id.

According to this proposition, we have a correct mapping from the set of all A-differentials on M :

DiffA(M) =
{
dM : M∗ −→M∗−1, dMdM = 0, dM (a ·m) = (−1)dim aa ·m}

to the set of equivalence classes of perturbations DR(M).

Proposition 5. There exists a bijection between DiffA(M) and DR(M).

Proof. Let us construct a converse mapping DR(M)→ DiffA(M). For a given perturbation {hkp,q} satis-
fying (2.2), (2.4), (2.5), and (2.6), the first component h1

p,0 : Rp,0 → Rp−1,0 induces the correct homomor-
phism

dM : Mp = Rp,0/Kerαp −→Mp−1 = Rp−1,0/Kerαp−1;
the condition dMdM = 0 follows from h1

p−1,0h
1
p,0 = dh2

p,0 (see condition (2.6)) and dM (a ·m) = a ·m follows
from (2.4). Moreover, if h is equivalent to h′, then, in particular, h1

p,0 − h′1p,0 = df1
p,0, and, therefore, they

define the same dM .

This proposition implies that, actually, DR(M) does not depend on the bigraded resolution (R∗,∗, d)
and, therefore, we can denote it as D(M).

3. Application: Koszul Resolution

In this section, we apply our main theorem to the Koszul resolution of Λ over a free commutative
graded algebra. We start from some notation and facts from [5].

Assume that Λ is a field of characteristic 0, X is a connected graded vector space over Λ, and ΛX
is a free commutative graded Λ-algebra generated by X, i.e., it is the tensor product of the polynomial
algebra P (Xeven) and exterior algebra E(Xodd).

The Koszul resolution of Λ the over commutative graded algebra ΛX is given by

Λ α←−−−− ΛX dK←−−−− ΛX ⊗ Λ1X
dK←−−−− ΛX ⊗ Λ2X ←−−−− · · ·, (3.1)

where X is the suspension of X, i.e., Xp = Xp−1, and, therefore, there exists an isomorphism x ↔ x;
ΛnX denotes the subspace of ΛX spanned by x1 · · ·xn and xi ∈ X, α is the clear projection, and the
Koszul differential dK is given by

dK(a⊗ x1 · · ·xn) =
∑

i

±a · xi ⊗ x1 · · ·xi−1 · xi+1 · · ·xn,

a ∈ ΛX, x ∈ X.

We consider the Koszul resolution as a bigraded resolution: a⊗x1 · · ·xq ∈ Rp,q, where p = |a|+
q∑

k=1

|xk|
and the Koszul differential dK is horizontal ; it maps Rp,q to Rp,q−1.
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Of course, the Koszul resolution is contractible as a DG− Λ-module, there exist Λ-homomorphisms

η : Λ −→ ΛX, s : ΛX ⊗ ΛX

such that
αη = id, ηα+ dKs = id, sdK + dKs = id .

Assuming that X has a well-ordered basis {xi}i∈I , it is possible to give explicit formulas for s: for an
element xp1k1 · · ·x

pm

km
⊗ xq1t1 · · ·xqntn ∈ ΛX ⊗ ΛX with xk1 < · · · < xkm and xt1 < · · · < xtn , we define

s
(
xp1k1 · · ·x

pm

km
⊗ xq1t1 · · ·xqntn

)
= 0

if xkm < xtn ,

s
(
xp1k1 · · ·x

pm

km
⊗ xq1t1 · · ·xqntn

)
=

1
qn + 1

xp1k1 · · ·x
pm−1
km

⊗ xq1t1 · · ·xqn+1
tn

if xkm = xtn , and

s
(
xp1k1 · · ·x

pm

km
⊗ xq1t1 · · ·xqntn

)
= xp1k1 · · ·x

pm−1
km

⊗ xq1t1 · · ·xqntn · xkm

if xkm > xtn . Note that a similar contraction is written in [6] and [9].
Now we suppose that ΛX is equipped with a differential D : ΛX → ΛX turning (ΛX,D) into a

commutative DG-algebra. According to the main theorem, there exists a perturbation h of the Koszul
differential dK such that

α : (ΛX ⊗ ΛX, dK + h) −→ Λ

is a resolution of Λ over (ΛX,D).
Using the contraction s it is possible to give an algorithm for computing the perturbation h.
First, let us mention that ΛX ⊗ ΛX is a free commutative graded algebra with generators xi ⊗ 1 and

1 ⊗ xi, xi ∈ {xi}i∈I , and, therefore, it suffices to define h on xi ⊗ 1 and 1 ⊗ xi and then extend as a
derivation.

First, we define h1(xi ⊗ 1) = D(xi)⊗ 1 and

h1(1⊗ xi) = s(D ⊗ id)dK(1⊗ xi) = s(Dxi ⊗ 1).

Extending it as a derivation, we obtain

h1 : ΛX ⊗ ΛX −→ ΛX ⊗ ΛX.

We define the next component h2 on generators as h2(xi ⊗ 1) = 0 and

h2(1⊗ xi) = s
(
h1h1(1⊗ xi)

)
,

and again extend it as a derivation.
By induction, assuming that hk<m are already constructed, we define hm(xi ⊗ 1) = 0 and

hm(1⊗ xi) = s
(m−1∑

k=1

hm−khk(1⊗ xi)
)
,

and extend it as a derivation.

Example. Let us take ΛX = Λ(a, b, u, z) with |a| = |b| = 1, |u| = 3, and |z| = 5. Assuming the order
a < b < u < z, we can construct the contraction s. In particular, s(x ⊗ 1) = 1 ⊗ x for x = a, b, c, u, z;

s(a · b⊗ 1) = a⊗ b; s(b · u⊗ 1) = b⊗ u; s(a · b⊗ b) =
1
2
a⊗ b2, etc.

Now we suppose that ΛX is equipped with a differential given by

D(a) = 0, D(b) = 0, D(u) = a · b, D(z) = b · u.
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Then, using the procedure described above, we obtain for h1

h1(1⊗ a) = 0, h1(1⊗ b) = 0,

h1(1⊗ u) = s(D ⊗ id)dk(1⊗ u) = s(D ⊗ id)(u⊗ 1)

= s(a · b⊗ 1) = a⊗ b,
h1(1⊗ z) = s(D ⊗ id)dk(1⊗ z) = s(D ⊗ id)(z ⊗ 1)

= s(b · u⊗ 1) = b⊗ u.
Extending it as a derivation, we obtain

h1(1⊗ am · bn · up · zq)
= p · a⊗ am · bn+1 · up−1 · zq + q · b⊗ am · bn · up+1 · zq−1.

For h2, we obtain

h2(1⊗ a) = 0, h2(1⊗ b) = 0, h2(1⊗ u) = 0,

h2(1⊗ z) = sh1h1(1⊗ z) = sh1(b⊗ u) = s(a · b⊗ b) =
1
2
a⊗ b2,

and, extending it as a derivation,

h2(1⊗ am · bn · up · zq) =
1
2
q · a⊗ am · bn+2 · up · zq−1.

A straightforward verification shows that h1h2+h2h1 = 0 and h2h2 = 0, which yields h3 = h4 = . . . = 0.
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