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TWISTING ELEMENTS da = a ^1 a

Let (A∗, d : A∗ → A∗+1, ^: A∗ ⊗ A∗ → A∗) be a dg algebra with differ-
ential d and multiplication a · b = a ^ b. A twisting element (Ed. Brown
[3]) is defined as a ∈ A1, da = a ·a. Later N. Berikashvili [2] has introduced
the notion of perturbation of twisting elements: for an invertible element
g ∈ A0 the combination a′ = g · a · g−1 + dg · g−1 is a twisting element too.
Actually this is the action of the group of units G = {g ∈ A0, ∃g−1} on the
set of all twisting elements of A.

If (M, dM : M → M) is A-module: A ⊗ M → M , and a ∈ A is twist-
ing then da(m) = dM (m) + a · m is a differential: the Brown’s condition
guarantees that dada = 0. If a′ ∼ a then g : (M,da) → (M, da′) given by
g(m) = g ·m is an isomorphism of dg modules.

These notions have applications in homology theory of fibrations, as well
as in differential geometry and in physics. Let us touch this shortly. A
connection a ∈ A1 determines the curvature Ω = da − a · a, so a twisting
element is a flat (Ω = 0) connection. Take an invertible g ∈ A0 and perturb
the connection a as a′ = g · a · g−1 + dg · g−1 (gauge transformation). Then
it is easy to see that Ω′ = g · Ω · g−1.

Our aim is to modify the notions of twisting element and perturbation for
Steenrod’s ^1 product instead of a · b = a ^ b. It is easy to formulate the
notion of ^1-twisting element, this is a ∈ A2, da = a ^1 a. But since ^1

is not associative and has some more sophisticated properties than ^ the
concept of perturbation of such twisting elements requires some additional
structure, namely the structure of homotopy G-algebra, which in fact is a
dg algebra with “good” ^1-product and some follow up higher operations.

The generalization of the notion of twisting element to the case of ^1

product is aimed to some particular problems, namely ^1-twisting elements
control Satasheff’s A(∞)-algebras from one hand side, and Gerstenhaber’s
deformations of algebras from another, see [9] for detailes.
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1. Homotopy G-algebras

A homotopy G-algebra (hGa in short) is a dg algebra with “good” ^1

product. The general notion was introduced in [5].
Generally multiplication a · b in a dg algebra (A, d, ·) is not commutative,

for example in the cochain complex C∗(X), but there exists Steenrod’s ^1-
product ap ^1 bq ∈ Cp+q−1(X) which controls this noncommutativity

d(a ^1 b) = d(a) ^1 b + a ^1 (b) + a · b− b · a. (1)

For our purposes some further properties of Steenrod’s ^1 are needed.
First of all, the “left” Hirsch formula

(a · b) ^1 c− a · (b ^1 c)− (a ^1 c) · b = 0. (2)

As for the “right” Hirsch formula, the similar expression is just homotopical
to zero, that is there exists a 3-fold operation E1,2 : Ap ⊗ Aq ⊗ Ar →
Ap+q+r−2 which satisfies

c ^1 (a · b)− a · (c ^1 b)− (c ^1 a) · b =

= dE1,2(c; a, b) + E1,2(dc; a, b) + E1,2(c; da, b) + E1,2(c; a, db). (3)

A hGa (A, d, ·, {E1,k}) is a dg algebra (A, d, ·) equipped with a sequence
of multilinear operations E1,k(ap; bq1

1 , . . . , bqk

k ) ∈ Ap+q1+ ··· +qk−k, k =
1, 2, 3, . . . which satisfy certain coherency conditions (see for example [9]).
Particularly E1,1(a, b) = a ^1 b satisfies the above mentioned conditions 1,
2, 3 and

(a ^1 b) ^1 c + a ^1 (b ^1 c) = E1,2(a; b, c) + E1,2(a; c, b), (4)

this means that the same operation E1,2 measures also the deviation from
the associativity of the operation E1,1 =^1.

Operations E1,k(a; b1, . . . , bk) in some papers are called brace operations
and are denoted as a{b1, . . . , bk}).

The remarkable examples of homotopy G-algebras are: 1. The cochain
complex of 1-reduced simplicial set C∗(X), [1]. 2. The Hochschild cochain
complex C∗(U,U) of an associative algebra U , [7], [6]. 3. The cobar con-
struction ΩC of a dg bialgebra C, [8]. In All three cases starting operations
E1,1 are classical ^1 products.

Two main aspects of this notion are (see [9] for more details):

1. A hGa (A, d, ·, {E1,k}) is a B∞-algebra: it defines on the bar construc-
tion B(A) a good multiplication µE : B(A)⊗B(A) → B(A).

2. A structure of a hGa on A induces on the homology H(A) a struc-
ture of Gerstenhaber algebra (H(A), ·, [ . ]) which consists of commutative
multiplication · and a Lie bracket of degree -1 [ , ] : Hp ⊗ Hq → Hp+q−1

which is a biderivation: [a, b · c] = [a, b] · c + b · [a, c]. This bracket is in-
duced by the structure of dg Lie algebra on the desuspension s−1A given
by [a, b] = a ^1 b + b ^1 a.
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Below we will need the bigraded version of the notion of hGa (C∗,∗, d, ·,
{E1,k}). This is a bigraded algebra (C∗,∗, ·), Cm,n · Cp,q ⊂ Cm+p,n+q,
together with a differential (derivation) d : Cm,n → Cm+1,n and with a
sequence of operations

E1,k : Cm,n ⊗ Cp1,q1 ⊗ · · · ⊗ Cpk,qk → Cm+p1+···+pk−k,n+q1+···+qk

so that the total complex (the total degree of Cp,q is p) is a hGa.

2. ^1-twisting Elements

Let (C∗,∗, d, ·, {E1,k}) be a bigraded hGa. A ^1-twisting element we
define as a =

∑∞
k=1 ak, ak ∈ C2,k such that da = a ^1 a, that is dak =∑k−1

i=1 ai ^1 ak−i. We remark here that such a ^1-twisting element a ∈ A
is a Lie twisting element in the dg Lie algebra (s−1A, d, [ , ]), i.e. satisfies
da = 1

2 [a, a].
We introduce the following perturbation of ^1-twisting elements: for an

arbitrary g =
∑∞

k=1 gk, gk ∈ C1,k let us define

ā = a + dg + g · g + g ^1 a +
∞∑

k=1

E1,k(ā; g, . . . , g).

Particularly,

ā1 = a1 + dg1;
ā2 = a2 + dg1 + g1 · g1 + g1 ^1 a1 + ā1 ^1 g1;
ā3 = a3 + dg2 + g1 · g2 + g2 · g1 + g1 ^1 a2 + g2 ^1 a1+

+ā1 ^1 g2 + ā2 ^1 g1;
ā4 = a4 + dg3 + g1 · g3 + g2 · g2 + g3 · g1+

+g1 ^1 a3 + g2 ^1 a2 + g3 ^1 a1+
+ā1 ^1 g3 + ā2 ^1 g2 + ā3 ^1 g1 + E1,2(ā1; g1, g1, g1);

so this is a recurrent definition.

Theorem 1. a satisfies da = a ^1 a, i.e. is a ^1-twisting element.

Actually, this perturbation of ^1-twisting elements is the action of the
group G = {g =

∑∞
k=1 gk ; gk ∈ B1,k} with operation g′ ∗ g = g′ + g +∑∞

k=1 E1,k(g′; g, .., g) on the set of all ^1-twisting elements Tw(C∗,∗) by the
rule g ∗ b = b′ where b′ = b + dg + g · g + E1,1(g; b) +

∑∞
k=1 E1,k(b′; g, . . . , g).

By D(C∗,∗) we denote the set of orbits Tw(C∗,∗)/G.
In particular, for g = 0 + · · · + 0 + gn + 0 + · · · the twisting element

a = g ∗ a looks as a = a1 + · · ·+ an + (an+1 + dgn) + an+2 + an+3 + · · · , so
the components a1, . . . , an remain unchanged and an+1 = an+1 + dgn.

The perturbations allow us to introduce obstructions for the following
two problems.

1. Quantization. Let us first mention that for a twisting element a =∑∞
k=1 ak the first component a1 ∈ C2,1 is a cycle and any perturbation does

not change its homology class [a1] ∈ H2,1(C∗,∗). Thus, we have the correct
map φ : D(C∗,∗) → H2,1(C∗,∗).
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A quantization of a homology class α ∈ H2,1(C∗,∗) we define as a twisting
element a =

∑∞
k=1 ak such that [a1] = α. Thus, α is quantizable if α ∈ Imφ.

The obstructions for quatizability lay in homologies H3,n(C∗,∗), n ≥ 2.
Indeed, let a1 ∈ C2,1 be a cycle from α. The first step to quantize α is
to construct a2 such that da2 = a1 ^1 a1. The necessary and sufficient
condition for this is [a1 ^1 a1] = 0 ∈ H3,2(C∗,∗), so this homology class is
the first obstruction O(a1). Suppose it vanishes, so there exists a2. Then it
is easy to see that a1 ^1 a2 + a2 ^1 a1 is a cycle and its class O(a1, a2) ∈
H3,3(C∗,∗) is the second obstruction. If O(a1, a2) = 0 then there exists a3

such that da3 = a1 ^1 a2 + a2 ^1 a1. If not, then we take another a2 and
try a new second obstruction. The nth obstruction is O(a1, a2, . . . , an) =
[
∑n

k=1 ak ^1 an−k+1] ∈ H3,n+1(C∗,∗).

2. Rigidity. A twisting element a = a1+a2+· · · we call trivial if it is equiv-
alent to 0. A bigraded hGa C∗,∗ is rigid if each twisting element is trivial,
i.e. if D(C∗,∗) = {0}. Arguments similar to above show that obstructions to
triviality of a twisting element lies in homologies H2,n(C∗,∗), n ≥ 1. This,
in particular, implies that if H2,n(C∗,∗) = 0, n ≥ 1, then C∗,∗ is rigid.
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