T. Kadeishyili

$$
\text { TWISTING ELEMENTS } d a=a \smile_{1} a
$$

Let $\left(A^{*}, d: A^{*} \rightarrow A^{*+1}, \smile: A^{*} \otimes A^{*} \rightarrow A^{*}\right)$ be a dg algebra with differential d and multiplication $a \cdot b=a \smile b$. A twisting element (Ed. Brown [3]) is defined as $a \in A^{1}, d a=a \cdot a$. Later N. Berikashvili [2] has introduced the notion of perturbation of twisting elements: for an invertible element $g \in A^{0}$ the combination $a^{\prime}=g \cdot a \cdot g^{-1}+d g \cdot g^{-1}$ is a twisting element too. Actually this is the action of the group of units $G=\left\{g \in A^{0}, \exists g^{-1}\right\}$ on the set of all twisting elements of A.

If $\left(M, d_{M}: M \rightarrow M\right)$ is A-module: $A \otimes M \rightarrow M$, and $a \in A$ is twisting then $d_{a}(m)=d_{M}(m)+a \cdot m$ is a differential: the Brown's condition guarantees that $d_{a} d_{a}=0$. If $a^{\prime} \sim a$ then $g:\left(M, d_{a}\right) \rightarrow\left(M, d_{a^{\prime}}\right)$ given by $g(m)=g \cdot m$ is an isomorphism of dg modules.

These notions have applications in homology theory of fibrations, as well as in differential geometry and in physics. Let us touch this shortly. A connection $a \in A^{1}$ determines the curvature $\Omega=d a-a \cdot a$, so a twisting element is a flat $(\Omega=0)$ connection. Take an invertible $g \in A^{0}$ and perturb the connection a as $a^{\prime}=g \cdot a \cdot g^{-1}+d g \cdot g^{-1}$ (gauge transformation). Then it is easy to see that $\Omega^{\prime}=g \cdot \Omega \cdot g^{-1}$.

Our aim is to modify the notions of twisting element and perturbation for Steenrod's \smile_{1} product instead of $a \cdot b=a \smile b$. It is easy to formulate the notion of \smile_{1}-twisting element, this is $a \in A^{2}, d a=a \smile_{1} a$. But since \smile_{1} is not associative and has some more sophisticated properties than \smile the concept of perturbation of such twisting elements requires some additional structure, namely the structure of homotopy G-algebra, which in fact is a dg algebra with "good" \smile_{1}-product and some follow up higher operations.

The generalization of the notion of twisting element to the case of \smile_{1} product is aimed to some particular problems, namely \smile_{1}-twisting elements control Satasheff's $A(\infty)$-algebras from one hand side, and Gerstenhaber's deformations of algebras from another, see [9] for detailes.

[^0]
1. Homotopy G-algebras

A homotopy G-algebra (hGa in short) is a dg algebra with "good" \smile_{1} product. The general notion was introduced in [5].

Generally multiplication $a \cdot b$ in a dg algebra (A, d, \cdot) is not commutative, for example in the cochain complex $C^{*}(X)$, but there exists Steenrod's \smile_{1-} product $a^{p} \smile_{1} b^{q} \in C^{p+q-1}(X)$ which controls this noncommutativity

$$
\begin{equation*}
d\left(a \smile_{1} b\right)=d(a) \smile_{1} b+a \smile_{1}(b)+a \cdot b-b \cdot a . \tag{1}
\end{equation*}
$$

For our purposes some further properties of Steenrod's \smile_{1} are needed. First of all, the "left" Hirsch formula

$$
\begin{equation*}
(a \cdot b) \smile_{1} c-a \cdot\left(b \smile_{1} c\right)-\left(a \smile_{1} c\right) \cdot b=0 \tag{2}
\end{equation*}
$$

As for the "right" Hirsch formula, the similar expression is just homotopical to zero, that is there exists a 3 -fold operation $E_{1,2}: A^{p} \otimes A^{q} \otimes A^{r} \rightarrow$ $A^{p+q+r-2}$ which satisfies

$$
\begin{gather*}
c \smile_{1}(a \cdot b)-a \cdot\left(c \smile_{1} b\right)-\left(c \smile_{1} a\right) \cdot b= \\
=d E_{1,2}(c ; a, b)+E_{1,2}(d c ; a, b)+E_{1,2}(c ; d a, b)+E_{1,2}(c ; a, d b) . \tag{3}
\end{gather*}
$$

A hGa $\left(A, d, \cdot,\left\{E_{1, k}\right\}\right)$ is a dg algebra (A, d, \cdot) equipped with a sequence of multilinear operations $E_{1, k}\left(a^{p} ; b_{1}^{q_{1}}, \ldots, b_{k}^{q_{k}}\right) \in A^{p+q_{1}+\cdots+q_{k}-k}, k=$ $1,2,3, \ldots$ which satisfy certain coherency conditions (see for example [9]). Particularly $E_{1,1}(a, b)=a \smile_{1} b$ satisfies the above mentioned conditions 1, 2, 3 and

$$
\begin{equation*}
\left(a \smile_{1} b\right) \smile_{1} c+a \smile_{1}\left(b \smile_{1} c\right)=E_{1,2}(a ; b, c)+E_{1,2}(a ; c, b), \tag{4}
\end{equation*}
$$

this means that the same operation $E_{1,2}$ measures also the deviation from the associativity of the operation $E_{1,1}=\smile_{1}$.

Operations $E_{1, k}\left(a ; b_{1}, \ldots, b_{k}\right)$ in some papers are called brace operations and are denoted as $\left.a\left\{b_{1}, \ldots, b_{k}\right\}\right)$.

The remarkable examples of homotopy G-algebras are: 1. The cochain complex of 1-reduced simplicial set $C^{*}(X),[1]$. 2. The Hochschild cochain complex $C^{*}(U, U)$ of an associative algebra $U,[7],[6]$. 3. The cobar construction ΩC of a dg bialgebra C, [8]. In All three cases starting operations $E_{1,1}$ are classical \smile_{1} products.

Two main aspects of this notion are (see [9] for more details):

1. A $\mathrm{hGa}\left(A, d, \cdot,\left\{E_{1, k}\right\}\right)$ is a $B_{\infty^{-}}$algebra: it defines on the bar construction $B(A)$ a good multiplication $\mu_{E}: B(A) \otimes B(A) \rightarrow B(A)$.
2. A structure of a hGa on A induces on the homology $H(A)$ a structure of Gerstenhaber algebra $(H(A), \cdot,[]$.$) which consists of commutative$ multiplication • and a Lie bracket of degree -1 [,]: $H^{p} \otimes H^{q} \rightarrow H^{p+q-1}$ which is a biderivation: $[a, b \cdot c]=[a, b] \cdot c+b \cdot[a, c]$. This bracket is induced by the structure of dg Lie algebra on the desuspension $s^{-1} A$ given by $[a, b]=a \smile_{1} b+b \smile_{1} a$.

Below we will need the bigraded version of the notion of $\mathrm{hGa}\left(C^{*, *}, d, \cdot\right.$, $\left.\left\{E_{1, k}\right\}\right)$. This is a bigraded algebra $\left(C^{*, *}, \cdot\right), C^{m, n} \cdot C^{p, q} \subset C^{m+p, n+q}$, together with a differential (derivation) $d: C^{m, n} \rightarrow C^{m+1, n}$ and with a sequence of operations

$$
E_{1, k}: C^{m, n} \otimes C^{p_{1}, q_{1}} \otimes \cdots \otimes C^{p_{k}, q_{k}} \rightarrow C^{m+p_{1}+\cdots+p_{k}-k, n+q_{1}+\cdots+q_{k}}
$$

so that the total complex (the total degree of $C^{p, q}$ is p) is a hGa.

2. \smile_{1}-TWISting Elements

Let $\left(C^{*, *}, d, \cdot,\left\{E_{1, k}\right\}\right)$ be a bigraded hGa. A \smile_{1}-twisting element we define as $a=\sum_{k=1}^{\infty} a_{k}, a_{k} \in C^{2, k}$ such that $d a=a \smile_{1} a$, that is $d a_{k}=$ $\sum_{i=1}^{k-1} a_{i} \smile_{1} a_{k-i}$. We remark here that such a \smile_{1}-twisting element $a \in A$ is a Lie twisting element in the dg Lie algebra $\left(s^{-1} A, d,[],\right)$, i.e. satisfies $d a=\frac{1}{2}[a, a]$.

We introduce the following perturbation of \smile_{1}-twisting elements: for an arbitrary $g=\sum_{k=1}^{\infty} g_{k}, g_{k} \in C^{1, k}$ let us define

$$
\bar{a}=a+d g+g \cdot g+g \smile_{1} a+\sum_{k=1}^{\infty} E_{1, k}(\bar{a} ; g, \ldots, g) .
$$

Particularly,

$$
\begin{aligned}
\bar{a}_{1}= & a_{1}+d g_{1} ; \\
\bar{a}_{2}= & a_{2}+d g_{1}+g_{1} \cdot g_{1}+g_{1} \smile_{1} a_{1}+\bar{a}_{1} \smile_{1} g_{1} ; \\
\bar{a}_{3}= & a_{3}+d g_{2}+g_{1} \cdot g_{2}+g_{2} \cdot g_{1}+g_{1} \smile_{1} a_{2}+g_{2} \smile_{1} a_{1}+ \\
& +\bar{a}_{1} \smile_{1} g_{2}+\bar{a}_{2} \smile_{1} g_{1} ; \\
\bar{a}_{4}= & a_{4}+d g_{3}+g_{1} \cdot g_{3}+g_{2} \cdot g_{2}+g_{3} \cdot g_{1}+ \\
& +g_{1} \smile_{1} a_{3}+g_{2} \smile_{1} a_{2}+g_{3} \smile_{1} a_{1}+ \\
& +\bar{a}_{1} \smile_{1} g_{3}+\bar{a}_{2} \smile_{1} g_{2}+\bar{a}_{3} \smile_{1} g_{1}+E_{1,2}\left(\bar{a}_{1} ; g_{1}, g_{1}, g_{1}\right) ;
\end{aligned}
$$

so this is a recurrent definition.
Theorem 1. \bar{a} satisfies $d \bar{a}=\bar{a} \smile_{1} \bar{a}$, i.e. is $a \smile_{1}$-twisting element.
Actually, this perturbation of \smile_{1}-twisting elements is the action of the group $G=\left\{g=\sum_{k=1}^{\infty} g_{k} ; \quad g_{k} \in B^{1, k}\right\}$ with operation $g^{\prime} * g=g^{\prime}+g+$ $\sum_{k=1}^{\infty} E_{1, k}\left(g^{\prime} ; g, . ., g\right)$ on the set of all \smile_{1}-twisting elements $T w\left(C^{*, *}\right)$ by the rule $g * b=b^{\prime}$ where $b^{\prime}=b+d g+g \cdot g+E_{1,1}(g ; b)+\sum_{k=1}^{\infty} E_{1, k}\left(b^{\prime} ; g, \ldots, g\right)$. By $D\left(C^{*, *}\right)$ we denote the set of orbits $T w\left(C^{*, *}\right) / G$.

In particular, for $g=0+\cdots+0+g_{n}+0+\cdots$ the twisting element $\bar{a}=g * a$ looks as $\bar{a}=a_{1}+\cdots+a_{n}+\left(a_{n+1}+d g_{n}\right)+\bar{a}_{n+2}+\bar{a}_{n+3}+\cdots$, so the components a_{1}, \ldots, a_{n} remain unchanged and $\bar{a}_{n+1}=a_{n+1}+d g_{n}$.

The perturbations allow us to introduce obstructions for the following two problems.

1. Quantization. Let us first mention that for a twisting element $a=$ $\sum_{k=1}^{\infty} a_{k}$ the first component $a_{1} \in C^{2,1}$ is a cycle and any perturbation does not change its homology class $\left[a_{1}\right] \in H^{2,1}\left(C^{*, *}\right)$. Thus, we have the correct $\operatorname{map} \phi: D\left(C^{*, *}\right) \rightarrow H^{2,1}\left(C^{*, *}\right)$.

A quantization of a homology class $\alpha \in H^{2,1}\left(C^{*, *}\right)$ we define as a twisting element $a=\sum_{k=1}^{\infty} a_{k}$ such that $\left[a_{1}\right]=\alpha$. Thus, α is quantizable if $\alpha \in \operatorname{Im} \phi$.

The obstructions for quatizability lay in homologies $H^{3, n}\left(C^{*, *}\right), n \geq 2$. Indeed, let $a_{1} \in C^{2,1}$ be a cycle from α. The first step to quantize α is to construct a_{2} such that $d a_{2}=a_{1} \smile_{1} a_{1}$. The necessary and sufficient condition for this is $\left[a_{1} \smile_{1} a_{1}\right]=0 \in H^{3,2}\left(C^{*, *}\right)$, so this homology class is the first obstruction $O\left(a_{1}\right)$. Suppose it vanishes, so there exists a_{2}. Then it is easy to see that $a_{1} \smile_{1} a_{2}+a_{2} \smile_{1} a_{1}$ is a cycle and its class $O\left(a_{1}, a_{2}\right) \in$ $H^{3,3}\left(C^{*, *}\right)$ is the second obstruction. If $O\left(a_{1}, a_{2}\right)=0$ then there exists a_{3} such that $d a_{3}=a_{1} \smile_{1} a_{2}+a_{2} \smile_{1} a_{1}$. If not, then we take another a_{2} and try a new second obstruction. The nth obstruction is $O\left(a_{1}, a_{2}, \ldots, a_{n}\right)=$ $\left[\sum_{k=1}^{n} a_{k} \smile_{1} a_{n-k+1}\right] \in H^{3, n+1}\left(C^{*, *}\right)$.
2. Rigidity. A twisting element $a=a_{1}+a_{2}+\cdots$ we call trivial if it is equivalent to 0 . A bigraded $\mathrm{hGa} C^{*, *}$ is rigid if each twisting element is trivial, i.e. if $D\left(C^{*, *}\right)=\{0\}$. Arguments similar to above show that obstructions to triviality of a twisting element lies in homologies $H^{2, n}\left(C^{*, *}\right), n \geq 1$. This, in particular, implies that if $H^{2, n}\left(C^{*, *}\right)=0, n \geq 1$, then $C^{*, *}$ is rigid.

Acknowledgements

This research is supported by the grant GNSF/ST08/3-398.

References

1. H. Baues, The double bar and cobar construction. Compositio Math. 43 (1981), 331341.
2. N. Berikashvili, On the differentials of spectral sequence. Proc. A. Razmadze Math. Inst. 51 (1976), 1-105.
3. E. Brown, Twisted tensor products. I. Ann. of Math. (2) 69 (1959), 223-246.
4. M. Gerstenhaber, On the deformation of rings and algebras. Ann. of Math. (2) 79 (1964), 59-103.
5. M. Gerstenhaber and A. Voronov, Higher-order operations on the Hochschild complex. (Russian) Funktsional. Anal. i Prilozhen. 29 (1995), No. 1, 1-6, 96; translation in Funct. Anal. Appl. 29 (1995), No. 1, 1-5.
6. E. Getzler and J. D. Jones, Operads, homotopy algebra, and iterated integrals for double loop spaces. Preprint (1994), hep-th/9403055.
7. T. Kadeishvili, The structure of the $A(\infty)$-algebra, and the Hochschild and Harrison cohomologies. (Russian) Trudy Tbiliss. Mat. Inst. Razmadze Akad. Nauk Gruzin. SSR 91 (1988), 19-27.
8. T. Kadeishvili, On the cobar construction of a bialgebra. Homology Homotopy Appl. 7 (2005), No. 2, 109-122.
9. T. Kadeishvili, Twisting elements in homotopy G-algebras, Higher structures in geometry and physics. In Honor of Murray Gerstenhaber and Jim Stasheff. Progr. Math. 287 (2010), 181-200. arXiv:math/0709.3130.

Author's address:
A. Razmadze Mathemetical Institute
I. Javakhishvili Tbilisi State University

2, University Str., Tbilisi 0186, Georgia
E-mail: kade@rmi.ge

[^0]: 2010 Mathematics Subject Classification: 16E40, 18G55, 55S30.
 Key words and phrases. Steenrod product, homotopy Gerstenhaber algebra, twisting element.

