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B∞-ALGEBRA STRUCTURE IN HOMOLOGY
OF A HOMOTOPY GERSTENHABER ALGEBRA

T. Kadeishvili UDC 512.7

Abstract. The minimality theorem states, in particular, that on cohomology H(A) of a dg algebra

there exists sequence of operations mi : H(A)⊗i → H(A), i = 2, 3, . . . , which form a minimal A∞-

algebra (H(A), {mi}). This structure defines on the bar construction BH(A) a correct differential dm
so that the bar constructions (BH(A), dm) and BA have isomorphic homology modules. It is known

that if A is equipped additionally with a structure of homotopy Gerstenhaber algebra, then on BA

there is a multiplication which turns it into a dg bialgebra. In this paper, we construct algebraic

operations Ep,q : H(A)⊗p⊗H(A)⊗q → H(A), p, q = 0, 1, 2, . . . , which turn (H(A), {mi}, {Ep,q}) into a

B∞-algebra. These operations determine on BH(A) correct multiplication, so that (BH(A), dm) and

BA have isomorphic homology algebras.
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1. Introduction

For a differential graded algebra (A, d, μ), the differential d : A∗ → A∗−1 and the multiplication

μ : Ap ⊗ Aq → Ap+q define on the bar construction BA a differential dB : BA → BA which turns
(BA, dB ,∇) into a dg coalgebra. For example, for A = C∗(G) the bar construction BC∗(G) gives
cohomology modules of the classifying space H∗(BG), but not the homology algebra. For A = C∗(X)

the bar construction BC∗(X) gives cohomology modules of the loop space H∗(ΩX), but not the
cohomology algebra.

There exists the notion of homotopy Gerstenhaber algebra (see [19, 20]), briefly hGa, which allows

one to construct a correct multiplication on the bar construction. This is an additional structure on
a dg algebra (A, d, μ), which consists of a sequence of operations

E1,k : A⊗A⊗k → A, k = 1, 2, . . . ,

which determine on BA a multiplication turning it into a dg bialgebra.
Our aim is to transfer these structures to homology level, i.e., from A to H(A).

Note that the homology H(A) is also a dga with trivial differential and induced multiplication
μ∗ : H(A) ⊗ H(A) → H(A), but generally the bar constructions BA and BH(A) have different
homologies.
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In [8], the so-called minimality theorem is proved, which states that for a dg algebra (A, d, μ), its

homology H(A) (all Hi(X) are assumed free) can be equipped with a sequence of multi-operations

mi : H(A)⊗i → H(A), i = 1, 2, . . . , m1 = 0, m2 = μ∗,

turning (H(A), {mi}) into a minimal A∞-algebra in sense of Stasheff [18], which is weakly equivalent
to dga (A, d, μ). These A∞ operations {mi} determine on BH(A) new, perturbed differential dm :
BH(A) → BH(A) so that BA and BH(A) have isomorphic homologies.

The aim of this paper is to construct for a hGa (A, d, μ, {E1k}) on its homology A∞-algebra
(H(A), {mi}) certain additional structure, the so-called B∞ algebra (see [7]), consisting of multi-
operations

Ep,q : H(A)⊗p ⊗H(A)⊗q → H(A), p, q = 0, 1, 2, . . . ,

which determines on BH(A) the correct multiplication so that the bar constructions BH(A) and BA

will have isomorphic homology algebras.

Remark. This can be summarized as follows: If A is a dg algebra, hGa, or a commutative dg algebra,
then H(A) becomes respectively an A∞ (see [8]), B∞ (present paper), or C∞ (see [11]) algebra (a

commutative version of A∞).

2. Preliminaries

In this section, we give some notions and construction needed in the sequel.

2.1. A∞-algebras. The notion of an A∞-algebra was introduced by Stasheff in [18]. This notion

generalizes the notion of a dg algebra.
An A∞-algebra is a graded module M with a given sequence of operations

{
mi : M

⊗i → M, i = 1, 2, . . . , degmi = i− 2
}
,

which satisfies the following conditions:

∑
i+j=n+1

n−j∑
k=0

±mi

(
a1 ⊗ · · · ⊗ ak ⊗mj(ak+1 ⊗ · · · ⊗ ak+j)⊗ · · · ⊗ an

)
= 0, (1)

(we ignore the signs).

In particular, for the operation m1 : M → M we have degm1 = −1 and m1m1 = 0; this m1 can be
regarded as a differential on M . The operation m2 : M ⊗M → M is of degree 0 and satisfies

m1m2(a1 ⊗ a2) +m2(m1a1 ⊗ a2) +m2(a1 ⊗m1a2) = 0,

i.e., m2 can be regarded as a multiplication on M and m1 is a derivation with respect to it. Thus,

(M,m1,m2) is a sort of (maybe nonassociative) dg algebra. For the operation m3: degm3 = 1 and

m1m3(a1 ⊗ a2 ⊗ a3) +m3(m1a1 ⊗ a2 ⊗ a3) +m3(a1 ⊗m1a2 ⊗ a3)

+m3(a1 ⊗ a2 ⊗m1a3) +m2

(
m2(a1 ⊗ a2)⊗ a3

)
+m2

(
a1 ⊗m2(a2 ⊗ a3)

)
= 0;

thus, the productm2 is homotopy associative and the appropriate chain homotopy is m3 (some authors

call A∞-algebras strong homotopy associative DG-algebras).
The main meaning of defining condition (1) of an A∞-algebra (M, {mi}) is the following. The

sequence of operations {mi} determines on the bar construction

BM = T c(sM) = Λ + sM + sM ⊗ sM + sM ⊗ sM ⊗ sM + · · ·
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(here Λ is the ground ring and (sM)k = Mk+1 is the standard suspension) a coderivation

dm(a1 ⊗ · · · ⊗ an) =
∑
k,j

a1 ⊗ · · · ⊗ ak ⊗mj(ak+1 ⊗ · · · ⊗ ak+j)⊗ · · · ⊗ an,

and the Stasheffs condition (1) is equivalent to dmdm = 0; thus (BM,dm) is a dg coalgebra, which is

called the bar construction of A∞-algebra (M, {mi}).
A morphism of A∞-algebras f : (M, {mi}) → (M ′, {m′

i}) is defined as a dg coalgebra map of the
bar constructions

f : B
(
M, {mi}

) → B
(
M ′, {m′

i}
)
,

which, due to cofreeness of the tensor coalgebra T c(sM), is uniquely determined by the projection

f : B
(
M, {mi}

) → B
(
M ′, {m′

i}
) → M ′,

which, in fact, is a collection of homomorphisms
{
fi : M

⊗i → M ′, i = 1, 2, . . . , deg fi = i− 1
}
,

subject of some conditions (see, e.g., [8, 11]). In particular, f1m1 = m1f1, i.e.

f1 : (M,m1) → (M ′,m′
1)

is a chain map. We define a weak equivalence of A∞-algebras as a morphism {fi}, where f1 is a
homology isomorphism.

An A∞-algebra (M, {mi}) is called minimal if m1 = 0; in this case (M,m2) is a strictly associative
graded algebra (see (1) for n = 3). Assume that

f :
(
M, {mi}

) → (
M ′, {m′

i}
)

is a weak equivalence of minimal A∞-algebras; then

f1 : (M,m1 = 0) → (M ′,m′
1 = 0),

which by definition should induce isomorphism of homology, is automatically an isomorphism. It is
easy to verify that in this case f is an isomorphism in the category of A∞-algebras, thus a weak

equivalence of minimal A∞-algebras is an isomorphism. This fact motivates the word minimal in this
notion: the Sullivan minimal model has a similar property.

An A∞-algebra (M, {mi}) with m>2 = 0 is just a dg algebra, and an A∞-algebra morphism

{fi} : (M, {m1,m2, 0, 0, . . . }) → (M ′, {m′
1,m

′
2, 0, 0, . . . })

with f>1 = 0 is just a multiplicative chain map; thus the category of dg algebras is a subcategory of
A∞-algebras.

2.2. Twisting cochains. Let (K, dK ,∇K : K → K ⊗ K) be a dg coalgebra, and (A, dA, μ) be

a dg algebra. Hom(K,A) is a dg algebra with differential dφ = dAφ + φdK and multiplication
φ � ψ = μ(φ⊗ ψ)∇K .

A twisting cochain is defined as a homomorphism φ : K → A of degree −1 (that is φ : K∗ → A∗−1)

satisfying the Brown condition1 dφ = φ � φ (see [4]). Let T (K,A) be the set of all twisting cochains.
Two twisting cochains are equivalent if there exists c : K → A such that

ψ = φ+ dc+ ψ � c+ c � φ,

notation φ ∼c ψ.

1In other words the Maurer–Cartan equation or the master equation.
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The Berikasvili functor D(K,A) is defined as follows:

D(K,A) =
M(K,A)

∼ .

A dg algebra map f : A → A′ induces the map T (K,A) → T (K,A′): if φ is a twisting cochain so is
f ◦ φ. Moreover, if φ ∼c ψ, then f ◦ φ ∼f◦c f ◦ ψ. Thus, we have a map D(f) : D(K,A) → D(K,A′).

Theorem 1 (Berikashvili [3]). If f : A → A′ is a weak equivalence of dg algebras (homology isomor-

phism), then

D(f) : D(K,A) → D(K,A′)
is a bijection.

2.2.1. Twisting cochains and the bar construction. Any twisting cochain φ : K → A induces a dg

coalgebra map B(φ) : K → BA by

B(φ) =
∑
i

(φ⊗ · · · ⊗ φ)∇i
K ,

where ∇i
K : K → K⊗i is the iteration of comultiplication ∇K :

∇0
K = id, ∇2

K = ∇K , ∇n
K = (id ⊗∇K)∇n−1

K .

Conversely, any dg coalgebra map f : K → BA is B(φ) for φ = p ◦ f : K → BA → A. In fact, we
have a bijection Mordgcoalg(K,BA) ↔ T (K,A).

Moreover, if φ ∼c ψ, then B(φ) and B(ψ) are homotopic in the category of dg coalgebras: the chain
homotopy D(c) : K → BA is given by

D(c) =
∑
k,j

(
ψ ⊗ · · · ⊗ ψ︸ ︷︷ ︸

j times

⊗c⊗ φ⊗ · · · ⊗ φ
)
,

and, in addition, D(c) is a (B(φ)−B(ψ))-coderivation, i.e.,

∇BD(c) =
(
B(ψ)⊗D(c) +D(c)⊗B(φ)

)∇K .

Thus, we have a bijection [K,BA] ↔ D(K,A), where [K,BA] denotes the set of chain homotopy
classes in the category of dg coalgebras.

2.2.2. A∞-twisting cochains. Now we want to replace a dg algebra (A, dA, μ) with an A∞-algebra
(M, {mi}).

An A∞-twisting cochain we define as a homomorphism φ : K → M of degree −1 satisfying the

condition ∞∑
k=1

mk(φ⊗ · · · ⊗ φ)∇k = 0.

Let T∞(K,M) be the set of all A∞-twisting cochains.

Two twisting A∞-cochains are said to be equivalent if there exists c : K → M such that

ψ = φ+
∑
k,j

(
ψ ⊗ · · · ⊗ ψ︸ ︷︷ ︸

j times

⊗c⊗ φ⊗ · · · ⊗ φ
)
∇k,

notation φ ∼c ψ.

By D∞(K,M) we denote the factor set

D∞(K,M) =
T∞(K,M)

∼ .

Assume that

f = {fi} : (M, {mi}) → (M ′, {m′
i})

781



is a morphism of A∞-algebras and φ : K → M is an A∞-twisting cochain. Then it is possible to show

that f(φ) : K → M ′ given by

f(φ) =
∑
i

fi(φ⊗ · · · ⊗ φ)∇i
K

is also an A∞-twisting cochain. Moreover, if φ ∼c ψ, then f(φ) ∼c′ f(ψ) with c′ : K → M ′ given by

c′ =
∑
i,j

fi

(
ψ ⊗ · · · ⊗ ψ︸ ︷︷ ︸

j times

⊗c⊗ φ ⊗ · · · ⊗ φ
)
∇i.

Thus, we have a map

D∞(f) : D∞(K,M) → D∞(K,M ′).
The following theorem was proved in [9].

Theorem 2. If

f = {fi} : (M, {mi}) → (M ′, {m′
i})

is a weak equivalence of A∞-algebras, then

D∞(f) : D∞(K,M) → D∞(K,M ′)

is a bijection.

2.2.3. A∞-twisting cochains and the B construction. Any A∞-twisting cochain φ : K → (M, {mi})
induces a dg coalgebra map B(φ) : K → B(M, {mi}) by

B(φ) =
∑
i

(φ⊗ · · · ⊗ φ)∇i.

Conversely, any dg coalgebra map K → B(M, {mi}) is B(φ) for φ = p ◦ f : K → B(M, {mi}) → M .

In fact, we have a bijection

Mordgcoalg(K,BM) ↔ T∞(K,M).

Moreover, if φ ∼c ψ, then B(φ) and B(ψ) are homotopic in the category of dg coalgebras: a chain

homotopy D(c) : K → B(M, {mi}) given by

D(c) =
∑
k,j

(
ψ ⊗ · · · ⊗ ψ︸ ︷︷ ︸

j times

⊗c⊗ φ⊗ · · · ⊗ φ
)
∇k

which is a B(φ)−B(ψ)-coderivation.

Thus, we have a bijection [K,BM ] ↔ D∞(K,M).

2.3. B∞-algebras. The notion of B∞-algebra was introduced in [2, 7] as an additional structure

on a dg module (A, d) which turns the bar construction BA into a dg bialgebra. So it requires a new
differential

d̃ : BA → BA,

which should be a coderivation with respect to standard coproduct of BA, and a new associative
multiplication

μ̃ : (BA, d̃)⊗ (BA, d̃) → (BA, d̃),

which should be a map of dg coalgebras, with 1Λ ∈ Λ ⊂ BA as a unit element.

It is mentioned above (see, e.g., [8, 11, 17]) that such d̃ specifies on A a structure of A∞-algebra,
namely a sequence of operations {mi : ⊗iA → A, i = 1, 2, . . . } subject to appropriate conditions.

As for the new multiplication

μ̃ : B
(
A, {mi}

)⊗B
(
A, {mi}

) → B
(
A, {mi}

)
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by the definition of a dg bialgebra it must be a map of dg coalgebras. Consequently, it is uniquely

determined by an A∞-twisting element, say

E∗,∗ : B
(
A, {mi}

)⊗B
(
A, {mi}

) → (
A, {mi}

)
.

In turn, such a twisting cochain is represented by a sequence of operations{
Epq : A

⊗p ⊗A⊗q → A, p, q = 0, 1, 2, . . .
}

satisfying certain coherency condition together with A∞ operations {mi}.
Therefore, a B∞-algebra is a graded module equipped with two sets of algebraic multi-operations

(A, {mi}, {Ep,q}).
A particular case of a B∞-algebra of type m≥3 = 0 is called the Hirsch algebra, and a particular

case of a Hirsch algebra with E>1,q = 0 satisfying certain additional conditions is called the homotopy
Gerstenhaber algebra (see below). We refer the reader to [12, 14] for more explanations of these
structures. In fact, the present description is enough for this paper.

2.3.1. Homotopy G-algebras. A homotopy G-algebra (briefly, hGa) is a dg algebra with “good” �1

product. The general notion was introduced in [19, 20].

Definition 1. A homotopy G-algebra is defined as a dg algebra (A, d, ·) with a given sequence of
operations

E1,k : A⊗ (A⊗k) → A, k = 0, 1, 2, . . .

(the value of the operation E1,k on a⊗ b1⊗· · ·⊗ bk ∈ A⊗ (A⊗· · ·⊗A) we write as E1,k(a; b1, . . . , bk)),
which satisfies the conditions

E1,0 = id, (2)

dE1,k(a; b1, . . . , bk) + E1,k(da; b1, . . . , bk) +
∑
i

E1,k(a; b1, . . . , dbi, . . . , bk)

= b1 · E1,k−1(a; b2, . . . , bk) + E1,k−1(a; b1, . . . , bk−1) · bk +
∑
i

E1,k−1(a; b1, . . . , bi · bi+1, . . . , bk), (3)

E1,k(a1 · a2; b1, . . . , bk) = a1 ·E1,k(a2; b1, . . . , bk) + E1,k(a1; b1, . . . , bk) · a2

+

k−1∑
p=1

E1,p(a1; b1, . . . , bp) ·E1,m−p(a2; bp+1, . . . , bk), (4)

E1,n(E1,m(a; b1, . . . , bm); c1, . . . , cn)

=
∑

0≤i1≤j1≤···≤im≤jm≤n

E1,n−(j1+···+jm)+(i1+···+im)+m

(
a; c1, . . . , ci1 , E1,j1−i1(b1; ci1+1, . . . , cj1),

cj1+1, . . . , ci2 , E1,j2−i2(b2; ci2+1, . . . , cj2), cj2+1, . . . , (5)

cim , E1,jm−im(bm; cim+1, . . . , cjm), cjm+1, . . . , cn

)
. (6)

Let us present these conditions in low dimensions.
The condition (3) for k = 1 has the form

dE1,1(a; b) + E1,1(da; b) + E1,1(a; db) = a · b+ b · a. (7)

So the operation E1,1 is a sort of �1 product: it is the chain homotopy that measures the noncom-

mutativity of A. Below we denote a �1 b = E1,1(a; b).
Condition (4) for k = 1 has the form

(a · b) �1 c+ a · (b �1 c) + (a �1 c) · b = 0; (8)
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this means that the operation E1,1 =�1 satisfies the left Hirsch formula.

Condition (3) for k = 2 has the form

dE1,2(a; b, c) + E1,2(da; b, c) + E1,2(a; db, c) + E1,2(a; b, dc)

= a �1 (b · c) + (a �1 b) · c+ b · (a �1 c). (9)

This means that this �1 satisfies the right Hirsch formula just up to homotopy and the appropriate

homotopy is the operation E1,2.
Condition (6) for n = m = 2 has the form

(a �1 b) �1 c+ a �1 (b �1 c) = E1,2(a; b, c) + E1,2(a; c, b). (10)

This means that the same operation E1,2 measures also the deviation from the associativity of the
operation E1,1 =�1.

2.3.2. hGa as a B(∞)-algebra. Here we show that a hGa structure on A is a particular B(∞)-algebra

structure: it induces on B(A) = (T c(sA), dB) an associative multiplication but does not change the
differential dB (see [5, 7, 12, 14]).

Let us extend our sequence {E1,k, k = 0, 1, 2, . . . }} to the sequence
{
Ep,q : (A

⊗p)⊗ (A⊗q) → A, p, q = 0, 1, . . .
}

adding

E0,1 = id, E0,q>1 = 0, E1,0 = id, Ep>1,0 = 0, (11)

and Ep>1,q = 0.
This sequence defines a map E : B(A)⊗B(A) → A by

E
(
[a1, . . . , am]⊗ [b1, . . . , bn]

)
= Ep,q(a1, . . . , am; b1, . . . , bn).

Conditions (3) and (4) mean exactly

dE + E(dB ⊗ id+ id⊗ dB) = E � E,

i.e., E is a twisting cochain. Thus its coextesion is a dg coalgebra map

μE : B(A)⊗B(A) → B(A).

Condition (6) can be rewritten as

E(μE ⊗ id− id⊗ μE) = 0,

so this condition means that the multiplication μE is associative. Condition (11) implies that [ ] ∈
Λ ⊂ B(A) is the unit for this multiplication.

Finally, we obtained that (B(A), dB ,Δ, μE) is a dg bialgebra; thus a hGa is a B(∞)-algebra.

2.3.3. Three examples of hGas. There are three remarkable examples of homotopy G-algebras.

The first one is the cochain complex of 1-reduced simplicial set C∗(X). The operations E1,k here are
dual to cooperations defined by Baues in [2], and the starting operation E1,1 is the classical Steenrod
�1 product.

The second example is the Hochschild cochain complex C∗(U,U) of an associative algebra U . The
operations E1,k here were defined in [10] with the purpose of describing A(∞)-algebras in terms of
Hochschild cochains, although the properties of those operations which where used as defining ones

for the notion of homotopy G-algebra in [20] did not appear there. These operations where defined
also in [6]. Again the starting operation E1,1 is the classical Gerstenhaber circle product, which is
sort of �1-product in the Hochschild complex. These operations were used in [16] in the proof of the

Deligne hypothesis.
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The third example is the the cobar construction ΩC of a dg-bialgebra C. The cobar construction

ΩC of a DG-coalgebra (C, d : C → C,Δ : C → C ⊗ C) is, by definition, a DG-algebra. Now assume
that C is additionally equipped with a multiplication μ : C ⊗ C → C turning (C, d,Δ, μ) into a
DG-bialgebra. How does this multiplication μ reflect on the cobar construction ΩC? There arises a
natural hGa structure, and the operations E1,k are constructed in [13]. Again, the starting operation

E1,1 is classical; it is the Adams �1-product defined for ΩC in [1].

3. B∞-Algebra Structure in Homology of a hGa

Here we turn to the main goal of this paper.
Now assume that (A, d, μ, {E1,k}) is a hGa. Note that the sequence of operations {E1,k} determines

a twisting cochain E : BA⊗BA → A.
By the minimality theorem (see [8]), on H(A) there exists a structure of minimal A∞-algebra

(H(A), {mi}) and a weak equivalence of A∞-algebras

f = {fi} :
(
H(A), {mi}

) →
(
A, {m1 = d,m2 = μ,m3 = 0,m4 = 0, . . . }

)
.

This weak equivalence induces a weak equivalence of dg coalgebras

B̃(f) : B̃
(
H(A), {mi}

) → BA.

Composing the tensor product

B̃(f)⊗ B̃(f) : B̃
(
H(A), {mi}

) ⊗ B̃
(
H(A), {mi}

) → BA⊗BA

with the twisting cochain E : BA ⊗ BA → A determined by hGa structure operations {E1,k}, we
obtain a twisting cochain

E ◦ (B̃(f)⊗ B̃(f)) : B̃
(
H(A), {mi}

) ⊗ B̃
(
H(A), {mi}

) → BA⊗BA → A.

Our aim is to lift this twisting cochain to a A∞-twisting cochain

E∗,∗ : B̃
(
H(A), {mi}

) ⊗ B̃
(
H(A), {mi}

) → (
H(A), {mi}

)
,

which, in turn, will define a needed B∞ algebra structure on (H(A), {mi}).
The existence of E∗,∗ follows from the bijection

D∞(f) : D∞
(
B̃
(
H(A), {mi}

)⊗ B̃
(
H(A), {mi}

)
,
(
H(A), {mi}

))

−→ D
(
B̃
(
H(A), {mi}

)⊗ B̃
(
H(A), {mi}

)
, A

)
,

which is guaranteed by Theorem 2. In particular, we can take E∗,∗ from the preimage of the class of

twisting cochain E ◦ (B̃(f)⊗ B̃(f)).

These twisting cochains can be observed from the diagram

B̃
(
H(A), {mi}

)⊗ B̃
(
H(A), {mi}

) E∗,∗ ��

˜B(f)⊗ ˜B(f)

��

(
H(A), {mi}

)

f

��
BA⊗BA

E
�� A

This diagram does not commute, but the twisting cochains f ◦E∗,∗ and E◦(B̃(f)⊗B̃(f) are equivalent.

Consequently the diagram of induced dg coalgebra maps commutes up to homotopy.
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To summarize, the obtained A∞-twisting cochain E∗,∗ determines on the A∞-algebra (H(A), {mi}) a
structure B∞-algebra, which in its turn determines a (nonassociative generally) multiplication B̃(E∗,∗)
on the B̃-construction B̃(H(A, {mi}) so that the diagram of dg coalgebra maps

B̃
(
H(A), {mi}

) ⊗ B̃
(
H(A), {mi}

) ˜B(E∗,∗) ��

˜B(f)⊗ ˜B(f)

��

B̃
(
H(A), {mi}

)

˜B(f)

��
BA⊗BA

B(E)
�� BA

commutes up to homotopy. Thus the dg coalgebra map

B̃(f) : B̃
(
A, {mi}

) → BA

is multiplicative up to homotopy.

Finally we have the following assertion.

Theorem 3. Let (A, d, μ, {E1,k}) be a hGa. Then on its homology H(A) there exists a structure of
B∞-algebra (H(A), {mi}, {Ep,q}) such that homology algebras

H
(
B̃
(
H(A), {mi}, {Ep,q}

))
, and H

(
B
(
A, d, μ, {E1,k}

))

are isomorphic.

For a hGa (A, d, μ, {E1,k}), the twisting cochain E : BA⊗BA → A satisfies the additional conditions
(6) which guarantee that the induced multiplication on BA is associative. The twisting cochain E∗,∗
we have obtained satisfies only Brown’s condition, but not that condition for associativity, so the

obtained multiplication

B̃(f) : B̃
(
H(A), {mi}

)⊗ B̃
(
H(A), {mi}

) → B̃
(
H(A), {mi}

)

is a chain map, but nonassociative generally. Thus the bar construction B̃(H(A), {mi}) is a nonas-
sociative bialgebra. We expect that this nonassociative multiplication will be a part of a certain A∞
algebra structure on B̃(H(A), {mi}), which will allow us to iterate the process.
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