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B.-ALGEBRA STRUCTURE IN HOMOLOGY
OF A HOMOTOPY GERSTENHABER ALGEBRA

T. Kadeishvili UDC 512.7

ABSTRACT. The minimality theorem states, in particular, that on cohomology H(A) of a dg algebra
there exists sequence of operations m; : H(A)®" — H(A), i = 2,3,..., which form a minimal A-
algebra (H(A),{m;}). This structure defines on the bar construction BH(A) a correct differential d,,
so that the bar constructions (BH(A),d) and BA have isomorphic homology modules. It is known
that if A is equipped additionally with a structure of homotopy Gerstenhaber algebra, then on BA
there is a multiplication which turns it into a dg bialgebra. In this paper, we construct algebraic
operations Ep 4 : H(A)®?®@ H(A)®? — H(A), p,q =0,1,2,..., which turn (H(A), {m;}, {Ep,4}) into a
Boo-algebra. These operations determine on BH (A) correct multiplication, so that (BH(A),d) and
BA have isomorphic homology algebras.
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1. Introduction

For a differential graded algebra (A,d, u), the differential d : A, — A,_1 and the multiplication
p A, ® Ay — Apygy define on the bar construction BA a differential dp : BA — BA which turns
(BA,dp,V) into a dg coalgebra. For example, for A = C.(G) the bar construction BC,.(G) gives
cohomology modules of the classifying space H,(Bg), but not the homology algebra. For A = C*(X)
the bar construction BC*(X) gives cohomology modules of the loop space H*(2X), but not the
cohomology algebra.

There exists the notion of homotopy Gerstenhaber algebra (see [19, 20]), briefly hGa, which allows
one to construct a correct multiplication on the bar construction. This is an additional structure on
a dg algebra (A, d, u), which consists of a sequence of operations

Eip: A A®% 5 A, k=1,2,...,

which determine on BA a multiplication turning it into a dg bialgebra.

Our aim is to transfer these structures to homology level, i.e., from A to H(A).

Note that the homology H(A) is also a dga with trivial differential and induced multiplication
p* : H(A) ® H(A) — H(A), but generally the bar constructions BA and BH(A) have different
homologies.

Translated from Sovremennaya Matematika i Ee Prilozheniya (Contemporary Mathematics and Its Applica-
tions), Vol. 97, Proceedings of the International Conference “Lie Groups, Differential Equations, and Geometry,”
June 10-22, 2013, Batumi, Georgia, Part 2, 2015.
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In [8], the so-called minimality theorem is proved, which states that for a dg algebra (A,d, u), its
homology H(A) (all H;(X) are assumed free) can be equipped with a sequence of multi-operations

m;: H(A)® — H(A), i=1,2,..., my=0, my=p"

turning (H(A), {m;}) into a minimal A.-algebra in sense of Stasheff [18], which is weakly equivalent
to dga (A,d, ). These A operations {m;} determine on BH(A) new, perturbed differential d,, :
BH(A) - BH(A) so that BA and BH(A) have isomorphic homologies.

The aim of this paper is to construct for a hGa (A,d,u,{E1x}) on its homology As-algebra
(H(A),{m;}) certain additional structure, the so-called B., algebra (see [7]), consisting of multi-
operations

EP7Q:H(A)®p®H(A)®q_>H(A)7 p7q2071727"'7
which determines on BH(A) the correct multiplication so that the bar constructions BH(A) and BA

will have isomorphic homology algebras.

Remark. This can be summarized as follows: If A is a dg algebra, hGa, or a commutative dg algebra,
then H(A) becomes respectively an Ay, (see [8]), Bs (present paper), or C (see [11]) algebra (a
commutative version of A).

2. Preliminaries
In this section, we give some notions and construction needed in the sequel.
2.1. A.-algebras. The notion of an A.-algebra was introduced by Stasheff in [18]. This notion

generalizes the notion of a dg algebra.
An A..-algebra is a graded module M with a given sequence of operations

{mi MO M, i=1,2,..., degm; :z'—2},
which satisfies the following conditions:
n—j
> Zimi(al ®~-®ak®mj(ak+1®---®ak+j)®-~®an> =0, (1)
i+j=n+1k=0

(we ignore the signs).
In particular, for the operation m; : M — M we have degmi = —1 and mymq = 0; this m; can be
regarded as a differential on M. The operation my : M @ M — M is of degree 0 and satisfies

mlmg(al & CLQ) + m2(m1a1 & az) + mg(al & mlag) =0,
i.e., mg can be regarded as a multiplication on M and m; is a derivation with respect to it. Thus,
(M, mq, mg) is a sort of (maybe nonassociative) dg algebra. For the operation ms: degms = 1 and
mimg(a1 ® az ® az) + ma(miar ® az @ az) + mz(a; ® miaz ® az)
+ mg(a1 ® az ® myag) + ma(ma(ar1 ® az) ® az) + ma (a1 ® ma(az ® ag)) = 0;

thus, the product ms is homotopy associative and the appropriate chain homotopy is ms (some authors
call A-algebras strong homotopy associative DG-algebras).

The main meaning of defining condition (1) of an Ay-algebra (M,{m;}) is the following. The
sequence of operations {m;} determines on the bar construction

BM =T(sM)=A+sM +sM ®sM + sM ®@ sM ® sM + ---
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(here A is the ground ring and (sM ), = My is the standard suspension) a coderivation

(a1 @ @ap) =Y 1@ @ @mj(arse1 @ @ appj) @ -+ @ a,
k?j

and the Stasheffs condition (1) is equivalent to d,,d,, = 0; thus (BM,d,,) is a dg coalgebra, which is
called the bar construction of As-algebra (M, {m;}).

A morphism of Ay-algebras f : (M, {m;}) — (M’,{m]}) is defined as a dg coalgebra map of the
bar constructions

f: B(M,{mi}) = B(M',{mi}),
which, due to cofreeness of the tensor coalgebra T¢(sM), is uniquely determined by the projection
f:B(M,{m;}) = B(M',{m}) — M’,
which, in fact, is a collection of homomorphisms
{fi:M®i—>M’, i=12,..., degfi:i—l},
subject of some conditions (see, e.g., [8, 11]). In particular, fimi = mqfi, i.e.
fuo (M,mq) — (M',m})

is a chain map. We define a weak equivalence of A.-algebras as a morphism {f;}, where f; is a
homology isomorphism.

An A-algebra (M, {m;}) is called minimal if m; = 0; in this case (M, m2) is a strictly associative
graded algebra (see (1) for n = 3). Assume that

fo (M Ami}) — (M, {mi})
is a weak equivalence of minimal A..-algebras; then
fl : (M,ml = O) — (M',m’l = 0),

which by definition should induce isomorphism of homology, is automatically an isomorphism. It is
easy to verify that in this case f is an isomorphism in the category of A..,-algebras, thus a weak
equivalence of minimal A..-algebras is an isomorphism. This fact motivates the word minimal in this
notion: the Sullivan minimal model has a similar property.

An A-algebra (M,{m;}) with m~5 = 0 is just a dg algebra, and an A,-algebra morphism

{fi}: (M, {m1,m2,0,0,...}) = (M',{m},m},0,0,...})
with fs1 = 0 is just a multiplicative chain map; thus the category of dg algebras is a subcategory of

Ao-algebras.

2.2. Twisting cochains. Let (K,dx,Vk : K - K ® K) be a dg coalgebra, and (A,da,u) be
a dg algebra. Hom(K,A) is a dg algebra with differential d¢p = da¢ + ¢dx and multiplication

¢ — v = u(é ® ) V.
A twisting cochain is defined as a homomorphism ¢ : K — A of degree —1 (that is ¢ : K, — A,_1)
satisfying the Brown condition! d¢ = ¢ — ¢ (see [4]). Let T(K, A) be the set of all twisting cochains.
Two twisting cochains are equivalent if there exists ¢ : K — A such that

Y=¢p+dc+1p—c+c— ¢,

notation ¢ ~ 1.

In other words the Maurer—Cartan equation or the master equation.
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The Berikasvili functor D(K, A) is defined as follows:
M(K,A
D(K,A) = (K, 4) .

A dg algebra map f: A — A’ induces the map T(K,A) — T(K, A"): if ¢ is a twisting cochain so is
f o ¢. Moreover, if ¢ ~¢ 9, then f o ¢ ~oc f o). Thus, we have a map D(f) : D(K,A) - D(K,A").
Theorem 1 (Berikashvili [3]). If f: A — A’ is a weak equivalence of dg algebras (homology isomor-
phism), then

D(f): D(K,A) — D(K,A)

s a bijection.
2.2.1. Tuwisting cochains and the bar construction. Any twisting cochain ¢ : K — A induces a dg
coalgebra map B(¢) : K — BA by

B(¢)=) (6@ ®¢)V,

where V% : K — K@ is the iteration of comultiplication Vg

VY% =id, Vi =V, Vik=(deVg)VyEeh
Conversely, any dg coalgebra map f : K — BAis B(¢) for ¢ =po f: K — BA — A. In fact, we
have a bijection Morggeoaig(K, BA) <+ T(K, A).

Moreover, if ¢ ~. 1, then B(¢) and B(1)) are homotopic in the category of dg coalgebras: the chain
homotopy D(c) : K — BA is given by

Die)=) (V@ - 0¢acedn - @¢),
k.j ( 7 times )
and, in addition, D(c) is a (B(¢) — B(%))-coderivation, i.e.,
VsD(c) = (B(1) ® D(c) + D(c) ® B(¢)) V.

Thus, we have a bijection [K,BA| +» D(K,A), where [K, BA]| denotes the set of chain homotopy
classes in the category of dg coalgebras.

2.2.2.  Ao-twisting cochains. Now we want to replace a dg algebra (A,da, ) with an A-algebra
(M, {m;}).

An A.-twisting cochain we define as a homomorphism ¢ : K — M of degree —1 satisfying the
condition

Y om(¢®---2¢)VF =0.
k=1

Let T (K, M) be the set of all Ay -twisting cochains.
Two twisting A.-cochains are said to be equivalent if there exists ¢ : K — M such that

¢:¢+Z(¢®~~-®¢®c®¢®'--®¢)vk,

k. 7 times

notation ¢ ~ 1.
By Do (K, M) we denote the factor set

Doo(K, M) = Tooll, M)

Assume that

f=Afi}: (M {mi}) = (M, {m;})
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is a morphism of A,.-algebras and ¢ : K — M is an A.-twisting cochain. Then it is possible to show
that f(¢): K — M’ given by

@)=Y filp® 0V
is also an A.o-twisting cochain. Moreover, if ¢ ~. 1, then f(¢) ~ f(1) with ¢ : K — M’ given by

c’:Zfi<¢®---®w®c®qb ®~'®¢)Vi.
ij .t."
’ 7 times

Thus, we have a map
Doo(f) : Doo(K, M) — Do (K, M').

The following theorem was proved in [9)].

Theorem 2. If

f=Af (M {mi}) = (M',{m;})
s a weak equivalence of Aso-algebras, then

Doo(f) : Doo(K, M) — Do (K, M')
s a bijection.

2.2.8.  Aoo-twisting cochains and the B construction. Any A..-twisting cochain ¢ : K — (M, {m;})
induces a dg coalgebra map B(¢) : K — B(M,{m;}) by

B(g)=> (¢®- ®¢)V".

1
Conversely, any dg coalgebra map K — B(M,{m;}) is B(¢) for ¢ =po f : K — B(M,{m;}) — M.
In fact, we have a bijection
Mordgcoalg(Ka BM) <~ TOO(K, M)

Moreover, if ¢ ~. 1, then B(¢) and B(1) are homotopic in the category of dg coalgebras: a chain
homotopy D(c) : K — B(M,{m;}) given by

D)= (8 0pecede- - ©¢)V:

k7j

which is a B(¢) — B(t)-coderivation.
Thus, we have a bijection [K, BM| ++ Do (K, M).

7 times

2.3. By-algebras. The notion of Bu-algebra was introduced in [2, 7] as an additional structure
on a dg module (A, d) which turns the bar construction BA into a dg bialgebra. So it requires a new
differential

d: BA— BA,

which should be a coderivation with respect to standard coproduct of BA, and a new associative
multiplication
[i: (BA,d) ® (BA,d) — (BA,d),
which should be a map of dg coalgebras, with 1, € A C BA as a unit element.
It is mentioned above (see, e.g., [8, 11, 17]) that such d specifies on A a structure of A..,-algebra,
namely a sequence of operations {m; : ®’ A — A,i =1,2,...} subject to appropriate conditions.
As for the new multiplication

fi: B(A,{m;}) ® B(A,{m;}) — B(A,{m;})
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by the definition of a dg bialgebra it must be a map of dg coalgebras. Consequently, it is uniquely
determined by an A, -twisting element, say

E..: B(A {m;}) ® B(A,{m;}) = (A,{m;}).
In turn, such a twisting cochain is represented by a sequence of operations

{qu:A®p®A®q—>A, p,q:0,1,2,...}

satisfying certain coherency condition together with A, operations {m;}.
Therefore, a Byo-algebra is a graded module equipped with two sets of algebraic multi-operations

(A7 {ml}7 {Ep7q})'

A particular case of a B-algebra of type m>3 = 0 is called the Hirsch algebra, and a particular
case of a Hirsch algebra with E~q , = 0 satisfying certain additional conditions is called the homotopy
Gerstenhaber algebra (see below). We refer the reader to [12, 14] for more explanations of these
structures. In fact, the present description is enough for this paper.

2.8.1. Homotopy G-algebras. A homotopy G-algebra (briefly, hGa) is a dg algebra with “good” —1
product. The general notion was introduced in [19, 20].

Definition 1. A homotopy G-algebra is defined as a dg algebra (A,d,-) with a given sequence of
operations
Eip:A® (A% - A, k=0,1,2,...

(the value of the operation Fj ; on a®@b; ®--- @b, € AQ(A®---®A) we write as Ey y(a;b1,...,0)),
which satisfies the conditions

Eyo = id, (2)
By g(a;by, ..., be) + Bygl(dasby, ... bp) + Y Eyp(aiby,... db;, ... by)
=bi-Ep_1(asby,...,bk) + Eyp—1(a; b, ... bp_1) - by + ZEl,k—l(a; bi, ... bi - big1,...,bk), (3)

Eii(ar - ag;by,...,bk) = a1 - By p(a2; b1, ..., 0k) + Ey (a3 b1, ..., bg) - a2

k—1
+ E El,p(al; bl, - ,bp) . ELm_p(ag; bp+1, - ,bk), (4)

p=l1

By n(Erm(asby, ..o bp)ser, ..oy cn)
= E : El,n—(j1+~~~+jm)+(i1+-~~+im)+m (a; €1, e Gy B (b1 Cir1y - -+ 7Cj1)v
0<i1 <j1 < <im <jm<n

Cjrt1y -5 Cigy Ejoiy (b2; Cigt1s - - - chz)a Cja+15 -+ (5)
Cims Bjm—im (Oms Cingt 15+ -5 Cjin )y Gt 15 -+ Cn)- (6)

Let us present these conditions in low dimensions.
The condition (3) for £ = 1 has the form

dEy1(a;b) + E11(dasb) + Eq1(a;db) =a-b+b-a. (7)

So the operation Fy; is a sort of —1 product: it is the chain homotopy that measures the noncom-
mutativity of A. Below we denote a —1 b= E 1(a;b).
Condition (4) for £ = 1 has the form

(@-b)—~1c+a-(b—1c)+(a~—1¢c) - b=0; ()
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this means that the operation Ey 1 = satisfies the left Hirsch formula.
Condition (3) for £ = 2 has the form

dE1 2(a; b, c) + Eq2(da; b, c) + E12(a; db, c) + Eq2(a; b, dc)
=a—1(b-c)+(a—1b)-c+b-(a—c). (9)
This means that this «— satisfies the right Hirsch formula just up to homotopy and the appropriate

homotopy is the operation Ej s.
Condition (6) for n = m = 2 has the form

(CL ~1 b) —1C+a~— (b ~1 C) = ELQ(CL; b, C) + E172(a; C, b) (10)

This means that the same operation Fj measures also the deviation from the associativity of the
operation E7 1 =—1.

2.8.2. hGa as a B(co)-algebra. Here we show that a hGa structure on A is a particular B(co)-algebra
structure: it induces on B(A) = (T¢(sA),dp) an associative multiplication but does not change the
differential dp (see [5, 7, 12, 14]).

Let us extend our sequence {F; 5, k=0,1,2,... }} to the sequence

{Ep,q : (A@;D) Y (A@I]) — A’ b,q = 07 17 cee }

adding
Ep1=1id, Eoq>1 =0, FEig=id, E,>10=0, (11)
and E,~1 4 = 0.
This sequence defines a map E : B(A) ® B(A) — A by

E([al, cey U] @ [by, . ,bn]) =FEpq(at,...,am;b1,...,by).
Conditions (3) and (4) mean exactly
dE+ E(dp®id+id®dp) =FE — F,
i.e., F is a twisting cochain. Thus its coextesion is a dg coalgebra map
ur : B(A) ® B(A) — B(A).
Condition (6) can be rewritten as
E(pr ®id—id @ pg) = 0,

so this condition means that the multiplication pp is associative. Condition (11) implies that [ ] €
A C B(A) is the unit for this multiplication.
Finally, we obtained that (B(A),dp,A, ug) is a dg bialgebra; thus a hGa is a B(0o)-algebra.

2.8.8. Three examples of hGas. There are three remarkable examples of homotopy G-algebras.

The first one is the cochain complex of 1-reduced simplicial set C*(X). The operations E j here are
dual to cooperations defined by Baues in [2], and the starting operation Ej  is the classical Steenrod
—1 product.

The second example is the Hochschild cochain complex C*(U,U) of an associative algebra U. The
operations FEj j here were defined in [10] with the purpose of describing A(co)-algebras in terms of
Hochschild cochains, although the properties of those operations which where used as defining ones
for the notion of homotopy G-algebra in [20] did not appear there. These operations where defined
also in [6]. Again the starting operation Ej; is the classical Gerstenhaber circle product, which is
sort of ~—1-product in the Hochschild complex. These operations were used in [16] in the proof of the
Deligne hypothesis.
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The third example is the the cobar construction QC of a dg-bialgebra C'. The cobar construction
QC of a DG-coalgebra (C,d : C — C,A : C — C ® () is, by definition, a DG-algebra. Now assume
that C' is additionally equipped with a multiplication x4 : C ® C — C turning (C,d, A, p) into a
DG-bialgebra. How does this multiplication p reflect on the cobar construction QQC? There arises a
natural hGa structure, and the operations E; j are constructed in [13]. Again, the starting operation
E, ; is classical; it is the Adams —;-product defined for QC' in [1].

3. By-Algebra Structure in Homology of a hGa

Here we turn to the main goal of this paper.

Now assume that (A, d, i, {E1 1 }) is a hGa. Note that the sequence of operations { £ 1} determines
a twisting cochain £ : BA® BA — A.

By the minimality theorem (see [8]), on H(A) there exists a structure of minimal A.-algebra
(H(A),{m;}) and a weak equivalence of A, -algebras

f=Afd (HA), {mi) = (A fma = dyma = prmg = 0,ma =0, }).
This weak equivalence induces a weak equivalence of dg coalgebras
B(f): B(H(A),{m;}) — BA.
Composing the tensor product
B(f)® B(f) : B(H(A), {m:}) ® B(H(A), {m}) = BA® BA

with the twisting cochain E : BA ® BA — A determined by hGa structure operations {FE; ;}, we
obtain a twisting cochain

Eo (B(f)® B(f) : B(H(A). {m:}) ® B(H(A), {m:}) —» BA® BA - A.
Our aim is to lift this twisting cochain to a A,-twisting cochain
E..: B(H(A), {m:}) ® B(H(A), {m3}) = (H(A), {ms}),

which, in turn, will define a needed B, algebra structure on (H(A),{m;}).
The existence of E, , follows from the bijection

Doo(f) : Do (B(H(A), {mi}) @ B(H(A), {my}), (H(A), {mi}) )
— D(B(H(A), {mi}) ® B(H(A), {m:}), 4),

which is guaranteed by Theorem 2. In particular, we can take E, , from the preimage of the class of
twisting cochain F o (B(f) ® B(f)).
These twisting cochains can be observed from the diagram

B(H(A), {m:}) ® B(H(A), {m;}) " = (H(A), {m:})
B'(f)®§(f)l lf
BA® BA ~A

E

This diagram does not commute, but the twisting cochains foF, , and Eo (B(f)®B(f) are equivalent.
Consequently the diagram of induced dg coalgebra maps commutes up to homotopy.
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To summarize, the obtained Ao-twisting cochain E, , determines on the A.-algebra (H(A),{m;})a
structure By-algebra, which in its turn determines a (nonassociative generally) multiplication B(FE, )
on the B-construction B(H (A, {m;}) so that the diagram of dg coalgebra maps

BH(A), (mi}) @ BHA), {mi}) " = B(H(A), {mi))
E(f)@ﬂf)l lé(ﬁ
BA® BA B(E) > BA

commutes up to homotopy. Thus the dg coalgebra map
B(f): B(A,{m;}) — BA

is multiplicative up to homotopy.
Finally we have the following assertion.

Theorem 3. Let (A,d,u,{E1}) be a hGa. Then on its homology H(A) there exists a structure of
Boo-algebra (H(A),{m;},{E,q}) such that homology algebras

H(E(H(A), {m}, {Ep,q}))’ and H(B (A> d, , {Elk}))

are isomorphic.

For ahGa (A,d, 1, {E1 1 }), the twisting cochain £ : BA® BA — A satisfies the additional conditions
(6) which guarantee that the induced multiplication on BA is associative. The twisting cochain Ei ,
we have obtained satisfies only Brown’s condition, but not that condition for associativity, so the
obtained multiplication

B(f): B(H(A), {m}) ® B(H(A), {m;}) — B(H(A),{m;})

is a chain map, but nonassociative generally. Thus the bar construction B(H(A),{m;}) is a nonas-
sociative bialgebra. We expect that this nonassociative multiplication will be a part of a certain A
algebra structure on B(H(A),{m;}), which will allow us to iterate the process.
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