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Abstract

We find the normal form of nilpotent elements in semisimple Lie algebras that generalizes the Jordan
normal form in sly, using the theory of cyclic elements.
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1. Introduction

Let g be a semisimple finite-dimensional Lie algebra over an algebraically closed field

F of characteristic 0 and let f be a non-zero nilpotent element of g. By the Morozov—
Jacobson theorem, the element f can be included in an sl,-triple s = {e, h, f}, unique, up
to conjugacy by the centralizer of f in the adjoint group G [9], so that [e, f] = h, [h, e] = 2e,
[h, f]1= —2f. Then the eigenspace decomposition of g with respect to ad / is a Z-grading of g:

d
g=€P g,. where gsq #0. (1.1)
j=—d

The positive integer d is called the depth of the nilpotent element f in g. Choose a Cartan
subalgebra § in gy of g (it contains % since & is central in gy) and a subset of positive roots of
g, compatible with the Z-grading (1.1), and let oy, ..., «, be simple roots. Then the Dynkin
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labels a1 (h), ..., a,(h) take the values O, 1, or 2 only, and determine f up to conjugation [4].
Let gev = @jeZ 925

An element of g of the form f + E, where E is a non-zero element of g4, is called a
cyclic element, associated to f. In [9] Kostant proved that any cyclic element, associated to a
principal (= regular) nilpotent element f, is regular semisimple, and in [12] Springer proved
that any cyclic element, associated to a subregular nilpotent element of a simple exceptional Lie
algebra, is regular semisimple as well, and, moreover, found two more distinguished nilpotent
elements in Eg with the same property.

A systematic study of cyclic elements began in the paper [6]. Let us remind some
terminology and results from it. A non-zero nilpotent element f of g is called of nilpotent
(resp. semisimple) type if all cyclic elements, associated to f, are nilpotent (resp. there exists a
semisimple cyclic element, associated to f). If neither of the above cases occurs, the element
f is called of mixed type. The element f is said to be of regular semisimple type if there exists
a regular semisimple cyclic element associated to f.

An important role in the study of cyclic elements, associated to a non-zero nilpotent element
[, is played by the centralizer 3(s) in g of the sl,-triple s and by its centralizer Z(s) in G. Since
h € s, the group Z(s) preserves the grading (1.1), so that we have the linear algebraic groups,
obtained by restricting the action of Z(s) to g;, which we denote by Z(s)|g;, j € Z. The vector
space g; carries a Z(s)-invariant non-degenerate bilinear form

(x, y) = x((ad f)'x, ), X,y €48,

where x is the Killing form. The bilinear form (-, -) is symmetric (resp. skew-symmetric) if j
is even (resp. odd) [6,10].
The first main result of [6] is the following theorem.

Theorem 1.1.

(a) A non-zero nilpotent element f is of nilpotent type if and only if the depth d of f is
odd. In this case Z(s)|gs = Sp(ga)-
(b) A non-zero nilpotent element f is of semisimple type if and only if the set

So(f)={E €ga| [+ E is semisimple} (1.2)

contains a non-empty Zariski open subset. The set Sy(f) is a union of closed orbits of
Z(s) in g4 and is conical.

The set S4(f) € gq for all nilpotent elements f of semisimple type in all semisimple Lie
algebras g is explicitly described in [5].

The positive integer d = d — 1 (resp. = d) if f is of nilpotent (resp. semisimple or mixed)
type in g is called the reduced depth of f in g. Note that d is the depth of f in ge. The
dimension of the affine algebraic variety g;/Z(s) is called the rank of f in g. Obviously the
rank of f in g equals the rank of f in ge,.

The key notion of the theory of cyclic elements is that of a reducing subalgebra for a
nilpotent element f in g. It is a semisimple subalgebra q of g, normalized by s, such that
Z(s)(qNgy) contains a non-empty Zariski open subset. Note that if q is a reducing subalgebra
for f in g, then q N ge, is as well. In [6] the following conjecture was proposed.

Conjecture 1.1. For any non-zero nilpotent element f and sly-triple s containing it, there is
a unique minimal reducing subalgebra, up to conjugacy by Z(s).

In the present paper we prove this conjecture (see Theorem 2.1).
2
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The next important result of [6] is the following theorem (which is stated here in a slightly
different form).

Theorem 1.2. Let f be a non-zero nilpotent element of g of reduced depth d. Then there
exists a reducing subalgebra q C gey for f, f € s C n(q) = q @ 3(q), where n(q) (resp. 3(q))
stands for the normalizer (resp. centralizer) of q in g, such that the decomposition

[=["+f" where f* €q, f" €5, (1.3)
has the following properties:

(a) f* is an element of semisimple type in q. _
(b) If (a) holds, then the reduced depth of f" in [3(q), 3(q)] is smaller than d.
(c) If f is of semisimple type, f is of regular semisimple type in q.

A collection of all nilpotent elements f with the same f* in (1.3), is called the bush,
containing the nilpotent element f* of semisimple type.
A stronger version of Theorem 1.2(c) was proved in [5]:

Theorem 1.3. If f is a nilpotent element of semisimple type in g, then there exists a reducing
subalgebra q for f, such that qNgy is a Cartan subspace of the linear algebraic group Z(s)|g4.

Here we should recall the notion of a polar linear algebraic group G|V and its Cartan
subspace C C V, introduced in [2]. It is a finite-dimensional faithful representation of a
reductive algebraic group G in a vector space V, which admits a subspace C, called a Cartan
subspace, having the following properties, similar to that of a Cartan subalgebra in a simple
Lie algebra:

(C1) G-orbits of all v € C are closed,
(C2) any closed G-orbit in V intersects C by a non-empty finite subset,
(C3) all Cartan subspaces are conjugate by G.

We omit the formal definition of a polar representation; it is proved in [2] that it does satisfy
properties (C1)—(C3), which suffice for this paper.

It is proved in [5] (by a case-wise verification) that all linear groups Z(s)|g; are polar.

The first main result of the paper is Theorem 2.1 which proves Conjecture 1.1. Namely,
for a nilpotent element f of reduced depth d, let C C g; be a Cartan subspace for the
polar linear group Z(s)|g;. Let q(f, C) be the subalgebra of g, generated by f and C. We
show that q(f, C) is a minimal reducing subalgebra for f if f is of semisimple type, and that
q(f, C) = q(f*, C)d Cf", where f = f*+ f" is the decomposition (1.3) for f of nilpotent
or mixed type, where q(f%, C) is a minimal reducing subalgebra for f (f" may be 0 if f is
of nilpotent type).

A nilpotent element f of g is called irreducible if its only reducing subalgebra is g itself.
All irreducible nilpotent elements in simple Lie algebras g are listed in [6, Remark 5.4]. They
are listed in Table 1, reproduced from [5, Table 1]. Note that d = d is even for all of them.

Here in all cases £ > 1, and o, denotes the n — 1-dimensional nontrivial irreducible
representation of S,. Throughout the paper we use notation for nilpotent elements from [1]; in
particular X; stands for the principal nilpotent element in the simple Lie algebra of type X.

Note that a nilpotent element f in a semisimple Lie algebra g is irreducible if and only if
the projection f; of f to each simple component g; of g is irreducible in g;, and the depth of
fj in g; is the same for all j.
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Table 1
Irreducible nilpotent elements in simple g [5, Table 1].
g Nilpotent f Depth dim gg4 Z(s)|g4
Aog Aoy 2—2——2—2 4k 1 1
Cr Cy 2—2——24=2 4k —2 1 1
Bk,k#:; By 2—2——2=2 4k —2 1 1
/2
Dog+2 Dopro(ar) 2= 0=2==2=0 4k +2 2 101
2
Gy Gy 2= 10 1 1
F4 F4 2—2=p2—2 22 1 1
Fy Fa(ar) 0—2=>0——2 10 2 oy ®1
E¢ Eg(ay) 2—2—?—2—2 16 1 1
2
E; E; 2—2—2—?—2—2 34 1 1
2
E; E7(ay) 2—2—2—?—2—2 26 1 1
2
E; E7(as) 2—0—0—?—0—0 10 3 o361
0
Eg Eg 2—2—2—2—?—2—2 58 1 1
2
Eg Eg(ay) 2—2—2—2—?—2—2 46 1 1
2
Eg Es(ay) 2—2—0—2—?—2—2 38 1 1
2
Eg Eg(as) 2—0—2—0—?—0—2 28 1 1
0
Eg Eg(as) 0—2—0—0—?—0—2 22 2 o @1
0
Eg Esg(ag) 0—2—0—0—?—0—0 18 2 03
0
Eg Es(a7) 0—0—0—2—?—0—0 10 4 o5
0

An easy consequence of the theory of cyclic elements is Theorem 2.2, which provides
a normal form of any non-zero nilpotent element f of reduced depth d in a semisimple
Lie algebra g in the following sense. There exist semisimple commuting subalgebras g[j],
j=1,...,s, of g, and irreducible nilpotent elements f[j] of reduced depth d ; in g[j], such
that:

M f =Y, fLilk
id=d >d>»> - >d;
(iii) the reduced depth and the rank of f[j] in g[j] are the same as the reduced depth and
the rank of f — Z,Kj flk] in g(j — 1) for all j > 1, where g(j) is defined inductively
as the derived subalgebra of the centralizer of g[j] in g(j — 1), starting with g(0) = g.

Such a normal form exists for any non-zero nilpotent element f and is unique up to conjugation
by the centralizer of f in G.

In the case g = sly this normal form coincides with the Jordan normal form. We list normal
forms of all nilpotent elements of all simple Lie algebras g (the case of semisimple g obviously

4



M. Jibladze and V.G. Kac Indagationes Mathematicae xxx (Xxxx) xxx

reduces to the simple ones). The case of classical g is treated in Section 3, and normal forms
of nilpotent elements in exceptional g are described in Tables 3—7 in Section 4.

In our next paper we use the normal form of a nilpotent element f to construct a map from
the set of nilpotent orbits in a simple Lie algebra g to the set of conjugacy classes [w ] in the
Weyl group W of g. It extends the construction of [6], where [w;] was constructed for f of
regular semisimple type (based on the idea of [9], see also [12]), to all f, using the normal form
of f, since all irreducible nilpotent elements in a simple Lie algebra are of regular semisimple
type. This map coincides with that in [8] for f of regular semisimple type (in particular, for
irreducible f, given by Table 8). However it is different in general (cf. [11]).

Throughout the paper the base field F is algebraically closed of characteristic 0.

2. Minimal reducing subalgebras and the normal form of a nilpotent element

Theorem 2.1. Let f be a nilpotent element in g of reduced depth d. Let C C g; be a Cartan
subspace of the Z(s)-module g;. Denote by q(f, C) the subalgebra of g, generated by f and
C. Then

(a) If f is of semisimple type, then q(f, C) is a minimal reducing subalgebra for f.

() If f is of nilpotent or mixed type, let f = f°+ f" be the decomposition (1.3) with
respect to a reducing subalgebra q for f. Then q(f, C) = q(f%, C) ® Cf" (direct sum
of ideals), and q(f*, C) is a minimal reducing subalgebra for f.

(c) Any minimal reducing subalgebra for f of semisimple (resp. nilpotent or mixed) type is
obtained as in (a) (resp. (b)).

(d) Any two minimal reducing subalgebras for f are conjugate by Z(s).

Proof. (a) Let q be a minimal reducing subalgebra for f, with induced from (1.1) Z-gradation
q = @jez q;.- By [5, Theorem 4], s C q, Z(s)|q; is a finite linear group, and q; is a
Cartan subspace for Z(s)|g;. Since Cartan subspaces of Z(s)|g; are conjugate to each other,
we may assume that C = q;. Let q be the subalgebra of q, generated by the s-submodule
m=> j>olad f ) q;. 4 is semisimple by [6, Proposition 3.10], hence it is a reducing subalgebra
for f in q. Due to minimality of ¢, § = ¢, and since q(f, C) contains m, we conclude that
q(f, C) contains g, hence coincides with g.

(b) Let g be the reducing subalgebra for f in g from Theorem 1.2, and let f = f*+ f" be
the decomposition (1.3), hence f*, f" € g_», f* € q, [f*, f"] = 0. Then obviously we have

af.O) S a(f*. O) @ Cr.

In order to prove the reverse inclusion, note that q(f, C) is an algebraic Lie algebra. By
[3, Theorem 3.15], the element f + E, where E is a non-zero element of C with closed
Z(s)-orbit, is integrable, which means that the nilpotent part of the Jordan decomposition of
f+ Eis f". Hence f" € q(f, C), proving the reverse inclusion.

(c) and (d) follow since any two Cartan subspaces of the Z(s)-module g; are conjugate. []

Remark 2.1. Let f be a nilpotent element of even depth d in a simple Lie algebra g. It was
proved in [3] (by a case-wise verification) that Z(s)|g,—; is a polar linear group as well. One
can show that an analogue of Theorem 2.1 holds in this situation as well. Namely, provided that
there exists a non-zero Cartan subspace C C g,_1, the subalgebra q( f, C) is either semisimple,
or is a direct sum of semisimple subalgebra and a 1-dimensional center spanned by a nilpotent
element. In the first (resp. second) case f + E is semisimple for generic E € g,;_; (resp. never
semisimple).
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Now it is easy to prove the existence and uniqueness of a normal form.

Theorem 2.2. Let f be a non-zero nilpotent element of reduced depth d in a semisimple
Lie algebra g. Then there exist semisimple commuting subalgebras g[jl, j = 1,...,s, and
irreducible nilpotent elements f[j] of reduced depth d; in g[j], such that

)
=Y fL; @1
j=1

i)d=d >d> > >dy;

(iii) the reduced depth and the rank of f[j] in glj] are the same as the reduced depth and
the rank of f — Zk<j flkl in g(j — 1) for all j > 1, where g(j) is defined inductively
as the derived subalgebra of the centralizer of g[j] in g(j — 1), starting with g(0) = g.

Two such normal forms are conjugate to each other by the centralizer of f in G.

Proof. Consider a minimal reducing subalgebra q of f in g, provided by Theorem 2.1, and
the decomposition (1.3): f = f*+ f™. Let f[1] = f*, g[1] = q, d; = reduced depth of f[1]
in g[1].

Let g(1) be the derived Lie algebra of the centralizer of q in g. Then f" € g(1) and we
apply the same procedure as above with f replaced by f" and g replaced by g(1). Note that
the reduced depth Jg of f" in g(1) is strictly smaller than cil due to Theorem 1.2(b). After
finitely many such steps we obtain a normal form of f in g.

The uniqueness, up to conjugacy by the centralizer of f in G, follows from conjugacy of
sl-triples, containing f, and of minimal reducing subalgebras for f. [J

Definition 2.1. Decomposition (2.1) is called the normal form of the nilpotent element f in
the semisimple Lie algebra g.

3. Normal forms of nilpotent elements in classical simple Lie algebras

3.1. g=sly, N>2

Non-zero nilpotent elements f, up to conjugation, are parametrized by partitions of N

p=pV PSP, N =) rip; 3.1)
where
I R (32)

Then the associated to the partition p nilpotent element f is of semisimple type if and only if
p=(p", 1), (3.3)

and the bush, containing the nilpotent element, associated to this partition, consists of all
nilpotent elements, associated to partitions of N with the same p; and r| [6, Section 4]. Hence

6
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the decomposition (1.3) of f can be described as follows. Consider the following (regular)
subalgebra of sly:

sl,, @ --- @ sl, @sly,, where Ny = N — prry, G4
N—— —
r| times

and denote by f[jl, j = 1,...,r;, the nilpotent Jordan block of size p; in the jth copy of
5lp,. Then

n
£=>1UL =1 (3.5)

j=1
Consequently the first »; summands of the normal form of f are f[1], ..., f[ri], with

fLj1 € gljl, where g[j] is the jth copy of sl, in (3.4) if p; is odd, and the subalgebra
sp,, of sl, , containing f[;], if p; is even.

Next, we apply the same procedure to the nilpotent element f™ in sly,, which is associated
to the partition (p(2r2), .o, pU)) of Ny, etc.

We thus obtain the following

Theorem 3.1. Let g = sly, and let f = J,, @ --- ® J,, be the Jordan normal form of f,
where J,, is the nilpotent Jordan block of size n. Then the normal form of f is as follows: we
let f[j1=Jn; € gljl, where g[j] is the subalgebra s\, (resp. sp,; C sly;), containing f[j1,
if nj is odd (resp. even).

32. g=spy, N =2, even

Non-zero nilpotent elements f, up to conjugacy, are parametrized by partitions of N of the
form (3.1), (3.2), where r; is even if p; is odd. Then the associated to the partition p nilpotent
element f is of semisimple type if and only if p is of the form (3.3), and the bush, containing
the nilpotent element, associated to this partition, as for sy, consists of all nilpotent elements,
associated to partitions of N with the same p; and r; [6, Section 4].

In order to describe the decomposition (1.3) of f, consider two cases.

Case (a): p; is even. Consider the following subalgebra of spy (cf. (3.4))

sp, O Dsp, @5pN1,where Ny =N — pry, 3.6)
— ————
rq times
and denote by f[jl, j = 1,...,r;, the nilpotent Jordan block of size p; in the jth copy of
5p,,, - Then (3.5) holds. Consequently the first 7| summands of the normal form of f are f[1],

..., flr1], with f[j] € gl[j], where g[j] is the jth copy of sp,, in (3.6).
Case (b): p; is odd, then r| is even: r; = 2k;. Consider the following subalgebra of sp:

sly,, @ --- @ sly, ®spy,, N1 =N —piry, 3.7

kp times J
where sl is the subalgebra of sp,, in (3.6) embedded via the map a +— diag(a, —aT). This
subalgebra ~contains the matrix fpl =J, ® (—J,Il). Denote by f[jl, j = 1,...,k;, the
submatrix J,,, in the jth copy of s, . Then (3.5) holds. Consequently the first k; summands

of the normal form of f are f[1], ..., f[k;] with f[j] € g[j], where g[j] is the jth copy of
5lg, in (3.7).
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Next, we apply the same procedure to the nilpotent element f" in spy , associated to the
partition (pérz), ooy pU9)) of Ny, etc.

We thus obtain the following

Theorem 3.2. Let g = spy, and let f be a non-zero nilpotent element of g. Then f is a direct
sum of Jordan blocks Jnj, where n; is even, and the blocks jnj = J,,j 69(—],]/.) ifn; is odd. The
normal form of f is then as follows: we let f[j] = Ju; € glj], where g[j] is the subalgebra
5Py containing f[jl, if n; is even, and f[j] = f,,j € gljl, where g[j] is the subalgebra s,
containing f[j], embedded in SP2; via the map a — (a, —a") if n; is odd.

33. g=soy, N >7

We may assume that N > 7 since 503 = sp,, §04 = 25p,, §05 = §p,, §0¢ = sl4. Non-zero
nilpotent elements f, up to conjugation, are parametrized by partitions of N of the form (3.1),
(3.2), where r; is even if p; is even. Such a partition is called orthogonal. The associated to
the partition p nilpotent element f is of semisimple type in the following cases [6]:

(@) p=(3,12));

(b) p = (p1,1"), p; > 5 odd;

(©) p=(p1, p1 —2,17)), p; =5 odd;

d p= (P(rl ,102)), p1 = 2 even, r; > 2 even;
() p= (Plrl), 102), p; > 3 odd, r; > 2 even.

The depth d of f is equal to 2p; — 4 in cases (a)—(c), and to 2p; — 2 in cases (d), (e).
Bushes, containing the nilpotent elements of semisimple type, consist of nilpotent elements,
associated to the following partitions of N (with all even parts having even multiplicities) [6]:

(a) the partition itself;

(b) all partitions with the same p; and r; = 1, satisfying p, < p; — 2;
(c) all partitions with the same py, r; = 1, and p, = p; — 2;

(d) all partitions with the same p; and the same ry;

(e) all partitions with the same p; with multiplicity r; or r; + 1.

It is easy to deduce from [6] or [5] the following

The embeddings are constructed as follows. We view soy as the Lie algebra so(V), where
V is an N-dimensional vector space with a non-degenerate symmetric bilinear form.

(a), (b), (c). Taking a subspace U < V for which the restriction of the bilinear form is
non-degenerate, we obtain the embedding so(U) C so(V);

(b); G, C so7 by taking the irreducible 7-dimensional representation of G»;

(d) If we view sp,, as the Lie algebra sp(U), where U is an m-dimensional vector space
with a non-degenerate skewsymmetric bilinear form, then U ® C?, where C? is endowed with
a non-degenerate skew-symmetric bilinear form, defines an embedding sp,, C s05,, C soy.

(e) If we view sl,, as the Lie algebra sl(U), then taking U + U* with the non-degenerate
symmetric bilinear form defined by letting U and U* to be isotropic, defines an embedding
s, C 500, C soy.

Given a partition p of the form (3.1), (3.2) of N with even number of even parts we break
it in a union of boxes by, b,, ..., which are partitions of integers < N as follows:

Case 1. pyisodd 23, r; =1, p» # p1 — 1.

() p2 < p1 — 2, then we let by = (py)

(B) p2 = p1 — 2, then we let by = (p1, p1 — 2)

8
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Table 2
Normal forms of nilpotent elements of semisimple type in soy.
f Normal form Embedding

(a) (3,102) 2C; 504 C S0y
(b)7 (7, 102)) G G, C s07
(b) Qk+1,10), k#£1,3 B 50241 C SOy
©) (2k +3,2k +1,103) Dogt2(ar) 504¢+4 C 50N
(d) (2k)m, 102)) nCy nspy C S0y
(e) 2k + 1), 102) nAy n sy C soy

Case 2. py is even > 2, r; > 2 is even. Then we let by = (pgr])).

Case 3. pyisodd > 3, r; > 2.

(@) ry is even, then we let by = (pg

(B) ry is odd, then we let b, = (pﬁrl*l))

Case 4. pyisodd > 3, r; = 1, p» = p; — 1. Then the associated nilpotent element f is
of nilpotent type, and we let p = pey | | Poads Where pey (resp. poda) is the subpartition of the
partition p, consisting of its even (resp. odd) parts. Obviously, both are proper subpartitions,
which correspond to even nilpotent elements of mixed type in the subalgebras sop,,| (resp.
50| poqql) Of 50N

Next, we remove the box b, from the partition p and continue this procedure in cases 1-3;
in Case 4 we apply this procedure to the partitions pe, and podq.

Alternatively, we may begin by splitting the partition p in the disjoint union of p., and poqq
and apply the above procedure separately to these subpartitions. Then Case 4 does not occur.

We thus obtain a collection of subalgebras g[j] of soy and nilpotent elements f[j] of
semisimple type in these subalgebras, and we replace g[j] by its subalgebra g[j], in which
f[j] is an irreducible nilpotent element, using Table 2.

The following theorem is now clear.

fl))

Theorem 3.3. The above procedure defines a normal form of any non-zero nilpotent element
finsoy, N>7. O

Example 3.1. Consider the nilpotent orbit for type A corresponding to the partition

(249,23® 219 18,139,109, 8, 3P 2 10, (3.8)

From the even parts (24, 18, 109, 8, 2) one obtains the decomposition 3C;; + Co + 5Cs +
6C4 + C1, and the odd parts (23%, 219, 13® 32 10)) give 4A5; + 5A + 4A 15 + 2A,. The
normal form of (3.8) is then the sum of these two sums, arranged in decreasing order of depths:

3Ci12 +3A»n +5A50 + Cog 4+ 3A10 + Cs + C4 + 2A, + C4.
For type C take, for example, the partition
(19®, 179 120 1119 10D 6, 5@ 27 1), (3.9)

The even parts (12©, 109, 6, 27) of this partition produce the decomposition 6C¢ + 3Cs +
C3+7Cy, and the odd parts (19®, 17® 1109 5® 1) give rise to 4A15+2A16+5A10+2A4.
The normal form of (3.9) is again the sum of these two, arranged in decreasing order of depths:
4A18 4+ 2A16 + 6Cg + SA19 + 3Cs + C3 + 2A4 + 7C;.
9



M. Jibladze and V.G. Kac Indagationes Mathematicae xxx (Xxxx) xxx

For an orthogonal example consider the partition
(20(4)’ 17(5)’ 15(6), 13(4)’ 10(2)’ 9(4)’ 8(2), 7(3)’ 5(4)’ 4(4)’ 3(8)’ 2(3)’ 1(6))_ (3.10)

Here the even parts (20, 10?, 8@, 4® 2®)) give the decomposition 2Co + Cs + C4 +2C, +
4C,, whereas the odd parts (17, 15©, 13® 9@ 74 5 3®) 1)) become subdivided into
blocks

(179 117,15 [ 159 115,13 [ 13@ [ 13|99 |79 7,5|5P 15,3 13© |3,19),

and this gives 2A6+Dig(a7) +2A14 +Dya(as) + Az +Be +2Ag + Ag +Dg(az) + Ay +Dalar) +
3A; + 2C;. Also here, the normal form of (3.10) is the sum of these two sums, arranged in
decreasing order of depths:

2Cio + 2A16 + Dys(ar) + 2A14 + Dyg(ag) + Apx + Bg + Cs + 2Ag + C4 + Ag + Dg(a2)
+ Ag + 2Cy + Dy(ay)) + 3A5 + 6C;

4. Normal forms of nilpotent elements in exceptional Lie algebras
We will use the following embeddings of subalgebras for the normal forms.

I Regular subalgebra (i.e. normalized by a Cartan subalgebra).
II Folding of the Dynkin diagram:

(l)n Bn C AZn

(z)n Cn - A211—1

(3)11 Bn - Dn+1

@) G, C Dy

(@) F, C Eg

III  Restriction:

(1) G, C Bgs; e1, ex + e3 are root vectors attached to simple roots of Gy,
where e}, e;, e3 are root vectors, attached to simple roots of Bj.

(2)n1 ..... ny 50:11 DD 50p, - 50n1+~~~+nz+~--

(3)n 5[n - 5p2n

() sl, C 502,

IV Centralizer of a simple subalgebra:

(IV)B,;cp,,  where B3 is folding of Dy, 3(B3) =C

(IV),cE,»  where By is folding of D5 C Es, 3By =CaC,
with C; (resp. C) a regular (resp. not regular) subalgebra of E;

(IV)g,cE;» where F4 is folding of E¢ C E;, 3(Fy) =C

(IV)B,cr;»  where By is folding of Ds C Eg, 3(B4) = B3,
with B, and C; + Cl regular subalgebras in B;

(IV)BycEy»  where B3 is folding of Dy C Eg, 3(B3) =By

(IV)Bscrg,  where Bs is folding of D¢ C Eg, 3(Bs) =B, =G,

(IV)r,cEg»  where Fy is folding of E¢ C Eg, 3(Fy) = Gy, 3(Gy) = Fy.

In Tables 3—7 we list all nilpotent elements f, up to conjugacy, in exceptional Lie algebras
g, in the increasing order of their depths d, their representatives in g, their normal forms
= ; J1Jjl, and describe embeddings g[j] < g. In each block of the tables we list first
the element of semisimple (resp. nilpotent) type, and after that all elements in the same bush

10
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Table 3

Normal forms of nilpotent elements in Gy.
f d Representative Normal form Embedding
Ay 2 fio Ci Regular
A 3 for C Regular
Ga(ar) 4 Sio+ fi3 A, Regular
Gy 10 Sfor Gy Regular

Table 4

Normal forms of nilpotent elements in Fy4.
f d Representative Normal form Embedding
Ay 2 Sfo100 C Regular
Al 2 foro0 + foi20 2C, Regular
A+ A 3 Soroo + for2o + fo122 3C Regular
Ay 4 f1000 + fo100 Ay i Regular
A +Aq + fooot +C Regular
52 4 fooro + Sfooor /:%2 Regular
Ax+ A 5 Jooto + fooot + f1000 Ay +C Regular
B, 6 JSoroo + fooro B, Regular
Cs(a1)(=B2 + A1) + foinn +Cy Regular
Fy(a3) 6 S1000 + for00 + Sfo120 + Sfor122 Dy(ar) Regular
B3 10 JS1000 + (for00 + foo10) G, III(1)
G 10 JSooor + fooro + Soi00 (&) Regular
Fy(a2) 10 for00 + for20 + fi110 + fooor Fy(az) Regular
Fa(a1)  (=Bag) 14 So100 + fo120 + f1000 + Sfooor By Regular
Fy 22 Sfor F4 Regular

with the element of semisimple type. The normal forms of these elements are obtained by
adding to the normal form of the element of semisimple type the summands given for them in
the tables.

It turns out that for all exceptional g the bush of f of nilpotent type in g contains f only,
namely, f is a nilpotent element of semisimple type in gey.

In all tables f,; denotes the sum of all root vectors, attached to negative simple roots.
An element fi, 4 denotes a root vector, attached to the negative root —Zi kia;. The
representatives of f in the Tables are given in terms of these root vectors. In most of the
cases the roots occurring there are linearly independent, and we can take all coefficients equal
1. However, in a few cases, namely, for nilpotent elements Ds(a;) in E¢, Dg(a;), E7(as), E7(az)
in E7, and Ds(a;) + A;, Ds7(az), E7(as), E7(az) in Eg, the roots occurring there are linearly
dependent; in these cases we use the choice of root vectors from [7].

These tables are deduced from Tables 5.1-5.4 of [6]. Again, we use notation for nilpotent
elements used in [1]. However, in some cases the more adequate notation of [4] is given in
parentheses.

The column with the heading “representative” contains a linear combination of negative
root vectors that belongs to the required nilpotent orbit. Linear combinations grouped in
square brackets represent the separate summands of type f[j] irreducible in a subalgebra g[j]
according to normal form. Linear combinations grouped in parentheses represent single root
vectors in non-regular semisimple subalgebras.

11
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Table 5
Normal forms of nilpotent elements in Eg.
f d  Representative Normal form Embedding
Ay 2 f,Ogoo C Regular
244 2 flogoo + fougol 2C, Regular
3A4 3 flogoo + fvu(l)oo + fougm 3C Regular
Az 4 f;JU(l)OO + founlyoo Ay Regula-r
Ay + Ay ~+ foooor + C; Regular
0
Ay +2A + fmgoo + foogm +2C; Regular
2A2 4 [fl ngao + fongm] + [fongno + foogwo] 2A2 Regular
282 + A4 5 [flngno + fongm] + [fongno + foogwo] + footlmo 2A; +C Reglﬂar
A3 6 flogoo + (fmgao + fnn:}on) Cz Folding of A3
A3 + A + fonom +Cy +reglﬂar
0
Dy(ay) 6 ,ﬁ)lgoo+,ﬁmt;00+fnn(1)no+ﬁ)|ém Dy(ar) Reglﬂa-r
A4 8 ﬁOgOO + ﬁ)lg(\() + ﬁ)!)ll)(‘(\ + ﬁ)!](ll(‘(\ A4 Regula'r
Ag+ A + fnogm + Cl Regular
D4 10 (ﬁngoo + foutlmo + fouglo) + fooéou G2 FOldll’lg of D4
Ds(ay) +(ﬁI:UU+‘ﬁIlI)IU) +C1 +(IV)B3CD4
As 10 (flngoo + foogm) + (fongoo + fooglo) + .fOO[I)OO Cs FOlding of As
Ee(az)(= As + A;) 10 (flngoo + foogm) + (fmgoo + fooglo) + .fOO[I)OO + fiu L Fy(az) Folding of Eg
Ds 14 fmgon + fmgoo + fonéoo + (fooglo + foof]}oo) By Folding of Ds
Ee(ar) 16 fmgnn”‘fowgoo"‘fong]o"‘foogm +foo%no+f0|(|)oo Es(ar) Regular
E¢ 22 (flngno + fongm) + (fongno + foogwo) + .fOO[I)OO + footl)on Fy FOlding of Ee

The column with the heading “normal form” lists types of the summands f[j] as occurring
in Table 1 of irreducible nilpotent elements.

For example, normal form Dy(a;) + 2C; of the nilpotent element f of type Az + A, in
g = E; (in Table 6) means that g[1] = Dy4, f[1] is of type D4(a;) (fourth row of Table 1 with
k = 1), while both f[2] in g[2] and f[3] in g[3] are of type C; (second row of Table 1 with
k=1).

For another example, the nilpotent with label A4 + Az in Eg (Table 7) with representative
[f1000800 + fmoogon + fomogno + ﬁmmgno] + [(f1234§31 + fooonglo) + fooongm] has normal form A4 +C5; here,
the first sum 1n square brackets is the principal nilpotent element represented by the sum of
negative simple root vectors of the regular simple subalgebra of type A4, while in the second
square brackets we have the principal nilpotent element in a non-regular simple subalgebra of
type Ca, where (fisssi + foooooro) 18 @ short negative simple root vector of this subalgebra and
ﬁ1000801 is its long negzative simople root vector.

5. A map from nilpotent orbits to conjugacy classes in the Weyl group

Recall the following construction ([6], cf. [9] and [12]). Let g be a simple Lie algebra and
let W be its Weyl group. Let f be a nilpotent element of g of regular semisimple type. This

12



Table 6
Normal forms of nilpotent elements in E7.
f d Representative Normal form Embedding
Al 2 floogco C] Regular
2A1 2 floogoo + fomgoo 2C1 Regular
(SAI)” 2 floogoo + fomgoo + foomlyoo (3C1)N Reglﬂar
(SAI)/ 3 floogoo + fomgoo + fouoglo (3C1)/ Reglﬂar
4A4 3 fmogoo + fomgoo + fouogm + fuuo?ou 4Cy Regular
Az 4 foooglo + fooogm Ar Regular
Ar + Ay + fiov000 +C Regular

0
Ay +2A + fomgoo + flnngoo +2Cy Regular
Ar +3A; + foonrlmo + fomgoo + fmogoo +3GC Regular
2A, Lfi 00000 + fomgoo] + [fono(l‘oo + fnnm]mn] 2A, Regular
2A2 + A4 [fl oog(m + fomgoo] + [fono(l‘oo + fnnmlmn] + fnnogol 2A; +C Regu]ar
A3 6 (fl \mgoo =+ ﬁ)mg(m) + ﬁ)logoo C2 FOldil’lg of A3
(A3 + Al)/ + ﬁ)uoglo +C +regular
(A3 + Al)// + ﬁ)uo(}mo +C +regular
Az +2A, + foum}mo + fmmgm +2C +regular
Dy(ar) 6 f001300+f000(1)|0+f000?00+ ﬁJUl(I)l)U Dy(ar) Regular
D4(ar) + Ay + floogoo +C Regular
Az + Az (= D4(ar) + 2A1) +f|::%|0+fmogoo +2G Regular
A3+ Ay + Ai(= Dy(ay) + 3A1) +f|23;32+f|zz%|o+flnngnn + @3¢y’ Regular
A4 8 fOﬂOgﬂl + fnnoglo + fnnn(l’on + frmﬂ(l)nn A4 Regular
Ay + A + fi 00000 +C Regular
Ay + Ay + ﬁnog(m + fi 00000 + Az Regular

(continued on next page)
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Table 6 (continued).

f d Representative Normal form Embedding

Dy 10 (frmlgno + foong\o + fnon?oo) + fooog}oo G F()lding of Dy

D4+ Ay + fio0000 +C +regular
0

DS(“I) (: D4 + 2A1) + flzz%lo + fl (mgm) +2C +regular

Ds(ar) + Ay (=D4 +3A1) + flzz;szz + flzz?lu + fmngm) + (3C1)H +regular

A/5 10 (.flooguu + ﬁyougw) + (ﬁnoguu + ﬁ!oo[l)uu) + ﬁ)olguo C3 FOldIIlg of AS

Ag 10 (floogoo + fooo?uo) + (fomguo + .f;?OO‘l)OO) + fomgoo Cs FOlding of As

As + Ay (= (As +AD") + fooooor +C +regular
0

De(az) 10 f!nogoo + _fIIOSOO + fongoo +f001(w]00+f000{1]|0+fonm‘)00 De(az) Regular

Ee(a3) (=(As + A])/) 10 (fomgrm + fooogm) + (fomgno + fOODE!O) + fODD(l)OO + f0| " 11 F4(az) FOlding of Eg

E7(as) (= De(a2) + Ay) 10 f!oogoo + fmogno + foongoo + fODO(l’OO + foont})oo + fonogm + flzsim E7(as) Regular

Ag 12 f!oogoo+fmogno+fuongoo+foon(nyoo"‘foonglo“‘fonogm Ag Regular

D5 14 fooogm + fﬂongm + foon(\)no + (fomgao + fonorlmo) B4 Folding of D5

Ds + Ay + fi 00000 +Ci +regular

D6(al) +(f|2222| _fle?zl) +C/l +IVB4CE7

E7(as) (= Dg¢(ar) + A1) +(f|2232| - flz:fz:)‘i”fmogoo +C/1 +C +IVB4CE7+regUIaI

Ee(ar) 16 .ﬁnogoo + foonguo + foooglo + fooogm + foooioo + fom(])oo Es(ar) Reglﬂaf

D¢ 18 fmogoo + fmogno + fODISOO + foon(xyoo + (foonglo + foon?oo) Bs FOlding of De

E7(“3) (: D6 +A1) +f123432 +C| +regular

Es 22 (fmog(m + f(mogm) + (fnmgon + f(mogm) + fom)éno + fooml)(m Fy FOlding of Eg

E7(a2) +(f‘|22%|0+f‘]12%||+,f111?2|) +Cy +IVF4CE7

E7(ar) 26 floogoo+fomguo+fomgoo+f000310+f00u80| +f000(1)|0+ﬁ)uo:00 E7(a1) Reglﬂa-r

E; 34 Sfor E; Regular
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Table 7
Normal forms of nilpotent elements in Eg.
f d Representative Normal form Embedding
Aq 2 f,000200 Cy Regular
2A; 2 floongoo + foomgoo 2C, Regular
3A; 3 flonngoo + foomgoo + f;]OOD(I)OO 3G Regular
4A4 3 flonngoo + foomgon + f;]OOD(I)OO + foooogm 4cy Regular
AZ 4 flOﬂOgOO + fﬁlﬂﬂ‘(:[)ﬂ A2 Regular
Ar + Ay + fooo0001 +Ci Regular
0
Ar +2A + fnooo?on + foooogm +2Cy Regular
A2 + 3A1 + fonmgoo + fnooﬂ?on + foooogm + 3C| Regular
2A2 4 [f;)OI()gﬂO + fO!)O]gO!)] + [.ﬁ)(mogl() + f;!ﬂOOg(H] 2A2 RegUIar
2A2 + Al [f;)OI()gﬂO + fO!)O]gO!)] + [,ﬁ)(mogln + f;!ﬂOOg(H] + fl (!(!03!)() 2A2 + Cl Reg]']lar
2A2 + 2A1 5 [f;)OI()gﬂO + fO!)O]gO!)] + [,ﬁ)(mogln + ﬁmong(n] + .ﬁ)()(!(\?ﬂ!) + fil(HN)g()(! 2A2 + 2Cl Reg]']lar
Aj 6 (fl ouogoo + ﬁmmgou) + ﬁn(mgtm C2 FOldil’lg of Az
Az + Ay + f(moogm + Al +regular
Az +2A + ﬁ)o(w(l)\m + fu(mogm +2A; +regular
Dy(ar) 6 fooulgoo + fUUUl(I)l)U + fuuooll)lu + ﬁ!oou(lmo Dy(ar) Reglﬂar
Dy4(ar) + Ay +flooogu0 +C Regular
Az + Az (= D4(ar) + 2A1) + .fl:’.’zflo + flooogoo +2C, Regular
Az + Az + Ay (= Dg(ar1) +3Ay) +f|223§32+flzzzf|n+flooogno +3C Reglﬂar
Dy(ay) + Az + fomogon + fmoogon + Az Regular
2A3 7 [(ﬁ 00!)8(!0 + fOﬂlﬂgOﬂ) + fnmosno] + [(ﬁ’ﬂﬂo‘l)ﬂﬂ + ﬁ]OOﬂgﬂl) + fOOﬂOgIO] 2C2 2 fo]dings Of A3

(continued on next page)
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Table 7 (continued).

f d Representative Normal form Embedding
Ay fluooguu + funmgno + foumgoo =+ ftmmgun Ay Regular
Ay + Ay + f(moogm +Ci Regular
A4 + 2A1 + ﬁ)o(w?\m + f(moogm + 2Cl Regular
Aq+ Ay + fmmogm + f(moogm + Az Regular
A4 + AZ + Al + [foonnglo + ﬁmuogm] + ftmoot‘)un + A2 + Cl Regular
As+As 9 [fi000000 + Sor00000 + Soo10000 + Sovor000] + [(f‘l234§31 + fo000010) + fooo0001] Ay +C regular + folding
0 0 0 0 2 0 0 of As
Dy 10 (foomgoo + fzmom‘)oo + fooooglo) + .fOUOO(I)OD G FOlding of Dy
D4 + Ay + fio00000 +C +regular
0
Ds(ay) (= D4 +2Ay) + /i 100000 + fmoogno +2Cy +regular
D5((1|)+A] (: D4+3A|) +f|222%|0+f1100300+f1000300 +3C] +regular
Dy + Ay + fmnognn + fmoog(m + A2 +reglﬂar
D5(0|)+A2 + [ﬂnnngﬂo"‘fﬂmngoo] +(fnono:|1 + ﬁ]ﬂOI‘I)H) +A2 +C1 +regUIar+IVF4CEg
As 10 (fi el + f;vmmé(m) + (ﬁnongm) + f;)umgou) + ﬁmmguo Cs FOlding of As
As + Ay (=(As + Al)/) + ﬁ)(mogm +C +regular
EG(QS) (: (AS + Al)”) 10 (ﬁmlognn + ﬁ)oougul) + (foomgoo + fon(wglu) + ﬁmoo(l)no + .ﬁ)ol 1 i 11 F4(a2) FOldng of Eq
Es(az) + Ay (= As +2A)) + fwoogou +C +regular
De(az) 10 ﬁ)loogoo + fm mgoo + fom 1300 + fouon[:)oo + .ﬁ?OOO(l’lO + foooo?oo De(a2) Regula.r
E7(as) (=As+Ar) 10 ﬁ)loogoo + .ﬁ)omgoo + foooxgoo + f;)OOO[I)OO + .ﬁ)ooonl)oo + foooogm + fmz};sl E7(as) Regular
Eg(a7) (=2A4) 10 fwzszzzm + f] oongoo + foloogoo + fomogoo + .ﬁ)oolgoo + fooooglo + foooogm + ﬁ)ooo?oo Eg(a7) Regula.r
Ag 12 fmnogoo + fou)ogoo + fomogoo + fonmgon + fooooéoo + fooon?oo Ag Regmar
A6 + A + fnouoom +C Regmar
0

(continued on next page)
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Table 7 (continued).

f d Representative Normal form Embedding

Ds 14 foooogm + fooooglo + .ﬁ)UOO[I)OO + (ﬁ)oongoo + foooo?oo) B4 Folding of Ds

Ds + Ay + for00000 +C +regular
0

De(ar) (=Ds5 +2Ay) + f2345242 + fomogoo +2Cy +regular

Ds + Az + ﬁ)loogoo + /i 000000 + Az +regular

D7(112) (= DS + A3) + fmoogon + (.ﬁ)]ZSgZ! - fm:s.:u) + BZ +IVB4CE3

E7(as) (= Dg(ar) + Ay) +fuwoguo+(fulzzz:1 - f0I23?2I) +C +él +IVB4CE3

Az 15 (fi 000000 + foouogon) + (fmoogoo + ﬁ)oooglo) + (.ﬁ)omgoo + foooo(x)oo) + foocngoo Cy Folding of A7

Ee(ar) 16 foomgoo"‘foomgoo"‘ﬁmoogm""ﬂooogm +fooon}00+fonm(|)on Eg(a1) Regular

Ee(a1) + Ay + flonngoo +C Regular

Eg(bs) (= E¢(a1) + Az = Dg(a3)) + fHas?az + flonngﬂo + A Regular

D6 18 ﬁ)l\)!)g(!1) + j;)!)l(!gﬂ!) + j;)(!(!lg!)() + ﬁ!()ﬂ!)(})(!() + (ﬁ)()!)()glﬂ + f;)!)(!(NIN)U) BS FOlding Of D6

E7(a3) (=D¢ + A1) + ](2345242 +Cy +regular

D7(ay) (=D + 2A1) + fmzzi}z + f2345?42 + 2Cl +regular

ES(“6) (: AS) 18 floongoo + fomogoo + foumgoo + ﬁ)omgoo + f0000(1)00 + foooogw + .ﬁ)OOOgUl + .ﬁ)lZS;ZI ES(”()) RegUlar

E6 22 (foomgoo + foonogon) + (form]goo + fnoooglo) + foooog}oo + foonm})oo Fy FOlding of E6

E(, + Ay +f|onnrmo +C +reglﬂar
0 -

E7(a2) +(.ﬁ)122f|u+ﬁ]1|z$11+f0||1%2|) +Cl +1VF4CE3

ES(bS) (: E7(a2) + Al) +_fl 345242 + floongoo + AZ +IVF4CE3

D7 22 JCIOOUE;OO + fOlOﬂgOD + fnmosnn + ﬁ]OOISOO + fOOﬂO(I‘OO + (f[)()ﬂﬂglﬂ + ﬁ)OOO?OO) B6 FOldlng Of D7

ES(“S) (: Dg(al)) 22 f;)IZB:’:?Z + f‘l !)()(!800 + j;)l(!()g!)() + f;!(\l!)g(!ﬁ + f;)()!)lg()ﬂ + f;)()(!l(l)!)!) + f;)(!()()llJl[! + f;)ﬂ!)()(l!(\() Eg(as) RegUIar

E7(al) 26 f;!ll)()gﬂ() + fO!H(!gOU + ﬁ)(!(}lg!)() + ﬁ!OO!)glO + fOU!)()gOI + ﬁ)()(!(}él() + ﬁ)(!OO:()(! E7(al) RegUIar

ES(b4) (= Eq(ap) + Ap) + f2345?42 +C Reglﬂar

(continued on next page)
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Table 7 (continued).

f d Representative Normal form Embedding
ES(a4) (= Ds) 28 fulzulz + floougoo + fmuogou + fuuloguu + ﬁ!omguo + fouuu(l]oo + fuuuoglu + ﬁmovuuo Eg(as) Regular

2 1
E7 34 ﬁnooguo + foonugoo + fouolgoo + ﬁ)ooo;}uo + fooooglo + foouo?oo + fouoogm E7 Regular
Eg(a3) (=E7+ApD + f234524z +C Regular
Esg(az) 38 Si000000 F Sor00000 + Soor1000  Sooor100 + foooorio  Sooooroo T Soooo010 + Soooooos Eg(a2) Regmar

0 0 0 0 0 1 0 0
Esg(ar) 46 Si000000 F Sor00000 F Soor0000 F Sooor000  Foooooio F Soooor10 + Soooor00 + Soooooos Esg(a1) Regular

0 0 0 0 0 0 i 0
Eg 58 Sfor Eg Regular
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Table 8
Diagrams of w € W, corresponding to irreducible nilpotent elements in simple g.
f Diagram of wy Order of wy Characteristic polynomial of w
1
Ag 14,,,$1 2k +1 P e T S |
Cy 1=>1—1—— 141 2k x4
1
B >1—1—--~—1=>1 2k X1
i |
Doy pa(ax) >0—1—0—~-—1—o< 2k +2 (kT 4 1)2
1 1
G, I— =1 6 %6
Fy l— 11— 1=>1—1 12 12
Fu(a) |—0—1=>0—1 6 @2
Ee(ar) 1—1—<|)—1—1 9 bo
1
|
1
E; 1—|—1—}—1—|—1 18 P13
1
Eq(a)) 1—1—1—(|>—1—1—1 14 Prapo
1
E7(as) 1—0—0—}—0—0—1 6 2
0
Eg 1—|—1—1—1—I—1—1 30 $30
1
Eg(a)) 1—1—1—1—1—?—1—1 24 b4
1
Eg(an) 1—1—1—0—1—?—1—1 20 $20
1
Esg(aq) 1—1—0—1—0—}—0—1 15 b15
0
Es(as) 1—0—1—0—0—:—0—1 12 #%,
0
Es(ag) 1—0—1—0—0—i—0—0 10 #%
0
Esg(a7) 1—0—0—0—1—?—0—0 6 ¢
0

means that there exists E € g, (in the Z-grading (1.1)), such that f + E is a regular semisimple
element of g. Its centralizer is a Cartan subalgebra b’ of g.
Lets; = o;(h), i =1,...,r, be the Dynkin labels for f, and let so = 2. Let

,
m = E a;si,
i=0

. . 2mi . .
where Y "7_, a;e; is the highest root, and let ¢ = ¢'m . Define an inner automorphism o of g
by letting

of(ey) = €€y, 0Ofle—y) =6 "e_q, i=1,...,r (GR))

The order of oy is m if f is not even and m/2 if f is even.
It was pointed out in [6] that all f of regular semisimple type are even, with the exception
of the nilpotent elements in sl,, associated to partitions (k" 1), where k is even (hence
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n = mk + 1 is odd); but these f are even in sl,_;, hence we may assume that f is even.
Then all the s; are either O or 2, and we replace the 2’s by the 1’s. Thus, oy can be depicted
using an extended Dynkin diagram of f by dividing the labels by 2 and letting s = 1.

Since f + E is an eigenvector of o, with eigenvalue ¢!, the Cartan subalgebra b’ is
o p-invariant, hence oy induces an element w; of the Weyl group W.

Since all irreducible nilpotent elements are of regular semisimple type and even, we thus
obtain a map from the set of orbits of irreducible nilpotent elements in g to the set of conjugacy
classes in W. This map is depicted in Table 8.

Taking the normal form of an arbitrary nilpotent element

f£=>_fll  fLilegljl
J

we can extend the map, given by Table 8, to all f by letting
wr = H Wil
J

where w ;) is the image in W of the element of the Weyl group of g[j] under the embedding
glilcag.

Note, however, that, though the map f +— w/ coincides with that of Kazhdan—Lusztig [8,11]
on the set of regular semisimple type f, in general it is different. We will study this question
in a subsequent publication.
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