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Abstract

We classify all integrable triples in simple Lie algebras, up to equivalence. The impor-
tance of this problem stems from the fact that for each such equivalence class one can
construct the corresponding integrable hierarchy of bi-Hamiltonian PDE. The sim-
plest integrable triple (f, 0, ¢) in sl corresponds to the KdV hierarchy, and the triple
(f,0,e9), where f is the sum of negative simple root vectors and ey is the highest
root vector of a simple Lie algebra, corresponds to the Drinfeld—Sokolov hierarchy.
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1 Introduction

The present paper is a continuation of our paper [4], where we studied integrability
of W-algebras. Namely, we showed that, for the classical affine W-algebra W(g, f)
attached to a simple Lie algebra g and its non-zero nilpotent element f, the Lie alge-
bra W(g, f)/dW(g, f) contains an infinite-dimensional abelian subalgebra, except,
possibly, for the following f (in the notation of [1]): 4A1, 2A; + 2A1, 2A3, Ay + A3
and A7 in Eg; A2 + Ajin Fy; A1 in G,. Consequently, for all these W-algebras (with
the seven exceptions above) one constructs an integrable hierarchy of bi-Hamiltonian
PDE, the simplest being the KdV hierarchy, constructed for W(sl,, f).

The proof of this theorem consists of the following ingredients. First, it is the
Drinfeld—Sokolov [7] (abbreviated DS) method of constructing integrals of motion in
involution in the case when f is a principal nilpotent element of g, which has been
extended to the case when f is a nilpotent element of semisimple type for g in [5].

Second, we showed in [4] that a simple modification of the DS method works also
for f of non-nilpotent type, which covers all nilpotent elements of even depth.

Third, in the same paper we showed that for f of nilpotent type this modification
works as well, except for the seven nilpotent conjugacy classes mentioned above.

Let us now introduce the relevant definitions. By the Jacobson—-Morozov theorem,
any non-zero nilpotent f of a simple Lie algebra g can be included in an sl,-triple
s = {e, f, h}. This produces a Z-grading of g by eigenspaces of ad A:

s=Py;. (1.1)

JEZ

which, up to conjugation, is independent of the choice of the sl-triple. The maximal
J > 0 for which g; # 0 is denoted by d and is called the depth of f.
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An element of the form f 4+ E, where E is a non-zero element of gy, is called a
cyclic element associated to f. The key tool in the DS method is Kostant’s theorem
that for the principal nilpotent f all the associated cyclic elements are semisimple.
The main result of [5] extends the DS method in the framework of Poisson vertex
algebras, to arbitrary f, which admits an associated semisimple cyclic element. Such
f is called a nilpotent element of semisimple type [8].

If all cyclic elements, associated to f, are nilpotent, then f is called a nilpotent
element of nilpotent type. It is proved in [8, Theorem 1.1] that f is of nilpotent type if
and only if its depth is an odd integer. As has been mentioned above, the DS method
works for f of non-nilpotent type.

In the case of f of nilpotent type, i.e., of odd depth d, we introduced in [4] the
notion of a quasi-cyclic element f + E, associated to f. It requires E to be a non-zero
element of g;_; with the additional requirement that the centralizer of E in g; is
coisotropic with respect to the symplectic form w on g1, defined by

w(a,b)y=(f|la,bl), a,beg. (1.2)

Hereafter, (- | -) is a fixed non-degenerate symmetric invariant bilinear form on g.

We show in [4] that the DS method works for f of nilpotent type, provided that
there exists a non-nilpotent quasi-cyclic element, associated to f. Moreover, such an
element exists if and only if f is not one of the seven nilpotent elements of odd depth
mentioned above. In the present paper, we study quasi-cyclic elements, associated to
arbitrary non-zero nilpotent elements in simple Lie algebras.

The main tool of the proof of the Integrability Theorem of [4] is the notion of
an integrable triple associated to the nilpotent element f. It is a triple of elements
(f1, f2, E), where fi1, fo € g2, E € gj with j > 1, such that

1) f=fi+ faand [f1, 2] =0;

(I12) [E, g>2] = 0and the centralizer of E in g; (which we denote by [1) s coisotropic
with respect to the symplectic form w, defined by (1.2);

(I3) f1 + E is semisimple and [ f2, E] = 0.

The coisotropy condition (I2) is important for the construction of the corresponding
to f classical affine W-algebra, and condition (I3) is used for the construction of
integrals of motion in involution.

Note that for an integrable triple (f1, f2, E) the decomposition f + E = (f1 +
E) 4+ f> is the Jordan decomposition, and that E commutes with the subalgebra
n.= [J' + g>2.

It turns out that for j < d — 1 there are no integrable triples (Proposition 3.5).
Obviously, for an integrable triple ( f1, f>, E), associated to f, the element f + E =
f1 + f2 + E is a cyclic (resp. quasi-cyclic) element, associated to f, if j = d (resp.
Jj = d — 1). Such a cyclic (resp. quasi-cyclic) element is called integrable. In this
case, the element £ € g; is called integrable for f. Conversely, given a cyclic or
quasi-cyclic element f 4+ E, we can obtain an integrable triple associated to f, by
taking the Jordan decomposition of f + E, provided that E is integrable for f. One
of the main problems is when such an integrable triple exists.
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In [4], we have established existence of integrable triples, associated to any nilpotent
element f, except for the seven cases mentioned above. In the present paper, we give
a complete solution to this problem. Namely, we find all integrable cyclic and quasi-
cyclic elements f + E, up to equivalence, for each non-zero nilpotent element f
in a simple Lie algebra g. Two integrable cyclic or quasi-cyclic elements f + E and
[+ E’ are called equivalent if E’ is proportional to an element from the orbit Z (s)(E),
where Z(s) stands for the centralizer of the sl,-triple s in the adjoint group G of g.
The importance of this problem stems from the fact that, as established in [4], for
each equivalence class of integrable triples one can construct the associated integrable
hierarchy of bi-Hamiltonian PDE.

A partial solution to this problem was given in [9], where all semisimple cyclic ele-
ments have been classified (the corresponding integrable triple has the form (f, 0, E)).
The key observation there (checked by case-wise verification) was that the linear reduc-
tive group Z(s)|gy is polar. Polar linear groups were introduced in [2] as reductive
linear groups, having properties, similar to the adjoint group (see Sect. 2.1 for the
precise definition). This observation allows one to reduce considerations to the case
E € C, a Cartan subspace of gy, since it was proved in [8], Proposition 2.2(a), that
for semisimple cyclic element f + E, the orbit Z(s)(E) must be closed.

In the present paper, we find that, remarkably, the linear reductive group Z(s)|gq—1
is polar as well! This is Theorem 2.8. Unfortunately we still need a case-wise analysis
in its proof. However, Remark 2.9 explains why Z(s)|g; should be polar for j = d
and d — 1. Note that Z(s)|g; is not polar in general for 1 < j <d — 1.

Our first main result is Theorem 3.6, which states that a cyclic element f + E is
not nilpotent if and only if the Zariski closure of the orbit Z(s)(E) does not contain 0.
Our second main result is Theorem 3.15, which states that a cyclic element f + E is
integrable if and only if the orbit Z(s)(E) is closed. Such E are classified by a Cartan
subspace of Z(s)|g,. A similar result holds for a quasi-cyclic element f + E, where
E € gq—1 and d is odd; in the case of even d we were able to prove only the “only if”
part of this result (see Theorem 3.16).

These results allow us to classify completely all integrable cyclic and quasi-cyclic
elements in all simple Lie algebras. As has been mentioned above, this is equivalent
to the classification of integrable triples. For exceptional g, this is done using the GAP
package SLA by de Graaf [15], and the results are listed in Table 5 and Tables 3, 4,
which represent the cases of d odd and even, respectively. For classical g this is done
by explicit calculations in the standard representation of sly, sp, and soy. In partic-
ular, we have the following results on existence of integrable cyclic and quasi-cyclic
elements in simple Lie algebras g, associated to non-zero nilpotent elements f € g.

Theorem 1.1 (a) An integrable cyclic element, associated to f, exists if and only if
its depth d is even.

(b) An integrable quasi-cyclic element, associated to f, exists in precisely the fol-
lowing cases:

(i) f has odd depth and is of the following type in exceptional g:

3A1 in Eg and Eg; 3A/1 inE7; 2A> + Ay in Eg, E7, Eg; 4A1 inEq7; A1 + A] in
Fy,
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(ii) f has even depth and is of the following type in exceptional g:

Aq in all exceptional g; 2A1 in Ee¢; Ay + Ay in Eg, E7, Eg; As+ Ay in Eg, E7,
Eg; A4 + 2A1 in Eg; Dy(ap) in Eg,

(iii) all f of odd depth in classical g, which happens only for g = soy, and the
partition, corresponding to f, has odd largest part p1 of multiplicity 1 and the
next part p, = p1 — 1,

(iv) the following f of even depth, corresponding to the partition ( pgrl), pém, o))
in classical g:

g=sly:r1 <ry; g=soy:priseven,ri =2 pr=p—1,r >2

Many statements in the paper are established by a case-wise verification. It would
be very interesting to find more conceptual proofs. Here are some of these statements.

(1) The linear groups Z(s)|g; for j = d and d — 1 are polar.

(2) There exists at most one, up to equivalence, quasi-cyclic element for each nilpotent
element f of even depth.

(3) There are no integrable triples (fi, f2, E£) with E € g;, where j <d — 1.

Throughout the paper the base field IF is an algebraically closed field of characteristic
0. Though the theory of polar linear groups was developed in [2] over C, all results
hold over FF by the Lefschetz principle.

2 Polar linear groups and gradings for nilpotent elements
2.1 Review of polar linear groups

Let G be a reductive algebraic group, acting linearly and faithfully on a finite-
dimensional vector space V. We denote the action of G on V by G|V. It is well
known that the subalgebra F[V]¢ of G-invariant polynomials is finitely generated,
hence the inclusion F[V]¢ — F[V] induces the map of the corresponding affine
varieties

m:V = V/G, 2.1

where V /G := Spec F[V]%.Itis well known that the map 7 is surjective and that each
of the fibers of 7 contains a unique closed G-orbit (the orbit of minimal dimension
in the fiber). The fiber over 7 (0), called the zero fiber, consists of elements v € V,
such that the Zariski closure of the orbit G(v) of v contains 0. Such elements are
called nilpotent elements of the linear group G|V . Elements v € V, such that G (v) is
closed, are called semisimple elements of G|V . This terminology is motivated by the
well-known fact that for the adjoint linear group G|g an element is semisimple (resp.
nilpotent) if and only if it is a semisimple (resp. nilpotent) element of the Lie algebra g.

An efficient way of constructing semisimple elements for a reductive linear group
G is given by the following

Proposition 2.1 [2] Let P be a set of weights of the g-module V from its irreducible
components with the following properties:
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(i) Ai — Ajisnotaroot of gifi # jand Ai, Aj € P are weights of the same
irreducible component of V;
(ii) zero is an interior point of the convex hull of P.

Let vy;, A; € P, be linearly independent weight vectors from irreducible components
of V. Then the vector )_; v, is semisimple.

Proof The proposition is slightly stronger than Proposition 1.2 from [2], but its proof
is the same. O

Corollary 2.2 (Kostant theorem) Any vector from the zero weight space of V is semisim-
ple.

Now we turn to the discussion of the especially nice class of reductive linear groups
G|V, called polar linear groups, which were introduced in [2]. Let v € V be a semisim-
ple element, and let

Cy={xeV]|gkx) g}, (2.2)

where g(v) = {av|a € g} C V. Then [2]
dimC, <dimV/G. 2.3)

The reductive linear group G|V is called polar if there exists a semisimple v € V,
such that

dim C, = dim V /G, (2.4)

and in this case C, is called a Cartan subspace of V.

Note that the Cartan subalgebra h of the Lie algebra g of G is a Cartan subspace for
the adjoint linear group G|g, since for a regular v € b its G-orbit is closed and (2.4)
holds because dim C, = dim V /G = rank g.

More generally, we have the following

Proposition 2.3 [9] Let G|V be a reductive linear group and let C be its zero weight
space. Then

dimC <dimV /G, (2.5)

and in the case of equality the linear group G|V is polar.

Proof By Corollary 2.2, any element v € C is semisimple. Let g° = {g e g | g(C) =
0}. Then there exists v € C, such that {g € g | g(v) = 0} = g°, and hence we have
g(v) = g(C). It follows that {x € C | g(x) C g(v)} = C, hence, if equality holds in
(2.5), C is a Cartan subspace. By the same argument, we have inequality (2.5), due to
the inequality (2.3). O

Remark 2.4 By the definition, G|V is polar in the case when dimV /G = 1, or
dim V /G = 0. Note also that the direct sum (G| x G3)|(V] & V») of polar linear
groups G;|V;, i = 1,2, 1s polar.
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The following theorem shows that a Cartan subspace of a polar linear group G|V
has the same basic properties as a Cartan subalgebra of g.

Theorem 2.5 Let G|V be a polar linear group and let C C V be a Cartan subspace.
(a) ([2, Theorem 2.8]). Let

N={geG|g(C)=C}, Z={geN|g()=cforallceC}, W=N/Z.

Then G(C) consists of all semisimple elements of V, and for any semisimple
v € V, the orbit G (v) intersects C by a (non-empty) orbit of W.
(b) ([2, Theorem 2.3]). If C' C V is another Cartan subspace, then g(C') = C for
some g € G.
(c) ([2, Theorem 2.10]). If G is connected, then V | G is an affine space (of dimension
dim C).
Recall that a linear reductive group G|V is called stable if V has a non-empty

Zariski open subset, consisting of closed G-orbits. The following proposition is very
useful in verifying that a stable linear reductive group G|V is polar.

Proposition 2.6 [3] Let G|V be a stable reductive linear group. Let C C V be a
subspace, such that

V=gC)®C (2.6)
and
dimC =dimV /G. 2.7

Then G|V is polar and C is a Cartan subspace.

Proof Due to (2.6), G(C) contains a Zariski open subset, and, due to stability, it
contains a Zariski open subset €2 consisting of closed G-orbits of maximal dimension.
Let C° = C N, andlet v € C°. Then the tangent space T, to G (v) at v lies in g(C),
and, due to (2.6) and (2.7), actually T,, = g(C). Since this holds for all v € C°, we
obtain that C;, = C. Hence, by (2.7), G|V is polar and C is a Cartan subspace. O

Remark 2.7 (a) It follows from Theorem 2.5 (a) that conditions (2.6) and (2.7) are also
necessary for a reductive linear group to be stable polar.

(b) By Popov’s stability theorem [14], for a semisimple algebraic group G stability
of a linear group G|V is equivalent to the condition that there exists v € V whose
stabilizer G, is reductive and

dimV —dim G(v) =dim V /G. (2.8)

(In general, LHS(2.8) > RHS(2.8).)

(c) The following example, provided by J. Dadok, shows that condition (2.6) alone
is not sufficient. Let g be a simple Lie algebra and G|(g @ g) the action of the adjoint
group on the direct sum of 2 copies of g. Let C be the sum of Cartan subalgebras in
each copy. Then (2.6) holds, but this linear group is not polar.
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2.2 Nilpotent elements and polar linear groups

Let f be a non-zero element of a simple Lie algebra, included in an sl,-triple s, and
let (1.1) be the corresponding Z-grading of g. Let d be the depth of this grading. Then
each g;, [j| < d, is a go-module. Since 3(s), the centralizer of s in g, is a subalgebra
of go, each g; is a 3(s)-module. Since 3(s) is a reductive subalgebra of g, we obtain a
reductive linear Lie algebra 3(s)|g; by taking the image of 3(s) in End g;. Recall that
Z(s) is the centralizer of s in the adjoint group G of g.

Theorem 2.8 All linear groups Z(s)|g; for j = d ord — 1 are polar.

Proof We do not know a proof of this remarkable fact without the case-wise verifica-
tion. For j = d, it was pointed out in [9] that this fact follows from Tables there for
d even and Remark 2.1 for d odd. For j = d — 1, when d is odd, this follows from
Table 1 of [4], where all these groups are listed, and from Table 1 of [2], where all
polar linear groups of simple Lie algebras are listed. Finally, for j = d — 1, where d
is even, this fact follows from Tables 2, 3 and 4 of this paper. Indeed, looking at Table
1 of [2], one can see that, apart from theta groups, all examples that occur in these
tables are polar, except, possibly, for the linear reductive groups Spiny ® st(SO0;) and
Sping ® st(SLy). (Hereafter Spin (resp. st) denotes the spinor (resp. standard) repre-
sentation.) For both of them dim V /G = 2. It is shown in the examples below that
both are polar. O

Remark 2.9 We tried to prove polarity of Z(s)|g; for j = d ord—1 along the following
lines. _

Lete = ef% ,where j = d ord — 1, and consider the automorphism o of g, defined
by olg, = €°1, s € Z. Then the fixed point set of ¢ is go and the £~ 2-eigenspace
ofcis V :=g_o+g;. Let G be the algebraic subgroup of the adjoint group G,
corresponding to the subalgebra gg of g. Then we get a theta group G°|V. By [2], [9,
Theorem 6(c)] this representation is polar.

Let SG° = G°NSL(g_»), and consider the linear group SG°|g_». By Proposition
1.1 from [11], there exists an SG°-invariant polynomial P on g_;, such that P(a) # 0
for a # 0 if and only if the orbit S GO (a) is closed; moreover, such an orbit contains a
non-zero multiple of f. Since 3(s) = go N g/ and the group Z(s)|g_» is orthogonal,
we obtain that Z(s) C SG%and Z(s) = (SGo)/. Let sgo = goNsl(g—2) and consider
the slice representation Z(s)|N ¢, where Ny = V/[sgg, f]. Then by the Luna slice
theorem [12]

dim(V /SG%) = dim(g;/Z(s)) + 1.
Therefore, since dim(V /G°) > dim(V /SGg) — 1, we obtain that
dim(V /G%) > dim(g;/Z(5)). (2.9)

Let v € V be such that G°(v) is a closed orbit of maximal dimension. Since G°|V is
polar,

Cy:={v" € V]go(v) S go(v)}
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is a Cartan subspace. Let : V = g_>+g; — g, be the projection. Since no nonzero
GO-orbit in g—2 is closed, we conclude that 7 is injective on C,. Moreover, we think
that 77 (Cy) € Cy(y) but we were unable to prove this.

But if this is true, then

dim C, < dim Cyy). (2.10)

Comparing (2.9) and (2.10), we conclude that dim Cr () > dim(g;/Z(s)). But by
(2.3), the LHS cannot be greater than the RHS, hence dim C () = dim(g; /Z(s)) and
the linear group Z(s)|g; is polar.

Example 2.10 G|V = Spin,; @ st(SOy). This is a direct sum of two irreducible mod-

ules V = VT @ V~, which are eight-dimensional spin modules for SO7; SO, acts
on V* by multiplication by r*!, r € F*. The set of weights of the g-module V is

1
5(:*:8] + & + 83) + 5,

the highest weights of V¥ being A* = %(81 + &2+ €3) =6, and lowest weights being
—A®*. Let v* be the corresponding highest weight vectors and vs lowest weight
vectors. Let

V] =v++v,, vy =V + vy
Then, by Proposition 2.1, all vectors from C := spanf{vi, vz} are semisimple. It is
easy to see that g(C) is the tangent space to the orbit G (v) at a generic point v € C.

It follows that C is a Cartan subspace.

Example 2.11 G|V = Sping ® st(SL>). It is an irreducible 32-dimensional g-module
with the set of weights

1
E(iel +eytezteq) 4,

the highest weight being A = %(81 + &2 + &3+ €4) + 6. We let
V] = VA +V_p, V2= € g €—gy—g3VA + €c1€gyte3 V—A-
As in Example 2.10, it is easy to check that C = span{vy, v»} is a Cartan subspace.
Theorem 2.12 (a) All linear groups Z(s)|g; for j even (resp. odd) preserve a sym-
metric (resp. skew-symmetric) non-degenerate bilinear form.
(b) Alllinear groups Z(s)|g; for j = d ord — 1 are stable, except for all cases when

Jj =disodd, and also when j = d — 1 is odd and Z(s)|g4—1 either is isomorphic
to st(s0,) ® st(sp,,) with n odd, n < m, or has finitely many orbits.
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Proof (a) can be found in [13] or [9]. By (a), the stability follows when j is even
from [12]. When d is even and j = d — 1, the stability is established by a case-wise
verification, by checking that [3(s), C] = g; where C is a Cartan subspace (which
exists by Theorem 2.8). O

Remark 2.13 1t follows from Tables 2, 3, 4 that for an odd nilpotent the Dynkin char-
acteristic contains 2 only if Z(s)|gs—1 has finitely many orbits. Moreover, the Dynkin
characteristic contains 2 if g; = 0 for some 1 < j < d — 1; this follows from the
observation that when the Dynkin characteristic contains only O or 1, the go-module

g, is generated by g{ .

Remark 2.14 For all nilpotent elements of odd depth in Table 5, the linear group
Z(s)|g1 is not polar, except for the last one.

3 Generalized cyclic elements and integrable triples

In this section, g is a semisimple Lie algebra. The following notion generalizes both
notions of cyclic and quasi-cyclic elements, defined in the Introduction, for j = d and
Jj =d — 1, respectively.

Definition 3.1 A generalized cyclic element, attached to a nilpotent element f of g is
an element of the form f + E, where E € g; with j > 1, E # 0, [E, g>2] = 0 and
the centralizer of E in g; is coisotropic with respect to the symplectic form w, defined
by (1.2). Two generalized cyclic elements f + E and f + E’ are called equivalent if
E’ is proportional to an element from the orbit Z(s)(E).

Recall the notion of an integrable triple, associated to f, which is defined by prop-
erties (I1) — (I3) in the Introduction.

Proposition 3.2 (a) If (f1, f>, E) is an integrable triple, associated to f, then the
element

a=fi+ L+ E 3.1

is a non-nilpotent generalized cyclic element, associated to f.
(b) The element a, defined by (3.1), determines the integrable triple uniquely.

Proof By the definition, a = (f] + E) + f> is the Jordan decomposition of a, where
f1 + E and f> are its semisimple and nilpotent parts. Since f; 4+ E is a non-zero
semisimple element, we conclude that a is not nilpotent. By the definition, a is a
generalized cyclic element, proving (a).

Due to uniqueness of the Jordan decomposition, a determines f; + E and f, hence
it determines fi = f — f> and E = a — f, proving (b). O

Definition 3.3 A generalized cyclic element f + E is called integrable if it is obtained
from an integrable triple as in (3.1). In this case, the element E € g; is called integrable

for f.
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Note that a generalized cyclic element is integrable if and only if the nilpotent part
of its Jordan decomposition lies in g_», and also that a generalized cyclic element
cannot be nilpotent. Also, of course, any semisimple generalized cyclic element is
integrable.

Lemma3.4 IfE € gj, j > 1, is a nilpotent element of the Z(s)-module g;, then the
element f + E is a nilpotent element of g.

P_roof Clearly the Zariski closure of Z(s)(f + E) contains f. Hence, G(f + E) D
Gf > Osince f is a nilpotent element of g. O

Proposition 3.5 Anintegrable generalized cyclic element f + E, associated to a nilpo-
tent element f of depth d, where E € g, exists only when j =d — 1 ord.

Proof Inmostof the cases, the center of the subalgebram := &P, gk liesings—1+gq4.
In a few case, this center has non-zero elements E in gz_3, but it turns out that if the
coisotropy condition in (I2) is satisfied, then f + E is nilpotent, thus not integrable.
For exceptional g the only f for which the center of m is larger than g;_1 + g4 are
of type A> 4+ Aj in Eg, E7, Eg of depth 4, but the elements from m\(gys—1 + g4) are
not integrable. This is checked by a case-wise verification, with the aid of computer.
The proposition is proved by direct computations in the standard representation for
classical g. It would be interesting to find a general proof. O

Recall from [8] that there exists a semisimple subalgebra q of g, normalized by
s, such that f = f° + f", where f* € q is of semisimple typer in q and f" lies
in the centralizer if q in g. The following theorem classifies the non-nilpotent cyclic
elements.

Theorem 3.6 Let f be a non-zero nilpotent element of g and let E € g4. Then the
cyclic element f + E is not nilpotent if and only if the element E of the Z(s)-module
g4 is not nilpotent.

Proof 1t follows from Lemma 3.4 that f + E is nilpotent if E is a nilpotent element
of the Z(s)-module g,.

Conversely, suppose E is not a nilpotent element of the Z(s)-module g;. Then
Z(s)(E) contains a non-zero semisimple element Eq of the Z(s)-module g4, and by
Theorem 2.5 (a) we may assume that Eg € C, a Cartan subspace. Hence, we have to
prove that f + Ej is not a nilpotent element of g. For that, by results of [8], it suffices
to prove that f5 4+ Ey is not a nilpotent element of g. By the results of [9], we may
assume that f* is an irreducible nilpotent element of g, in which case g; = C, and
the set Sg(f) = {E € C | f + E is semisimple} is a complement in C of a union
of m(mTH) hyperplanes, where m = dim g,4. In the case when m = 1 this means that
Sg(f) = C\{0}, and we are done.

The remaining cases are the following ones from [9, Table 1]: 44_1, m = 2; 7,
m=211,m = 3;16,m = 2; 17, m = 2; 18, m = 4. For all but the first one,
g is an exceptional Lie algebra, and the case can be checked on a computer. In [9],
singular sets (complements to S ( f)) for these cases have been described as unions of
certain subspaces. Using GAP package SLA, one checks that f + E is not nilpotent
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for generic elements F in all possible intersections of these subspaces. In the first case,
g = so4; and f correspond to the partition (2k + 1, 2k — 1). This case is treated in
Example 3.7. O

Example 3.7 Let f be a nilpotent in a simple Lie algebra of type Dyx corresponding to
the partition (2k 41, 2k — 1). By definition, this means that the standard representation
0f504k has a basis Xk X—(k—1)s ++ o s X=15X05 X1 « « o s Xk—15 Xk» Y—(k—1)s - - - » Y—15 YO,
Y1, ..., Yk—1, with i acting by hx; = 2jx;, hy; = 2jy;, and f acting by

Xk A X—(k—1) 4 =+ X1 4 X0 4 X1 4 - -+ 4 X1 < Xk
V—(k=1) A+ A Y=1 Y0 H V1 -+ H Yi—1

We recall from [9, Case 4;] (reversing everything there) that there is a basis (E1, E2)
of g4 with

Evx_(e—1) = xk, E1x—g = xk—1, E2y—(k—1) = =Xk, E2x— = yr—1,

. . . £ & + & £
and all other actions of Ej, E, are zero. (Explicitly, one can take £ = m,

€s1+e) —€ei+e
E, = 1t _Cate

Pictorially,

As calculated in [9, Case 4], the cyclic element f 4+ A1 E| + A3 E7 is not semisimple
only when either ., = 0 or A, = £A1.

Consider first the case A, = 0, sothat E = AE|. We then define f°, f" by declaring
that f* acts only on the basis elements x; and f" only on the basis elements y;. Thus,
the corresponding picture is then
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fs fs fs fs fs fs fs f:

X—k X_(k—1) e X1 X0 X1 e Xk—1 Xk

Y—(k—1) s y-1 Yo V1 e YVik—1

fn fn fn fn fn fn

Then clearly f5+4 f™ = f and f™ commutes both with f* and with E. Moreover, both
fSand f™ are homogeneous of degree —2 since they both act on the standard represen-
tation lowering degree by 2. Moreover, f* + E is semisimple since the characteristic
polynomial of its action in the standard representation is 7(%* — 1).

Next consider the case A, = +A1,sothat E = A(E| & E»). Switch to the following
basis:

k+ jpxjF (k— )y, i+ y; -
(k+j)xj F( J)yj’t NIV Cpcj<h), g =2k

=M= 2% i 2% 2%

In this basis, the non-zero actions of f and E are as follows:

fti=ti1 (=(k=1)<j<k),
fzj=zj—1+tj—-1 (=k=1) < j<k),
fiok-1) =tk

and
Et_y = My—1, Ez—(—1) = Azk.
In this basis, let us define f* and f" by the non-zero actions

fPzj=zj1(—tk—1) < j<h),
fiti=ti1(=tk—=1)<j<k),
flzj=tj1 (=(k—=1)<j<k).

Then again both f% and f" arein g_p, f5+ f™ = f, f™ commutes with both f* and
E, and f® + E is semisimple. Note also that f5 4+ E is not regular, having double
eigenvalues. Its characteristic polynomial in the standard representation is (12 — 1)?
(the minimal polynomial being 2% — 1).

All this is completely obvious from the following diagram of actions:

@ Springer



117 Page 14 of 64 A.De Sole et al.

tk<—t (k—1)

NN fs\f”\f“

Z—(k— 1)<—Z (k—2)
E

Thus, in both cases (f1, f2, E) with fj = f®and f, = f" are integrable triples.

Example 3.8 According to [9, Table 1], there are three irreducible nilpotent orbits of
rank 2 in exceptional Lie algebras: the one with label F4(a;) in F4 and the orbits with
labels Eg(as) and Eg(ag) in Eg. For all of them, there are exactly three lines in gg4
such that f + E is semisimple if and only if E € g; does not belong to any of these
lines. Direct calculations with the GAP package SLA show that E remains integrable
along these lines too. We provide more detailed description using specific choices of
representatives for these orbits as follows.
In F4, take for the representative of F4(az) the element

f = fioo + for20 + Sfoor1 + fooor-

In Eg, take for the representative of Eg(as) the element

f = fOOOOgOI + ﬁ)OOOgll + fOOOO{IO + JCOOOI}OO + f()OOl(l)IO + JCOOII(I]OO + fOIllgOO + ﬁlOOgOO

and for the representative of Eg(ag) the element

f = fOOOO(l]ll + ﬁ]ﬂf)()}ll + fOOll}lO + .ﬁ]OOO(I)OO + fOOOl(l)OO + ﬁmll(l)(m + ﬁ)ll]gf)() + fnoogon-

Then, for these choices of f, gs has basis Ey, E» consisting of the highest root
vector and the next to the highest root vector. The cyclic element f + x1 E1 + x2 E»
is semisimple except when x; = 0, xo = 0 or x; = x3. In these three singular cases,
Jordan decomposition of f + E is (f* + E) + f™ with f™ € g_,, where
for E = x1 Eq or E = x» E3, we have the following cases:

if f is F4(ay), then f* has label B3 and f™ has label Kz,

if f is Eg(as), then f* has label E¢ and f™ has label Dy,
while for E = x(E| + E»),

if f is F4(ay), then f® has label C3 and f™ has label Aj,

if f is Eg(as), then f* has label D7 and f™ has label 2A,
and if f is Eg(ag), then for E on any of the three singular lines f* has label Dg and
f" has label As.
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Note also that the subalgebra a generated by f and E, which is the whole g if E
does not lie in the union of singular lines, is the direct sum of the semisimple [a, a]
and the center spanned by f", where [a, a] has the following type:
for E =x1Ejor E = xpE,, itis

Gy, when f is F4(az),

F4, when f is Eg(as),
and for E = x(E| + Ej), it is

Cs3, when f is Fa(ap),

Bg, when f is Eg(as),
while if f is Eg(a¢), then for E from any of the three singular lines, this subalgebra
has type Bs.

Example 3.9 For the nilpotent with label E7(as) in E7, depth is 10, with g9 3-
dimensional. We take

f = flOOgOO + f110800 + ﬁllgOO + fOll}OO + fOO][l)lO + ﬁ]Ol}lO + fOOO(lJ]l;

then gjq is spanned by E| = €534, E2 = €233, and E3 = ey,5,3,. The singular set,
i.e., the subset of those E € gjg 2vvith f+E IiOt semisimple, ié the union of six 2-
dimensional subspaces: (E;, E;) and (E;, E; + E), with {i, j, k} = {1, 2, 3}. Their
pairwise intersections produce the following seven 1-dimensional subspaces: (E;),
(E; + Ej) and (E1 + E> + E3).

It is also possible to describe this set without mentioning semisimplicity of f + E:
it is the set of all those vectors which have nontrivial stabilizer with respect to the
action Z(s)|g1o which is the permutation representation of the symmetric group on
three letters.

All these subspaces are exactly all those subspaces V of gjo with the following
property: the Lie subalgebra a generated by V and f is the direct sum of the semisimple
subalgebra q = [a, a] and the 1-dimensional center 3(a) € g—_2; 3(a) is spanned by an
element f™ such that /S = f — f™is of semisimple type in q; f* has the same depth
10inqgas fing;and qio = V.

In all these cases, taking any E € q19 = V which does not lie in a smaller subspace
from the singular set, f* + F is semisimple, so that one obtains an integrable triple

(f1. f2. E) = (f*, f", E).

The corresponding subspaces and nilpotent types are as follows:

v f3 frl q fing
(Ei, Ej + Eg) Dg(a2) Aj D¢ (7,5
(Ei, Ej) Eg(a3) 3A] Fy Fy(az)
(E;) Dy (Az+ A G, Principal
(E; + Ej) A% 4A Cs Principal
(E1+ E2 + E3) AS/ Ay C3 Principal
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Example 3.10 For the nilpotent with label Eg(a7) in Eg, depth is 10, with gjo 4-
dimensional. We take

f = f;)lllgOO + fO()Il(l)OO + ﬁ)OII}OO + flll](l)l() + ﬁ)OOI%IO + fO()I][l)lI + f;]()()l%l]
+f00]1{11 +ﬁ)lll%]l'

Then g0 is spanned by E| = 61235242» E, = 31245242» E3 = 61%459‘42 and E4 = 62245642

The singular setin this case is the union of ten 3-dimensional subspaces ( E;, E; i Ex)
and (E;, Ej, Ex + Ey), {i, j, k, £} = {1,2, 3,4}, forming a single orbit under the
action Z(s)|g10, which is the action of the component group Ss on its 4-dimensional
irreducible representation.

As in the Example 3.9, this set consists precisely of those vectors which have
nontrivial stabilizer with respect to the action of the component group of Z(s)|g1o.

All of the possible intersections of these 3-dimensional subspaces produce twenty
five 2-dimensional subspaces forming two orbits, one containing all (E;, E;) and all
(Ei, Ej+Ey+E;) and another containing all (E;, E;+ Ey) andall (E; +E, Ex+Ey),
and fifteen 1-dimensional subspaces forming two orbits, one containing all (E;) and
(E1+ E2 + E3 + E4), and another containing all (E; + E;) and all (E; + E; + Ey).

All these 10+25+ 15 = 50 subspaces are also exactly all those subspaces V of gj¢
with the following property: the Lie subalgebra a generated by V and f is the direct
sum of the semisimple (in fact, simple) subalgebra q = [a, a] and the 1-dimensional
center 3(a) € g_2; 3(a) is spanned by an element f™ such that f® = f — f"is of
semisimple type (in fact, irreducible) in q; f° has the same depth 10 in q as f in g;
andqio=V.

In all these cases, taking any E € q19 = V which does not lie in a smaller subspace
from the singular set, f* + E is semisimple, so that one obtains an integrable triple

(f1. f2. E) = (f*, f", E).

The subspaces, their generic stabilizers in Ss, the corresponding subalgebras and
nilpotent orbit labels are as follows:

1% Generic stabilizer S M q fSing
(Ei, Ej, Ex), (E;, Ej, E} + Ey) $ E7(as)  A; E7  Eq(as)
(Ei, Ej + Ex), (E; + Ej, Ex + Eg) Sy x S» Dg(a3) 2A1 Dg (7,5)
(Ei, Ej),(Ej, Ej + Ei + Ey) $3 Eg(az) A2 Fy  Fa(ap)
(Ei + Ej), (E; + Ej + Eg) Sy x 83 As Ay + Ay C3 Principal
(Ei), (E\ + Ey + Ex + Eg) S Dy Du(ay) G, Principal

The following lemma helps to establish non-existence of non-nilpotent quasi-cyclic
elements.

Lemma3.11 Let C C g4—1 be a Cartan subspace of the Z(s)-module gq—1, and
suppose that C contains no elements E, for which f + E is quasi-cyclic. Then g4_
contains no elements E, for which f + E is non-nilpotent quasi-cyclic.
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Proof If f + E is not nilpotent quasi-cyclic, then, by Lemma 3.4, E is not a nilpotent
element for the Z(s)-module gy—1. Then, as in the proof of Theorem 3.6, Z(s)E N C
contains an element Eg, such that f 4+ Ey is quasi-cyclic. O

In order to prove the next proposition, we will need the following simple lemma.

Lemma3.12 Let a € g. Then (Kerada)™ = Imad a, where the orthogonal is with
respect to the bilinear form (- | -). In particular, if a € gy, then (Ker ada|g@)J- =
Imadalg_,_,.

Proof The inclusion Imada C (Kerada)' is immediate by the invariance of the
bilinear form. On the other hand,

dim(Im ad @) = dim(g) — dim(Ker ad a) = dim ((Ker ad a)J‘) ,

since the bilinear form is non-degenerate. Hence, (Ker ad a)! = Imad a. The second
part of the lemma follows from the fact that (gi | g¢) = 0 if k = —£. O

Proposition 3.13 Let E € gj, j > 0. The following statements are equivalent:
(a) the centralizer of E in g, is coisotropic with respect to the bilinear form (1.2);

(b) the map ad E o (ad f)~' oad E|g_,_, is zero.

Proof The coisotropy condition (a) can be rephrased by saying that the orthogonal
complement of gf with respect to w is contained in gf . This, by definition (1.2) of w,
is equivalent to the following condition:

(@) ifa € g is such that [ f, a] € (Ker ad E|g])i, thena € Kerad E|g,.

(Here the orthocomplement is with respect to the bilinear form (- | -) of g.) On the
other hand, the statement in (b) can be equivalently rephrased as follows:

(b') ifx € g_y—yissuchthat[E, x] = [f, a], forsome a € g;, thena € Ker ad Elg,,
or, equivalently,
(b”) ifa € g is such that [ f, a] € Imad Elg ; ,,thena € Kerad Elg,.

By Lemma 3.12, (Ker ad Elgl)l =1Imad E|y_;_,, thus (2') and (b") are equivalent.
O

An important problem is when a (non-nilpotent) generalized cyclic element f + E
of a semisimple Lie algebra g is integrable. For the solution of this problem, the
following lemma is important.

Lemma 3.14 Let [ be a non-zero nilpotent of g and let (1.1) be the corresponding
Z-grading of depth d. Let j = d ord — 1 and let E € g; be a non-zero element.
If the nilpotent part of the Jordan decomposition of f + E lies in g—», then E is a
semisimple element of the Z(s)-module g;.
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Proof Consider the theta group Gol(g—» + g;), constructed in Remark 2.9. Then the
element f + E € g, + g; is a semisimple element of g if and only if the orbit
Go(f + E) is closed. We have (cf. [8], proof of Proposition 2.2(a)):

f+Z6)(E)=Go(f +E)N(f +g)) (3.2

If the nilpotent part of the Jordan decomposition of f + E lies in g_», we have:
f = fi+ fo, fi + E is semisimple, f>» € g_», and [f2, f1 + E] = 0. Since
Go(f2) C g—», we deduce from (3.2) that it still holds if f is replaced by f;. Since
f1 + E is semisimple, the orbit Go( f1 + E) is closed, hence f1 + Z(s)E is a closed
subset, and E is a semisimple element of Z(s)|g;. O

The following theorem describes all integrable cyclic elements, up to conjugation
by Z(s).

Theorem 3.15 Let f be a non-zero nilpotent element of g of even depth d, and let
E € g4 be a non-zero element. Then the cyclic element f + E is integrable if and only
if E is a semisimple element of the Z(s)-module g4.

Proof If f+E isintegrable, then E is a semisimple element of Z(s)|gs by Lemma 3.14.

Conversely, let E be a non-zero semisimple element of Z(s)|gs. Then the argument
as in the proof of Theorem 3.6 reduces the proof to the case when f is an irreducible
nilpotent element with dimgy > 1 and E ¢ Sg(f). Again, the cases when g is an
exceptional Lie algebra are checked on the computer using GAP [15], by computing
Jordan decompositions of f + E for E generic in all possible nonzero intersections
of subspaces constituting the complement of S, (f) as described in [9] (see Exam-
ples 3.8,3.9 and 3.10 ), while the case g = so4x, with f corresponding to the partition
2k + 1,2k — 1) is treated as in Example 3.7. O

Theorem 3.16 (a) Theorem 3.15 holds for d odd and for E € gq_1 such that f + E
is a quasi-cyclic element.

(b) The “only if” part of Theorem 3.15 holds for d even and for E € g4_1 such that
f + E is a quasi-cyclic element.

Proof (a) Replacing g with geven = P jez 92js the proof is the same as of Theo-
rem 3.15. (b) follows from Lemma 3.14. O

Example 3.17 A non-nilpotent quasi-cyclic element does not necessarily give rise to
an integrable triple. For f with label 2A; 4+ A; in Eg, take

f = 2f()0}]1 + 2f‘()l(]]]l + 2]‘]]%00 + 2’f‘]l(l)l(] + ﬁ)l%l(]'

The depth of f is 5 and g4 is 4-dimensional, spanned by e,,,,,, 112215 €12011 and €,55,;.
1 1 1 1
The coisotropy condition on a generic element x e, 5, +X2€, 12, +X3€121, + X4€,21,
1 1 1 1
of g4 is

dxixg = (x2 + x3)°.
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It follows that for
E = 911%11 + 611%21 - 612%11

f + E is a quasi-cyclic element. Its Jordan decomposition has semisimple part

2
fi+E= zﬁJO}ll +2ﬁJl(l)ll +2fl|{00+2f11(1)10+ g(ﬁ)l}l] - fll{][))
+ gen%n +en%2| - elz%n

and nilpotent part

2 1
f2 = fomo - _(fOIIH - fll]]t)) + <€
1 3 1 1 3

This is not an integrable triple because f» ¢ g_».

4 Integrable cyclic and quasi-cyclic elements associated to nilpotent
elements of even depth

4.1 Integrable cyclic elements for nilpotent elements of even depth

Let f be a non-zero nilpotent element of even depth d in a simple Lie algebra g. Recall
that f is included in an s(-triple s, and that, by Theorem 2.8, the linear group Z(s)|g4
is polar. All these linear groups are listed in [8]. Let C € g4 be a Cartan subspace.
By Theorem 3.15, any cyclic element f + E, where E € C is non-zero, is integrable.
Hence, up to conjugation by Z(s), the integrable cyclic elements are classified by
non-zero elements of C, up to conjugation by its Weyl group, and rescaling.

Recall also by [8] that the set of non-zero nilpotent elements in g (up to conjugation)
is partitioned in bushes, such that each bush contains a unique nilpotent element f*
of semisimple type, and all other nilpotent elements in the same bush have the same
depth d and the same Cartan subspace.

Below we give a more explicit description of Z(s)|gy (rather their unity compo-
nents) for all classical simple Lie algebras g. As in [4], throughout the paper, we use
the following notation: st(a) denotes the standard representation of the Lie algebra a,
1 stands for the trivial 1-dimensional representation, & stands for the direct sum of
linear reductive groups, rank = dim g4/ Z(s).

411 g=sly, N> 2

Non-zero nilpotent elements f, up to conjugation, are parametrized by partitions

p=0". P3P0, N=) rnipi, @1
i
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where the p; are distinct and have multiplicities r;: p; > --- > pg > 1, p; > L.
Then the associated to a partition p nilpotent element f = f, is of semisimple type
if and only if

p= (pirl), 1("2))' “4.2)

The bush containing this partition consists of all partitions with the same p; and ry.
All these partitions have the same depth d = 2p — 2, and the same g; = Mat,, x,,,
and the action of Z(s)|gy is the action of SL,, on Mat,, »,, by conjugation. A Cartan
subspace C is the subspace of all diagonal matrices.

4.1.2 g =spy, N > 2 even

Non-zero nilpotent elements f), up to conjugation, are parametrized by partitions p,
whose odd parts have even multiplicity. Then again f = f), is of semisimple type if
and only if (4.2) holds. The bush containing f}, consists of all partitions (whose odd
parts have even multiplicities) with the same p; and ] as p. All have the same depth
d = 2py1 — 2, and the same linear group Z(s)|gs, which depends on whether p; is
even or odd:

Z(s)|ga = S*st(SO,,) if py is even, Z(s)|gq = S*st(Sp,,) = ad(Sp,,) if py is
odd (then ry is even).

For the bilinear form with matrix /, defining SO,,, 5?2 st(SO,,) is identified with
the space of all symmetric matrices, and we can choose for C the subspace, consisting
of diagonal matrices, while s? st(Spr,) is the adjoint representation of Sp,,, so that C
is any Cartan subalgebra.

413 g=soy,N>=3,N #4

Non-zero nilpotent elements f,, up to conjugation, are parametrized by partitions
P, whose even parts have even multiplicity. There are five types of elements f, of
semisimple type:

@ p=@3.11)d =2

() p=(p1,1"), p1 > 50dd;d =2p; — 4;

© p=(p1.p1 —2,1"9), p; = 50dd; d =2p; — 4;

@ p= ", 10), p; >2even,ry >2even;d = 2p; —2;
(e) p= (pY'), 102y, p; >3 0dd, r; > 2even;d =2p; — 2.
The linear groups Z(s)|gy for the types (a)—(e) are as follows:
@) sUSOy,) @ L;

(b) 1

©lel

) Ast(Spy,);
) A*st(SO,,) = ad(S0,,).
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Table 1 Actions of centralizers of sl-triples of nilpotent elements in simple Lie algebras g of classical
types on g4

g Partition d Rank 3(5)|94
5[}\/
(rp)
(py 7 2p;—2 | ad(sl;) @ 1
SpN
(le), ...), pjeven 2p1 —2 r s2 st(sor,)
(.. 0. prodd 2p; -2 ul ad(sp,,)
SO0N
(pgr'), ...), pj1even 2p1 —2 %‘ /\2 st(sp,)
P, .0, r > 1, pjodd 2p1 -2 [3] ad(soy, )
(p1.(p1 = DU, ..), pjodd 2p; -3 0 St(spry)
(1, (p1 —2)),..), pjodd 2p1 —4 2 st(s0r,) @ 1
(p1. (p1 —m)2) ), m > 2, pjodd 2p1 —4 1 1

Cartan subspaces are as follows:

(a) C =Fv @ F, where (vjv) = 1;
(b)and (¢) C = ggq;
(d) C = the subspace of diagonal matrices in gy
if the bilinear form, defining Sp,,, is ( —01 (1));
(e) C = the Cartan subalgebra.

Bushes containing these f of semisimple type correspond to the following partitions
(with all even parts having even multiplicities):

(a) partition itself;
(b) all partitions with the same p; and r; = 1 satisfying p» < p1 — 2;
(©) all partitions with the same pj,r; = 1 and p» = p1 — 2;

(d) and (e) all partitions with the same p; with multiplicity | or r; + 1.
The group Z(s)|gy is the same for the nilpotent elements from the bush, except for
the following two cases:
(b) partitions (pY‘), ...), where r; > 1is odd, in which case Z(s)|gq = ad(SO,);
(c) partitions (p1, (p1 — 2)2),...), where p; > 3 is odd, in which case Z(s)|gy =
st(SO,,) @ 1.

The information about Lie algebra actions of centralizers of sl,-triples can be sum-
marized in the following table.

4.2 Integrable triplesin g = gly and sly
4.2.1 Setup and preliminary results

Let g = gly orsly. Let f be anilpotent element of g in Jordan form and let p be the
associated partition (4.1) of NV, given by the sizes of the blocks of the Jordan form. We
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2412312221

2011918 | 17

16 15 |14 | 13| 12| 11| 10

T O R N R |
8 6 -4 2 0 2 4 6 8 r
Fig. 1 Symmetric pyramid for the partition (9, 7, 4@y of 24

associate to p a symmetric (with respect to the y-axis) pyramid, with boxes of size
2 x 2 indexed by the set I = {1, 2, ..., N} (say starting from right to left and bottom
to top). For example, for the partition (9, 7, 4?) of 24, we have the pyramid in Fig. 1.

Let V be the N-dimensional vector space over ' with basis {ey}yes. The Lie
algebra g = gl(V) has a basis consisting of the elementary matrices Ey g, o, B € 1.
The elementary matrix Ey g in g can be depicted by an arrow going from the center of
the box B to the center of the box «. In particular, f is the “shift to the left” operator.
It is depicted as the sum of all the arrows pointing from each box to the next one on
the left

f=> Eap. 4.3)

a<p

where the sum is over all adjacent boxes (on the same row) o, § € [. Let us also
denote by fT the transpose of the matrix f defined in (4.3). It is the “shift to the right”
operator.

Let h € g be the diagonal endomorphism of V whose eigenvalue on e, is the x-
coordinate of the center of the box labeled by « (see Fig. 1) which we denote by x.
We then have the corresponding h-eigenspace decomposition of V

D
V=P VIKl. VIkl={veV |h@)=ku}, 4.4)
k=—D

where D = p; — 1 is the maximal eigenvalue of .

We note that the elements f and & belong to a slp-triple s = {e, h, f}, where
e = Zm_ﬂ cgEg,a, wWith cg = Y x,,, where the sum is over all boxes y at the right
and in the same row of the box g, including it.

The elementary matrices E g are eigenvectors with respect to the adjoint action
of h:

(adh)Eyp = (X0 —xp)Eqp -

@ Springer



Integrable triples in semisimple Lie algebras Page23of64 117

Fig.2 The spaces V; and V4 ;

Vos | Va| Vi

V_o Va Vi

Vo1 Vi Vi

This defines a Z-grading of g, given by the ad h-eigenspaces as in (1.1):
gx = Spang{Ey g | X0 —xg =k}, k € Z. 4.5)

The depth of this grading isd = 2D = 2p; — 2.
Next, consider the subspaces V_ = Ker f and V. = Ker fT of V. We thus have
the direct sums decompositions

V=V.®fTV=V,® fV. (4.6)

Let D; = p; — 1,fori =1, ..., s (in particular D; = D). Throughout the paper we
will use the decompositions Vi = Eszl Vi.i, where

Voi=vonfPive o vii=vinmPive i=1,....s, .7)

and V = @;_, Vi, where

D;
‘/iz@fkv+,iv i=l,...,s. (48)
k=0

Representing the basis elements of V as boxes of the pyramid as in Fig. 1, V; corre-
sponds to the i-th rectangle counting from the bottom, and V. ; corresponds to the
right/left most boxes of the i-th rectangle. With a picture:

For the pyramid in Fig. 2, the subspaces V_ and V., correspond, respectively, to
the boxes colored in orange and blue (note that they may have nontrivial intersection);
the subspaces V;, i = 1, 2, 3 correspond to the rectangles of the pyramid, and V. ; is
the intersection of the rectangle V; with V.

Throughout the paper, given a subspace U C V, together with a “natural” splitting
V = U & W (usually associated with the grading of V'), we shall denote, with a slight
abuse of notation, by 1y both the identity map U — U, the inclusion mapU — V,
and the projection map (with kernel W) V. — U; the correct meaning of 1y should
then be clear from the context.
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Using the above notation, we clearly have (recall the splitting (4.6))
ffT = ]lv — ]lv+ = ]lfv and fo = ]lv — ]lv_ = ]lfTV . (4.9)

The following result will be used in the sequel.

Lemma4.1 Let x € g{z, the centralizer of f in g_>. For everyi = 1,...,s, there
exists t; € End(V_. 1) such that

Di—1
k=0

Proof By the direct sum (4.8), we can write 1y,xly, = Zf;gl Xk, where x; €
Hom(f*V, ;, ¥V, ;). The condition [x, f] = O gives

fxk = xe1 f € Hom(f* Vi, fF2v, ), (4.10)
forevery k =0, ..., D; — 2. Multiplying both sides of (4.10) on the right by fT and
using (4.9), we get

fxfT=xem1lypy = x40,
fork =0, ..., D; — 2. A recursive solution to these equations is

xp = fixo(fM*,  k=1,....D;i—1.

Letting #; = fTxo € End(V4 ;), we get the claim. O
In order to apply, in the following sections, Proposition 3.13 we need the following

result.

Lemma4.2 Let x € g1 and assume that 0 # x € Hom(V;, V;). Then

Z(fT)k-}-lek’ l<],
keZ4
D D AV AD A

keZ4

(ad f)~'x = (4.11)

(Note that, since x € g_1, it must bei # j.)

Proof Without loss of generality, let us assume that x € Hom(f*/ Vi f kv, .
Note that, since x € g_1, we have

D; —2ki = Dj —2k; — 1. (4.12)

In particular, if i < j, then D; > D; and therefore k; > k;. Conversely, if i > j, then
D; < Dj and k; < kj. Moreover, D; —k; > D; — k;.
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First, let us assume that i < j. Applying ad f to the RHS of Eq. (4.11) we get

DU = Y ety

k€Z+ k€Z+

=x—1Tv, Y (fOfxff=x— Mk

kEZ+

In the first equality, we used the first equation in (4.9), while, for the second equality,
the operator 1y, on the left forces k = k;. Since i < j, by the observation after
Eq. (4.12) we have k; > k;. Hence, xf% = 0 thus proving (4.11) in this case.

Next, let us assume that i > j and let us apply ad f to the RHS of Eq. (4.11):

_ Z fka(fT)k+1 + Z ka(fT)k+lf
keZy keZ
=rT Z Fix(fM*Ly. =x — fPikix(fmyPi=hki

k€Z+

In the first equality, we used the second equation in (4.9), while, for the second equality,
the operator 1y_ on the right forces k = D; — k;. Since i > j, by the observation
after Eq. (4.12) we have D; — k; > D; — k;. Hence, fPi=*ix = 0. This completes
the proof. O

The next result will be used in Sects. 4.2.3 and 4.4.2.

Lemma4.3 Let U € Hom(V[D],V[-D]) and E = A + B, where A €
Hom(V[—D+1], V[D]) and B € Hom(V[—D], V[D —1]). Then, ad Eo (ad f)"'o
ad E(U) = 0 if and only if

[AfP-1BfP, (rMHPUI =0,

Proof We have that [E,U] = UA — BU. Since UA € Hom(V,, V}) and BU €
Hom(Vy, V»), using Lemma 4.2 we have that

(adE o(ad )~ oad E) W) = Y LE, (FOUAS + fFBUGFTY

keZy
= AP 'BU(MP - (fHPUAFP B,

The claim follows from the fact that (f T)D : V[-D] — V[D] is an isomorphism
with inverse fP. O

The next result will be used in Sects. 4.2.3 and 5.1.

Lemmad.4 LetU = X+Y, where X € Hom(V[D], V[-D+1]), Y € Hom(V[D —
1], V[-D)), and let E = A + B + C, where A € Hom(V[-D], V[D —2]), B €
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Hom(V[—D + 2], V[D]) and C € Hom(V[—D + 1], V[D — 1]). Then, adE o
(ad f)~' oad E(U) = 0 if and only if

(fMHPYCFP=IC = (fT1svA+ Blsry fT)YC + Bly fP721y, Ay,
CPICX(fMHP =CX(fTLpvA+ Blyry fO)+ (fMHP1XB1y P21y, A.
(4.13)
Proof Writing A = ly,A+1fyAand B = By, + Blyry,wehavethat[E,U]=
]lV+AY+BX—XBIlfTV+]lvaY—YB—XB]lvf.Since 1y, AY+BX—XBlysry €

®i=12 Hom(V;, Viy)and 1 sy AY —YB — XBly_ € ®;=12 Hom(V; 41, V;), using
Lemma 4.2 we have that

((ad 7 oad E) W) = 3 (fFOF Ly, AY + CX — XB1yry) f*
keZ4

=Y ffAyvAY —¥C — XBLy)(fT
kEZ+
(4.14)

Finally, applying ad E to both side of Eq. (4.14) we get

(ad Eo(ad f)~' oad E) (U) = —Bls1y fTYC — BLy_fP='1y, AY(fT)P~!

—CfPICX (TP + CXBlyry fT+ (fTHP'XB1y P21y, A
—fTLpy AYC + (fDPYCFPTIC+ CXfT1pv A (4.15)

Note that

Blsry fTYB + Bly fP7'1y, Ay (fT)P~!
+fT1pyAYC — (fTHPYCfP~'C € Hom(V[-D + 11, V[D])

and
CFPICX(fMHP —CXBlpry fT— (fHP'XB1y P21y, A
—CXfT e Hom(V[-D],V[D —1]).
Hence, the RHS of (4.15) vanishes if and only if Eq. (4.13) holds. O

Finally, the last result of this section will be used in Sect. 4.5.2..

Lemma4.5 LetU = X +Y, where X € Hom(V[D], V[-D+2]),Y € Hom(V[D —
2], V[—-D)), and let E = A + B, where A € Hom(V[—-D], V[D — 3]), B €
Hom(V[—D + 3], V[D]). Let us assume that

1;/yA=0, Blsry =0. (4.16)
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Then, ad E o (ad f)~! o ad E(U) = 0 if and only if
(fNHP2XBfPA = BfPHAY (fMHP2 = 0.

Proof Note that [E, U] = AY — X B. Using the first equation in (4.16) and (4.11), we
have that

@d /)~'AY) == Y fFAY (ST,

keZ4

while using the second equation in (4.16) and (4.11) we have that

@ )~ (xB)y=— Y (fH*'xBfr.

k€Z+

Hence, by a straightforward computation we get
adE o (ad ) 'ad E(U) = —BfP3Ay(fTHP2 + (f1HP2xBfP34A.

Equation (4.16) follows since Bf?3AY (fT)P~2 € Hom(V[—D + 2], V[D]) and
(fMHP2XBfP-3A e Hom(V[-D], V[D — 2]). O

4.2.2 The centralizer 3(g>2)

From (4.5), we have that a homogeneous element E € g, k € Z, has the form

E= Z copEap, Cap €F. (4.17)
Xo—xp=k
The goal of this section is to describe the centralizer 3(g>2) of g>2 in g.

Lemma4.6 [f[E,g>2] =0, then E € g4 D ga—1 @ W @ Fly, where
W =Hom(V[-D + 1], V[D — 1]) C gq—> .

Proof Since the adjoint action of e € g is injective on g, we obviously have
3(g=2) C g=0. Leta, B € I be such that xz = D and xg=D— 2 (i.e., the box B is
completely at the left of the box &). Then Ej j €92 Hence, letting E € g be as in
Eq. (4.17), we have

0=1Esp El= ) coplBajEapl= ), ¢fgkap— D caabop-
X —xp=k xlé—x,g:k —D=k

(4.18)
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If k > 1, then the condition x, — D = k > 1 implies that x, > 1 + D thus the second
sum in (4.18) is empty. Hence, from Eq. (4.18) we have that c,g = 0if x4 < D — 2.
If £ = 0, then Eq. (4.18) becomes

0= D cpplap— D cuakuj.
Xg=Xp Xo=D

from which follows that, for x,, xg # D — 1, we have ¢y, g = SopA, for some A € F.
Similarly, letting &, B € I be such that x5 = —D and Xg > —D +2(i.e., the box ,5 is
completely at the right of the box &), the condition [E, E & 5] = 0 implies, for k > 1,
that cyg = 0if xg > —D + 2 and, for k = 0, that ¢y, g = daA for x4, xg = —D + 1.
This proves that

EeSpanF{ILV,Eaﬁ | Xg ZD—l,xlg <-D+1}=g:Pga—-1®WeFly.

Proposition 4.7 The centralizer of g>2 in g is 3(9>2) = 94 B ga—1 & W & Fly.

Proof By degree consideration and the fact that the identity is a central element, we
clearly have g4 @ ga—1 @ Fly C 3(g>2). Let T € Hom(V[-D + 11, V[D — 1]),
and let Eyg € g>2, with x4 — xg > 2. In particular, x, > xg +2 > —D + 1,
and xg < x4 —2 < D — 1. Hence, Im(Eyg) N V[—D + 1] = 0, so that T E,g = 0.
Similarly, Im(T) C Ker(Eyg), sothat E,gT = 0.Hence, T € 3(g>2). This, combined
to Lemma 4.6, completes the proof. O

Recalling the definition of integrable triples given in the Introduction, if E is an
integrable element for f,then E € (W & gq—1 @ ga)Ng>1 (note thatgg—1©ga C g>1
for p; > 2,and W C g for p; > 3).

4.2.3 The coisotropy condition

An element E € gy_1 can be uniquely decomposed as E = a(fT)P~! + b(fT)P,
where

a € Hom(V[D — 1], V[D]) and b e Hom(V[D],V[D —1]). (4.19)

Proposition 4.8 Let E = a(fT)P~1 +b(fT)P € gy_1. The subspace gf is coisotro-
pic with respect to the bilinear form (1.2) if and only if

ab =Alyp), A€eF. (4.20)

Proof By Lemma 4.3 with A = a(fT)?~! and B = b(fT)P we have that ad E o
(ad f)~'oad E|g_, = 0 if and only if

lab, (fHPU1=0, (4.21)
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for every U € g_4. Note that (fT)Pg_,; = End(V[D]). Hence, Eq. (4.21) implies
that ab is a scalar. The claim follows from Proposition 3.13. O

Anelement E € W C gg_» can be uniquely written as E = c(fT)P~!, where
¢ € End(V[D — 1]). (4.22)

Proposition 4.9 Let E = c(fT)P~! € W. The subspace gf is coisotropic with respect
to the bilinear form (1.2) if and only if ¢* = 0.

Proof By Lemma 4.4 with A = B = 0 and C = ¢(fT)?~! we have that ad E o
(ad f)~'oad Ely_,,, = 0if and only if 2(fT)P~IX(fT)P = 0, for every X €
Hom(V[D], V[—=D + 1]). Since (fT)? : V[-D] — V[D]and (fT)P~!: V[-D +
1] — V[D — 1] are isomorphisms, this condition is the same as ¢2 = 0. The claim
follows from Proposition 3.13. O

4.2.4 Integrable E € g4

Let E € g4. In this section we will use the decomposition (see (4.8))

s
V=Vi®Vs, whereVey =(PV:.
i=2

Note that (f + E)1y., = f1y.,. Hence, (f + E)1y., is nilpotent. Furthermore,
note that E can be uniquely written as E = u(f T)D , where u € End(V[D]). Let

o o
U:@fklmuCVl, U:@kaeruCVl.
k=0 k=0

Lemma4.10 Let E = u(fT)P € gq. If u is semisimple, then the nilpotent part of
fH+Eis(f+E), = f]lg@vzz.

Proof Recall that V. 1 = V[D] (see (4.7) and Fig. 2). Since u is semisimple, we have
that V[D] = Ker u @ Im u. This implies, by (4.8), Vi = U & U.

Clearly, (f+E)]1(7€BV>2 = f]10®v>2 and (f+E)U Cc U.Denote A = (f+E)1y.
Clearly, Since A commutes with f1 F@V-r and f+ E=A+ f1 Tav.,” We claim
that A is semisimple so that the semisimple part of f + E is (f + E); = A and
(f + E)n = fligy.,- Let g(x) be the minimal polynomial of u1im, which has
distinct non-zero roots in I, since u is semisimple. Let §(x) = g(x”') which has also
distinct roots. Note that, if v € Imu, then At f'y = fhyky, for every h, k € Zy.
Hence, §(A) f"v = q(APY) fhv = f"q(u)v = 0. This implies that the minimal
polynomial of A divides g(x). Since g(x) has distinct roots, A is semisimple, as
claimed. O

Lemma4.11 IfE = u(fT)P € gy is integrable for f, then u is semisimple.
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Proof Note that f1y., is nilpotent and commutes with f1y, + E = (f + E)1y,.
Hence, for the Jordan decomposition of f 4+ E we have

(f + E)s = (f]lVl + E)s and (f + E)n = (f]lVl + E)n + f]lez .

Since, by assumptions, f + E is integrable, we then have
(fly, + E)s= fi+E and (fly, +E)y = f2 € g/, NEnd(V),

with fi + fo = f1y,. By Lemma 4.1, we have that
D—1
L= Mk, (4.23)
k=0
fgr somet € End(V~[D]). Moreover, by Definition (I3) we have that [E, fz] =FE fz —
f2E =0.Since E f, € Hom(V[—D + 2], V[D]) and f2,E € Hom(V[-D], V[D —
2]), we have that Ef, = frE = 0. Explicitly, using Eq. (4.23) we get Ef» =
EfPt(fm)P~1 = ut(f7)P~! = 0, which implies
ut =0. (4.24)

Let A = f1 + E and let v € V[D]. We have, by Eq. (4.23), Av = (f + E — fz)v =
fv— fov= f(1 —t)v, and repeating the same computation k times,

Ay = ffa—nkv, 0<k<D. (4.25)

Letting k = D = p; — 1in (4.25), and applying A one more time, we get
APv=(fi+E)fP0-0Pv=ul —)Pv=uv. (4.26)
For the last equality we used (4.24). Since A is semisimple, A”! is semisimple as well.
Moreover, from Eq. (4.26) we have that AP V[D] C V[D] and A”'1y[pj =u. Asa

consequence, u is semisimple, proving the claim. O

Combining Lemmas 4.10 and 4.11 we get the following result.
Proposition 4.12 E = u(fT)P € g is integrable for f if and only if u is semisimple.
Remark 4.13 Proposition 4.12 is in accordance with Theorem 3.15 and the results of

Sect. 4.1.1: it is well-known that the closed orbits for the action of SL,, on Mat,,
by conjugation are indeed the semisimple elements of Mat,| .
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4.2.5 Integrable £ € g4_1

In this subsection we will use the decomposition (see (4.8)) V = V< @ V>3, where
V<2 = V] ($5) V2 and V>3 @S 3 V
Let, as in (4.19), E = a(fT)D 4 b(fMP € gg_1, where a € Hom(V[D —
1], VID]) and b € Hom(V[D], V[D — 1]). Since V[D] C Vi and V[D — 1] C V>,
we have (f + E)1y., = f1y.,, which is nilpotent. Let us also denote by

o0 o0
U=V1€9<@fklmb) C V<2 and U:@f"KeraCVg.

k=0 k=0

Proposition 4.14 An element E = a(fT)P~' +b(fT)P € gq_, is integrable for f if
and only ifab = Aly[p), A # 0.

Proof First, assume that ab = Aly[p), with A # 0. Letu € V[D — 1] = V4 > (see
(4.7) and Fig. 2). Clearly, u = %bau + (u — %bau) € Im b 4 Ker a. Moreover, if u €
Im b N Ker a, then au=0 and u = bw, for some w € V[D], sothat 0 = au = abw =
Aw which implies w = 0, and hence u = 0. This shows that V[D — 1] = Imb & Kera
and, by (4.8), that Voy = U @ U. Clearly, f + E = (f + E)ly + (f + E)l gy, ..
Ifv e V[D] C U, then

(f+EPv=fv, (f+EP v =EfPv=b(fN’fPv=0bv,
(f+ E)ZDU — fDilbU, (f+E)2D+1U — EfDilbU
=a(fNHP1 P~y = abv = rv.

Similarly, one can check that for every v € U we have (f + E )2D+1y = Av. Since
A#0,(f + E)ly = f1y + E is semisimple. Furthermore, we clearly have

(f + E)]l[/GF)VZ_s = f]ll}@\/z_z ’

which is nilpotent and commutes with (f + E)1y. Hence, the Jordan decomposition
of f+ Eis

(f+Es=flu+E. (f+Ew=flggy.,.

which implies that f 4 E is integrable.

Conversely, if f 4 E is integrable, in particular gf must be coisotropic. Hence, by
Proposition 4.8, ab = Aly[pj, for some A € F. On the other hand, it must be A # 0
otherwise, as one can easily check, f + E is nilpotent. O

The next result will be used in Sect. 4.5.1. We state and prove it here since we need
the notation introduced here.

Lemma4.15 Let E = a(fT)P~! + b(fT)P € gy_1. Assume that f + E is not
nilpotent and that its nilpotent part lies in g_». Then ab € End(V[D]) is a non-zero
semisimple element.
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Proof Note that f1y_; is nilpotent and commutes with fly_, + E = (f + E)1v_,.
Hence, for the Jordan decomposition of f 4+ E we have

(f+E)=(flv, + E)s and (f +E)p = (flvy, + E)n+ fly,.

By assumption, fz = (flv,, + E)u € g—2. In particular, fz € gfz N (End(V7) &
End(V3)). Hence, by Lemma 4.1, we have that

D—1
h=Y rla+90m, (4.27)

k=0

for some ¢ € End~(V[D]) and s € End(V[D —~1]). Moreover, by Definition (I3)
we have that [E, fo] = (a(fD)P~' +b(fNP) fo — fo (a(fDOHP T +b(fMHP)) =
0. Since a(fMP~1f, € Hom(V[-D + 3], V[D]), b(fT)P f, € Hom(V[-D +
2], VID —1]), fza € Hom(V[D —1], V[D —2]) and fzb € Hom(V[D], V[D —3)),
we have a(fT)P~1 f, = b( fT)D fo = foa = f>b = 0. Explicitly, using Eq. (4.27)
we get b(fT)P f, = bt (fT)P~1 = 0, which implies

bt =0. (4.28)
Moreover, using again Eq. (4.27) we get f>b = fsb = 0, which implies

sb=0. (4.29)
Next, let A = (f + E)s and let v € V[D]. We have, by Eq. (4.27),

Av=(f+E—fv=fv— o= fd-nv.

Repeating the same computation D times, we get (cf. Eq. (4.25)) APv = fPv, and
applying A one more time we get

APy = EfP(1 = Pv=b(1 —)Pv =bv. (4.30)
For the last equality we used (4.28). By Egs. (4.27) and (4.30) we have
APY2y = (fF + E — fo)bv = fbv — fsbv = f(1 —s)bv = fbv,

where in the last equality we used (4.29). Repeating the same computation D — 1
times we get

APy = P~y
Applying A again, we finally get

APy = EfPpy = abv . (4.31)

@ Springer



Integrable triples in semisimple Lie algebras Page33of64 117

Since A is non-zero semisimple, AZD+1 s non-zero semisimple as well. Moreover,
from Eq. (4.31) we have that A2P+'V[D] C V[D] and A?P*!'1yp; = ab thus
showing that ab is non-zero semisimple and concluding the proof. O

4.2.6 No integrable elements for f in W

In this subsection we will use the decomposition

V=V,0 Vs, where Vio=EPV;. (4.32)
i#£2

Proposition 4.16 There are no integrable elements for f in W.

Proof By contradiction, let E = c(fT)P~! € W, where c is as in (4.22), be integrable
for f. Since gf is coisotropic, by Proposition 4.9 we have ¢2 = 0. Clearly, f + E =
(f + BE)ly, + (f + E)1y. 2> and f + E preserves the direct sum decomposition
(4.32). Note that (f + E)1y,, = f1y,, which is nilpotent. On the other hand, it is
not difficult to check that if v € V;, then we have (f + E)zDv = c2v = 0. Hence,
(f + E)1y, is nilpotent as well. This proves that f 4 E is nilpotent, contradicting the
fact that it is integrable. O

As a consequence of Propositions 4.12, 4.14 and 4.16 we get the following.

Corollary4.17 If E € gi, k > 1, is an integrable element for f € gly or sly, then
k=dork =d—1.Inotherwords, f+ E is integrable if and only if it is an integrable
cyclic or quasicyclic element.

Remark 4.18 For g = gly, the triple (0, f, 1y ) satisfies Definition (I1), (I2) and (I3).
However, 1y € go.

4.2.7. Here we reformulate the results on quasi-cyclic elements in g = gl or sly in
terms of polar linear groups. First, note that g;_1 is naturally identified with the space

Hom(V[D — 1], V[D]) @ Hom(V[D], V[D — 1]) (4.33)
(recall Eq. (4.19)) with the action of the group Z(s) defined by the natural action of
GL,, x GL,, (recall that dim V[D] = r; and dim V[D — 1] = rp). This linear group
is polar since it is a theta group.

Proposition 4.14 says that an element £ = ¢ @ ¢ from (4.33) is integrable if and
only if

oy =Al,, reF, A#£O0. (4.34)

It follows that for existence of an integrable E in g,_ it is necessary and sufficient
that

ry <. (4.35)
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Suppose that condition (4.35) holds. Then for the polar linear group GL,, x GL,,
acting on (4.33) one can choose a Cartan subspace C, consisting of the following
matrices (in some bases of V[D — 1] and V[D]);

C={(A0)®AOT | A=diag(h, ..., k) € Maty xn, ] .

Then condition (4.34) on an element from C means that A% = ... = )‘%1 = A2,
hence A; = %A for all j. Since the Weyl group of C contains all sign changes of
diagonal elements, up to the action of the Weyl group and rescaling, C contains a
unique integrable element (1,, 0) @ (1,, 0)T. Due to Theorem 3.16 (b), any integrable
E € g4—11s Z(s)-conjugate to C. Thus we obtain the following theorem.

Theorem 4.19 Let g = gly or sly and let f € g be a non-zero nilpotent element of
depth d, corresponding to the partition (4.1).

(a) Ifthere exists anintegrable E € gj, j > 1, for the nilpotent element f, then j = d
ord — 1.

(b) The linear group Z(s)|gq4—1 is polar.

(c) The element f admits an integrable element E € gq_1 if and only if r1 < ry. Pro-
vided that this condition holds, there exists a unique, up to equivalence, integrable
element E € g4_1 for f.

Remark 4.20 1t follows from [8] and the above discussion that for a nilpotent element
f € sly there exists E € gj, such that the element f + E is semisimple if and only
if j=dand pp =1,0r j =d — 1 and r; = rp and p3 = 1. This claim was stated in
[5], where the associated integrable Hamiltonian systems were also discussed.

4.3 General setup for symplectic and orthogonal Lie algebras

Recall from [1] that nilpotent orbits of sp, (respectively soy) are in one-to-one cor-
respondence with partitions p of N as in (4.1) with the property that if p, is odd
(respectively even), then r, is even, | <a <.

Let V be the N-dimensional vector space over F with basis {eq }4c7, Where I is an
index set for the basis, which can be identified with the set of boxes in the pyramid
associated to p (cf. Fig. 1). Given a € I we leta’ € I correspond to the box in the
same rectangle as « reflected with respect to the center of the rectangle. For example,
in Fig. 1, if « is the box labelled by 17, then &’ is the box labelled by 24, while if « is
the box labelled by 23, then o is the box labelled by 18.

Clearly, @” = a. Let n = %1, and choose amap € : I — {41} with the properties
that

€€y =1, €nep =—1, for o, B adjacent boxes in the same row .
(4.36)

For example, let v : I — {1,2,..., N} be the ordering of the boxes of the pyramid
going from right to left and then from bottom to top. Then €, = (—1)"® satisfies the
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properties in (4.36) with n = (—1)N*1. Tt is easy to see that for every choice of 1 such
amape : I — {£1} exists.
Let us define on V abilinear form (- | -) : V ® V — T letting

(eqlep) = €qbq pr a,Bel. (4.37)

Lemma 4.21 The bilinear form (4.37) satisfies (v, w € V)
(vlw) = n(wlv) .
Proof From Egs. (4.36) and (4.37) we have
(eplea) = €pdar p = €ardur p = N€aba,p = Nlealep), a,pel.
O

Given A € End V, let us denote by AT its adjoint with respect to the bilinear form
(4.37). By Lemma 4.21, we have that

g={Ae€EndV | A= —AT} ~ spy (resp. soy),n=—1 (resp.n=1).
(4.38)

We denote by Ey g € End V, a, B € I, the elementary matrices: Ey ge, = g, €q.
Lemma4.22 We have that (Eqp)" = €qegEp o, @, B € 1.

Proof By a straightforward computation, we get («, B, v, n € I)

(Ea,ﬂey|en) = Sﬁ,y(ea|en) = €a8ﬂ,y8a,n’ = Gaéﬁey(Sﬁ,y(Sa,,}/

= €u€pdq,y{eyleg) = ex€pley | Ep oren) .
The claim follows. O

For every o, B € I, we let
Fop=Eqp—€xcpEg o €9. (4.39)
Note also that
Fg oo = —€u€pFup, o, fel. (4.40)

Lemma4.23 Let A=}, sc;dapEap € EndV.
(a) A€gifandonlyifag o = —€y€pagp, foreverya, g € I.
(b) If A € g, then

1
A= 3 Zaa,ﬁFa“g .
a,B
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Proof Straightforward. O

The following commutation relations hold (¢, 8, y,n € I):

(Fa,p, Fynl = 8y pFay — SnaFpy — €a€pdar,y Fp oy + €a€pdn p Fy o -
4.41)

If we depict, as in Sect. 4.2.1, the basis elements of V as boxes of a symmetric pyramid
associated to the partition p (cf. Fig. 1), let, as usual, f be the endomorphism which
corresponds to “shifting to the left.” Then, f € g. Indeed, using the second property in
(4.36), wehave f =3, s Eqp = % > o« p Fo,p- Note that the "shift to the right”
operator fT liesin g as well.

Asin Sect. 4.2.1, let € End V be the diagonal endomorphism of V whose eigen-
value on e, is the x-coordinate of the center of the box labeled by « (see Fig. 1) which
we denote by x,. We then have the h-eigenspace decomposition of V (4.4) where
D = p; — 1 is the maximal eigenvalue of /.

Note that x,, = —x, and we have
h = XgEq =l XaFoo €9.
2
ael ael

Clearly, the matrices F g are eigenvectors with respect to the adjoint action of A:
(adh)Fy g = (xo — Xp) Fop - (4.42)
This defines a Z-grading of g, given by the ad h-eigenspaces as in (1.1):
gk = Spang{Fy g | xo — xg = k}. (4.43)

Recalling the definition (4.8) of the spaces V. ;, we have an isomorphism f Di .
V_i — Vi, i =1,...,s. Then the bilinear form (4.37) induces non-degenerate
bilinear forms §;(-, -) : V4+; ® V4 ; — F,i =1,...,s, defined by

Bi(v, w) := (v fPw), v,weVy;. (4.44)
Using Lemma 4.21 and the fact that fT = — f, we have (v, w € V)
Bi(w, w) = (=P yBi(w, v). (4.45)

4.4 Integrable triplesin g = spy

For n = —1, the Lie algebra (4.38) is g >~ sp . In this case the depth of the grading
(4.43)isd = 2D = 2p; —2. To see this, we describe explicitly the space g, p (clearly,
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gr = 0,fork > 2D).Let A € Hom(V[—D], V[D]), and let A= AfD e End(V[D])).
We have

Bi(Av, w) = (AfPv| fPw) = (=DP (] fP AT fPw) = (=1)P B (0] ATw) .
Hence, the adjoint of A € End V[D] with respect to B is
A* = (=1)PAT, (4.46)
As a consequence, we have a bijection
gop >~ {B € End(V[D)) | B* = (-1)"'B}, A A. (4.47)
Using Eqgs. (4.45) and (4.47) we have that, if p; is even, then g, is identified with

the space of selfadjont (with respect to the symmetric bilinear form g1 in (4.44))
endomorphisms of V[D], while if p; is odd then g4 ~ sp(V[D], B1).

4.4.1 The centralizer 3(g>2)

From Lemma 4.23 we have that E € g, can be decomposed as

E = Z copbop, Cpo = —€x€pCa,p. (4.48)

Xo—Xp=k
Proposition 4.24 The centralizer of g>2 in g is 3(g>2) = W @ ga—1 D g4, where
W = Spang{Fep | Xa =D — 1, xg =—D + 1} C gy—2.
Proof AsinLemma4.6 we have 3(g>2) C g>0. Leta, B € I be such that xz = D and
X5 < D —2 (the box B is completely at the left of the box &). Then F&g € g>2. Hence,

letting E as in (4.48), and using the commutation relations (4.41) and Eq. (4.40) we
get

0=[F,3 El= Z CaplFyp, Fapl = Z 255 Fap — Z 24iF -
Xa—xp=k xf;—x,g:k —D=k
(4.49)

If k > 1, then the condition x, — D = k > 1 is empty. Hence,

Y. cppFap=0.
xﬁf)q;:k

which implies that that ¢, = 0if x4 < D — 2. Using the second equation in (4.48),
we have also that cqg = 0if xg > —D+2.1f k = 0, a similar argument to the one used
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in the proof of Lemma 4.6 shows that Eq. (4.49) implies £ = 0. As a consequence,
E € W& gq—1 @ gq. On the other hand, by Proposition 4.7, we have

WO gi-1®ga =3((gly)=2) Ng C3(g22) .
O
Recalling the definition of integrable triples given in the Introduction, by Proposi-

tion 4.24, if E is an integrable element for f,then £ € (W @ g4—1 @ gq) N g>1 (note
that gg—1 ® ga C g1 for p1 > 2,and W C g for p; > 3).

4.4.2 The coisotropy condition

An element E € gy can be uniquely written as E = A — AT, where A €
Hom(V[—-D + 1], V[D]). Let

a=AfP~1ATfP € End(V[D)). (4.50)

Proposition 4.25 Let E € g4_1. The subspace gf is coisotropic with respect to the
bilinear form (1.2) if and only if a = 0.

Proof By Lemma 4.3 with B = —A", we have thatad E o (ad f) ! oad E|g_ , = 0
if and only if

la, (fNHPUI=0, foreveryU eg_g4.

Note that g_g; = g4 and that (fT)Dg,d C End(V[D]). By the description of g4
given in (4.47) we have that (fT)Pg_; = {B € End(V[D]) | B* = (=1)?'B},
where the adjoint is with respect to the bilinear form g defined in (4.44). Recall that
a € End(V[D]). Using Eq. (4.46), its adjoint with respect to the bilinear form S is

a* = (1) AfP7IAN P = —a.
Hence, by (4.47), if p; is odd, then a = 0 since it lies in the center of sp(V[D], B1).
On the other hand, if p; is even, a = 0 since it is a skewadjoint operator commuting

with all selfadjoint operators. O

Now, let E € W = Spangp{Fug | xo = D — 1,xg = =D + 1} C gg—2. Asin
Sect. 4.2.3 we write E = ¢(fT)P~!, where ¢ € End(V[D — 1)).

Proposition 4.26 Let E = c(fT)P~! € W. The subspace gf is coisotropic with
respect to the bilinear form (1.2) if and only if ¢* = 0.

Proof Same as the proof of Proposition 4.9. O

@ Springer



Integrable triples in semisimple Lie algebras Page390of64 117

4.4.3 Integrable E € g4

Recall from Sect. 4.2.4 that E = u(f7)?, where u € End(V[D]). The following
result follows from Lemmas 4.10 and 4.11.

Proposition 4.27 Let g = spy and f its nonzero nilpotent element of depth d. Then
E =u(fT")P € gy is integrable for f if and only if u is semisimple.

4.4.4 No integrable elements for f ingg_1 & W

Recall the element a, defined by (4.50) for E € g4—1, and the element ¢ , defined by
4.22)for E € W.

Proposition 4.28 There are no integrable elements for f in ggz—1 & W.

Proof By contradiction, let E € ggz—1 be an integrable element for f. Since gf is
coisotropic, by Proposition 4.25, we have a = 0. Clearly, f + E = (f + E)1y_, +
(f+E)ly.,,and f+E preserves the direct sum decomposition V = V<2 @ V3. Note
that (f + E )Lv.; = f1y.; is nilpotent. On the other hand it is not difficult to check
that (f + E)*P~'v = av = 0 for every v € V<. Hence, (f 4+ E)1y., is nilpotent
as well. This proves that f + E is nilpotent, contradicting the fact that it is integrable.
The proof of the claim for E € W is the same as the proof of Proposition 4.16. O

As a consequence of Propositions 4.27 and 4.28 we get the following.

Corollary 4.29 Let g = spy and f its non-zero nilpotent element. The element f + E,
where E € gi, k > 1, is integrable if and only if f + E is an integrable cyclic element.

4.5 Integrable triples in g = soy for nilpotent elements of even depth

Recall that for n = 1 in (4.36), the algebra (4.38) is g =~ soy.
Lemma 4.30 [cf. [8,13]] The depth d of the grading (1.1) for g = soy is

(i) d =2D forry > 2;
(ii) d =2D — 1 for prodd, r1 =1, pp =p1 — 1;
(iii) d =2D —2 for pyodd, ri = 1, pp < p1 — 2.

Proof As in Sect. 4.4, let A € Hom(V[—D], V[D]), D = p; — 1, and consider
A = AfP e End(V[D]). Then, the adjoint of A with respect to the bilinear form
B defined in (4.44) is given by Eq. (4.46) and the space gop is described in (4.47).
Using Eq. (4.45) we have that, if p; is even (hence r is even), then g, p is identified
with the space of selfadjont (with respect to the skewsymmetric bilinear form B)
endomorphisms of V[D], while if p; is odd then gop =~ so(V[D], B1). It follows that
the depth of the grading (4.43) isd = 2D when r; = dim V[D] > 2, proving case (i).

If r1 = 1 (hence p; is odd), then gop = {0} and d < 2D. Consider first the case
when p, = p; — 1. In this case, V[D] is one dimensional and V[—D + 1] is an
ro-dimensional vector space. Furthermore, gop_1 = {A — AT | A € Hom(V[-D +

@ Springer



117 Page 40 of 64 A.De Sole et al.

11, V[D])} ~ V[—D + 1]*. Hence, in this case the depth of the grading (4.43) is
d = 2D — 1, proving case (ii).

We are left to consider the case r; = 1 and pp < p; — 2. Inthiscased = 2D — 2.
Indeed, Fy, « pi—1 € 92D-2, where o is the rightmost box of the pyramid (which is in
the bottom row) and c,, 1 is the second leftmost box of the bottom row, is a non-zero
element. ]

4.5.1 Even depthd = 2D
Proposition 4.31 We have that 3(g>2) = W @ gq—1 @ ga4, where
W = Spanp{Fug | x¢ =D —1,xg =—D + 1} C gqg—2.

Proof Similar to the proof of Proposition 4.24. O

Proposition4.32 (i) Let, as in Sect. 442, E = A — AT € gd—1, with A €
Hom(V[—D], V[D — 1]), and let a = AT fP~1AfP e End(V[D]). If pi is
even and r1 = 2, then the subspace gf is coisotropic with respect to the bilinear
Sform (1.2). In the other cases, gf is coisotropic if and only if a = 0.

(ii) Let E € W and let, as in Sect. 442, ¢ = EfP~! € End(V[D — 1]). The
subspace gf is coisotropic with respect to the bilinear form (1.2) if and only if
2 =0.

Proof As in the proof of Proposition 4.25 we have that ad Eo (ad f) ! oad E lg_y =0
if and only if [a, (fT)PU] = 0, for every U € g_y and that a € End(V[D]) is
skewadjoint with respect to the bilinear form (4.44). Note that g_; = g4 and that, by
Eq. (4.47), we have (fT)Pg_4 = (B € End(V[D]) | B* = (=1)?' B}End(V[D]) C
End(V[D]). If p; is odd, then a = 0 since it lies in the center of so(V[D], B1). On the
other hand, if p; is even (this implies r| even), then a is a skewadjoint operator (with
respect to a skewsymmetric bilinear form) commuting with all selfadjoint operators
with respect to the same bilinear form. This gives no condition on a when r; = 2, but
implies that a = 0 for r1 > 2. This proves part i). The proof of part ii) is similar to
the proof of Proposition 4.9. O

Let p; be even and r; = 2 = dim(V[D]). Let us choose a basis {u, v} of V[D]
such that

Bi(u,v) = (ulfPv) =1,
where the bilinear form 8; on V[D] defined in (4.44) is skew-symmetric by (4.45).
Then, clearly {fku, fhv | 0 < h,k < D} is abasis of Vj. In particular V[—-D] =
FfPu@TFfPo.

Forevery w € V,letusdenote by ¢p(w) : V — F the linear functional ¢ (w)(w;) =
(w]wy), wy € V. Hence, we can write

A=x¢) +ypu), (4.51)
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for some x, y € V[D — 1]. Then
AT = up(y) + vp(x). (4.52)
Indeed, using the fact that 81 (w1, w1) = 0, for every wy € V[D] we have
(AfPulw) = —(xlw) = (fPulATw), (AfPvlw) = (ylw) = (fPv]ATw).
Hence, in this case, E can be uniquely written as
E=x¢()+ypu) —up(y) —vex), x,yeV[D—1]. (4.53)
Lemma 4.33 With respect to the basis {u, v} of V[D] we have that

o AT DI AfD — (—ﬂzoc, Y B, y)) , (4.54)

_ﬂZ(xv-x) ﬂZ(-xv )’)
where B; is defined by (4.44).

Proof We have, by (4.51) and (4.52),

a(u) = ATfPVALPu = ATFP7 (I P+ Gl Pu)y)

= —AT P = — (1P e+ (e P )
= —h2(y, ¥)u = Pa(x, )v,

which gives the first coloumn in the matrix (4.54). Similarly for the second column. O

Proposition4.34 Let E € gy—1 be as in (4.53) and let a € End(V[D]) be as in (4.54).
If a is a non-zero semisimple element, then (f + E), € g—».

Proof By assumption, a is a non-zero semisimple element. In (4.54) a is represented
by a 2 x 2 traceless matrix. Hence, it is non-zero semisimple if and only if det(a) # O.
This implies that x and y are linearly independent. Let

U={weV[D—1]|Ba(x,w) = f2(y,w) = 0} C V[D — 1].
Since B, is non-degenerate and det(a) # O it easily follows that
VID-11=Fx®FyaU.
As a consequence, applying f repeatedly, we get
Ww=VieV,eU,
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where
Ve =@ Frix, vy =P Ffy, U=0l f 0.

Note that (f + E)lygv.; = fLluev.; is nilpotent and commutes with (f +
E)l VIOV, @V, - Moreover, it is not difficult to check that

(f+EPTw=aw, weVieoV,aV,. (4.55)

Let g () denote the minimal polynomial of a, which has non-zero distinct roots since
a is non-zero semisimple. Equation (4.55) implies that the minimal polynomial of
(f + E)ly, v, @v, divides q(tZD *1y which obviously has also distinct roots. Then
(f+E )]IVI@VXQB‘/}: is semisimple. In conclusion, the Jordan decomposition of f + E
has (f + E)s = (f + E)lvi@v,ev, and (f + E)n = fluev.; € g-2. o

The next result characterizes integrable elements for soy when the depth of the
grading isd = 2D.

Theorem 4.35 Let g = soy and let f € g be a non-zero nilpotent element of depth
d=2D,D=p; — 1.

(i) Let E € gq and let, as in Sect. 4.2.4, u = EfD € End(V[D)]). Then E is
integrable for f if and only if u is semisimple.

(ii) Let E € g4—1 and let, as above E = A — AT, where A € Hom(V[-D], V[D —
1), and a = AT fP=1AfP e End(V[D)). Then E is integrable for f if and
only if p1 is even, r1 = 2 and deta # 0.

(iii) If E € W, then E cannot be integrable for f.

Proof Part i) follows by Proposition 4.12. If p; is even and r; = 2 part ii) follows
from Proposition 4.32i), Lemma 4.15 and Proposition 4.34. The remaining claim in
part ii) and iii) can be proved in the same way as for the proof of Proposition 4.28
using Proposition 4.32. O

Remark 4.36 We have a non-zero E € gq— if and only if py = p; — 1 (otherwise
dim g;—1 = 0). In this case, if r, = 1, there are no elements E € g,_ satisfying the
assumption of Theorem 4.35ii). Indeed, since dim V[D — 1] = r, = 1, x and y are
linearly dependent thus a defined in (4.54) is nilpotent.

4.5.2 Even depthd = 2D — 2

Proposition 4.37 The centralizer of g2 in g is 3(g>2) = ga—1 D ga-

Proof Clearly, 3(g>2) C g>0. By degree considerations, 3(g>2) D g4—1 D g4. On the
other hand, let 1 € I be the label of the rightmost box of the pyramid associated to p

(note that x; = D) and p; € I be the label of the leftmost box (note that x,, = —D).
Let also B € I be such that x 5=D- 2 (the box B is completely at the left of the
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box 1). Then F, j € 02 Hence, letting E as in Eq. (4.48), using the commutation
relations (4.41), the second equation in (4.48) and (4.40), we have that

lﬂvE]Z Z caplF 1/3, Z ZC/S/SFW Z ZCozIFaﬁ
Xo—D=k

Xo—xp=k X5 7x,g—k

0=[F

(4.56)

If k£ > 1, then the condition x, — D = k > 1 implies that x, > 1 4+ D, which is
empty. Hence, cqp = 0if x4 < D — 2 and B # p; (since Fy p, = 0 by (4.40) and
(4.36)). Using the second equation in (4.48), we have also that c,g = 0if o # 1 and
xg > —D +2.Since V[D — 1] = V[-D + 1] = 0, we have

Z ClﬁFlﬁ .

Xﬁ:D—k
Let then assume that &, B € [ are such that x5 — x 7 > 2. Then

0 = [F&B’ E] = 25%‘“1)_1{6‘1,5[}7 (457)

LB

If x4 = D —k,then —D < X5 < D — 2 — k. Hence, Eq. (4.57) implies that 15 = 0
for xg > —D + 3, thus showing that E € g4 @ gq—1.

If k = 0, a similar argument to the one used in the proof of Lemma 4.6 shows that
E=0. O

In the sequel, we are going to use the following basis of V. Let vy € V. 1 be such
that B1(v+, v4+) = 1. Then we consider the basis { f kv+}kD:0 of V1. We also denote

v_ = fPuy.

An element E € gy can be uniquely written as E = A — A", for some A €
Hom(V[—D], V[D — 2]). Note that V[D] = Fvy and V[D — 2] = F fu; & V4 5.
Hence,

= (@ +Afv)p(vy) —vi(p(a) + A2 (fv4)), (4.58)
forsome A € Fanda € V, 5.

Let now E € gy instead. It can be uniquely written as £ = B — BT, where
B € Hom(V[—-D], V4 3). Hence, B = b¢(v4), for some b € V. 3, and we can write

E =b¢(vy) —vip(D). (4.59)
We also set
B = (blfP7b). (4.60)

Proposition 4.38 Let E € g4—1 be as in (4.59) and let B be as in (4.60). The subspace
gf is coisotropic with respect to the bilinear form (1.2) if and only if B = 0.
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Proof Let E = B— B" € gy_jandlet U = X — X' € gy, for some X €
Hom(V[D], V[—-D + 2]). Recall that B = b¢(v4). Hence, 17y B = 0. Moreover,
B' = v ¢ (b), Hence, B""]lfw = 0. By Proposition 3.13 and Lemma 4.5 we have
that gf is coisotropic if and only if

(fMHP2XBT P73 = BT fP3AXT(f NP2 =0, (4.61)

for every X € Hom(V[D], V[—-D + 2]). Note that the middle term in equation
in (4.61) is the adjoint of the first term. Hence, gf is coisotropic if and only if
(fMP=2xBT fP=3B =0 for every X € Hom(V[D], V[—D + 2]). Then, we have

0= ((/MP2XBP7B) (1) = BUHP2X ().
Since X is arbitrary we get 8 = 0. O

The next result characterizes integrable elements for soy when the depth of the
grading isd = 2D — 2.

Theorem 4.39 Let g = son and let f € g be a nilpotent element of even depth
d=2D—-2,D=p;— 1.

(i) Let E € gq be as in (4.58), where . € F and a € V., and let also o =
(a|fP~2a). E is integrable for f if and only if either « # 0, or @« = a = 0 and
A #£O.

(ii) There are no integrable elements for f in gq—1.

Proof In order to prove part (i) one can use the same arguments that will be used for
the proof Theorem 5.6 (ii) (in fact, part (i) of the present Theorem corresponds to the
special case b = 0 of Theorem 5.6 (ii)). Let us then prove part (ii). Let E € g4—1 be as
in (4.59) and let 8 be as in (4.60). If E is integrable for f, then gf must be coisotropic.
By Proposition 4.38, then 8 = 0, and, as one can easily check, f + E is nilpotent.
This contradicts the fact that E is integrable and proves part (ii). O

Remark 4.40 Theorem 4.39 (i) follows from Theorem 3.15 since in this case Z (s)|gqg =
st(SO,,) @ 1 (see Table 1).

4.5.3. Let us reformulate the results, obtained in Sect. 4.5 about integrable quasicyclic
elements in terms of polar linear groups.

First, actions of centralizers of the sl-triples for nilpotent elements in simple Lie
algebras of classical types on g, are given in the following table:

In Tables 2 and 3, for a G-module V, D(V) stands for the G-module V & V*.

Cartan subspaces for the entries in Table 2 are as follows.

e For D (st(ﬁ[,l)* ® st(sl,,) ®IF): let us identify the representation space with
st(sly,) ® st(sl,)* + st(sl,)* @ st(sl,,); then, a Cartan subspace is spanned by
Ui @i +uf ®v;,i =1,...,min(ry, r2), where u;, u?, resp. v;, v are dual bases
of st(sl,,) and st(sl,,) respectively.
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o For st(502 ¢ possibly 1) ® St(spy,): let uy, ..., U, (possibly uo,) u_p, ..., u_1 be
a basis of FZm+possibly 1 and 41 ... v,, v_p, ..., v be a basis of F2"; then, the
subspace C spanned by {u; ® v; +u_; ® v_; | i =1, ..., min(m, n)} is a Cartan
subspace.

e For /\2 st(sp,,): as in subsection 4.1.3, case (d).
e For st(so,,): as in subsection 4.1.3, case (a).

Theorem 4.41 Let g = soy, let f € g be a non-zero nilpotent element of even depth

dandlet p = (p%rl), pérz)’ ...) be the corresponding partition. Then

(a) All the linear groups Z(s)|gq—1 are polar, and described in Table 2.

(b) There exists an integrable quasi-cyclic element for f if and only if p| is even,
r1 = 2,and py = p1—1, ro > 2. Such an element is the unique, up to equivalence,
element f + E, where E € gq_1 is semisimple with respect to Z(s).

Proof (a) follows from Table 2, since all these linear groups are theta groups.

In order to prove (b), note that in the case in question, Z(s)|gg—1 = st(Sp2) ®
st(SOy,), for which the rank equals 1. This shows that, up to equivalence, there is at
most one integrable quasi-cyclic element. Its existence follows from Theorem 4.35
(i1). ]

4.6 Integrable quasi-cyclic elements in exceptional Lie algebras for nilpotent
elements of even depth

By the quasi type in the last column we mean whether f + E for a generic E € g4
is semisimple or mixed (meaning neither semisimple nor nilpotent).

4.6.1 Nilpotent elements with label A,

A representative for the orbit with label A is given by a negative root vector e_, —
arbitrary for type E and a long one for F4 and G;. Depth is 2, and a 1-dimensional
Cartan subspace for 3(s)|g; is spanned by the vector E = v* +v,, where v*, resp. vy is
the highest, resp. lowest weight vector. Moreover E satisfies the coisotropy condition,
and the quasi-cyclic element f + E is semisimple.

4.6.2 Nilpotent element with label 31 inFy

A representative f for A is given by a short root vector. Depth is 2, with g; of
dimension 8. The representation 3(s)|gj is the direct sum V = V| @ V; of two standard
representations of sly, and a Cartan subspace is spanned by E = v! + vy, where v!
is a highest weight vector for V| and v, a lowest weight vector for V5. This E does
not satisfy the coisotropy condition, which implies that all quasi-cyclic elements are
nilpotent.

4.6.3 Nilpotent element with label 2A; in Eg

A representative f for 2A; is given by the sum of any two commuting root vectors.
Depth is 2, and 3(s)|g; is as in Example 2.10, so we can choose a basis {E7, E2} of
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Table 4 Odd nilpotent elements f of even depth in exceptional g, for which Z(s)|gs—1 has only trivial

invariants
g Nilpotent f d 3(8) | ga—1
Fy4 A+ Ay 0—0=>1—o0 st(slp)
B, 2—0=>0—1 6 0
C3(ay) | —0=>1—0 6 st(sly)
C3 | —0=>1—2 10 st(slp)
Eg Az 1—0—0—0—1 6 0
}
Az + Ay 0—1—(|)—1—0 6 st(slp)
1
As 2—1—0—1—2 10 st(sl)
!
Ds(ay) 1—1—0—1—1 10 0
}
E; Az 0—1—0—0—0—2 6 0
}
Az + A 0—0—0—1—0—1 6 st(sl)
}
Az +2Aq 1—0—1—0—0—1 6 st(sly) @ st(sl)
b
Dy4(ay) + Ay 1—0—0—?—1—0 6 st(sly) @ st(slp)
1
Dy + A4 1—0—0—0—1—2 10 0
!
Ds(ay) 0—1—0—1—0—2 10 0
}
As 0—2—0—1—0—1 10 st(sl)
}
As + Ay 2—1—0—1—0—1 10 st(slp)
}
Dg(ap) 2—0—1—?—1—0 10 st(sl)
1
Ds + Aq 0—1—1—0—1—2 14 0
!
Dg(ay) 2—0—1—0—1—2 14 0
!
D¢ 2—2—1—0—1—2 14 0
!
Eg Az 2—0—0—0—0—0—1 6 0
b
Az + A 1—0—1—0—0—0—0 6 st(slp)
b
Az +2A4 1—0—0—0—(|)—1—0 6 st(slp) @ st(spsg)
0
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Table 4 continued
g Nilpotent f d 38) | ga—1
Dy(ap) + A 0—1—0— —(I)— —0 6 st(sly) @ st(sly) @ st(sly)
1
D4+A1 2—1—0—0—0—0—0 10 0
!
Ds(ay) 2—1—0—0—0—0—1 10 0
}
As 1—0—1—0—0—0—2 10 st(slp)
b
Ds(ay) + Ay 2—0—0—0—1—0—0 10 0
}
As + A4 1—0—0—0—1—0—1 10 st(sly) @ st(slp)
!
Ds(ay) + Ay 1—0—1—0—0—1—0 10 st(sly)
}
Dg(ap) 0—1—0— —(I)— —0 10 st(sly) @ st(slp)
1
Eg(a3) + Aq 0—1—0—1—0—0—1 10 st(slp)
b
E7(as) 0—0—1—0—1—0—0 10 st(slp)
}
Ds + A 2—1—0—1—0—0—1 14 0
!
Dg(ay) 2—1—0— —(I)— —0 14 0
I
A + Aq 0—0—1—0—1—0—1 14 st(slp)
}
E7(aq) 2—0—1—0—1—0—0 14 0
}
Dg 2—1—0—0—0—1—2 18 0
!
Eg(ay) + Aq 2—0—1—0—1—0—1 18 0
}
E7(a3) 2—0—1—0—1—0—2 18 0
}
Ee + A 2—2—1—0—1—0—1 22 0
}
E7(ap) 2—2—0— —(|>— —0 22 0
1
Dy 1—0—1—1—0—1—2 22 st(slp)
!
E7(ay) 1—0—1—1—0—1—2 26 0
!
E; 2—2—2— —(I>— —2 34 0
1
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a Cartan subspace as there, with E; = vt + v_ and Ex = v~ + vy. Coisotropy
condition for E = x; E; + xp E; turns out to be xl2 = x%. We then check that both
f+x(E1+E>)and f+x(E| — E») are semisimple for x # 0. These are all integrable
quasi-cyclic elements f + E for E from the Cartan subspace.

In fact these two solutions £ + E3 and E| — E» are equivalent under the action
of Z(s). This can be seen as follows. Take

f = .fll}ll + fl2?2|a
then
E| = eougm +en}107 E; = ell(l)O(J + 601%21'

Consider the element H of the Cartan subalgebra determined by the following
values of simple roots on it:

02 0 -2 0
0

Its eigenvalues on g are —2, 0, 2, so it defines a Z-grading g = g—> @ go @ g2 of g.
Moreover f, E1 € g0, €11100 € g2 and €5, € g2, 1. €.
0 1

[H, fl1=[H,E]1=0, [H, ell(l](]()] = 2611(1)009 [H, 601%21] = _2601%21-

Hence, in the corresponding Z/27Z-grading g = g° @ g', where g° = go and g' =
g2 ® g_o, one has f,E; € g° and E; € g'. Let ay be the inner automorphism
corresponding to this Z/2Z-grading, i.e., az (x) = x for x € g and aryy (x) = —x for
x e gl.Thenay(f) = f,an(E1) = Eranday (E2) = —E>.Henceay (E1+E») =
E1 — Eyand ay(E] — Ey) = E| 4+ E3, so ay interchanges the above solutions.

4.6.4 Nilpotent element with label 2A; in E7

Also here, a representative f for 2A; is given by the sum of any two commuting
root vectors. Depth is 2, and 3(s)|g; is as in Example 2.11, so we can choose a basis
{v1, v2} of a Cartan subspace as there, with v) = vp +v_p and vy = e_g €_gy o, UA +
€s; €g,+53V—A . Coisotropy condition for £ = xjv1 + x2v2 turns out to be x% + x% =0
and x% — x% = 0, which implies that all quasi-cyclic elements are nilpotent.

4.6.5 Nilpotent element with label 2A; in Eg

As in two previous cases, a representative f for 2A; is given by the sum of any two
commuting root vectors. Depth is 2, and 3(s)|g; is spin;3, so, as in [10, Proposition
10], we can choose a basis {v], v2} of a Cartan subspace as there, with vy = vp +v_p
and vy = e_g e_ge_g VA +e5 5,65,V 5, Where A is the highest weight. Coisotropy
condition for £ = xjv; 4+ x2v; turns out to be, as in the previous case, x% + x% =0
and x12 — x% = 0, which implies that all quasi-cyclic elements are nilpotent.
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4.6.6 Nilpotent elements with label A; + A7 in Eg, E; and Eg

Here depth is 4, the algebra 3(s) is gl; for Eg, gl, for E; and slg for Eg. The repre-
sentation 3(s)|g3 is a direct sum Vi & V; of two copies of a standard representation
of sl3 for Eg, of sl for E7 and of slg for Eg. A Cartan subspace of g3 is spanned by
E = v! + vy, where v! is a highest weight vector for V| and v, is a lowest weight
vector for V,. Each of these E satisfies the coisotropy condition, and the quasi-cyclic
element f + E is semisimple.

4.6.7 Nilpotent element with label A 4+ 2A+ in Eg, E7 and Eg

Depth is 4. Here 3(s)|g3 is V ® st(sl2), where V is st(so07) for Eg, st(so4) for E7 and
spin; for Eg. In all three cases a Cartan subspace is spanned by E = v* ® vy + v, Q v,
where v* denote highest weight vectors and v, the lowest weight vectors, both for V
and for st(sly). This E does not satisfy the coisotropy condition, so that all quasi-cyclic
elements are nilpotent.

4.6.8 Nilpotent elements with label A; + Aq in Eg, E; and Eg

Depth is 4. The representation 3(s)|g3 is 2-dimensional, it is st(sop) with a 1-
dimensional Cartan subspace spanned by E = v* + v,, where v*, resp. v, is the
highest, resp. lowest weight vector. This E satisfies the coisotropy condition, and
f + E is semisimple.

4.6.9 Nilpotent elements with label A; + A, in E; and Eg

Depth is 6. The algebra 3(s) is sly plus a 1-torus for E; and sp, plus a 1-torus for
Eg. The representation 3(s)|gs is direct sum V4 & V_ of two copies of a standard
representation, with the torus acting as 1 on V4. It has a 1-dimensional Cartan
subspace spanned by E = vt + v_, the sum of the highest weight vector of V. and
the lowest weight vector of V_. This E does not satisfy the coisotropy condition, so
that all quasi-cyclic elements are nilpotent.

4.6.10 Nilpotent element with label A; + 3A; in Eg

Depthis4, and 3(s)|g3 is st(G2) ®st(s(y), with 1-dimensional Cartan subspace spanned
by E = v* 4 vy, the sum of the highest and the lowest weight vectors. This E does
not satisfy the coisotropy condition, which means that all quasi-cyclic elements are
nilpotent.

4.6.11 Nilpotent element with label A3 + A; + A; inEg
Depthis 6,and 3(s)|gs is st(s[) ®st(s03), with 1-dimensional Cartan subspace spanned
by E = v* 4 vy, the sum of the highest and the lowest weight vectors. This E does

not satisfy the coisotropy condition, which means that all quasi-cyclic elements are
nilpotent.

@ Springer



Integrable triples in semisimple Lie algebras Page530f64 117

4.6.12 Nilpotent element with label A4 + 2A; in Eg

Depth is 8, the algebra 3(s) is sl> plus a 1-torus, and the representation 3(s)|g7 is the
direct sum V; @ V_ of two copies of st(s[,), with the torus acting by =1 on V.. It has
a 1-dimensional Cartan subspace spanned by E = v™ 4 v_, the sum of the highest and
the lowest weight vectors of V., resp. V_. This E satisfies the coisotropy condition,
and the quasi-cyclic element f + E has Jordan decomposition (f5 + E) 4+ f™ where
f5, f™ € g_p are nilpotent elements with labels A4 + A and A respectively. This
gives an integrable triple for this case.

4.6.13 Nilpotent element with label A; + A; + A; inEg

Depth is 8, the algebra 3(s) is sl, and 3(s)|g7 is its 4-dimensional irreducible repre-
sentation. It has a 1-dimensional Cartan subspace spanned by E = v* + v,, the sum
of the highest and the lowest weight vectors. This E does not satisfy the coisotropy
condition, so that all quasi-cyclic elements are nilpotent.

4.6.14 Nilpotent element with label D7 (a;) in Eg

Depth is 14, and 3(s)|g13 is the standard representation of so;. It has a 1-dimensional
Cartan subspace spanned by E = v* + vy, the sum of the highest and the lowest weight
vectors. This E satisfies the coisotropy condition, and the quasi-cyclic element f + E
is semisimple.

Remark 4.42 1t was proved in [5] that for a long root vector f € g # sp there exists
aunique, up to equivalence, integrable quasi-cyclic element. This covers f of type A
in all exceptional g (see Table 3).

Conclusion

Due to Theorem 3.16 (b), Sects. 4.6.1, 4.6.3, 4.6.8, 4.6.12, and 4.6.14 describe all
integrable quasi-cyclic elements f + E for nilpotent elements f of even depth for all
examples from Table 3, up to conjugation by Z(s). Obviously even nilpotent elements
and the nilpotent elements from Table 4 have no integrable quasi-cyclic elements. As
a result, we see that for each nilpotent element f of even depth in an exceptional
simple Lie algebra either there are no integrable quasi-cyclic elements f + E, or, up
to equivalence, there is exactly one.

5 Integrable quasi-cyclic elements associated to nilpotent elements
of odd depth

Recall that if f € g is a nilpotent element of odd depth d, then all elements of the
Z(s)-module g, are nilpotent [8, Theorem 1]. Actually the linear group Z(s)|gy is the
full symplectic group, [9, Remark 2], hence it is polar. Thus, by Lemma 3.14, if f has
odd depth, there are no integrable cyclic elements f + E, with E € g4.
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By [8], if g is a classical Lie algebra, nilpotent elements f of odd depth exist only
in s0,, and for g exceptional, such f are listed in [8, Table 1]. These two cases are
treated in Sects. 5.1 and 5.2 respectively.

5.1 Integrable quasi-cyclic elements in soy for nilpotent elements of odd depth

Let g = soy and let f € g be a nilpotent element associated to the partition p as in
(4.1). Assume that it has odd depthd = 2D — 1, D = p; — 1. By Lemma 4.30, this
happens when pj isodd, r; = 1 and p» = p; — 1.

We realize the Lie algebra g ad in (4.38), with n = 1, and we let {Fy g, o, B € I}
be the set of generators of g defined in (4.39). The first result describes 3(g>2), the
centralizer of g>» in g.

Proposition 5.1 We have that 5(g>2) = ga—1 D ga-

Proof The proof is similar to the proof of Proposition 4.37. For completeness, we
replicate the argument. Clearly, 3(g>2) C g>0. By degree considerations, 3(g>2) D
gd—1P ga. On the other hand, let 1 € I be the label of the rightmost box of the pyramid
associated to p (note that x; = D) and p; € I be the label of the leftmost box (note
that x,,, = —D). Let also B € I be such that X5 < D — 2 (the box f is completely
at the left of the box 1). Then Fy5 € g>2. Hence, letting E as in Eq. (4.48), using the
commutation relations (4.41), the second equation in (4.48) and (4.40), we have that

0=I[Fz El= Y caplFiz Fapl= D 2c55Fip— Y 2caiF,p.
Xo—Xxp=k xg—xp=k —D=k

5.1

If k > 1, then the condition x, — D = k > 1 implies that x, > 1 4+ D, which is
empty. Hence, ¢y = 0if x, < D — 2 and B # p; (since F1 ,, = 0 by (4.40) and
(4.36)). Using the second equation in (4.48), we have also that ¢, = 0 if o # 1 and
xg > —D + 2. Hence, we can write

E = Z Ca,pFap + Z cipFip .

xo=D—1 xp=D—k
X5=—D+1

Note that the first sum lies in gs_1. Let then assume that £ = Zxﬂzn—k c1pF1p and
that &, B € I are such that x5 — xXg = 2. Then

0=IE, F&B] =26y, p-kC1.aF (5.2)

W
If x4 = D —k,then —D < X5 < D — 2 — k. Hence, Eq. (5.2) implies that cjg = 0
for xg > —D + 2, thus showing that £ € gg @ gq—1.

If k = 0, a similar argument to the one used in the proof of Lemma 4.6 shows that
E=0. O
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By the discussion at the beginning of this section and Proposition 5.1, if (f1, f2, E)
is an integrable triple, then E € g4_1.

Recall that dim V[D] = r; = 1, and let v, € V[D] be such that (fPv|vy) = 1.
We consider the basis {fkv+},?:0 of Vy (cf. Sect. 4.5.2). Letalsov_ = fPuv,.

Lemma 5.2 There is a bijective correspondence between the triples (A, a, b), where
A €F, a e Vyszandb € End(V4 2) selfadjoint with respect to the bilinear form B
on V, o defined by (4.44), and the elements E € g,_1, given by

(A, a,b) > E = (a+ 2 fvp)dvy) — v (d(@) + 2 (fvy) +b(fHP7,(5.3)
where ¢ (v) € V* is given by ¢ (v)(u) = (viu) (cf. Sect. 4.5.1).
Proof An element E € gy can be uniquely written as
E=A—A"+Begs, (5.4)

where A € Hom(V[—-D], V[D — 2]), B = —BT € Hom(V[—-D + 1], V[D — 1]).
Recall that V[— D] = Fv_ and that we have the decomposition V[D —2] =F fuy &

V4 3. Hence, we can uniquely write Av_ = Afvy +a,forkh € Fanda € V, 3.
Hence,
A=(a+rfv)pvy) (5.5
and
AT = v (@@ + 1 (fy)). (5.6)

Furthermore, let us define b = BfD_1 € End(Vy5).Since Dy = pp—1=p1 -2 =
D — 1 and p; is odd, then the bilinear form (4.44) 52 on V. > is skewsymmetric. Note
that, for v, w € V4 » we have

Ba(bv, w) = (bv| fP w) = (w|(= )P~ (=B) P w)
= (BfP7 | P w) = I P bw) = Bo(v, bw) .

Hence, b is self-adjoint with respect to ;. A similar computation shows that, if b is
selfadjoint with respect to B, then B = b(fT)P~! € g4_1. O

Proposition5.3 Let E € gg—1 be as in (5.3). The subspace gf is coisotropic with
respect to the bilinear form (1.2) if and only if

b*—20b+a =0, (5.7)
where

a = (a|fP%a). (5.8)
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Proof Let E = A— AT+ B e gy_jasin(54)andletU = X — X' € g4, where
X € Hom(V[D], V[—D + 1]). Note that the two equations in (4.13) are equivalent
in the present setting. Hence, by Proposition 3.13 and Lemma 4.4 we have that gf is
coisotropic if and only if

BfPTIBX(fMP = BX(fT1pvA — ATy fT) — (fFHP 71X AT
Ly P21y, A, (5.9)

for every X. From Egs. (5.5) and (5.6) we immediately have

ly,A=a¢(vy), LyvA=2Arfvid(vy),

(5.10)
A'ly. =vip(@), A'lpry =rvid(foy).
Using Eq. (5.10) we rewrite Eq. (5.9) as
PPN = ib — ) ()P X (01 (v4) . (5.11)
Applying both sides of (5.11) to vy we get
B(fMHP X () = @b — ) (fHP X (vy). (5.12)
Equation (5.7) follows from (5.12) since X is arbitrary. ]

In order to prove the main result of this section we need the following.
Lemma5.4 Ifa #0and o =0, then (f + E), ¢ g—».
Proof Note that, since a # 0, V4 3 = V[D — 2] N V4 # 0. From Eq. (5.3), we have
(f+ B’ 'a=EfPa = —(a| fPPa)vy = —avy.

Hence, if « = 0, we have (f + E)YP—1(g) = 0. Recall that the bilinear form (4.37)
is non-degenerate. Hence, there exists w € V_ 3 such that (a|lw) = 1. Let u =
22w + fP~1v, . By Eq. (5.3) we have

(f+E)w=v_ -y, (f+E)’w=a.
Thus we get that u lies in the generalized eigenspace of f + E of eigenvalue 0 and
(f + E)s(u) = 0. This implies that (f + E),(#) = (f + E)(u) = v— — Av4. On the

other hand, u € V[—D + 2], while v_ € V[—D] and vy € V[D]. As a consequence,
(f+E) ¢ g—2. o

Lemma5.5 Let X = (f + E)1v,qv, and let us assume that o # 0. Then X, € g_».

Proof Since o # 0, we have a # 0 and the direct sum decomposition
Viz=V[D-2InVy =Fa®Kerg(f° a)ly, .
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LetV, = EB,?:_OZIkaa and U = EB,?:_OZIka Ker ¢ (a)ly, ;. Then, we have the direct
sum decomposition Vi & V3 = V1 & V, & U. Note that X(V1 & V,) C V1 & V,,
X(U) C U and X1y is nilpotent. Fixing, for example, the basis { fXv, f"al0 < k <
D,0 < h <D —2}of V1 &V, it is straightforward to check that the characteristic
polynomial of X1y,gy, is x2P — 2Ax? + «. Hence, if @ # A2, then X1y,qy, is
semisimple. In this case the Jordan decomposition of X = X;+X, has X; = X1y, v,
and X,, = X1y € g_», as claimed. If instead o« = 22, then the nilpotent part of
X1y, v, is the following element of g_»

D-2

1 1 22 o

S = Fl) + o= > ((—f)kaqs((fT)"v_) = e "a)) :
k=0

(The proof of this fact is straightforward and is omitted). O

The following main result of this subsection characterizes integrable quasi-cyclic
elements for soy associated to nilpotent elements of odd depth.

Theorem 5.6 Let g = soy and let f € g be a nilpotent element of odd depth d =
2D — 1, where D = p1 — 1. Let E € gq—1 be decomposed as in (5.3) and let o be as
in (5.8). Then E is integrable for f if and only if the following two conditions hold:
(i) b is semisimple with minimal polynomial dividing x*> — 2Ax + «, (ii) ifa = O then
A # 0, while ifa # 0 then o # 0.

Proof First note that (f + E)1y, = f1y, + b(fT)P~!. By Propositions 5.3 and 4.12
, (f + E)1y, is integrable if and only if b is semisimple and its minimal polynomial
divides x> — 2Ax + «, i.e. condition (i) holds. Furthermore, (f + E)ly., = fly.,
and (f 4+ E)(V1 ® V3) C V1 @ V3. Since f1y., is nilpotent and commutes with both
(f+E)ly, and (f + E)Ly,gv,, we are left to understand when X = (f+E)ly,gv,
is integrable. By Lemma, 5.4 X is not integrable if ¢ # Oand o = 0.Ifa = o =0,
then A # 0, otherwise E = 0 (indeed if A = @ = 0, then b = 0). When A # 0, then
X is semisimple since its minimal polynomial is x (x” — 21) which has distinct roots
(see Example 2.12 in [4]). If & # 0, then the result follows from Proposition 5.3 and
Lemma 5.5. m|

Remark 5.7 The integrable element E € g4 constructed in Example 2.12 in [4]
corresponds to the choice A = 1 and a = b = 0 in Theorem 5.6.

Let us reformulate the results obtained in this subsection in terms of polar linear
groups.

Theorem 5.8 Let g = soyn and let f € g be a nilpotent element of odd depth d, so
that the corresponding partition has the form p = (p1, (p1 — D2, (p1 —2)", . .),
andd = 2py — 3. Then

(a) The linear group Z(s)|g4—1 (rather its unity component) is isomorphic to the direct
sum of polar linear groups

/\2 St(Spr,) ® st(SO,) @ 1, (5.13)
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hence is polar. This linear group leaves invariant the non-degenerate symmetric
bilinear form, defined by

(a,b) = ((ad NTal b), (5.14)

where (- | -) is the trace form on g. Consequently, we may identify Z(s)|ga—1
with the space of triples (b, a, A), where b is a selfadjoint operator on F"2 with a
skewsymmetric non-degenerate bilinear form, a € F3, and ). € F.

(b) A triple E = (b,a, ) € gq—1 is an integrable element for f if and only if the
following holds:

(i) b is semisimple and its minimal polynomial divides x* — 2ix + (a, a),

(ii) A #0ifa #0; (a,a) #0ifa # 0.

Proof In order to compute Z(s)|gqs—1, consider the subalgebra g7 = jez,92j of g,
which contains s and gs—1. It is a direct sum of orthogonal subalgebras g’ and g”, so
that f = f'+ f", f' eg, f” €g’, where f’ (resp. f”) corresponds to the odd part
(p1, (p1 — 2)U, .. (resp. even part ((p; — 1)), ...)) of the partition p, which
give contributions st(SO,;) @ 1 and /\2 st(Spy,), respectively, to (5.13) (cf. [8]). This
proves (a). Claim (b) follows from Theorem 5.8 and claim (a). O

Remark 5.9 Another simple example of an integrable E is (Al,, a, Az), where A # 0
and (a, a) = A2.

5.2 Integrable quasi-cyclic elements in exceptional Lie algebras for nilpotent
elements of odd depth

We begin by explaining details of calculations that were used to produce Table 1 in
[4] (see Table 5).

As in [4], st(a) denotes the standard representation of the Lie algebra a (which is
the 26-dimensional for a = Fy4). In this Table rank = dim gy—1/Z(s). We call f to
be of semisimple (resp. mixed) quasi type if there exist E € g4—1, such that f 4 E is
semisimple (resp. not nilpotent).

Notation for the nilpotent elements describes them as principal nilpotent elements
in the corresponding Levi subalgebras. For example, in Eg there is a unique, up to
conjugacy, Levi subalgebra of type 2A; 4+ Aj; then f is the sum of the corresponding
negative simple root vectors. In E7 there are two, up to conjugacy, Levi subalgebras of
type 3A1; 3A] stands for the one whose principal nilpotent has odd depth in E7 (the
principal nilpotent for the other one has even depth). Finally, in F4 and G5 tilde means
that we take the negative short simple root vector.

Except for the nilpotent with label Ay + A 1 in F4, Cartan subspaces in g with
respect to the 3(s)-module structure are given by the zero weight spaces of these
modules.
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5.2.1 Nilpotent elements with label 3A; in Es, Eg and 3A] in E7

All these conjugacy classes have representatives of the form f = e_o; + e_q, +
e_qy, sums of three pairwise commuting negative simple root vectors. For E¢ and Eg
these can be arbitrary three commuting root vectors, while in E; arbitrary under the
restriction that f has odd depth. One checks that in this case the subspace C C g»
spanned by ey, €q,. €q; 1s a Cartan subspace with respect to the action of Z(s). The
coisotropy condition on E = xjeq, + X2€q, + X3€4; 1S

xlz + x22 + x32 —2x1x2 — 2x1x3 — 2x3x3 = 0.

The subalgebra generated by e+, , i = 1,2, 3, is the direct sum of three copies of s,
and it is straightforward to check that f + E is semisimple when x1, x2, x3 are arbitrary
nonzero numbers satisfying the coisotropy condition. When one of them is zero, say,
x1 = 0, then the coisotropy condition forces x, = x3 = x # 0, in which case the
Jordan decomposition of f + x(eq, + €q;) 1S (e—gy + €—a3 + X(€q, + €43)) + €,
and we get an integrable triple ( f1, f>, E), where f1 has label 2A; and f> has label
Ajq.

5.2.2 Nilpotent elements with label 2A; + Aq in Eg, E; and Eg

This case is described in [4, Example 2.14]. Here d = 5. We can take
f=e—a te—qtep +ep tey,

where a1 + a2 and B + B are roots, while no other pairwise sum of the «;, 8; and y
is a root. One then checks that the subspace of g4_1, spanned by ey, 1o, and eg, 14,,
is a Cartan subspace. The coisotropy condition for E = xey, 4o, + yeg,+4, is then
x =y, and for E = x(ey,+a, + €p,+p,) the Jordan decomposition of the quasi-cyclic
element f + Eis (e—¢ +e—q, +e—p +e_p, + x(eq;+a, + €p,+5,)) + e—y. This
is straightforward to check after restricting considerations to the subalgebra of type
Az + Aj + A containing both f and E. We thus obtain integrable triple ( f1, f2, E),
where f1 has label 2A; and f; has label A;.

Clearly in such way we obtain all possible integrable triples that might occur in this
case: if all three of the x1, x>, x3 are nonzero, we obtain the integrable triple (f, 0, E),
while if some of them are zero, we necessarily get the integrable triples ( f1, f2, E) as
above.

5.2.3 Nilpotent elements with label 4A; in E7 and Eg

These conjugacy classes have representatives of the form f = e_y, +e_qy, +€_o; +
e_q,, sums of four pairwise commuting root vectors. One checks that in this case the
subspace C C go spanned by ey, €4, , €as, €q, 1s a Cartan subspace with respect to
the action of Z(s). The coisotropy condition on E = Xxjey, + X2€4, + X3€q; + Xs€4,
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is
24 x? 4+ x2 —2xix; — 2xixp —2xix; = 0
xi X7+ x; XiXj Xi Xk xjx; =0,

where {i, j, k} is any three-element subset of {1, 2, 3, 4} for Eg, while for E7 it can be
any three-element subset except one of them.

For Eg the resulting system of quadratic equations has only zero solution, which
means, by Lemma 3.11, that in this case there are no non-nilpotent quasi-cyclic ele-
ments.

For E7, choose some numbering, say, such, that the equations correspond to {i, j, k}
equal to {1, 2, 3}, {1, 2, 4} or {1, 3, 4}; then, the system has five solutions, correspond-
ng to

E= x(eotz + €a3 + eot4)’

E = x(4ea1 + (%) + €as + eo(4)a

E = x(4ea1 + 9eo¢2 + €a3 + eot4)v

E = x(4eq, + €q, +9eq; + eqy),

E =x(4eq, + eq, + €3 + 9ey,).
The subalgebra generated by e+, i = 1,2, 3, 4, is a direct sum of 4 copies of sl,
which easily implies that the last four solutions give semisimple quasi-cyclic elements,
while the first solution gives a quasi-cyclic element with the Jordan decomposition
(e—qy + €—g3 +e_q, +x(eq, + €q; + €q,)) + e—y,, which gives an integrable triple
(f1, f2, E) where f1 has label 3A| and f> has label Aj.

This exhausts all possible integrable triples in this case, since the coisotropy equa-
tions do not have any other solutions.

5.2.4 Nilpotent element with label 2A; + 2A; in Eg
We can take
f=e 4 te o te g +ep +e,+es,
where a1 + a3 and By + B are roots, while no other pairwise sum of the «;, 8, y and
d is aroot. A Cartan subspace in g1 is spanned by ey, 4, and eg, 1+ g,. We then find

that the coisotropy conditionon E' = xey, 4o, +yeg 48, are x —y = 0andx +y = 0,
hence, by Lemma 3.11, all quasi-cyclic elements are nilpotent.

5.2.5 Nilpotent element with label 2A3 in Eg
We can take
f=e—o te—ateotep +ep +eps,
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where ) + @z, ar + @3, o + a2 + @3, B1 + B2, B2 + B3 and By + B2 + B3 are
roots, while no other sum of the o; and B; is a root. A Cartan subspace in gg_1 is
spanned by ey, 14, +o; and eg, g, +p,. We then find that the coisotropy condition on
E = xey tar+a; + Y€ 14+, are x(x +4y) = 0 and y(4x + y) = 0, hence, by
Lemma 3.11, all quasi-cyclic elements are nilpotent.

5.2.6 Nilpotent element with label A5 + A3 in Eg
We can take

f=ea teateoteoq tep tep +ep,
where a1 + a2, 00 + 3, a3 + o4, a1 + o2 + a3, 00 + 03 + a4, 01 + @2 + a3 + oy,
B1 + B2, B2 + B3 and B; + B2 + B3 are roots, while no other sum of the o; and §;
is a root. A Cartan subspace in gg—1 is spanned by ey +a)+a3+aq- We then find that

the coisotropy condition on £ = Xéy, ay+az+a4 1S ¥ = 0, hence, by Lemma 3.11, all
quasi-cyclic elements are nilpotent.

5.2.7 Nilpotent element with label A7 in Eg
We can take
f=e o tegtegte g te g t+e g t+e o,

where o1, ..., &7 form simple roots for a root subsystem of type A7. Here g;— is one-
dimensional, spanned by ey, +...4+«,, and for E = xegy, +...44, the coisotropy condition
fails unless x = 0, so that there are no quasi-cyclic elements whatsoever.

5.2.8 Nilpotent element with label A; + 31 inFy4

Take f = fi220 + f1232-

Here 3(s)|gq—1 is the direct sum of a 5-dimensional irreducible and 1-dimensional
trivial representation of sl;. The subspace of g4_1 spanned by Eg = ej20, E1 =
€1222 + 1232 + e1242 and Er = e1220 — €1232 + €1242 is a Cartan subspace. Coisotropy
condition on E = xgEog + x1 E1 + x2E5 is

xé + 4)612 + 4x% — 4dxox; + 4xpx2 + 8x1xp = 0.

Subalgebra generated by f and the Cartan subspace is a direct sum of three copies of
slp, and the matrix of f 4 E in the standard representation of this subalgebra is

0 o 0 0 0 0
1 00 0 0 O
0 0 0 xq 0 O
0 0 2 0 0 0
0 00 0 0 x
0 0 0 0 —2 0
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It follows that the quasi-cyclic element f 4 E with E as above satisfying the coisotropy
condition, is semisimple except for the cases

x0=0, x1=—x3;
x1 =0, xo=—2x2;
x2 =0, xo=2x;.

The Jordan decomposition of f -+ E in these cases is, respectively,

(f1232 + E) + f1220;

1 1
(f1220 + 5(—]‘1222 + fi232 — fioa2) + E) + E(flzzz + f1232 + f1242);

1 1
(fi220 + §(f1222 + fi232 + fi242) + E) + E(—fuzz + f1232 — f1242)-

In all three cases we thus get an integrable triple ( f1, f2, E), where f] has label Kl
and f> has label Aj.

These three cases, together with the case when the quasi-cyclic element is semisim-
ple, give all possible integrable triples for this case.

5.2.9 Nilpotent element with label Kz + A1inFs

A Cartan subspace is given by the zero weight space of the adjoint representation of
slp, and none of its nonzero vectors satisfies the coisotropy condition. It follows from
Lemma 3.11 that all quasi-cyclic elements are nilpotent.

5.2.10 Nilpotent element with label K1 in Gy

This nilpotent does not produce any quasi-cyclic elements, as Example 2.8 in [4]
shows. Namely, the depth is 3, and g is 1-dimensional, spanned by e}7; its centralizer
has zero intersection with gj, and the zero subspace is not coisotropic.

Conclusion

Due to Theorem 3.16 (a), Sects. 5.2.1, 5.2.2, 5.2.3, and 5.2.8 describe all integrable
quasi-cyclic elements f + E for nilpotent elements f of odd depth, for all exceptional
simple Lie algebras, up to conjugation by Z(s). In particular, an integrable quasi-cyclic
element exists for such f, except for seven cases, described in the Introduction.
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