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Introduction

A singularity (at the origin) of a function f(x1, . . . , xn) is called quasihomogeneous with respect
to positive weights w1, . . . , wn of the variables x1, . . . , xn if all monomials occurring in the Maclaurin
series for f have the same weighted degree (which implies that f is a polynomial). It is called
semiquasihomogeneous if f = f0 + f>, where f0 has a quasihomogeneous singularity with respect
to some weights w1, . . . , wn such that the degrees of all monomials in f> are larger than those
in f0 . In the latter case, if the singularity of f0 is isolated, then the singularity of f is isolated as
well.

By abuse of language, we will sometimes talk about a singularity f , having in mind the singu-
larity of the function f . In all cases, it will be assumed that f does not contain monomials of the
form xi and xixj with i �= j .

The moduli algebra Af of a singularity f is defined as

Af := C �x1, . . . , xn� /J(f), (1)

where

J(f) := (∂f/∂x1, . . . , ∂f/∂xn) (2)

is the Jacobian ideal of f . A singularity is isolated if and only if its moduli algebra is finite-
dimensional.

Obviously, one can always choose a basis of the moduli algebra consisting of (residue classes
of) monomials. We will call such bases monomial.

Quasihomogeneity of a singularity implies the existence of a grading on its moduli algebra,
which makes life simpler. For semiquasihomogeneous singularities, the following theorem is known.

Theorem 0.1 [1, 12.2, Corollary]. A monomial basis of the moduli algebra Af0 of the quasi-
homogeneous part f0 of a semiquasihomogeneous singularity f = f0 + f> is also a basis of Af .

We have been able to find in the literature only few separate explicit descriptions of bases for
moduli algebras of isolated singularities which are neither quasihomogeneous nor semiquasihomo-
geneous.

It is known that under our assumption about the absence of monomials xixj with i �= j , a
quasihomogeneous singularity f0 can be isolated only if f0 contains at least n monomials. It is
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thus natural to say that the simplest isolated quasihomogeneous singularities are those which are
“minimal,” i.e., contain exactly n monomials:

f0(x1, . . . , xn) = u1 + · · ·+ un, ui = xνi11 · · · xνinn . (3)

All minimal isolated quasihomogeneous singularities are known. Their description given in The-
orem 1.3 of this paper can be extracted from [1] and subsequent papers (see, e.g., [5], [6]). In these
subsequent papers some bases of the moduli algebras of the corresponding singularities were con-
structed too, but some details of the proofs were omitted. For the convenience of the reader, in
Section 1 we present a construction of these bases with complete proofs.

The description of minimal isolated quasihomogeneous singularities implies, in particular, that
under a suitable numbering of variables one has

νii � 2, νij � 1 for i �= j . (4)

In what follows, we will always assume these conditions to be satisfied.
We will investigate what happens if to f0 one adds a monomial u whose (weighted) degree is

strictly less than that of u1, . . . , un :

f(x1, . . . , xn) = f0(x1, . . . , xn) + u, u = xa11 · · · xann . (5)

We will assume that u satisfies the following additional condition.

Condition 0.2. Each variable occurs in u to a positive power, and if some variable occurs to
a positive power in all of the monomials u1, . . . , un , then it occurs in u to a power strictly larger
than 1.

Assuming conditions (4) to be satisfied, consider the matrix

Mf =

⎛
⎜⎝
ν11 − a1 . . . ν1n − an

...
. . .

...
νn1 − a1 . . . νnn − an

⎞
⎟⎠ .

Our first result is the following theorem.

Theorem 0.3. Under the above assumptions, the number detMf is positive and

dimAf = dimAf0 − detMf . (6)

We will refer to the number detMf as the defect of the singularity f and denote it by def(f).
In Section 2 we show how formula (6) can be derived with the aid of a formula of Kouch-

nirenko [3]. The defect of the singularity arises there in the guise of the volume of a certain simplex.
Then we will employ a different approach, which provides an additional insight into our formula;
in particular, the defect will be interpreted as the order of a certain Abelian group.

In the particular case when f0 is a so-called Brieskorn–Pham singularity, i.e.,

f0(x1, . . . , xn) = xp11 + · · ·+ xpnn , (7)

we propose yet another approach, which will eventually yield not only the dimension but also an
explicit monomial basis of the algebra Af (Theorem 4.1). Finally, in the last section under some
additional assumptions we will construct one more basis of the algebra Af .

We find it worth mentioning that the bases of moduli algebras constructed in the last section,
as well as the bases of the moduli algebras of the minimal isolated quasihomogeneous singularities
described in Section 1, are parallelepipedal in the sense that they can be obtained from a suitable
“parallelepiped”

P (p1, . . . , pn) := {xk11 · · · xknn | 0 � ki < pi, i = 1, . . . , n} (8)

by omitting those monomials which belong to J(f). It seems that these very natural bases are
different from all Gröbner bases that can be obtained from any admissible monomial orderings.
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Remark 0.4. Under a monomial we mean a product of some (nonnegative integer) powers of
the variables with coefficient 1. However, if the degree vectors of the monomials u1, . . . , un in (3)
are linearly independent (which is certainly the case if f0 is an isolated singularity), then, replacing
the variables with their suitable nonzero multiples, one can turn f0 into a linear combination of
the monomials u1, . . . , un with arbitrary nonzero coefficients. Similarly, if the degree vectors of the
monomials u1, . . . , un, u are affinely independent (which is definitely true if Condition 0.2 holds),
then, multiplying the variables and the polynomial f itself by some nonzero numbers, one can turn
it into a linear combination of u1, . . . , un, u with arbitrary nonzero coefficients. We will sometimes
use this observation.

A preliminary version of the paper was published as a preprint [8].

1. Minimal Isolated Quasihomogeneous Singularities

Thus, we begin with considering quasihomogeneous polynomials f0 of the form (3). We are
interested in those of them which have an isolated singularity at the origin, i.e., are such that the
algebra Af0 is finite-dimensional. Such polynomials were classified in [5]. These are disjoint sums
(i.e., sums whose summands have no common variables) of polynomials of two types described in
the following examples.

Example 1.1. We will refer to a polynomial of the form

C = Ck1,...,kn(x1, . . . , xn) := xk11 x2 + xk22 x3 + · · ·+ xknn x1 (k1, . . . , kn > 1)

as a cycle. It is quasihomogeneous of degree d := k1 · · · kn − (−1)n with respect to the following
weights of variables:

w1 = k2 · · · kn−1kn − k3 · · · kn−1kn + k4 · · · kn−1kn − · · · ± kn ∓ 1,

w2 = k3 · · · knk1 − k4 · · · knk1 + k5 · · · knk1 − · · · ± k1 ∓ 1,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

wn = k1 · · · kn−1 − k2 · · · kn−1 + k3 · · · kn−1 − · · · ± kn−1 ∓ 1.

Computing partial derivatives, one can see that the moduli algebra of the singularity C is
obtained from the algebra of formal power series by imposing the relations

xk11 = −k2x
k2−1
2 x3,

. . . . . . . . . . . . . . . . . .

x
kn−1

n−1 = −knx
kn−1
n x1,

xknn = −k1x
k1−1
1 x2.

These relations imply that the moduli algebra has finite dimension. Indeed, consider an arbitrary
monomial xl11 · · · xlnn . If it does not lie in the parallelepiped P (k1, . . . , kn) (see notation (8)), i.e.,

li � ki for some i, then one can replace xkii with the right-hand side of the corresponding relation,
thus obtaining a monomial of the same (weighted) degree with a coefficient having absolute value
strictly greater than one. Repeating this procedure, we will either obtain a scalar multiple of a
monomial in P (k1, . . . , kn) or twice obtain different scalar multiples of the same monomial. In the
latter case, we conclude that the corresponding monomial is equal to zero in the moduli algebra.
Thus, in the moduli algebra every monomial becomes either zero or a scalar multiple of a monomial
lying in P (k1, . . . , kn). Hence the dimension of the moduli algebra does not exceed k1 · · · kn . In
particular, the singularity is isolated.

On the other hand, the dimension of the moduli algebra can be calculated with the aid of the
following well-known formula for the dimension of the moduli algebra A of a quasihomogeneous
singularity:

dimA =

n∏
i=1

(
d

wi
− 1

)
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(see, e. g., [7] or [1]). In our case, this gives k1 · · · kn .
Thus, all monomials in P (k1, . . . , kn) constitute a basis of the moduli algebra.

Example 1.2. Following [5], we will refer to a polynomial of the form

T = Tk1,...,kn(x1, . . . , xn) := xk11 x2 + xk22 x3 + · · ·+ x
kn−1

n−1 xn + xknn (k1, . . . , kn > 1)

as a chain. It is quasihomogeneous of degree d := k1 · · · kn with respect to the following weights of
variables:

wi = k1 · · · ki−1(ki+1 · · · kn − ki+2 · · · kn + ki+3 · · · kn − · · · ± kn ∓ 1).

Computing partial derivatives, we find that the moduli algebra of T is obtained from the algebra
of formal power series by imposing the relations

0 = −k1x
k1−1
1 x2,

xk11 = −k2x
k2−1
2 x3,

. . . . . . . . . . . . . . . . . . . . .

x
kn−2

n−2 = −kn−1x
kn−1−1
n−1 xn,

x
kn−1

n−1 = −knx
kn−1
n .

Taking a suitable linear combination of these relations multiplied, respectively, by x1, . . . , xn , we
obtain the relation

xknn = 0.

As in the previous example, this implies that a monomial basis of the moduli algebra can be
chosen in P (k1, . . . , kn). However, this time, this basis will not coincide with P (k1, . . . , kn). Namely,
from the relations listed above we successively obtain that the monomials

xk1−1
1 x2,

xk1−1
1 xk3−1

3 x4,

xk1−1
1 xk3−1

3 xk5−1
5 x6,

. . . . . . . . . . . . . . . . . .

(9)

become equal to zero in the moduli algebra. Let us prove that those monomials in P (k1, . . . , kn)
which are not divisible by any of the monomials in (9) constitute a basis of the moduli algebra.

The monomials in P (k1, . . . , kn) which are divisible by one of the monomials in (9) decompose
into the pairwise disjoint sets

{xk1−1
1 xi22 x

i3
3 · · · xinn | 0 < i2 < k2, 0 � i3 < k3, . . . , 0 � in < kn},

{xk1−1
1 xk3−1

3 xi44 x
i5
5 · · · xinn | 0 < i4 < k4, 0 � i5 < k5, . . . , 0 � in < kn},

{xk1−1
1 xk3−1

3 xk5−1
5 xi66 x

i7
7 · · · xinn | 0 < i6 < k6, 0 � i7 < k7, . . . , 0 � in < kn},

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The cardinality of the union of these sets is

(k2 − 1)k3 · · · kn + (k4 − 1)k5 · · · kn + (k6 − 1)k7 · · · kn + . . . ,

where the sum ends with kn − 1 if n is even and with 1 if n is odd.
On the other hand, employing the above formula of [1], we see that

n∏
i=1

(
d

wi
− 1

)
= k1 · · · kn − (k2 − 1)k3 · · · kn − (k4 − 1)k5 · · · kn − (k6 − 1)k7 · · · kn − . . . ,

so that all remaining monomials form a basis of the moduli algebra.
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Theorem 1.3 [5]. Let a polynomial f0(x1, . . . , xn) contain at most n monomials and have an
isolated singularity at the origin. Then it contains exactly n monomials and decomposes into a
disjoint sum of cycles and chains.

Remark 1.4. Theorem 1.3 implies that if f has the form (5), then Condition 0.2 almost always
reduces simply to the requirement that all variables occur in the monomial u to positive powers.
An additional restriction is needed only if the number of variables equals 2 and f0 is either a chain
xk11 x2 + xk22 (then u must be divisible by x22) or a cycle xk11 x2 + x1x

k2
2 (in this case, u must be

divisible by x21x
2
2).

2. Calculations Using Kouchnirenko’s Formula

Let us remind that the Newton polyhedron P (f) of a formal series f is the convex hull of the
cones p + R

n
+ , where p ranges over the support of the series f (the set of degree vectors of its

members), or, which is the same thing, the union of cones p+R
n
+, where p ranges over the convex

hull of the support of the series f .
Under certain nondegeneracy conditions on the (n − 1)-dimensional faces Δ1, . . . ,Δm of the

Newton polyhedron of an isolated singularity f , the Milnor number μ(f) := dimAf can be calcu-
lated by Kouchnirenko’s formula [3, 1.10 (ii)]

μ(f) = n!Vn − (n− 1)!Vn−1 + · · ·+ (−1)n−11!V1 + (−1)n,

where Vn is the sum of volumes of the pyramids Δ−
i over the faces Δi with vertex at the origin and

Vk for k < n is the sum of k-dimensional volumes of the intersections of the union of these pyramids
with all k-dimensional coordinate planes. The nondegeneracy condition is definitely satisfied for
any simplicial face which intersects the support of the singularity f only in its vertices [4, remark
9]. As we will see, in our case, all faces of the Newton polyhedron are precisely of this kind.

Consider now a singularity f of the form (5) satisfying Condition 0.2. Let us assume that the
variables are numbered in such a way that conditions (4) hold and denote the degree vectors of the
monomials u1, . . . , un, u by p1, . . . , pn, p, respectively.

Obviously, the polyhedron P (f0) has a unique compact face, namely, the simplex Δ with vertices
p1, . . . , pn . To find the compact faces of P (f), we need Theorem 3 of [2] in a slightly modified form
(see Theorem 2.2 below), as well as the following definition.

Definition 2.1. We will say that a square matrix A is irreducible if it does not preserve any
nontrivial coordinate subspace, i.e., one cannot obtain a corner of zeros with vertex on the diagonal
by using any permutation of rows and the same permutation of columns.

Theorem 2.2. Let A be an irreducible matrix in which all off-diagonal entries are nonpositive.
Suppose that there exists a column vector W > 0 with AW > 0. Let K denote the coordinate
orthant {X ∈ R

n | X � 0}. Then the cone AK strictly contains K , and the same holds for the
transpose matrix A′ .

Proof. Irreducibility easily implies (see Lemma 11 in [2]) that K ∩ A−1K ⊂ K◦ ∪ {0}. (Here
A−1K is the full inverse image of the cone K , and K◦ is its interior.) Since A−1K contains the
vector W ∈ K◦ , we have A−1K ⊂ K◦ ∪ {0}, and, thus, K ⊂ AK◦ ∪ {0}, i.e., the cone AK strictly
contains K .

Switching to the conjugate cones and taking into account the fact that the cone K is self-
conjugate and the cone AK is conjugate to (A′)−1K , we see that A′K strictly contains K , as
required.

Corollary 2.3. If a matrix A satisfies the conditions of the theorem, then its determinant is
positive.

Proof. Since AK ⊃ K , it follows that the matrix A is nondegenerate. Further, it is obvious
that, for any t � 0, the matrix A+ tE also satisfies all conditions of the theorem. It is clear from
continuity considerations that the sign of its determinant does not depend on t; but det(A + tE)
is a polynomial in t with leading coefficient 1, which is surely positive for sufficiently large t.
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Let us apply Theorem 2.2 to the matrix Mf with rows p1 − p, . . . , pn − p. It follows from
Condition 0.2 that the off-diagonal entries of Mf are nonpositive. At the same time, the explicit
form of the function f shows that each row of this matrix can contain at most one zero. Hence, Mf

can be reducible only for n = 2. But in this case, irreducibility is also ensured by Condition 0.2.
Furthermore, the condition that the weighted degree of the monomial u is strictly less than that
of each of the monomials u1, . . . , un means that the linear combination of the columns of Mf with
coefficients equal to the weights of the variables has positive coordinates. Thus, the conditions of
the theorem hold (with W as the vector of weights) and, hence, the simplicial cone p + K with
vertex at p whose edges pass through the points p1, . . . , pn strictly contains the corner p + R

n
+

without the point p. This implies that the polyhedron P (f) is the union of the polyhedron P (f0)
and the simplex S with vertices at the points p1, . . . , pn, p, and, moreover, all faces Δ1, . . . ,Δn of
this simplex different from Δ are not continuations of faces of P (f0). Thus, the compact faces of
the polyhedron P (f) are Δ1, . . . ,Δn . (See the picture for the case f = x4y + y5 + xy2 .)

•
0

•
p1

•
p

•p2 P (f0)

S

Δ−
1

Δ−
2

Δ
Δ2

Δ1

Furthermore, the cone p−K opposite to the one considered above strictly contains the corner
p − R

n
+ without p and, in particular, the origin. This means that the point p lies strictly inside

the pyramid Δ− , which implies that the intersection of this pyramid with any coordinate plane
cannot contain interior points of the simplex S or of its face Δ and is thus contained in the union
of pyramids Δ−

i .
It follows from all of the above that the difference between the Milnor numbers of the singular-

ities f0 and f calculated by Kouchnirenko’s formula is equal to n! times the volume of the simplex
S , i.e., to the determinant of the matrix Mf . Theorem 0.3 is thus proved.

3. Algebraic Approach

Retaining the assumptions and notation of the previous section, we are going to employ the
algebra

Pf := C[x1, . . . , xn]/Jpol(f)

obtained by replacing the algebra of formal power series with the algebra of polynomials in the
definition of Af . Here Jpol(f) is the ideal of C[x1, . . . , xn] generated by the partial derivatives of
the polynomial f , so that J(f) is the closure of Jpol(f) in the formal topology of the algebra
C �x1, . . . , xn�.

Note that, for an isolated quasihomogeneous singularity f0 , the algebra Pf0 coincides with Af0 ,
since the ideal Jpol(f) contains all quasihomogeneous polynomials of sufficiently large degree.
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As for the nonquasihomogeneous case, the following assertion is valid.

Proposition 3.1. Suppose that an ideal I = (f1+g1, . . . , fn+gn) of the algebra C[x1, . . . , xn] is
generated by polynomials f1+g1, . . . , fn+gn , where the polynomials f1, . . . , fn are quasihomogeneous
with respect to some positive weights and

deg(gi) < deg(fi), i = 1, . . . , n,

with respect to these weights. Suppose also that the algebra C[x1, . . . , xn]/(f1, . . . , fn) is finite-
dimensional. Then the algebra C[x1, . . . , xn]/I is finite-dimensional of the same dimension, and,
moreover, any basis of the former algebra consisting of quasihomogeneous polynomials is also a
basis of the latter.

Proof. Finite-dimensionality of the algebra C[x1, . . . , xn]/(f1, . . . , fn) means that the (quasi-
homogeneous) polynomials f1, . . . , fn form a regular sequence in C[x1, . . . , xn], which implies that
C[x1, . . . , xn] is a free module over its subalgebra C[f1, . . . , fn] generated by the polynomials
f1, . . . , fn . Further, let H ⊂ C[x1, . . . , xn] be a quasihomogeneous subspace complementary to
the ideal (f1, . . . , fn). Then any basis (over C) of H is a basis of the algebra C[x1, . . . , xn] as a
module over C[f1, . . . , fn]. In other words, any element of the algebra C[x1, . . . , xn] can be uniquely
represented as a polynomial in f1, . . . , fn with coefficients in H . Considering successively leading
terms, one ascertains that all this remains true if one replaces the polynomials f1, . . . , fn with
f1 + g1, . . . , fn + gn . This means that the subspace H is complementary to the ideal I as well.

Corollary 3.2. Let f be a polynomial of the form f0+ f< , where f0 is an isolated quasihomo-
geneous singularity and f< consists of monomials of degree strictly less than that of f0 . Then the
algebras Pf and Pf0 = Af0 have equal dimensions ; moreover, any monomial basis of Pf0 is also a
basis for Pf .

Remark 3.3. If one tries to use a similar trick for terms of lowest rather than highest degree,
then one has to deal with a decreasing filtration. The completeness of the algebra is sufficient for
obtaining the desired result in this case, so that this can be done in the algebra of formal power
series. Thus, it is also true that if deg(gi) > deg(fi), i = 1, . . . , n, then any monomial basis of
the algebra C �x1, . . . , xn� /(f1, . . . , fn) is also a basis of C �x1, . . . , xn� /(f1 + g1, . . . , fn+ gn). As a
corollary, one obtains, in particular, Theorem 0.1.

Unlike the algebra Af , which is obviously local, the algebra Pf may have several maximal
ideals. Like every finite-dimensional algebra, it is a direct sum of local algebras, one of which is
obviously Af . In our particular case, Pf has a special feature, which will be crucial in this section.

Lemma 3.4. Suppose that a polynomial f satisfies Condition 0.2. Then in any local quotient
algebra A of Pf either all variables become nilpotent (so that A is a quotient algebra of Af ) or all
variables become invertible.

Proof. It suffices to show that, for any homomorphism χ : Pf → C, if χ(xi) = 0 for some
variable xi , then all variables map to zero, too.

Note that if χ(xi) = 0, then by Condition 0.2 we have χ(∂u/∂xk) = 0 for all k �= i and hence
χ(∂f0/∂xk) = χ(∂f/∂xk) = 0. Therefore, if χ(xi) = χ(xj) = 0 for some distinct i and j , then
χ(∂f0/∂xk) = 0 for all k. Since f0 is an isolated singularity, it follows that χ(xk) = 0 for all k. We
arrive at the same conclusion if χ(xi) = 0 and xi occurs in u to a power greater than 1.

Suppose now that f0 is a disjoint sum of (quasihomogeneous) polynomials f1 and f2 and
χ(xi) = 0 for some variable xi which occurs in f1 . Then, for any variable xj occurring in f2 , we
have χ(∂f2/∂xj) = χ(∂f0/∂xj) = χ(∂f/∂xj) = 0. Since f2 is an isolated singularity, this implies
that χ(xj) = 0 for all such j , and, in virtue of what we have proved, for any j whatever.

It thus remains to prove the statement formulated at the beginning of the proof in the case
when f0 is a cycle or a chain. Moreover, one may assume that either n > 2 or i = 1 and f0 is a
chain of length 2, since otherwise f0 is divisible by xi and, according to Condition 0.2, u is divisible
by x2i .
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If f0 is a cycle of length exceeding 2 and χ(xi) = 0, then, considering the indices of variables
modulo n and differentiating with respect to xi+1 , we obtain

χ(∂f/∂xi+1) = χ(∂f0/∂xi+1) = χ(ki+1x
ki+1−1
i+1 xi+2) = 0,

which implies that either χ(xi+1) = 0 or χ(xi+2) = 0. In any case, according to the above discussion,
χ(xk) = 0 for all k.

A similar argument works also in the case when f0 is a chain and i < n. (For i = n − 1, the
variable xi+2 is absent.) If f0 is a chain of length exceeding 2 and i = n, then, differentiating with
respect to xn−1 , we obtain

χ(∂f/∂xn−1) = χ(∂f0/∂xn−1) = χ(x
kn−2

n−2 ) = 0,

which implies that χ(xn−2) = 0 and, hence, χ(xk) = 0 for all k.

Thus, we obtain
Pf = Af ⊕ Pf [x

−1
1 , . . . , x−1

n ],

where Pf [x
−1
1 , . . . , x−1

n ] is the localization of the algebra Pf obtained by inverting all variables.
Note that since all variables xi in the algebra Pf are invertible, the relation ∂f/∂xi = 0 in it is

equivalent to xi∂f/∂xi = 0. Hence the algebra Pf [x
−1
1 , . . . , x−1

n ] can be obtained by imposing the
relations

n∑
j=1

νjiuj + aiu = 0, i = 1, . . . , n.

Since the degree vectors of the monomials u1, . . . , un are linearly independent, it follows that the
matrix (νji)1�j,i�n is nonsingular. Considering the above relations as a system of linear equations
with unknowns u1, . . . , un , we obtain a unique solution of the form ui = λiu, i = 1, . . . , n, with
λ1, . . . , λn ∈ R

∗ . Multiplying the variables x1, . . . , xn by suitable nonzero numbers, one can make
all these coefficients λi equal to 1.

Consequently, under the normalization of variables specified above, the defining relations of the
algebra Pf [x

−1
1 , . . . , x−1

n ] have the form ui = u, i = 1, . . . , n. This means that Pf [x
−1
1 , . . . , x−1

n ] is
the group algebra of the finite Abelian group G with generators x1, . . . , xn and defining relations
u1u

−1 = · · · = unu
−1 = 1. The dimension of this algebra is equal to the order of the group G, which,

in its turn, is equal to the absolute value of the determinant of the matrix of defining relations, i.e.,
of the matrix Mf . We thus have obtained another, purely algebraic, proof of Theorem 0.3.

4. An Explicit Basis for the Brieskorn–Pham Case

Let us now present yet another proof of the defect formula for the particular case when f0 is
the Brieskorn–Pham singularity (7). As a byproduct, we will produce two monomial bases of Af ,
one of which lies in the fundamental parallelepiped (8).

Using Remark 0.4, we may assume that

f =
a1
p1

xp11 + · · ·+ an
pn

xpnn − xa11 · · · xann . (10)

Then
xi
ai

∂f

∂xi
− xj

aj

∂f

∂xj
= xpii − x

pj
j ∈ J(f),

and we can factor the algebra C �x1, . . . , xn� by J(f) in two steps: first we factor it by the ideal
I(f) generated by the differences xpii −x

pj
j , and then we factor the obtained algebra by J(f)/I(f).

Let us first study the algebra Pf = C[x1, . . . , xn]/Jpol(f) defined in the previous section. It can
be obtained in two steps: first we factor the algebra C[x1, . . . , xn] by the ideal Ipol(f) generated by

the differences xpii − x
pj
j , and then we factor the obtained algebra by the ideal Jpol(f)/Ipol(f).

It is convenient to embed the algebra C[x1, . . . , xn] into the algebra C[x±1
1 , . . . , x±1

n ] of Laurent

polynomials. Let us denote the ideals of C[x±1
1 , . . . , x±1

n ] generated by Jpol(f) and Ipol(f) with
JLau(f) and ILau(f), respectively.
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The algebra
L∞
f = C[x±1

1 , . . . , x±1
n ]/ILau(f)

can be viewed as the group algebra of the (infinite) Abelian group G∞ with generators g1, . . . , gn
and defining relations gpii = g

pj
j .

Adding one more generator g0 , we write the defining relations of G∞ in the form

g0 = gp11 = · · · = gpnn . (11)

Then a canonical form of an element u = gk00 gk11 · · · gknn ∈ G∞ is

gq0g
r1
1 · · · grnn with 0 � r1 < p1, . . . , 0 � rn < pn. (12)

The numbers ri (i = 1, . . . , n) are determined by ki = qipi + ri and q = k0 + q1 + · · · + qn.
Similarly, the algebra

P∞
f = C[x1, . . . , xn]/Ipol(f).

is the semigroup algebra of the Abelian semigroup (with a unit) G∞
+ given by the generators

g̃1, . . . , g̃n and defining (semigroup) relations g̃pii = g̃
pj
j .

Adding an auxiliary generator g̃0 , we write the defining relations of G∞
+ in the form

g̃0 = g̃p11 = · · · = g̃pnn .

Then a canonical form of elements of this semigroup is

g̃q0 g̃
r1
1 · · · g̃rnn with q � 0, 0 � r1 < p1, . . . , 0 � rn < pn. (13)

We see that the natural homomorphism G∞
+ → G∞ taking g̃i to gi is an embedding. Its image

consists of the monomials gk00 gk11 · · · gknn with k0, k1, . . . , kn � 0, which we will call positive. In what
follows, we will identify the semigroup G∞

+ with the subsemigroup of G∞ formed by the positive
monomials (and the elements g̃i will be identified with gi).

Accordingly, the natural homomorphism P∞
f → L∞

f is an embedding whose image is spanned by
the positive monomials; thus, we will identify the algebra P∞

f with the subalgebra of L∞
f spanned

by the positive monomials.
Let us now note that the algebra

Lf = C[x±1
1 , . . . , x±1

n ]/JLau(f)

is the group algebra of the finite Abelian group G obtained from G∞ by imposing the additional
relations

gpi−1
i = ga11 · · · gai−1

i−1 gai−1
i g

ai+1

i+1 · · · gann . (14)

Since these relations imply the relations gpii = g
pj
j , the order def(f) of the group G is equal to the

determinant of the matrix

Mf =

⎛
⎜⎜⎜⎝

p1 − a1 −a2 . . . −an
−a1 p2 − a2 . . . −an
...

...
. . .

...
−a1 −a2 . . . pn − an

⎞
⎟⎟⎟⎠ .

Note that relations (14) reduce to the single relation g0 = ga11 · · · gann in the group G∞ , so that
adding them means factoring by the (infinite) cyclic subgroup 〈T 〉 generated by the element

T = g0g
−a1
1 · · · g−an

n .

We will refer to the cosets of 〈T 〉 in G∞ as T -lines, so that the elements of G can be viewed as
T -lines.

Similarly, the algebra Pf is the semigroup algebra of the Abelian semigroup G+ obtained from
G∞

+ by imposing the additional relations (14). However, this time, these relations, when regarded
as semigroup relations, no longer reduce to one relation.

We say that two elements u, v ∈ G∞
+ are equivalent and write u ∼ v if relations (14) imply

(in the semigroup sense) u = v. A necessary condition for this is that u and v belong to the same
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T -line. An element u ∈ G∞
+ written in the canonical form (13) is equivalent to Tu if and only if

one of the relations in (14) is applicable to u, which means that

ug−a1
1 · · · g−ai−1

i−1 g−ai+1
i g

−ai+1

i+1 · · · g−an
n ∈ G∞

+

for some i. This can be reformulated as the arithmetic condition

# {j | rj < aj} �
{
q + 1 if rj = aj − 1 for some j,

q if rj �= aj − 1 for all j.
(15)

It is obvious that two elements of a T -line are equivalent if and only if any two consecutive
elements of the interval between them are equivalent. This implies that the equivalence classes
lying on a given T -line are some intervals (possibly consisting only of one point) whose union is
the intersection of this line with G∞

+ . Let us call them T -intervals. The elements of the semigroup
G+ can be viewed as T -intervals.

Since the degree of T is positive, the degree of monomials linearly increases along any T -line.
With respect to the natural ordering on a T -line, all sufficiently small elements do not belong to
the semigroup G∞

+ , while all sufficiently large elements belong to it and are pairwise equivalent.
Thus, there are finitely many T -intervals on any given T -line, one of which is infinite and all others
are finite.

Under the passage from Pf to Af , infinite T -intervals go to zero and the images of finite
intervals constitute a basis of Af . Thus, we arrive at the equality

dimAf = dimPf − |G| = dimPf − def(f),

which again gives the defect formula.
Moreover, the finite intervals are exactly those having a (unique) largest element, and these

largest elements are exactly those to which none of the relations in (14) is applicable. Thereby, we
come to the following conclusion.

Theorem 4.1. The images of positive monomials (13) not satisfying condition (15) constitute
a basis of the algebra Af .

5. Parallelepipedal Basis for the Brieskorn–Pham Case

Another possibility is to use the smallest elements of T -intervals instead of the largest ones.
An element u of the semigroup G∞

+ written in the canonical form (13) is the smallest one in its
T -interval if and only if none of the relations in (14) is applicable to u in the opposite direction,

that is, ug
−(pi−1)
i /∈ G∞

+ for all i; this means that 0 � ri < pi − 1 for i = 1, . . . , n. In this way we
obtain a parallelepipedal basis for the algebra Pf . It remains to determine which of these elements
belong to infinite T -intervals. We cannot do this in the general case. There is, however, one case
when this can be done.

Namely, the following assertion holds.

Proposition 5.1. Suppose that

p1 � na1, . . . , pn � nan. (16)

Then a monomial xk11 · · · xknn with 0 � ki < pi − 1 for 1 � i � n is zero in Af if and only if it is
divisible by one of the n! monomials

x
σ(1)a1−1
1 · · · xσ(n)an−1

n ,

where σ ranges over all permutations of the set {1, . . . , n}.
For brevity, let us agree to denote the element of G∞ represented in the canonical form (12)

by the symbol (q; r1, . . . , rn).
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Proof. According to the proof of Theorem 4.1, we have to show that, for some permutation σ,
the operator T described above can be applied to a symbol of the form (0;σ(1)a1−1, . . . , σ(n)an−1)
infinitely many times without leaving A+∞ . Indeed, one easily sees that

T (0;σ(1)a1 − 1, . . . , σ(n)an − 1)

= (0; (σ(1) − 1)a1 − 1, . . . , pσ−1(1) − 1, . . . , (σ(n) − 1)an),

T 2(0;σ(1)a1 − 1, . . . , σ(n)an − 1)

= (0; (σ(1)− 2)a1 − 1, . . . , pσ−1(1)− aσ−1(1) − 1, . . . , pσ−1(2)− 1, . . . , (σ(n)− 2)an),

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

T k(0;σ(1)a1 − 1, . . . , σ(n)an − 1) = (0; c1k , . . . , cnk),

where

cik =

{
(σ(i) − k)ai − 1, σ(i) > k,

pi − (k − σ(i))ai − 1, σ(i) � k

for k < n, so that T still can be applied after each of these steps, and

T n(0;σ(1)a1 − 1, . . . , σ(n)an − 1) = (0; p1 − (n− σ(1))a1 − 1, pn − (n− σ(n))an − 1).

But the latter symbol satisfies the inequalities

p1 − (n− σ(1))a1 − 1 � σ(1)a1 − 1, . . . , pn − (n− σ(n))an − 1 � σ(n)an − 1,

so that (0;σ(1)a1 − 1, . . . , σ(n)an − 1) indeed represents zero in Af .

The converse statement is a direct corollary of the following lemma.

Lemma 5.2. There exists a permutation σ for which ki � σ(i)ai − 1, 1 � i � n, if and only
if, for any nonempty subset S ⊆ {1, . . . , n} of cardinality m, there is an i ∈ S with ki � mai − 1.

Proof. If ki � σ(i)ai − 1 for all i, then any subset S ⊂ {1, . . . , n} contains an element i for
which σ(i) � m, and for this i, the inequality ki � mai − 1 holds.

Conversely, if the condition of the lemma is satisfied, then, taking S = {1, . . . , n}, we find i
for which ki � nai − 1. We set σ(i) = n. Further, in S = {1, . . . , n} \ {i} there is a j for which
kj � (n− 1)aj − 1. We set σ(j) = n− 1. Next, we consider {1, . . . , n} \{i, j}, and so on. Evidently,
this will produce a permutation with the required properties.

Proposition 5.3. Under the conditions of Proposition 5.1 (i.e., if inequalities (16) hold), a

basis of the algebra Af can be composed of those monomials xk11 · · · xknn with 0 � ki � pi − 2 for
which either ki � ai − 2 for some index i, ki � 2ai − 2 for two indices, ki � 3ai − 2 for three
indices, . . . , or ki � nai − 2 for all i.

Proof. We use the previous proposition and lemma. Proposition 5.1 implies that the monomial
xk11 · · · xknn , where 0 � ki < pi − 1 for 1 � i � n, is nonzero in Af if and only if there exists an
m � 1 such that ki < mai − 1 for m distinct indices i.

Thus, it suffices to prove that if an n-tuple (k1, . . . , kn) does not satisfy the equivalent conditions
of Lemma 5.2, then the operator T can be applied to the symbol (0; k1, . . . , kn) only finitely many
times. In other words, one can find indices 1 � i1 < · · · < im � n for which ki1 < mai1−1, . . . , kim <
maim − 1.

Indeed, we have

Tm−1(0; k1, . . . , kn) = (m− 1; k1 − (m− 1)a1, . . . , kn − (m− 1)an),

and since we know that there are at least m distinct indices i for which ki − (m − 1)ai < ai − 1,
we conclude that condition (15) is violated, so that the operator T can no longer be applied.
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