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Abstract
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tions in terms of generators extending the Milnor dual of the Steenrod algebra.
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Introduction

Spheres are the most elementary compact spaces, but the simple question of
counting essential maps between spheres turned out to be a landmark problem.
In fact, progress in algebraic topology might be measured by its impact on this
question. Topologists have worked on the problem of describing the homotopy
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groups of spheres for around 80 years and there is still no satisfactory solution in
sight. Many approaches have been developed: a distinguished one is the Adams
spectral sequence

E2;E3;E4;:::

converging to the (p-primary part of) homotopy groups of spheres. Adams
computed the E2-term and showed that

E2 D ExtA .F ;F/

is algebraically determined by the Ext-groups associated to the Steenrod algebra
A . Hence E2 is an upper bound for homotopy groups of spheres and is given by an
algebraic resolution of the prime field F D Fp over the algebra A . The Steenrod
algebra A is in fact a Hopf algebra with wonderful algebraic properties. Milnor
showed that the dual algebra

A� D Hom.A ;F/

is a polynomial algebra. Topologically the Steenrod algebra is the algebra of
primary cohomology operations. Adams’ formula for E2 shows a fundamental
connection between homotopy groups of spheres and primary cohomology oper-
ations. Much work in the literature exploits this connection. However, since E2
is only an upper bound, one cannot expect the Steenrod algebra to be sufficient
to determine homotopy groups of spheres. In fact, for this the “algebra of all
higher cohomology operations" is needed. The structure of this total algebra is
highly unknown; it is not even clear what kind of algebra is needed to describe the
additive properties of higher cohomology operations. The structure of the Adams
spectral sequence E2;E3;::: shows that the total algebra can be approximated by
constructing inductively primary, secondary, tertiary . . . operations. In doing so one
might be able to grasp the total algebra. This is the program of computing homotopy
groups of spheres via higher cohomology operations. The first step beyond Adams’
result is understanding the algebra of secondary cohomology operations which,
surprisingly, turned out to be a differential algebra, namely a pair algebra.

In the book [3] the pair algebra B of secondary cohomology operations is
computed. This enriches the known algebraic structure of the Steenrod algebra
considerably. The pair algebra B is given by an exact sequence

†A �� ��B1
@ ��B0

q �� ��A : .�/

Here B0 is the free associative algebra over G D Z=p2Z generated by the Steenrod
operations, which also generate A , and q is the identity on generators. Moreover
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there is a multiplication map

m WB0˝B1˚B1˝B0!B1

and a diagonal map

� WB1! .B0˝B1˚B1˝B0/=�

such that B D .B;m;�/ is a “secondary Hopf algebra”, see [3], inducing the Hopf
algebra structure of the Steenrod algebra A . It is proven in [3] that the structure
of B as a secondary Hopf algebra together with the explicit invariants L and S
determines B up to isomorphism. The nature of secondary homotopy operations
leads forcibly to this kind of new algebraic object which has wonderful properties
shedding light on the structure of the Steenrod algebra A as a Hopf algebra. By
a striking result of Milnor, the dual A� of the Hopf algebra A is a polynomial
algebra with a nice diagonal which, for many purposes, is easier to deal with than
the algebra A itself, which is given by generators, the Steenrod squares, and Adem
relations. Thus this paper also describes the dualization B� of the secondary Hopf
algebra B. We compute the invariants dual toL and S by explicit and easy formulæ.
Therefore computations in terms of B can equivalently be carried out in terms of
the dual B� and often the dual formulæ are easier to handle. In this paper we use the
secondary Hopf algebra B and its dual B� for computating a secondary resolution
which determines the differential d.2/ on E2 and hence E3.

Adams computed those special values of the differentials d.2/ in E2 which are
related to the Hopf invariant 1 problem. In the book of Ravenel [17] one finds a
list of all differentials up to degree 60 which, however, is only tentative in degrees
> 46. Corrections of published differentials in low degrees were made by Bruner
[10]. An explicit method for computing the differential d.2/ in general, however,
has not been achieved in the literature. But it is done in the present paper. Our
result is thus showing the global computable nature of the E3–term of the Adams
spectral sequence. According to Ravenel’s observer, “who looks to the far distant
homotopy groups of spheres through a telescope,” such a global result onE3 seemed
impossible for a long time.

We show that the differential d.2/ and the E3-term can be completely computed
by the formula

E3 D ExtB.G†;G†/

where the secondary Ext-groups ExtB are given by an algebraic secondary resolu-
tion associated to the pair algebra B. The computation of E3 yields a new algebraic
upper bound on homotopy groups of spheres improving the Adams bound given by
E2.
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In order to do explicit computations of the new bound E3 one has to carry
out two tasks. On the one hand one has to describe the algebraic structure of
the secondary Hopf algebra B explicitly by equations which a computer can deal
with in an easy way. On the other hand one has to choose a secondary resolution
associated to B, by solving inductively a system of explicit equations determined
by B.

In the first part (chapters 1, 2, 3) of this paper we describe the algebra
which yields the secondary resolution associated to B and which determines the
differential d.2/ on E2 by the resolution. In the second part (chapters 4, 5, 6,
7, 8) we study the algebraic properties of B and of the dualization of B. In
particular we show that the results of Milnor on the dual Steenrod algebra A�
have secondary analogues. For the dualization of B we proceed as follows. The
projection q WB0�A in .�/ above admits a factorization

q WB0�F0�A

where F0 DB0˝ F is the free associative algebra over F D Z=pZ generated by
the Steenrod operations. Now let

RB D kernel.B0!A /

RF D kernel.F0!A /:

Then one has an exact sequence of F-vector spaces

A �RB˝F� RF

which can be dualized by applying the functor Hom.�;F/. Moreover the exact
sequence of F-vector spaces

†A �B1˝F� RB˝F

can be dualized by Hom.�;F/. The main results of this work describe in detail
the multiplication in B and the diagonal in B on the level of B1˝ F and on the
dual Hom.B1;F/. In this way we obtain explicit formulæ describing the algebraic
structure of B and of the dual of B. Of course the dual of B determines B and
vice versa.

We use these formulæ for computer calculations of the secondary resolution
associated to B and we derive in this way the differentials d.2/ on E2. In section 3.2
we do such computations up to degree 40 in order to confirm the algebraic equations
achieved in the book [3]. The goal is to compute E3 up to degree 210 as this was
done for E2 by Nassau [16]. A more effective computer implementation of E3,
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which is left to the interested reader, relies on the computation of the dual of B, see
the formulæ in section 8.3 below. The functions needed for the implementation are
described in the paper by tables of values in low degrees. These tables should be
helpful to control the implementation.

1. Secondary Ext-groups associated to pair algebras

In this chapter we introduce algebraically secondary Ext-groups ExtB over a pair
algebra B. In [4] we already studied secondary Ext-groups in an additive track
category which yield the Ext-groups ExtB as a special case if one considers the
track category of B-modules. In chapter 3 we shall see thet the E3-term of the
Adams spectral sequence is given by secondary Ext-groups over the pair algebra B
of secondary cohomology operations.

1.1. Modules over pair algebras

We here recall from [3] the notion of pair modules, pair algebras, and pair modules
over a pair algebra B. The category B-Mod of pair modules over B is an additive
track category in which we consider secondary resolutions as defined in [4]. Using
such secondary resolutions we shall obtain the secondary derived functors ExtB in
section 1.3.

Let k be a commutative ring with unit and let Mod be the category of k-modules
and k-linear maps. This is a symmetric monoidal category via the tensor product
A˝B over k of k-modules A, B. A pair of modules is a morphism

X D

�
X1

@
�! X0

�
(1.1.1)

in Mod. We write �0.X/D coker@ and �1.X/D ker@. A morphism f W X ! Y of
pairs is a commutative diagram

X1
f1 ��

@

��

Y1

@

��
X0

f0 �� Y0:

Evidently pairs with these morphisms form a category ���� .Mod/ and one has
functors

�1;�0 W���� .Mod/!Mod:

A pair morphism is called a weak equivalence if it induces isomorphisms on �0 and
�1.
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Clearly a pair in Mod coincides with a chain complex concentrated in degrees
0 and 1. For two pairs X and Y the tensor product of the complexes corresponding
to them is concentrated in degrees in 0, 1 and 2 and is given by

X1˝Y1
@1
�!X1˝Y0˚X0˝Y1

@0
�! X0˝Y0

with @0 D .@˝1;1˝@/ and @1 D .�1˝@;@˝1/. Truncating X˝Y we get the pair

X N̋ Y D

�
.X N̋ Y /1 D coker.@1/

@
�! X0˝Y0 D .X N̋ Y /0

�

with @ induced by @0.

Remark 1.1.2 Note that the full embedding of the category of pairs into the category
of chain complexes induced by the above identification has a left adjoint Tr given
by truncation: for a chain complex

C D

�
:::! C2

@1
�! C1

@0
�! C0

@�1
��! C�1! :::

�
;

one has

Tr.C /D
�

coker.@1/
N@0
�! C0

�
;

with N@0 induced by @0. Then clearly one has

X N̋ Y D Tr.X ˝Y /:

Using the fact that Tr is a reflection onto a full subcategory, one easily checks that
the category���� .Mod/ together with the tensor product N̋ and unit k D .0! k/

is a symmetric monoidal category, and Tr is a monoidal functor.

We define the tensor product A˝B of two graded modules in the usual way,
i. e. by

.A˝B/n D
M
iCjDn

Ai ˝Bj :

A pair module is a graded object of���� .Mod/, i. e. a sequence Xn D .@ W

Xn1 !Xn0 / of pairs in Mod. We identify such a pair module X with the underlying
morphism @ of degree 0 between graded modules

X D

�
X1

@
�! X0

�
:
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Now the tensor product X N̋ Y of graded pair modules X , Y is defined by

.X N̋ Y /n D
M
iCjDn

X i N̋ Y j : (1.1.3)

This defines a monoidal structure on the category of graded pair modules. Mor-
phisms in this category are of degree 0.

For two morphisms f;g W X ! Y between graded pair modules, a homotopy
H W f ) g is a morphism H WX0! Y1 of degree 0 as in the diagram

X1
f1 ��
g1

��

@

��

Y1

@

��
X0

f0 ��
g0

��

H���

�����

Y0;

(1.1.4)

satisfying f0 �g0 D @H and f1 �g1 DH@.
A pair algebra B is a monoid in the monoidal category of graded pair modules,

with multiplication
� W B N̋ B! B:

We assume that B is concentrated in nonnegative degrees, that is Bn D 0 for n < 0.
A left B-module is a graded pair module M together with a left action

� W B N̋M !M

of the monoid B on M .
More explicitly pair algebras and modules over them can be described as

follows.

Definition 1.1.5 A pair algebra B is a graded pair

@ W B1! B0

in Mod with Bn1 D B
n
0 D 0 for n < 0 such that B0 is a graded algebra in Mod, B1

is a graded B0-B0-bimodule, and @ is a bimodule homomorphism. Moreover for
x;y 2 B1 the equality

@.x/y D x@.y/

holds in B1.

It is easy to see that there results an exact sequence of graded B0-B0-bimodules

0! �1B! B1
@
�! B0! �0B! 0

where in fact �0B is a k-algebra, �1B is a �0B-�0B-bimodule, and B0 ! �0.B/

is a homomorphism of algebras.
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Definition 1.1.6 A (left) module over a pair algebra B is a graded pair M D .@ W

M1 ! M0/ in Mod such that M1 and M0 are left B0-modules and @ is B0-linear.
Moreover, a B0-linear map

N� W B1˝B0M0!M1

is given fitting in the commutative diagram

B1˝B0M1
1˝@ ��

�

��

B1˝B0M0

N�
�����

���
���

���
�

�

��
M1

@
��M0;

where �.b˝m/D @.b/m for b 2 B1 and m 2M1 [M0.
For an indeterminate element x of degree nD jxj let BŒx� denote the B-module

with BŒx�i consisting of expressions bx with b 2 Bi , i D 0;1, with bx having
degree jbj C n, and structure maps given by @.bx/ D @.b/x, �.b0 ˝ bx/ D .b0b/x
and N�.b0˝ bx/D .b0b/x.

A free B-module is a direct sum of several copies of modules of the form BŒx�,
with x 2 I for some set I of indeterminates of possibly different degrees. It will be
denoted

BŒI �D
M
x2I

BŒx�:

For a left B-module M one has the exact sequence of B0-modules

0! �1M !M1!M0! �0M ! 0

where �0M and �1M are actually �0B-modules.
Let B-Mod be the category of left modules over the pair algebra B. Morphisms

f D .f0;f1/ WM ! N are pair morphisms which are B-equivariant, that is,f0 and
f1 are B0-equivariant and compatible with N� above, i. e. the diagram

B1˝B0M0
N� ��

1˝f0
��

M1

f1

��
B1˝B0 N0

N� �� N1

commutes.
For two such maps f;g WM !N a track H W f ) g is a degree zero map

H WM0!N1 (1.1.7)

satisfying f0 � g0 D @H and f1 � g1 D H@ such that H is B0-equivariant. For
tracks H W f ) g, K W g) h their composition K�H W f ) h is KCH .



212 H.-J. BAUES & M. JIBLADZE

Proposition 1.1.8 For a pair algebra B, the category B-Mod with the above track
structure is a well-defined additive track category.

Proof: For a morphism f D .f0;f1/ WM !N between B-modules, one has

Aut.f /DfH 2 HomB0.M0;N1/ j @H D f0 �f0;H@D f1 �f1g

ŠHom�0B.�0M;�1N/:

Since this group is abelian, by [6] we know that B-Mod is a linear track extension of
its homotopy category by the bifunctor D with D.M;N/ D Hom�0B.�0M;�1N/.
It thus remains to show that the homotopy category is additive and the bifunctor D
is biadditive.

By definition the set of morphisms ŒM;N � between objects M , N in the
homotopy category is given by the exact sequence of abelian groups

HomB0.M0;N1/! HomB.M;N/� ŒM;N �:

This makes evident the abelian group structure on the hom-sets ŒM;N �. Bilinearity
of composition follows from consideration of the commutative diagram

HomB0.M0;N1/˝HomB.N;P /˚HomB.M;N/˝HomB0.N0;P1/

��

� �� HomB0.M0;P1/

��
HomB.M;N/˝HomB.N;P / ��

����

HomB.M;P /

����
ŒM;N �˝ ŒN;P � ������������������ ŒM;P �

with exact columns, where �.H˝gCf ˝K/D g1H CKf0. It also shows that the
functor B-Mod! B-Mod' is linear. Since this functor is the identity on objects,
it follows that the homotopy category is additive.

Now note that both functors �0, �1 factor to define functors on B-Mod'. Since
these functors are evidently additive, it follows that D D Hom�0B.�0;�1/ is a
biadditive bifunctor.

Lemma 1.1.9 If M is a free B-module, then the canonical map

ŒM;N �! Hom�0B.�0M;�0N/

is an isomorphism for any B-module N .

Proof: Let .gi /i2I be a free generating set for M . Given a �0.B/-equivariant
homomorphism f W �0M ! �0N , define its lifting Qf to M by specifying Qf .gi /D
ni , with ni chosen arbitrarily from the class f .Œgi �/D Œni �.
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To show monomorphicity, given f WM !N such that �0f D 0, this means that
imf0 � im@, so we can choose H.gi / 2 N1 in such a way that @H.gi / D f0.gi /.
This then extends uniquely to a B0-module homomorphism H W M0 ! N1 with
@H D f0; moreover any element of M1 is a linear combination of elements of
the form b1gi with b1 2 B1, and for these one has H@.b1gi / D H.@.b1/gi / D

@.b1/H.gi /. But f1.b1gi /D b1f0.gi /D b1@H.gi /D @.b1/H.gi / too, soH@D f1.
This shows that f is nullhomotopic.

1.2. †-structure

Definition 1.2.1 The suspension †X of a graded object X D .Xn/n2Z is given by
degree shift, .†X/n DXn�1.

Let † W X ! †X be the map of degree 1 given by the identity. If X is a left
A-module over the graded algebra A then †X is a left A-module via

a �†x D .�1/jaj†.a � x/ (1.2.2)

for a 2 A, x 2 X . On the other hand if †X is a right A-module then .†x/ � a D
†.x � a/ yields the right A-module structure on †X .

Definition 1.2.3 A†-module is a graded pair module X D .@ WX1!X0/ equipped
with an isomorphism

� W �1X Š†�0X

of graded k-modules. We then call � a †-structure of X . A †-map between †-
modules is a map f between pair modules such that �.�1f /D†.�0f /� . If X is a
pair algebra then a †-structure is an isomorphism of �0X-�0X-bimodules. If X is
a left module over a pair algebra B then a †-structure of X is an isomorphism � of
left �0B-modules. Let

.B-Mod/† � B-Mod

be the track category of B-modules with †-structure and †-maps.

Lemma 1.2.4 Suspension of a B-module M has by (1.2.2) the structure of a B-
module and †M has a †-structure if M has one.

Proof: Given � W �1M Š†�0M one defines a †-structure on †M via

�1†M D†�1M
†�
��!††�0M D†�0†M:
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Hence we get suspension functors between track categories

B-Mod † �� B-Mod

.B-Mod/†

��

† �� .B-Mod/†:

��

Lemma 1.2.5 The track category .B�Mod/† is L-additive in the sense of [4], with
LD†�1, as well as R-additive, with RD†.

Proof: The statement of the lemma means that the bifunctor

D.M;N/D Aut.0M;N /

is either left- or right-representable, i. e. there is an endofunctor L, respectively R

of .B-Mod/† and a binatural isomorphism D.M;N/Š ŒLM;N �, resp. D.M;N/Š
ŒM;RN�.

Now by (1.1.7), a track in Aut.0M;N / is a B0-module homomorphism H W

M0!N1 with @H DH@D 0; hence

D.M;N/ŠHom�0B.�0M;�1N/Š Hom�0B.�0†
�1M;�0N/

ŠHom�0B.�0M;�0†N/:

Lemma 1.2.6 If B is a pair algebra with †-structure then each free B-module has
a †-structure.

Proof: This is clear from the description of free modules in 1.1.6.

1.3. The secondary differential over pair algebras

For a pair algebra B with a †-structure, for a †-module M over B, and a module
N over B we now define the secondary differential

d.2/ W Extn�0B.�0M;�0N/! ExtnC2�0B
.�0M;�1N/:

Here d.2/ D d.2/.M;N/ depends on the B-modules M and N and is natural in M
and N with respect to maps in .B�Mod/†. For the definition of d.2/ we consider
secondary chain complexes and secondary resolutions. In [4] such a construction
was performed in the generality of an arbitrary L-additive track category. We will
first present the construction of d.2/ for the track category of pair modules and then
will indicate how this construction is a particular case of the more general situation
discussed in [4].
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Definition 1.3.1 For a pair algebra B, a secondary chain complex M� in B-Mod is
given by a diagram to be

::: ��MnC2;1
dnC1;1 ��

@nC2

��

MnC1;1
dn;1 ��

@nC1

��

Mn;1
dn�1;1 ��

@n

��

Mn�1;1
��

@n�1

��

:::

::: ��

HnC1

��������������������������
MnC2;0

dnC1;0

��

Hn

������������������������
MnC1;0

dn;0

��

Hn�1

������������������������
Mn;0

dn�1;0

��

��������������������������
Mn�1;0

�� :::

where each Mn D .@n W Mn;1 ! Mn;0/ is a B-module, each dn D .dn;0;dn;1/ is a
morphism in B-Mod, each Hn is B0-linear and moreover the identities

dn;0dnC1;0 D @nHn

dn;1dnC1;1 DHn@nC2

and

HndnC2;0 D dn;1HnC1

hold for all n 2 Z. We thus see that in this case a secondary complex is the same as
a graded version of a multicomplex (see e. g. [14]) with only two nonzero rows.

One then defines the total complex Tot.M�/ to be

���  Mn�1;0˚Mn�2;1

�
dn�1;0 �@n�1
Hn�2 �dn�2;1

�
 ������������Mn;0˚Mn�1;1

�
dn;0 �@n
Hn�1 �dn�1;1

�
 ������������MnC1;0˚Mn;1 ���

Cycles and boundaries in this complex will be called secondary cycles, resp.
secondary boundaries of M�. Thus a secondary n-cycle in M� is a pair .c;�/ with
c 2 Mn;0, � 2 Mn�1;1 such that dn�1;0c D @n�1� , Hn�2c D dn�2;1� and such a
cycle is a boundary iff there exist b 2MnC1;0 and ˇ 2Mn;1 with c D dn;0bC @nˇ
and � D Hn�1b C dn�1;1ˇ. A secondary complex M� is called exact if its total
complex is exact, that is, if secondary cycles are secondary boundaries.

Let us now consider a secondary chain complex M� in B-Mod. It is clear then
that

�0M� W :::! �0MnC2

�0dnC1
�����! �0MnC1

�0dn
���! �0Mn

�0dn�1
�����! �0Mn�1! :::

is a chain complex of �0B-modules. The next result corresponds to [4, lemma 3.5].

Proposition 1.3.2 LetM� be a secondary complex consisting of †-modules and †-
maps between them. If �0.M�/ is an exact complex then M� is an exact secondary
complex. Conversely, if �0M� is bounded below then secondary exactness of M�
implies exactness of �0M�.
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Proof: The proof consists in translating the argument from the analogous general
statement in [4] to our setting. Suppose first that �0M� is an exact complex, and
consider a secondary cycle .c;�/ 2Mn;0˚Mn�1;1, i. e. one has dn�1;0c D @n�1�
and Hn�2c D dn�2;1� . Then in particular Œc� 2 �0Mn is a cycle, so there exists
Œb� 2 �0MnC1 with Œc� D �0.dn/Œb�. Take b 2 Œb�, then c � dn;0b D @nˇ for some
ˇ 2 MnC1;1. Consider ı D � � Hn�1b � dn�1;1ˇ. One has @n�1ı D @n�1� �

@n�1Hn�1b�@n�1dn�1;1ˇ D dn�1;0c�dn�1;0dn;0b�dn�1;0@nˇ D 0, so that ı is an
element of �1Mn. Moreover dn�2;1ı D dn�2;1��dn�2;1Hn�1b�dn�2;1dn�1;1ˇ D
Hn�2c�Hn�2dn;0b�Hn�2@nˇ D 0, i. e. ı is a cycle in �1M�. Since by assumption
�0M� is exact, taking into account the †-structure �1M� is exact too, so that there
exists  2 �1Mn with ı D dn�1;1 . Define Q̌ D ˇ C  . Then dn;0b C @n Q̌ D
dn;0b C @nˇ D c since  2 ker@n. Moreover dn�1;1 Q̌ D dn�1;1ˇ C dn�1;1 D

dn�1;1ˇC ı D � �Hn�1b, which means that .c;�/ is the boundary of .b; Q̌/. Thus
M� is an exact secondary complex.

Conversely suppose M� is exact, and �0M� bounded below. Given a cycle
Œc� 2 �0.Mn/, represent it by a c 2 Mn;0. Then �0dn�1Œc� D 0 implies
dn�1;0c 2 im@n�1, so there is a � 2 Mn�1;1 such that dn�1;0c D @n�1� .
Consider ! D dn�2;1� �Hn�2c. One has @n�2! D @n�2dn�2;1� � @n�2Hn�2c D
dn�2;0@n�1� � dn�2;0dn�1;0c D 0, i. e. ! is an element of �1Mn�2. Moreover
dn�3;1! D dn�3;1dn�2;1� � dn�3;1Hn�2c D Hn�3@n�1� �Hn�3dn;0c D 0, so !
is a n � 2-dimensional cycle in �1M�. Using the †-structure, this then gives a
n� 3-dimensional cycle in �0M�. Now since �0M� is bounded below, we might
assume by induction that it is exact in dimension n � 3, so that ! is a boundary.
That is, there exists ˛ 2 �1Mn�1 with dn�2;1˛ D !. Define Q� D � � ˛; then
one has dn�2;1 Q� D dn�2;1� � dn�2;1˛ D dn�2;1� � ! D Hn�2c. Moreover
@n�1 Q� D @n�1� D dn�1;0c since ˛ 2 ker.@/n� 1. Thus .c; Q�/ is a secondary cycle,
and by secondary exactness of M� there exists a pair .b;ˇ/ with c D dn;0bC @nˇ.
Then Œc�D �0.dn/Œb�, i. e. c is a boundary.

Definition 1.3.3 Let B be a pair algebra with †-structure. A secondary resolution
of a †-module M D .@ W M1 ! M0/ over B is an exact secondary complex F� in
.B�Mod/† of the form

::: ��

���

F31
d21 ��

@3
��

F21
d11 ��

@2
��

F11
d01 ��

@1
��

F01
�1 ��

@0
��

M1

@��

�� 0 ��

��

0 ��

��

:::

���

::: ��

H2

�������������������
F30

d20

��

H1

������������������
F20

d10

��

H0

������������������
F10

d00

��

O�

������������������
F00 �0

��

�������������������
M0

��

��������������������
0 �� 0 �� :::

where each Fn D .@n W Fn1! Fn0/ is a free B-module.

It follows from 1.3.2 that for any secondary resolution F� of a B-module M
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with †-structure, �0F� will be a free resolution of the �0B-module �0M , so that in
particular one has

Extn�0B.�0M;U /ŠH
nHom.�0F�;U /

for all n and any �0B-module U .

Definition 1.3.4 Given a pair algebra B with †-structure, a †-module M over B,
a module N over B and a secondary resolution F� of M , we define the secondary
differential

d.2/ W Extn�0B.�0M;�0N/! ExtnC2�0B
.�0M;�1N/

in the following way. Suppose given a class Œc� 2 Extn�0B.�0M;�0N/. First
represent it by some element in Hom�0B.�0Fn;�0N/ which is a cocycle, i. e. its
composite with �0.dn/ is 0. By 1.1.9 we know that the natural maps

ŒFn;N �! Hom�0B.�0F;�0N/

are isomorphisms, hence to any such element corresponds a homotopy class in
ŒFn;N � which is also a cocycle, i. e. value of Œdn;N � on it is zero. Take
a representative map c W Fn ! N from this homotopy class. Then cdn is
nullhomotopic, so we can find a B0-equivariant map H W FnC1;0!N1 such that in
the diagram

FnC2;1
dnC1;1 ��

@nC2

��

FnC1;1
dn;1 ��

@nC1

��

Fn;1
c1 ��

@n

��

N1

@

��
FnC2;0

dnC1;0

��

Hn

�����������������������
FnC1;0

dn;0

��

H

������������������������
Fn;0 c0

�� N0:

one has c0dn;0 D @H , c1dn;1 D H@nC1 and @c1 D c0@n. Then taking � D c1Hn �
HdnC1;0 one has @� D 0, �@nC2 D 0, so � determines a map N� W coker@nC2 !
ker@, i. e. from �0FnC2 to �1N . Moreover N��0.dnC2/ D 0, so it is a cocycle in
Hom.�0.F�/;�1N/ and we define

d.2/Œc�D Œ N�� 2 ExtnC2�0B
.�0M;�1N/:

Definition 1.3.5 Let M and N be B-modules with †-structure. Then also all
the B-modules †kM , †kN have †-structures and we get by 1.3.4 the secondary
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differential

Extn�0B.�0M;�0†
kN/

d.2/.M;†
kN/ �� ExtnC2�0B

.�0M;�1†
kN/

Extn�0B.�0M;†
k�0N/

d �� ExtnC2�0B
.�0M;†

kC1�0N/:

In case the composite

Extn�2�0B
.�0M;†

k�1�0N/
d
�! Extn�0B.�0M;†

k�0N/
d
�! ExtnC2�0B

.�0M;†
kC1�0N/

vanishes we define the secondary Ext-groups to be the quotient groups

ExtnB.M;N/
k WD kerd=imd:

Theorem 1.3.6 For a †-algebra B, a B-module M with †-structure and any B-
module N , the secondary differential d.2/ in 1.3.4 coincides with the secondary
differential

d.2/ W Extna .M;N/! ExtnC2a .M;N/

from [4, Section 4] as constructed for the L-additive track category .B�Mod/† in
1.2.5, relative to the subcategory b of free B-modules with aD b'.

Proof: We begin by recalling the appropriate notions from [4]. There secondary
chain complexes A� D .An;dn;ın/n2Z are defined in an arbitrary additive track
category B. They consist of objects An, morphisms dn W AnC1 ! An and tracks
ın W dndnC1) 0AnC2;An , n 2 Z, such that the equality of tracks

ındnC2 D dnınC1

holds for all n. For an object X , an X-valued n-cycle in a secondary chain complex
A� is defined to be a pair .c;�/ consisting of a morphism c W X ! An and a track
� W dn�1c) 0X;An�1 such that the equality of tracks

ın�2c D dn�2�

is satisfied. Such a cycle is called a boundary if there exists a map b W X ! AnC1
and a track ˇ W c) dnb such that the equality

� D ın�1b�dn�1ˇ

holds. Here the right hand side is given by track addition. A secondary chain
complex is called X-exact if every X-valued cycle in it is a boundary. Similarly



Dualization of the Hopf algebra of secondary cohomology operations 219

it is called b-exact, if it is X-exact for every object X in b, where b is a track
subcategory of B. A secondary b-resolution of an object A is a b-exact secondary
chain complex A� with An D 0 for n < �1, A�1 D A, An 2 b for n ¤ �1; the last
differentials will be then denoted d�1 D 	 W A0 ! A, ı�1 D O	 W 	d0 ! 0A1;A and
the pair .	; O	/ will be called the augmentation of the resolution. It is clear that any
secondary chain complex .A�;d�;ı�/ in B gives rise to a chain complex .A�;Œd��/, in
the ordinary sense, in the homotopy category B' of B. Moreover if B is †-additive,
i. e. there exists a functor † and isomorphisms Aut.0X;Y /Š Œ†X;Y �, natural in X ,
Y , then b-exactness of .A�;d�;ı�/ implies b'-exactness of .A�;Œd��/ in the sense
that the chain complex of abelian groups ŒX;.A�;Œd��/� will be exact for each X 2 b.
In [4], the notion of b'-relative derived functors has been developed using such
b'-resolutions, which we also recall.

For an additive subcategory aD b' of the homotopy category B', the a-relative
left derived functors La

nF , n > 0, of a functor F W B'! A from B' to an abelian
category A are defined by

.La
nF /ADHn.F .A�//;

where A� is given by any a-resolution of A. Similarly, the a-relative right derived
functors of a contravariant functor F W Bop

' !A are given by

.RnaF /ADH
n.F .A�//:

In particular, for the contravariant functor F D Œ_;B� we get the a-relative Ext-
groups

Extna .A;B/ WD .R
n
a Œ_;B�/ADH

n.ŒA�;B�/

for any a-exact resolution A� ofA. Similarly, for the contravariant functor Aut.0_;B/

which assigns to an object A the group Aut.0A;B / of all tracks ˛ W 0A;B) 0A;B from
the zero map A!�! B to itself, one gets the groups of a-derived automorphisms

Autna .A;B/ WD .R
n
a Aut.0_;B//.A/:

It is proved in [4] that under mild conditions (existence of a subset of a such that
every object of a is a direct summand of a direct sum of objects from that subset)
every object has an a-resolution, and that the resulting groups do not depend on the
choice of a resolution.

We next recall the construction of the secondary differential from [4]. This is a
map of the form

d.2/ W Extna .A;B/! Autna .0A;B /I

it is constructed from any secondary b-resolution .A�;d�;ı�;	; O	/ of the object
A. Given an element Œc� 2 Extna .A;B/, one first represents it by an n-cocycle
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in Œ.A�;Œd��/;B�, i. e. by a homotopy class Œc� 2 ŒAn;B� with Œcdn� D 0.
One then chooses an actual representative c W An ! B of it in B and a track
� W 0 ) cdn. It can be shown that the composite track � D cın��dnC1 2
Aut.0AnC2;B/ satisfies �dnC1 D 0, so it is an .n C 2/-cocycle in the cochain
complex Aut.0.A�;Œd��/;B/ Š Œ.†A�;Œ†d��/;B�, so determines a cohomology class
d.2/.Œc�/D Œ�� 2 ExtnC2a .†A;B/. It is proved in [4, 4.2] that the above construction
does not indeed depend on choices.

Now turning to our situation, it is straightforward to verify that a secondary
chain complex in the sense of [4] in the track category B-Mod is the same as a
2-complex in the sense of 1.3.1, and that the two notions of exactness coincide. In
particular then the notions of resolution are also equivalent.

The track subcategory b of free modules is generated by coproducts from a
single object, so b'-resolutions of any B-module exist. In fact it follows from
[4, 2.13] that any B-module has a secondary b-resolution too.

Moreover there are natural isomorphisms

Aut.0M;N /Š Hom�0B.�0M;�1N/:

Indeed a track from the zero map to itself is aB0-module homomorphismH WM0!

N1 with @H D 0,H@D 0, soH factors through M0� �0M and over �1N�N1.
Hence the proof is finished with the following lemma.

Lemma 1.3.7 For any B-modules M , N there are isomorphisms

Extna .M;N/Š Extn�0B.�0M;�0N/

and
.Rna .Hom�0B.�0._/;�1N///.M/Š Extn�0B.�0M;�1N/:

Proof: By definition the groups Ext�a .M;N/, respectively
.Rna .HomB0.�0._/;�1N///.M/, are cohomology groups of the complex ŒF�;N �,
resp. Hom�0B.�0.F�/;�1N/, where F� is some a-resolution of M . We can choose
for F� some secondary b-resolution of M . Then �0F� is a free �0B-resolution
of �0M , which makes evident the second isomorphism. For the first, just note in
addition that by 1.1.9 ŒF�;N � is isomorphic to HomB0.�0.F�/;�0N/.

2. The pair algebra B of secondary cohomology operations

The algebra B of secondary cohomology operations is a pair algebra with †-
structure which as a Hopf algebra was explicitly computed in [3]. In particular the
multiplication map A of B was determined in [3] by an algorithm. In this chapter
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we recall the topological definition of the pair algebra B and the definition of the
multiplication map A. The main results of this work will provide methods for the
computation of A or its dual multiplication map A�. We express in terms of A the
secondary Ext-groups ExtB over the pair algebra B. This yields the computation of
the E3-term of the Adams spectral sequence in the next chapter.

2.1. The track category of spectra

In this section we introduce the notion of stable maps and stable tracks between
spectra. This yields the track category of spectra. See also [3, section 2.5].

Definition 2.1.1 A spectrum X is a sequence of maps

Xi
r
�!
XiC1; i 2 Z

in the category Top� of pointed spaces. This is an 
-spectrum if r is a homotopy
equivalence for all i .

A stable homotopy class f WX ! Y between spectra is a sequence of homotopy
classes fi 2 ŒXi ;Yi � such that the squares

Xi
fi ��

r

��

Yi

r

��

XiC1

�fiC1 �� 
YiC1

commute in Top�'. The category Spec consists of spectra and stable homotopy
classes as morphisms. Its full subcategory 
-Spec consisting of 
-spectra is
equivalent to the homotopy category of spectra considered as a Quillen model
category as in the work on symmetric spectra of M. Hovey, B. Shipley and J. Smith
[12]. For us the classical notion of a spectrum as above is sufficient.

A stable map f D .fi ; Qfi /i WX ! Y between spectra is a sequence of diagrams
in the track category �Top�� .i 2Z/

Xi
fi ��

r

��
����
��Qfi

Yi

r

��

XiC1

�fiC1

�� 
YiC1:

Obvious composition of such maps yields the category

�Spec�0 :
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It is the underlying category of a track category �Spec� with tracks .H W f ) g/ 2

�Spec�1 given by sequences
Hi W fi ) gi

of tracks in Top� such that the diagrams

Xi
fi

��

r

��

����
		Qfi

gi



� �� ���Hi
Yi

r

��

XiC1

�fiC1 ��
��

�giC1

�� ��
�HiC1


YiC1

paste to Qgi . This yields a well-defined track category �Spec�. Moreover

�Spec�' Š Spec

is an isomorphism of categories. Let �X;Y � be the groupoid of morphisms X ! Y

in �Spec�0 and let �X;Y �01 be the set of pairs .f;H/ where f WX ! Y is a map and
H W f ) 0 is a track in �Spec�, i. e. a stable homotopy class of nullhomotopies for
f .

For a spectrum X let †kX be the shifted spectrum with .†kX/n D XnCk and
the commutative diagram

.†kX/n
r �� 
.†kX/nC1

XnCk
r �� 
.XnCkC1/

defining r for †kX . A map f W Y !†kX is also called a map f of degree k from
Y to X .

2.2. The pair algebra B and secondary cohomology of spectra as a B-module

The secondary cohomology of a space was introduced in [3, section 6.3]. We here
consider the corresponding notion of secondary cohomology of a spectrum.

Let F be a prime field F D Z=pZ and let Z denote the Eilenberg-Mac Lane
spectrum with

Zn DK.F ;n/
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chosen as in [3]. Here Zn is a topological F-vector space and the homotopy
equivalence Zn ! 
ZnC1 is F-linear. This shows that for a spectrum X the sets�
X;†kZ

�
0

and
�
X;†kZ

�0
1
, of stable maps and stable 0-tracks repectively, are F-

vector spaces.
We now recall the definition of the pair algebra B D .@ W B1 ! B0/ of

secondary cohomology operations from [3]. Let G D Z=p2Z and let

B0 D TG.EA /

be the G-tensor algebra generated by the subset

EA D

( ˚
Sq1;Sq2;:::

�
for p D 2;˚

P1;P2;:::
�
[
˚
ˇ;ˇP1;ˇP2;:::

�
for odd p

of the mod p Steenrod algebra A . We define B1 by the pullback diagram of graded
abelian groups

†A
��

��
B1

��

@

��

y �Z;†�Z�01
@

��
B0

s �� �Z;†�Z�0
����

A :

(2.2.1)

in which the right hand column is an exact sequence. Here we choose for ˛ 2 EA

a stable map s.˛/ W Z ! †j˛jZ representing ˛ and we define s to be the G-linear
map given on monomials a1 ���an in the free monoid Mon.EA / generated by EA by
the composites

s.a1 ���an/D s.a1/���s.an/:

It is proved in [3, 5.2.3] that s defines a pseudofunctor, that is, there is a well-defined
track

� W s.a � b/) s.a/ ı s.b/
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for a;b 2B0 such that for any a, b, c pasting of tracks in the diagram

s.a/�� s.b/��

s.a�b/

��
s.c/��

s.b�c/

��

s.a�b�c/

��

s.a�b�c/

��

�

��

�

�

��

�

yields the identity track. Now B1 is a B0-B0-bimodule by defining

a.b;z/D .a � b;a � z/

with a � z given by pasting s.a/z and � . Similarly

.b;z/aD .b � a;z � a/

where z � a is obtained by pasting zs.a/ and � . Then it is shown in [3] that B D
.@ W B1 ! B0/ is a well-defined pair algebra with �0B D A and †-structure
�1B D†A .

For a spectrum X let

H .X/0 DB0�X;†�Z�0
be the free B0-module generated by the graded set �X;†�Z�0. We define H .X/1
by the pullback diagram

†H�X
��

��
H .X/1 ��

@

��

y �X;†�Z�01
@

��
H .X/0

s �� �X;†�Z�0
����

H�X

where s is the G-linear map which is the identity on generators and is defined
on words a1 ���an � u by the composite s.a1/���s.an/s.u/ for ai as above and
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u 2 �X;†�Z�0. Again s is a pseudofunctor and with actions � defined as above
we see that the graded pair module

H .X/D

�
H .X/1

@
�!H .X/0

�

is a B-module. We call H .X/ the secondary cohomology of the spectrum X . Of
course H .X/ has a †-structure in the sense of 1.2.3 above.

Example 2.2.2 Let G† be the B-module given by the augmentation B ! G† in
[3]. Recall that G† is the pair

G† D

�
F ˚†F

@
�!G

�

with @jF the inclusion nad @j†F D 0. Then the sphere spectrum S0 admits a weak
equivalence of B-modules

H .S0/
�
�!G†:

Compare [3, 12.1.5].

3. Computation of the E3-term of the Adams spectral sequence as a secondary
Ext-group

We show that the E3-term of the Adams spectral sequence (computing stable maps
in fY;Xg�p) is given by the secondary Ext-groups

E3.Y;X/D ExtB.H X;H Y /:

Here H X is the secondary cohomology of the spectrum X which is the B-module
G† if X is the sphere spectrum S0. This leads to an algorithm for the computation
of the group

E3.S0;S0/D ExtB.G†;G†/

which is a new explicit approximation of stable homotopy groups of spheres
improving the Adams approximation

E2.S0;S0/D ExtA .F ;F/:

An implementation of our algorithm computed E3.S0;S0/ by now up to degree 40.
In this range our results confirm the known results in the literature, see for example
the book of Ravenel [17].
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3.1. The E3-term of the Adams spectral sequence

We now are ready to formulate the algebraic equivalent of the E3-term of the Adams
spectral sequence. Let X be a spectrum of finite type and Y a finite dimensional
spectrum. Then for each prime p there is a spectral sequence E� D E�.Y;X/ with

E� H) ŒY;†�X�p

E2 D ExtA .H�X;H�Y /:

Theorem 3.1.1 The E3-term E3 D E3.Y;X/ of the Adams spectral sequence is given
by the secondary Ext group defined in 1.3.5

E3 D ExtB.H �X;H �Y /:

Corollary 3.1.2 If X and Y are both the sphere spectrum we get

E3.S0;S0/D ExtB.G†;G†/:

Since the pair algebra B is computed in [3] completely we see that E3.S0;S0/ is
algebraically determined. This leads to the algorithm below computing E3.S0;S0/.

The proof of 3.1.1 is based on the following result in [3]. Consider the track
categories

b� �Spec�
b0 � .B�Mod/†

where �Spec� is the track category of spectra in 2.1.1 and .B�Mod/† is the track
category of B-modules with†-structure in 1.2.3 with the pair algebra B defined by
(2.2.1). Let b be the full track subcategory of �Spec� consisting of finite products
of shifted Eilenberg-Mac Lane spectra †kZ�. Moreover let b0 be the full track
subcategory of .B�Mod/† consisting of finitely generated free B-modules. As in
[4, 4.3] we obtain for spectra X , Y in 3.1.1 the track categories

fY;Xgb� �Spec�
b0fH X;H Y g � .B�Mod/†

with fY;Xgb obtained by adding to b the objects X , Y and all morphisms and tracks
from �X;Z�, �Y;Z� for all objects Z in b. It is proved in [3, 5.5.6] that the following
result holds which shows that we can apply [4, 5.1].

Theorem [3] 3.1.3 There is a strict track equivalence

.fY;Xgb/op ��! b0fH X;H Y g:
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Proof of 3.1.1: By the main result 7.3 in [4] we have a description of the
differential d.2/ in the Adams spectral sequence by the following commutative
diagram

Extnaop.X;Y /m
d.2/ ��

Š

��

ExtnC2aop .X;Y /mC1

Š

��
ExtnA .H

�X;H�Y /m
d.2/ �� ExtnC2A .H�X;H�Y /mC1

where a D b'. On the other hand the differential d.2/ defining the secondary Ext-
group ExtB.H X;H Y / is by 1.3.6 given by the commutative diagram

Extna0.H X;H Y /m �� ExtnC2a0 .H X;H Y /mC1

ExtnA .H
�X;H�Y /m �� ExtnC2A .H�X;H�Y /mC1

where a0 D b0'. Now [4, 5.1] shows by 3.1.3 that the top rows of these diagrams
coincide.

3.2. The algorithm for the computation of d.2/ on ExtA .F ;F/ in terms of the
multiplication maps

Suppose now given some projective resolution of the left A -module F . For
definiteness, we will work with the minimal resolution

F  A
˝
g00
˛
 A

D
g2

n

1 j n > 0
E
 A

D
g2

iC2j

2 j ji � j j ¤ 1
E
 :::; (3.2.1)

where gdm, d > m, is a generator of the m-th resolving module in degree d .
Sometimes there are more than one generators with the same m and d , in which
case the further ones will be denoted by 0gdm, 00gdm;���.

These generators and values of the differential on them can be computed
effectively; for example, d.g2

n

1 / D Sq2
n

g00 and d.gmm/ D Sq1gm�1m�1; moreover e. g.
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an algorithm from [9] gives

d.g42/D Sq3g11CSq2g21
d.g52/D Sq4g11CSq2Sq1g21 CSq1g41
d.g82/D Sq6g21C .Sq4CSq3Sq1/g41
d.g92/D Sq8g11C .Sq5CSq4Sq1/g41 CSq1g81
d.g102 /D .Sq8CSq5Sq2Sq1/g21C .Sq5Sq1CSq4Sq2/g41 CSq2g81
d.g162 /D .Sq12CSq9Sq2Sq1CSq8Sq3Sq1/g41C .Sq8CSq7Sq1CSq6Sq2/g81
��� ;

d.g63/D Sq4g22CSq2g42CSq1g52
d.g103 /D Sq8g22C .Sq5CSq4Sq1/g52 CSq1g92
d.g113 /D .Sq7CSq4Sq2Sq1/g42CSq6g52CSq2Sq1g82
d.g123 /D Sq8g42C .Sq6Sq1CSq5Sq2/g52 C .Sq4CSq3Sq1/g82CSq3g92 CSq2g102
��� ;

d.g114 /D Sq8g33C .Sq5CSq4Sq1/g63 CSq1g103
d.g134 /D Sq8Sq2g33C .Sq7CSq4Sq2Sq1/g63 CSq2Sq1g103 CSq2g113
��� ;

d.g145 /D Sq10g44CSq2Sq1g114
d.g165 /D Sq12g44CSq4Sq1g114 CSq3g134
��� ;

d.g166 /D Sq11g55CSq2g145
��� ;

etc.
By understanding the above formulæ as matrices (i. e. by applying � degreewise

to them), each such resolution gives rise to a sequence of B-module homomor-
phisms

G† B
˝
g00
˛
 B

D
g2

n

1 j n > 0
E
 B

D
g2

iC2j

2 j ji � j j ¤ 1
E
 :::; (3.2.2)

which is far from being exact — in fact even the composites of consecutive maps
are not zero. In more detail, one has commutative diagrams

2G

��

R0Bg
0
0

�0��

��

0��

��

:::��

G B0
0g
0
0

�0�� 0�� :::��
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in degree 0,

F

��

R1Bg
0
0˚A 0g00

.0;�/��

��

R0Bg
1
1

.d0/��

��

0��

��

:::��

0 B1
0g
0
0

�� B0
0g
1
1

d�� 0�� :::��

in degree 1,

0

��

R2Bg
0
0 ˚A 1g00

��

��

�
R1Bg

1
1˚R

0
Bg

2
1

�
˚A 0g11

�
d 0
0 d

�
��

��

R0Bg
2
2

.d0/��

��

0��

��

:::��

0 B2
0g
0
0

�� B1
0g
1
1˚B0

0g
2
1

d�� B0
0g
2
2

d�� 0�� :::��

in degree 2, ...

0

��

RnBg
0
0 ˚A n�1g00

��

��

L
2i6nR

n�2i

B g2
i

1 ˚
L
2i6n�1A

n�1�2ig2
i

1

�
d 0
0 d

�
��

��

:::��

0 Bn
0g

0
0

�� L
2i6nB

n�2i

0 g2
i

1

d�� :::��

in degree n, etc.
Our task is then to complete these diagrams into an exact secondary complex

via certain (degree preserving) maps

ım D

 
ıRm
ıA
m

!
WB0

˝
gnmC2 j n

˛
! .RB˚†A /hgnm j ni:

Now for these maps to form a secondary complex, according to 1.3.1.1 one
must have @ı D d0d0, ı@ D d1d1, and d1ı D ıd0. One sees easily that these
equations together with the requirement that ı be left B0-module homomorphism
are equivalent to

ıR D dd; (3.2.3)

ıA .bg/D �.b/ıA .g/CA.�.b/;dd.g//; (3.2.4)

dıA D ıA d; (3.2.5)

for b 2B0, g one of the gnm, and A.a;rg/ WD A.a;r/g for a 2A , r 2 RB. Hence ı
is completely determined by the elements

ıA
m .g

n
mC2/ 2

M
k

A n�k�1
D
gkm

E
(3.2.6)
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which, to form a secondary complex, are only required to satisfy

dıA
m .g

n
mC2/D ı

A
m�1d.g

n
mC2/;

where on the right ıA
m�1 is extended to B0

˝
g�mC1

˛
via 3.2.4. In addition secondary

exactness must hold, which by 1.3.1 means that the (ordinary) complex

 B0hg
�
m�1i˚ .RB˚†A /hg�m�2i  B0hg

�
mi˚ .RB˚†A /hg�m�1i

 B0

˝
g�mC1

˛
˚ .RB˚†A /hg�mi  

with differentials�
dmC1 imC1 0

dmdmC1 dm 0

ıA
m 0 dm

�
WB0

˝
g�mC2

˛
˚RB

˝
g�mC1

˛
˚†A

˝
g�mC1

˛
!B0

˝
g�mC1

˛
˚RB hg

�
mi˚†A hg�mi

is exact. Then straightforward checking shows that one can eliminate RB from this
complex altogether, so that its exactness is equivalent to the exactness of a smaller
complex

 B0hg
�
m�1i˚†A hg�m�2i  B0hg

�
mi˚†A hg�m�1i  B0

˝
g�mC1

˛
˚†A hg�mi  

with differentials�
dmC1 0

ıA
m dm

�
WB0

˝
g�mC2

˛
˚†A

˝
g�mC1

˛
!B0

˝
g�mC1

˛
˚†A hg�mi:

Note also that by 3.2.4 ıA factors through � to give

Nım WA
˝
g�mC2

˛
!†A hg�mi:

It follows that secondary exactness of the resulting complex is equivalent to
exactness of the mapping cone of this Nı, i. e. to the requirement that Nı is a
quasiisomorphism. On the other hand, the complex .A hg��i;d�/ is acyclic by
construction, so any of its self-maps is a quasiisomorphism. We thus obtain

Theorem 3.2.7 Completions of the diagram 3.2.2 to an exact secondary complex
are in one-to-one correspondence with maps ım WA

˝
g�mC2

˛
!†A hg�mi satisfying

dıg D ıdg; (3.2.8)

with ı.ag/ for a 2A defined by

ı.ag/D aı.g/CA.a;ddg/

where A.a;rg/ for r 2 RB is interpreted as A.a;r/g.
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Later in chapter 9 we will need to dualize the map ı. For this purpose it is more
convenient to reformulate the conditions in 3.2.7 above in terms of commutative
diagrams.

Let
Wp D

M
q>0

W q
p

denote the free graded G-module spanned by the generators gqp, so that we can write

B0

˝
gqp j q > 0

˛
DB0˝Wp:

The differential in the B-lifting of (3.2.1), being B-equivariant, is then given by
the composite

B0˝WpC1
1˝d
���!B0˝B0˝Wp

m˝1
���!B0˝Wp;

where
d WWpC1!B0˝Wp

is the restriction of this differential to the generators. As a linear operator, this d is
given by the same matrix as the one giving the operator of the same name in (3.2.1),
i. e. it is obtained by applying the map � componentwise to the latter.

Moreover let us denote
Vp DWp˝F ;

so that similarly to the above the differential of (3.2.1) itself can be given by the
same formulæ, with A in place of B0 and Vp in place of Wp. Then by 3.2.7 the
whole map ı is determined by its restriction

ıA W VpC2!†A ˝Vp

(cf. (3.2.6)). Indeed 3.2.7 implies that ı is given by the sum of the two composites
in the diagram

A ˝†A ˝Vp
m˝1

����
���

���
���

�

A ˝VpC2

1˝ıA
��												

1˝' ����
���

���
���

�
†A ˝Vp:

A ˝RB˝Vp

A˝1

��												

(3.2.9)
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Here we set ' D dd ˝F , where the map dd is the composite

WpC2
d
�!B0˝WpC1

1˝d
���!B0˝B0˝Wp

m˝1
���!B0˝Wp

whose image, as we know, lies in

RB˝Wp �B0˝Wp:

In other words, there is a commutative diagram

B0˝WpC1
1˝d �� B0˝B0˝Wp

m˝1



��
���

���
���

�

WpC2

����

d

��











dd �������������� B0˝Wp

VpC2

'
�������������� RB˝Wp

��

���������������������������

����
RB˝Vp

(3.2.10)
Then in terms of the above diagrams of F-vector spaces, the condition of 3.2.7

can be expressed as follows:

Corollary 3.2.11 Completions of 3.2.2 to a secondary resolution are in one-to-one
correspondence with sequences of maps

ıA
p W VpC2!†A ˝Vp; p > 0

making the diagrams below commute, with ' defined by (3.2.10).

†A ˝VpC1
1˝d �� †A ˝A ˝Vp

m˝1



��
���

���
���

�

VpC3

ıA
pC1

��











d ��





A ˝RB˝Vp
A˝1 �� †A ˝Vp

A ˝VpC2

1˝'
��������������
C

1˝ıA
p

�� A ˝†A ˝Vp

m˝1

��												

(3.2.12)
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We can use this to construct the secondary resolution inductively. Just start
by introducing values of ı on the generators as expressions with indeterminate
coefficients; the equation (3.2.8) will impose linear conditions on these coefficients.
These are then solved degree by degree. For example, in degree 2 one may have

ı.g22/D �
2
2.Sq1/Sq1g00

for some �22.Sq1/ 2F . Similarly in degree 3 one may have

ı.g33/D �
3
3.Sq1/Sq1g11C �

3
3.1/g

2
1 :

Then one will get

dı.g33/D �
3
3.Sq1/Sq1d.g11/C �

3
3.1/d.g

2
1/D �

3
3.Sq1/Sq1Sq1g00 C �

3
3.1/Sq2g00

D �33.1/Sq2g00

and

ıd.g33/D ı.Sq1g22/D Sq1ı.g22/CA.Sq1;dd.g22//

D �22.Sq1/Sq1Sq1g00CA.Sq1;d.Sq1g11//D A.Sq1;Sq1Sq1g00/D 0I

thus (3.2.8) forces �33.1/D 0.
Similarly one puts ı.gdm/ D

P
m�26d 06d�1

P
a�
d
m.a/ag

d 0

m�2, with a running
over a basis in A d�1�d 0 , and then substituting this in (3.2.8) gives linear equations
on the numbers �dm.a/. Solving these equations and choosing the remaining �’s
arbitrarily then gives values of the differential ı in the secondary resolution.

Then finally to obtain the secondary differential

d.2/ W ExtnA .F ;F/
m! ExtnC2A .F ;F/mC1

from this ı, one just applies the functor HomA ._;F/ to the initial minimal resolution
and calculates the map induced by ı on cohomology of the resulting cochain
complex, i. e. on Ext�A .F ;F/. In fact since (3.2.1) is a minimal resolution, the
value of HomA ._;F/ on it coincides with its own cohomology and is the F-vector
space of those linear maps A hg��i ! F which vanish on all elements of the form
ag�� with a of positive degree.

Let us then identify Ext�A .F ;F/ with this space and choose a basis in it
consisting of elements Ogdm defined as the maps sending the generator gdm to 1 and all
other generators to 0. One then has

.d.2/. Og
d
m//.g

d 0

m0/D Og
d
mı.g

d 0

m0/:
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The right hand side is nonzero precisely when gdm appears in ı.gd
0

m0/ with coefficient
1, i. e. one has

d.2/. Og
d
m/D

X
gdm appears in ı.gdC1mC2/

OgdC1mC2: (3.2.13)

For example, looking at the table of values of ı below we see that the first
instance of a gdm appearing with coefficient 1 in a value of ı on a generator is

ı.g173 /D g
16
1 CSq12g41 CSq10Sq4g21C .Sq9Sq4Sq2CSq10Sq5CSq11Sq4/g11 :

This means

d.2/. Og
16
1 /D Og

17
3

and moreover d.2/. Ogdm/D 0 for all gdm with d < 17 (one can check all cases for each
given d since the number of generators gdm for each given d is finite).

Treating similarly the rest of the table below we find that the only nonzero values
of d.2/ on generators of degree < 40 are as follows:

d.2/. Og
16
1 / D Og

17
3

d.2/. Og
21
4 / D Og

22
6

d.2/. Og
22
4 / D Og

23
6

d.2/. Og
23
5 / D Og

24
7

d.2/. Og
30
7 / D Og

31
9

d.2/. Og
31
8 / D Og

32
10

d.2/. Og
32
1 / D Og

33
3

d.2/. Og
33
2 / D Og

34
4

d.2/. Og
33
7 / D Og

34
9

d.2/. Og
33
8 / D Og

34
10

d.2/.
0 Og343 / D Og

35
5

d.2/. Og
34
8 / D Og

35
10

d.2/. Og
36
7 / D Og

37
9

d.2/. Og
37
8 / D Og

38
10 :

These data can be summarized in the following picture, thus confirming calculations
presented in Ravenel’s book [17].
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3.3. The table of values of the differential ı in the secondary resolution for G†

The following table presents results of computer calculations of the differential
ı. Note that it does not have invariant meaning since it depends on the choices
involved in determination of the multiplication mapA, of the resolution and of those
indeterminate coefficients �dm.a/ which remain undetermined after the conditions
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(3.2.8) are satisfied. The resulting secondary differential d.2/ however does not
depend on these choices and is canonically determined.

ı.g22/ D 0

ı.g33/ D 0

ı.g42/ D 0

ı.g44/ D 0

ı.g52/ D 0

ı.g55/ D 0

ı.g63/ D Sq4g11
ı.g66/ D 0

ı.g77/ D 0

ı.g82/ D 0

ı.g88/ D 0

ı.g92/ D 0

ı.g99/ D 0

ı.g102 / D 0

ı.g103 / D .Sq4Sq2Sq1CSq7/g21
CSq8g11

ı.g1010/ D 0

ı.g113 / D .Sq7Sq1CSq8/g21
CSq6Sq3g11

ı.g114 / D Sq5g52
CSq4Sq2g42

ı.g1111/ D 0

ı.g123 / D Sq7Sq3g11
ı.g1212/ D 0
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ı.g134 / D Sq4g82
C.Sq7CSq5Sq2/g52
C.Sq8CSq6Sq2/g42
C.Sq7Sq3CSq8Sq2CSq10/g22

ı.g1313/ D 0

ı.g145 / D Sq4Sq2Sq1g63
C.Sq7Sq3CSq8Sq2/g33

ı.g1414/ D 0

ı.g162 / D 0

ı.g165 / D Sq3g123
CSq4g113
CSq5g103
CSq10Sq2g33

ı.g166 / D 0

ı.g172 / D 0

ı.g173 / D g
16
1

CSq12g41
CSq10Sq4g21
C.Sq9Sq4Sq2CSq10Sq5CSq11Sq4/g11

ı.g176 / D .Sq5CSq4Sq1/g114
C.Sq12CSq10Sq2/g44

ı.g182 / D 0

ı.g183 / D .Sq11Sq4CSq8Sq4Sq2Sq1/g21
C.Sq10Sq4Sq2CSq11Sq5CSq12Sq4CSq14Sq2CSq16/g11

ı.g184 / D .Sq6Sq1CSq7/g102
C.Sq6Sq3CSq7Sq2CSq9/g82
CSq8Sq4g52
C.Sq10Sq2Sq1CSq13CSq11Sq2CSq12Sq1/g42
C.Sq9Sq4Sq2CSq15CSq12Sq3CSq10Sq5/g22

ı.g187 / D Sq2Sq1g145
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ı.g194 / D Sq9g92
C.Sq10CSq8Sq2/g82
CSq11Sq2g52
C.Sq11Sq2Sq1CSq13Sq1CSq8Sq4Sq2CSq10Sq3Sq1/g42
C.Sq14Sq2CSq10Sq4Sq2CSq12Sq4/g22

ı.g195 / D Sq1g173
CSq4Sq2g123
CSq4Sq2Sq1g113
C.Sq6Sq2CSq8/g103
C.Sq8Sq4CSq11Sq1/g63
C.Sq13Sq2CSq10Sq5CSq15CSq11Sq4/g33

ı.g202 / D 0

ı.g203 / D .Sq15CSq9Sq4Sq2/g41
C.Sq12Sq5CSq13Sq4CSq16Sq1/g21
C.Sq11Sq5Sq2CSq15Sq3CSq18CSq12Sq6/g11

ı.g205 / D Sq4Sq2Sq1g123
C.Sq7Sq1CSq8/g113
C.Sq10Sq3CSq8Sq4Sq1CSq13CSq11Sq2/g63
C.Sq13Sq3CSq10Sq4Sq2CSq11Sq5CSq12Sq4/g33

ı.0g205 / D Sq5Sq2g123
CSq7Sq2g103
C.Sq12Sq1CSq10Sq3CSq8Sq4Sq1CSq10Sq2Sq1CSq11Sq2/g63
C.Sq14Sq2CSq13Sq3CSq11Sq5CSq16CSq12Sq4/g33

ı.g206 / D .Sq6Sq2CSq8/g114
C.Sq13Sq2CSq15CSq11Sq4/g44

ı.g213 / D .Sq15Sq2Sq1CSq17Sq1CSq12Sq6/g21
C.Sq13Sq4Sq2CSq15Sq4CSq16Sq3CSq17Sq2CSq19/g11

ı.g214 / D Sq3g172
C.Sq10CSq9Sq1/g102
C.Sq9Sq3CSq11Sq1/g82
C.Sq15CSq13Sq2CSq10Sq5/g52
C.Sq13Sq2Sq1CSq12Sq3Sq1CSq12Sq4

CSq9Sq4Sq2Sq1CSq10Sq4Sq2/g42
C.Sq16Sq2CSq12Sq6CSq15Sq3/g22

ı.g216 / D .Sq7CSq6Sq1/g134
C.Sq9CSq8Sq1/g114
CSq11Sq5g44
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ı.g223 / D Sq17g41
C.Sq16Sq2Sq1CSq13Sq6CSq12Sq4Sq2Sq1CSq12Sq6Sq1/g21
C.Sq13Sq5Sq2CSq17Sq3CSq18Sq2CSq14Sq4Sq2/g11

ı.g224 / D Sq4g172
CSq11g102
C.Sq12CSq9Sq3/g92
C.Sq9Sq4CSq13CSq8Sq4Sq1/g82
CSq12Sq4g52
CSq15Sq2g42
C.Sq13Sq4Sq2CSq19CSq13Sq6CSq14Sq5/g22

ı.0g224 / D Sq2Sq1g182
C.Sq8Sq4CSq12/g92
C.Sq9Sq4CSq13CSq12Sq1/g82
C.Sq16CSq13Sq3/g52
C.Sq15Sq2CSq16Sq1CSq13Sq4CSq11Sq4Sq2/g42
C.Sq14Sq5CSq19CSq17Sq2/g22

ı.g225 / D .Sq7Sq2CSq6Sq2Sq1CSq6Sq3/g123
CSq10g113 C .Sq9Sq2CSq8Sq3CSq11/g103
C.Sq14Sq1CSq11Sq3Sq1CSq12Sq3CSq13Sq2/g63
CSq13Sq5g33

ı.g226 / D g
21
4

C.Sq6Sq2CSq8CSq7Sq1/g134
CSq10g114
C.Sq13Sq4CSq15Sq2CSq17/g44

ı.g227 / D .Sq13Sq3CSq14Sq2CSq16/g55

4. Hopf pair algebras and Hopf pair coalgebras representing the algebra of
secondary cohomology operations

We describe a modification BF of the algebra B of secondary cohomology
operations in chapter 2 which is suitable for dualization. The resulting object
BF and the dual object BF will be used to give an alternative description of
the multiplication map A and the dual multiplication map A�. All triple Massey
products in the Steenrod algebra can be deduced from BF or BF and from A and
A�.

We first recall the notions of pair modules and pair algebras from chapter 1 and
give the corresponding dual notions. Next we define the concept of M -algebras
and N -coalgebras, where M is a folding system and N an unfolding system. An
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M -algebra is a variation on the notion of a Œp�-algebra from [3]. We show that the
algebra B of secondary cohomology operations gives rise to a comonoid BF in the
monoidal category of M -algebras, and we describe the dual object BF , which is a
monoid in the monoidal category of N -coalgebras.

In chapter 6 we study the algebraic objects BF and BF in terms of generators.
This way we obtain explicit descriptions which can be used for computations. In
particular we characterize algebraically multiplication maps A	 and comultiplica-
tion maps A which determine BF and BF completely, see sections 8.1, 8.2, 8.3.
For the dual object BF the inclusion of polynomial algebras A� � F� will be
crucial. Here A� is the Milnor dual of the Steenrod algebra and F� is the dual of a
free associative algebra.

4.1. Pair modules and pair algebras

We here recall from 1.1 the following notation in order to prepare the reader for the
dualization of this notation in the next section. Let k be a commutative ring (usually
it will be actually a prime field F D Fp D Z=pZ for some prime p) and let Mod
be the category of finite dimensional k-modules (i. e. k-vector spaces) and k-linear
maps. A pair module is a homomorphism

X D

�
X1

@
�! X0

�
(4.1.1)

in Mod. We write �0.X/D coker@ and �1.X/D ker@.
For two pair modules X and Y the tensor product of the complexes correspond-

ing to them is concentrated in degrees in 0, 1 and 2 and is given by

X1˝Y1
@1
�!X1˝Y0˚X0˝Y1

@0
�! X0˝Y0 (4.1.2)

with @0 D .@˝1;1˝@/ and @1 D
�
�1˝@
@˝1

�
. Truncating this chain complex we get the

pair module

X N̋ Y D

�
.X N̋ Y /1 D coker.@1/

@
�! X0˝Y0 D .X N̋ Y /0

�

with @ induced by @0. Clearly one has �0.X N̋ Y /Š �0.X/˝�0.Y / and

�1.X N̋ Y /Š �1.X/˝�0.Y /˚�0.X/˝�1.Y /: (4.1.3)

We next consider the category Mod� of graded modules, i. e. graded objects
in Mod (graded k-vector spaces A� D .An/n2Z with upper indices, which in each
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degree have finite dimension). For graded modules A�, B � we define their graded
tensor product A�˝B � in the usual way with an interchange

TA�;B � W A
�˝B �

Š
�! B �˝A�: (4.1.4)

A graded pair module is a graded object of Mod�, i. e. a sequence Xn D .@n W
Xn1 ! Xn0 / with n 2 Z of pair modules. The tensor product X � N̋ Y � of graded pair
modules X �, Y � is defined by

.X � N̋ Y �/n D
M
iCjDn

X i N̋ Y j : (4.1.5)

For two morphisms f;g W X � ! Y � between graded pair modules, a homotopy
H W f ) g is a morphism H WX �0! Y �1 of degree 0 satisfying

f0 �g0 D @H and f1 �g1 DH@: (4.1.6)

Definition 4.1.7 A pair algebra B � is a graded pair module, i. e. an object

@� WB �1! B �0

in Mod�� with Bn1 D B
n
0 D 0 for n < 0 such that B �0 is a graded algebra in Mod�, B �1

is a graded B �0-B �0-bimodule, and @� is a bimodule homomorphism. Moreover for
x;y 2 B �1 the equality

@.x/y D x@.y/ (4.1.8)

holds in B �1.

It is easy to see that a graded pair algebra B � yields an exact sequence of graded
B �0-B �0-bimodules

0! �1B
�! B �1

@
�! B �0! �0B

�! 0 (4.1.9)

where in fact �0B � is a graded k-algebra, �1B � is a graded �0B �-�0B �-bimodule,
and B �0! �0B

� is a homomorphism of graded k-algebras.
The tensor product of pair algebras has a natural pair algebra structure, as it

happens in any symmetric monoidal category.
We are mainly interested in two examples of pair algebras defined below in

sections 4.5 and 4.6 respectively: the G-relation pair algebra R of the Steenrod
algebra A and the pair algebra B of secondary cohomology operations deduced
from [3, 5.5.2].

By the work of Milnor [15] it is well known that the dual of the Steenrod algebra
A is a polynomial algebra and this fact yields important algebraic properties of A .
For this reason we also consider the dual of the G-relation pair algebra R of A and
the dual of the pair algebra B of secondary cohomology operations. The duality
functor D is studied in the next section.
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4.2. Pair comodules and pair coalgebras

This section is exactly dual to the previous one. There is a contravariant self-
equivalence of categories

D D Homk._;k/ WModop!Mod

which carries a vector space V in Mod to its dual

DV D Homk.V;k/:

We also denote the dual of V by V� D DV , for example, the dual of the Steenrod
algebra A is A� D D.A /. We can apply the functor Homk._;k/ to dualize
straightforwardly all notions of section 4.1. Explicitly, one gets:

A pair comodule is a homomorphism

X D

�
X1

d
 �X0

�
(4.2.1)

in Mod. We write �0.X/D kerd and �1.X/D cokerd . The dual of a pair module
X is a pair comodule

DX D Homk.X;k/

D .D@ WDX0!DX1/

with .DX/i DD.Xi /. A morphism f WX ! Y of pair comodules is a commutative
diagram

X1
f 1 �� Y 1

X0

d

��

f0 �� Y 0:

d

��

Evidently pair comodules with these morphisms form a category Mod� and one has
functors

�0;�1 WMod�!Mod:

which are compatible with the duality functor D, that is, for any pair module X one
has

�i .DX/DD.�iX/ for i D 0;1:

A morphism of pair comodules is called a weak equivalence if it induces isomor-
phisms on �0 and �1.
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Clearly a pair comodule is the same as a cochain complex concentrated in
degrees 0 and 1. For two pair comodules X and Y the tensor product of the cochain
complexes is concentrated in degrees in 0, 1 and 2 and is given by

X1˝Y 1
d1

 �X1˝Y 0˚X0˝Y 1
d0

 �X0˝Y 0

with d 0 D
�
d˝1
1˝d

�
and d 1 D .�1˝ d;d ˝ 1/. Cotruncating this cochain complex we

get the pair comodule

X NN̋ Y D

�
.X NN̋ Y /1 D ker.d 1/

d
 �X0˝Y 0 D .X NN̋ Y /0

�

with d induced by d0. One readily checks the natural isomorphism

D.X N̋ Y /ŠDX NN̋DY: (4.2.2)

Remark 4.2.3 (compare 1.1.2) Note that the full embedding of the category of
pair comodules into the category of cochain complexes induced by the above
identification has a right adjoint Tr� given by cotruncation: for a cochain complex

C � D

�
::: C 2

d1

 � C 1
d0

 � C 0
d�1

 �� C�1 :::

�
;

one has

Tr�.C �/D
�

ker.d 1/
Nd0

 � C 0
�
;

with Nd 0 induced by d 0. Then clearly one has

X NN̋ Y D Tr�.X ˝Y /:

Using the fact that Tr� is a coreflection onto a full subcategory, one easily checks
that the category Mod� together with the tensor product NN̋ and unit k� D .0 k/

is a symmetric monoidal category, and Tr� is a monoidal functor.

We next consider the category Mod� of graded modules, i. e. graded objects
in Mod (graded k-vector spaces A� D .An/n2Z with lower indices which in each
degree have finite dimension). For graded modules A�, B� we define their graded
tensor product A�˝B� again in the usual way, i. e. by

.A�˝B�/n D
M
iCjDn

Ai ˝Bj :
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A graded pair comodule is a graded object of Mod�, i. e. a sequence Xn D .dn W
X0n !X1n / of pair comodules. We can also identify such a graded pair comodule X�
with the underlying morphism d of degree 0 between graded modules

X� D

�
X1�

d�
 �X0�

�
:

Now the tensor product X� NN̋ Y� of graded pair comodules X�, Y� is defined by

.X�
NN̋ Y�/n D

M
iCjDn

Xi
NN̋ Yj : (4.2.4)

This defines a monoidal structure on the category Mod� of graded pair comodules.
Morphisms in this category are of degree 0.

For two morphisms f;g W X�! Y� between graded pair comodules, a homotopy
H W f ) g is a morphism H WX1� ! Y 0� of degree 0 as in the diagram

X1�

H
��

�

���
��

f 1 ��

g1
�� Y 1�

X0�

d

��

f 0 ��

g0
�� Y 0� ;

d

��

(4.2.5)

satisfying f 0�g0 DHd and f 1�g1 D dH .
A pair coalgebra B� is a comonoid in the monoidal category of graded pair

comodules, with the diagonal

ı WB�! B� NN̋ B�:

We assume that B� is concentrated in nonnegative degrees, that is Bn D 0 for n < 0.
Of course the duality functor D yields a duality functor

D W .Mod��/
op!Mod��

which is compatible with the monoidal structure, i. e.

D.X � N̋ Y �/Š .DX �/ NN̋ .DY �/:

We also write D.X �/DX�.
More explicitly pair coalgebras can be described as follows.
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Definition 4.2.6 A pair coalgebra B� is a graded pair comodule, i. e. an object

d� W B
0
� ! B1�

in Mod�� with B1n D B
0
n D 0 for n < 0 such that B0� is a graded coalgebra in Mod�,

B1� is a graded B0� -B0� -bicomodule, and d� is abullebullet homomorphism. Moreover
the diagram

B1�

 ��

�

��

B0� ˝B
1
�

d�˝1

��
B1� ˝B

0
�

1˝d� �� B1� ˝B
1
�

commutes, where , resp. � is the left, resp. right coaction.

It is easy to see that there results an exact sequence of graded B0� -B0� -
bicomodules dual to (4.1.9)

0 �1B� B1�
d�
 � B0�  �0B� 0 (4.2.7)

where in fact �0B� is a graded k-coalgebra, �1B� is a graded �0B�-�0B�-
bicomodule, and B0�  �0B� is a homomorphism of graded k-coalgebras.

One sees easily that the notions in this section correspond to those in the
previous section under the duality functor D D Homk._;k/. In particular, D carries
(graded) pair algebras to (graded) pair coalgebras.

4.3. Folding systems

In this section we associate to a “right module system” M a category ofM -algebras
AlgrM which is a monoidal category if M is a “folding system”. Our main examples
given by the G-relation pair algebra R of the Steenrod algebra A and by the pair
algebra B of secondary cohomology operations are in fact comonoids in monoidal
categories of such type, see sections 4.5 and 4.6. This generalizes the well known
fact that the Steenrod algebra A is a Hopf algebra, i. e. a comonoid in the category
of algebras.

Definition 4.3.1 Let A be a subcategory of the category of graded k-algebras. A
right module system M over A is an assignment, to each A 2 A, of a right A-
module M.A/, and, to each homomorphism f W A! A0 in A, of a homomorphism
f� WM.A/!M.A0/ which is f -equivariant, i. e.

f�.xa/D f�.x/f .a/
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for any a 2 A, x 2M.A/. The assignment must be functorial, i. e. one must have
.idA/� D idM.A/ for all A and .fg/� D f�g� for all composable f , g.

There are the obvious similar notions of a left module system and a bimodule
system on a category of graded k-algebras A. Clearly any bimodule system can be
considered as a left module system and a right module system by forgetting part of
the structure.

Examples 4.3.2 One obvious example is the bimodule system 1 given by 1.A/ D

A, f� D f for all A and f . Another example is the bimodule system † given by
the suspension. That is, †A is given by the shift

† W An�1 D .†A/n

(n 2 Z) which is the identity map denoted by†. The bimodule structure for a;m 2 A
is given by

a.†m/D .�1/deg.a/†.am/;

.†m/a D†.ma/:

We shall need the interchange of † which for graded modules U , V , W is the
isomorphism

�U;V;W W U ˝ .†V /˝W
Š
�!†.U ˝V ˝W / (4.3.3)

which carries u˝†v˝w to .�1/deg.u/†.u˝ v˝w/.
Clearly a direct sum of module systems is again a module system of the same

kind, so that in particular we get a bimodule system 1 ˚ † with .1 ˚ †/.A/ D
A˚†A.

We are mainly interested in the bimodule system 1 and the bimodule system
1˚† which are in fact both folding systems, see (4.3.15) below.

Definition 4.3.4 For a right module system M on the category of algebras A and
an algebra A from A, an M -algebra of type A is a pair D� D .@ W D1 ! D0/

with �0.D�/ D A and �1.D�/ D M.A/, such that D0 is a k-algebra, the quotient
homomorphism D0� �0D� D A is a homomorphism of algebras, D1 is a right
D0-module, @ is a homomorphism of right D0-modules, and the induced structure
of a right �0.D�/-module on �1.D�/ conicides with the original right A-module
structure on M . For A, A0 in A, an M -algebra D� of type A, and another one D0� of
type A0, a morphism D�! D0� of M -pair algebras is defined to be a commutative



Dualization of the Hopf algebra of secondary cohomology operations 247

diagram of the form

0 ��M.A/ ��

f�
��

D1
@ ��

f1
��

D0 ��

f0
��

A ��

f

��

0

0 ��M.A0/ �� D01 @0
�� D00

�� A0 �� 0

where f0 is a homomorphism of algebras and f1 is a right f0-equivariant k-linear
map. It is clear how to compose such morphisms, so that M -algebras form a
category which we denote AlgrM .

With obvious modifications, we also get notions of M -algebra of type A when
M is a left module system or a bimodule system; the corresonding categories of
algebras will be denoted by Alg`M and AlgbM , respectively. Moreover, for a bimodule
system M there is also a further full subcategory

Algpair
M � AlgbM

whose objects, called M -pair algebras are those M -algebras which satisfy the pair
algebra equation .@x/y D x@y for all x;y 2D1.

Remark 4.3.5 Note that if A contains k, then Alg‹M has an initial object given by
the M -algebra I D .0 W M.k/ ! k/ of type k. Moreover if A contains the trivial
algebra 0, then Alg‹M also has a terminal object — the M -algebra 0 D M.0/ ! 0

of type 0. Here ? stands for `, r or b if M is a left-, right-, or bimodule system,
respectively.

Definition 4.3.6 Let A be a category of graded algebras as above which in addition
is closed under tensor product, i. e. k belongs to A and for any A, A0 from A the
algebra A˝kA0 also belongs to A. A right folding system on A is then defined to be
a right module system M on A together with the collection of right A˝kA0-module
homomorphisms

A;A0 W A˝kM.A
0/!M.A˝k A

0/;

�A;A0 WM.A/˝k A
0!M.A˝k A

0/

for all A, A0 in A which are natural in the sense that for any homomorphisms f W
A! A1, f 0 WA0! A01 in A the diagrams

A˝kM.A
0/


A;A0 ��

f˝f 0�
��

M.A˝k A
0/

.f˝f 0/�
��

A1˝kM.A
0
1/


A1;A

0
1��M.A1˝k A

0
1/

;

M.A/˝k A
0
�A;A0 ��

f�˝f
0

��

M.A˝k A
0/

.f˝f 0/�
��

M.A1/˝k A
0
1

�A1;A
0
1 ��M.A1˝k A

0
1/

(4.3.7)
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commute. Moreover the homomorphisms

k;A W k˝kM.A/!M.k˝k A/;

�A;k WM.A/˝k k!M.A˝k k/
(4.3.8)

must coincide with the obvious isomorphisms and the diagrams

A˝kM.A
0˝k A

00/

A;A0˝kA00

�����
����

����
����

A˝k A
0˝kM.A

00/

A˝kA0;A00 ��

1˝
A0;A00
�����������������

M.A˝k A
0˝k A

00/;

(4.3.9)

M.A˝k A
0/˝k A

00

�A˝kA0;A00

�����
����

����
����

M.A/˝k A
0˝k A

00
�A;A0˝kA00 ��

�A;A0A˝1
�����������������

M.A˝k A
0˝k A

00/;

(4.3.10)

M.A˝k A
0/˝k A

00

�A˝kA0;A00

�����
����

����
����

A˝kM.A
0/˝k A

00


A;A0˝1
�����������������

1˝�A0;A00 �����
����

����
����

M.A˝k A
0˝k A

00/

A˝kM.A
0˝k A

00/


A;A0˝kA00

�����������������

(4.3.11)

must commute for all A, A0, A00 in A. A folding system is called symmetric if in
addition the diagrams

A˝kM.A
0/

A;A0 ��

TA;M.A0/
��

M.A˝k A
0/

M.TA;A0 /

��
M.A0/˝k A

�A0;A ��M.A0˝k A/

commute for all A, A0, where T is the graded interchange operator given in (4.1.4).
Once again, we have the corresponding obvious notions of a left folding system

and a bifolding system.

For a right folding systemM , the category AlgrM has a monoidal structure given
by the folding product Ő below. Given an M -algebra D of type A and another one,
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D0 of type A0, we define an M -pair algebra D ŐD0 of type A˝A0 as the lower row
in the diagram

0 �� A˝M.A0/˚M.A/˝A0 ��

.
A;A0 ;�A;A0 /

��
push

.D N̋D0/1
@ N̋ ��

��

.D N̋D0/0 �� A˝A0 �� 0

0 ��M.A˝A0/ �� .D ŐD0/1
@ Ő

�� D0˝D00
�� A˝A0 �� 0:

(4.3.12)
Here the leftmost square is required to be pushout, and the upper row is exact by
(4.1.3).

Proposition 4.3.13 For any right (resp. left, bi-) folding system M , the folding
product defines a monoidal structure on AlgrM (resp. Alg`M , AlgbM , Algpair

M ), with
unit object I D .0 WM.k/! k/. If moreover the folding system is symmetric, then
this monoidal structure is symmetric.

We only will use the monoidal categories Algr1˚† and Algpair
1 .

Proof: To begin with, let us show that Ő is functorial, i. e. for any morphisms f W
D!E, f 0 WD0! E 0 in AlgM , let us define a morphism f Ő f 0 WD Ő E!D0 Ő E 0

in a way compatible with identities and composition. We put .f Ő f 0/0 D f0 Ő f 00 ,
and define .f Ő f 0/1 as the unique homomorphism making the following diagram
commute:

B˝M.B 0/˚M.B/˝B 0 ��

.
B;B0 ;�B;B0 /

��

.E N̋ E 0/1

��

A˝M.A0/˚M.A/˝A0 ��

.
A;A0 ;�A;A0 /

��

f˝f 0�˚f�˝f
0

��������������
.D N̋D0/1

��

.f N̋ f 0/1
��												

M.A˝A0/ ��

.f˝f 0/���			
			

			
			

	
.D ŐD0/1

.f Ő f 0/1 ���
�����

M.B ˝B 0/ �� .E Ő E 0/1

where the left hand trapezoid commutes by (4.3.7). Using the universal property
of pushout it is clear that right equivariance of f1 and f 01 iplies that of .f Ő f 0/1
so that this indeed defines a morphism in AlgM . The same universality implies
compatibility with composition.

Next to show that I D .0 W M.k/ ! k/ is a unit object first note that for an
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M -algebra D by (1.1.2) one has

I N̋D D Tr�

 
M.k/˝D1

. 0
1˝@/
����!D1˚M.k/˝D0

.@;0/
���!D0

!

Š

�
D1˚M.k/˝A

.@;0/
���!D0

�
:

From this using (4.3.8) it is easy to see that .I ŐD/1 is given by the pushout

M.A/˚M.k/˝A
incl˚1 ��

proj
��

D1˚M.k/˝A

��
M.A/ �� .I ŐD/1

so that there is a canonical isomorphism .I ŐD/1 ŠD1 compatible with the canon-
ical isomorphism k ˝D0 Š D0. Symmetrically, one constructs the isomorphism
D Ő I ŠD.

Turning now to associativity, first note that the tensor product (4.1.2) can be
equivalently stated as defining .D N̋D0/1 by the requirement that the diagram

D1˝D
0
1

���
��

��
��

����
��
��
�

pushD0˝D
0
1

���
��

��
��

D1˝D
0
0

����
��
��
�

.D N̋D0/1

be pushout. Then combining diagrams we see that .D ŐD0/1 can be equivalently
defined as the colimit of the following diagram:

D0˝M.A
0/

��

��
��

�

���
��

��

D1˝D
0
1

���
��

��
��

��
�

����
��
��
��
��

M.A/˝D00

��

��
��

����
��
�

D0˝D
0
1 M.A˝A0/ D1˝D

0
0

(4.3.14)

where the map D0 ˝ M.A
0/ ! M.A ˝ A0/ is the composite D0 ˝ M.A0/ !

A˝M.A0/ ! M.A˝ A0/ and similarly for M.A/˝D00 ! M.A˝ A0/. Hence
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..D ŐD0/ ŐD00/1 is given by the colimit of the diagram

D0˝D
0
0˝M.A

00/

��

��
��

��
��

���
��

��
��

�

.D ŐD0/1˝D
00
1

���
��

��
��

��
��

��
��

��
�

����
��
��
��
��
��
��
��
��

M.A˝A0/˝D000

��

��
��
��
��

����
��
��
��

D0˝D
0
0˝D

00
1 M.A˝A0˝A00/ .D ŐD0/1˝D

00
0 :

Substituting here the diagram for .D ŐD0/1 we obtain that this is the same as the
colimit of a diagram of the form

D0˝D
0
1˝D

00
0

D0˝D
0
1˝D

00
1

�������
�����

�����
�����

��

������������������������
D0˝M.A

0/˝D000

��												

��			
			

			
			

D0˝D
0
0˝D

00
1 D0˝D

0
1˝M.A

00/�� ��M.A˝A0˝A00/ D1˝D
0
1˝D

00
0

��

��

D1˝D
0
0˝D

00
1

  ����������������������

������
�����

�����
�����

���
M.A/˝D00˝D

00
0

��������������

����
���

���
���

�

D1˝D
0
0˝D

00
0 :

Treating now .D Ő .D0 ŐD00//1 in the same way we obtain that it is colimit of a
diagram with same objects; then, using (4.3.9), (4.3.11), and (4.3.10), one can see
that also morphisms in these diagrams are the same.

Finally, suppose that M is a symmetric folding system. Then for any M -
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algebras D, D0 of type A, A0 respectively, there is a commutative diagram

M.A˝A0/

��
M.A0˝A/

D0˝M.A
0/

!!��������������������

""��
��
��
��
��
��
��
��
��
�� ���

��
M.A/˝D00

##��������������������

$$�
��
��
��
��
��
��
��
��
��
�

�����

M.A0/˝D0

!!���������

""��
��
��
��

D00˝M.A/

##��������

$$�
��
��
��
�

D01˝D0 D01˝D1
�� �� D00˝D1

D0˝D
0
1

�������
D1˝D

0
1

��

�� �� D1˝D00

%%�����

which induces a map from the colimit of the outer triangle to that of the inner one,
i. e. by (4.3.14) a map .D ŐD0/1 ! .D0 ŐD/1. It is then straightforward to check
that this defines an interchange for the monoidal structure.

Examples 4.3.15 The bimodule system 1 above clearly has the structure of a
folding system, with  and � both identity maps. Also the bimodule system 1˚†

is a folding system via the obvious isomorphisms

A;A0 W A˝ .A
0˚†A0/Š A˝A0˚A˝†A0

1˚�
���! A˝A0˚†.A˝A0/; (4.3.16)

�A;A0 W .A˚†A/˝A
0 Š A˝A0˚ .†A/˝A0 Š A˝A0˚†.A˝A0/ (4.3.17)

where in (4.3.16), the interchange (4.3.3) for † is used.

Lemma 4.3.18 The isomorphisms (4.3.16), (4.3.17) give the bimodule system 1˚†

with the structure of a symmetric folding system on any category A of algebras
closed under tensor products.

Proof: It is obvious that 1 with the identity maps is a folding system, and that a
direct sum of folding systems is a folding system again, so it suffices to show that
† is a folding system.

The right diagram in (4.3.7) is trivially commutative, while commutativity of
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the left one follows from

�A1;M.A01/.f .a/˝†f
0.a0//D .�1/deg.a/†.f .a/˝f 0.a0//

D†.f ˝f 0/..�1/deg.a/†.a˝ a0//D†.f ˝f 0/�A;M.A0/.a˝†a
0/

for any a 2 A, a0 2 A0, f W A ! A1, f 0 W A0 ! A01. Next, the diagrams (4.3.8)
commute since k is concentrated in degree 0.

The diagrams (4.3.10) commute trivially, as only right actions are involved.
Commutativity of (4.3.9) follows from the obvious equality

.�1/deg.a/†.a˝ .�1/deg.a0/a0˝ a00/D .�1/deg.a˝a0/†.a˝ a0˝ a00/

and that of (4.3.11) is also obvious from

.�1/deg.a/†.a˝ a0/˝ a00

�

���
��

��
��

a˝†.a0/˝ a00

�

&&�������

�

���
��

��
��

�
.�1/deg.a/†.a˝ a0˝ a00/

a˝†.a0˝ a00/

�

&&�������

Thus by (4.3.13) the folding system 1 ˚ † yields a well-defined monoidal
category Algr1˚† of 1˚†-algebras as in (4.3.4). The initial object and at the same
time the unit for the monoidal structure of Algr1˚† is by (4.3.5) and (4.3.13)

I1˚† D

�
F ˚†F

0
�! F

�
:

For Algr1 it is

I1 D

�
F

0
�! F

�
:

The projections q WA˚†A! A can be used to construct a monoidal functor

q W Algr1˚†! Algr1 (4.3.19)
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carrying an object D in Algr1˚† to the pushout in the following diagram

A˚†A �� ��

q

��
push

D1

��

�� D0 �� �� A

A �� �� q.D/1 �� q.D/0 �� �� A:

Evidently q.I1˚†/D I1.

4.4. Unfolding systems

It is clear how to dualize the constructions from the previous section along the lines
of section 4.2. We will not give detailed definitions but only briefly indicate the
underlying structures.

We thus consider a category C of graded k-coalgebras, and define a right
comodule system N on C as an assignment, to each coalgebra C in C, of a C -
comodule N.C /, and to each homomorphism f W C ! C 0 of coalgebras of an
f -equivariant homomorphism f� WN.C /!N.C 0/, i. e. the diagram

N.C /
coaction ��

f�
��

N.C /˝C

f�˝f

��
N.C 0/

coaction�� N.C 0/˝C 0

is required to commute. Similarly one defines left comodule systems and bicomod-
ule systems. As before, we have a bicomodule system 1 given by 1.C / D C and
also †, 1˚† defined dually to (4.3.2).

Then further for a right comodule system N on C and for a coalgebra C from
C one defines an N -coalgebra of type C by dualizing (4.3.4). It is thus a pair
D� D .d W D0!D1/ where D0 is a coalgebra, D1 is a right D0-comodule and d
is a comodule homomorphism. Moreover one must have �0.D�/ D C , �1.D�/ D
N.C /, and the C -comodule structure on N.C / induced by this must be the one
coming from the comodule system N . With morphisms defined dually to (4.3.4),
theN -coalgebras form a category CoalgrN . Similarly one defines categories Coalg`N
and Coalgpair

N � CoalgbN for a left, resp. bicomodule system N . These categories
have the initial object 0 W 0!N.0/ and the terminal object 0 W k!N.k/.

Also dually to (4.3.6) one defines unfolding systems as comodule systems N
equipped with C ˝C 0-comodule homomorphisms

lC;C
0

WN.C ˝C 0/! C ˝N.C 0/

rC;C
0

WN.C ˝C 0/!N.C /˝C 0
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for all C;C 0 2C required to satisfy obvious duals to the diagrams (4.3.7) – (4.3.11).
Also there is an obvious notion of a symmetric unfolding system.

Then for an unfolding system N we can dualize (4.3.12) to obtain definition of
the unfolding product D L̋D0 of N -coalgebras via the upper row in the diagram

0 �� C ˝C 0 �� D0˝D0
0 d

L̋

�� .D L̋D0/1

��

��

pull

N.C ˝C 0/

.l
C;C 0

rC;C
0/

��

�� 0

0 �� C ˝C 0 �� .D NN̋D0/0
d
NN̋

�� .D NN̋D0/1 �� C ˝N.C 0/˚N.C /˝C 0 �� 0

where now the rightmost square is required to be pullback and the lower row is exact
by the dual of (4.1.3).

It is then straightforward to dualize (4.3.13), so we conclude that for any
unfolding system N the unfolding product equips the category Coalg‹N with the
structure of a monoidal category, symmetric if N is symmetric. Here, “?” stands
for “r”, “l”, “b” or “pair”, according to the type of N . Obviously also the dual
of (4.3.18) holds, so that the categories Coalgpair

1 and Coalgr1˚† have monoidal
structures given by the unfolding product.

4.5. The G-relation pair algebra of the Steenrod algebra

Fix a prime p, and let G D Z=p2Z be the ring of integers mod p2, with the quotient
map G� F D Fp D Z=pZ. Let A be the mod p Steenrod algebra and let

EA D

( ˚
Sq1;Sq2;:::

�
for p D 2;˚

P1;P2;:::
�
[
˚
ˇ;ˇP1;ˇP2;:::

�
for odd p

be the set of generators of the algebra A . We consider the following algebras and
homomorphisms

q WB0
�� �� F0

qF �� �� A

TG.EA / TF .EA / :

(4.5.1)

For a commutative ring k, Tk.S/ denotes the free associative k-algebra with unit
generated by the set S , i. e. the tensor algebra of the free k-module on S . The map
qF is the algebra homomorphism which is the identity on EA . For f 2 F0 we
denote the element qF .f / 2A by

NNf D qF .f /:
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Let RB denote the kernel of q, i. e. there is a short exact sequence

RB
�� �� B0

q �� �� A :

This short exact sequence gives rise to a long exact sequence

Tor.RB;F/ �� �� Tor.B0;F/ �� Tor.A ;F/
i �� RB˝F �� B0˝F �� �� A ˝F :

Here A˝ F Š A=pA and Tor.A;F/ is just the p-torsion part of A for an abelian
group A, so the connecting homomorphism i sends aD q.b/CpB0 to pbCpRB.
It follows that the second homomorphism in the above sequence is zero. Moreover
clearly we can identify B0˝F DF0 and Tor.A ;F/DA , so that there is an exact
sequence

A �� i �� RF
1

@ �� RF
0

�� �� A

RB˝F F0

(4.5.2)

One has

Lemma 4.5.3 The pair RF D .@ WRF
1 !RF

0 / above has a pair algebra structure
compatible with the standard bimodule structure of A on itself, so that RF yields
an object in Algpair

1 , see (4.3.4).

Proof: Clearly mod p reduction of any pair algebra over G is a pair algebra over
F . Then let RF be the mod p reduction of the pair algebra RB � B0. Thus
the F0-F0-bimodule structure on RF

1 D RB=pRB is just the mod p reduction of
the B0-B0-bimodule structure on RB, i. e. b0C pB0 2 RF

0 D B0=pB0 acts on
rCpRB 2RF

1 DRB=pRB via

.b0CpB0/.r CpRB/D b
0r CpRB:

Moreover the above inclusion A �RB=pRB sends an element q.b/ to pbCpRB.
Then the action of a0 D q.b0/ 2A on i.a/D pbCpRB 2 i.A /D ker@ induced by
this pair algebra is given as follows:

a0i.a/D qF .b
0CpB0/.pbCpRB/D pb

0bCpRB D iq.b
0b/D i.a0a/

and similarly for the right action.

We call the object RF of the category Algpair
1 the G-relation pair algebra of A .

Theorem 4.5.4 The 1-pair algebra RF has a structure of a cocommutative
comonoid in the symmetric monoidal category Algpair

1 .
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Proof: For n> 0, let R.n/B denote the kernel of the map q˝n, so that there is a short
exact sequence

R
.n/
B

�� �� B˝n0
q˝n �� �� A ˝n

and similarly to (4.5.3) there is a pair algebra of the form

A ˝n �� �� R.n/B ˝F �� F˝n0
q
˝n
F �� �� A ˝n

determining an object R.n/ in Algpair
1 . Then one has the following lemma which

yields natural examples of folding products in Algpair
1 .

Lemma 4.5.5 There is a canonical isomorphism R.n/ Š .RF /
Ő n in Algpair

1 .

Proof: Using induction, we will assume given an isomorphism ˛n W .RF /
Ő n Š

R.n/ and construct ˛nC1 in a canonical way. To do this it clearly suffices to construct
a canonical isomorphism RF ŐR.n/ ŠR.nC1/ as then its composite with RF Ő ˛n
will give ˛nC1.

To construct a map .RF ŐR.n//1 ! R.nC1/
1 means by (4.3.14) the same as to

find three dashed arrows making the diagram

RB˝R
.n/
B ˝F

""��
��
��
��
��
��

$$�
��
��
��
��
��
�

F0˝R
.n/
B

���
�

�
RB˝F˝n0

���
�
�

R
.nC1/
B ˝F

F0˝A ˝n ��

!!������������
A ˝.nC1/

���
�

A ˝F˝n0
��

##������������
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commute. For this we use the commutative diagram

RB˝R
.n/
B

""��
��
��
��
��
��

$$�
��
��
��
��
��
�

B0˝R
.n/
B

���
��

��
RB˝B˝n0

����
��
�

R
.nC1/
B

B0˝A ˝n ��

!!������������
A ˝.nC1/

��

A ˝B˝n0 I
��

##������������

This diagram has a commutative subdiagram

p.RB˝R
.n/
B /

""��
��
��
��
��
��

$$�
��
��
��
��
��
�

pB0˝R
.n/
B

���
��

��
RB˝pB˝n0

����
��
�

pR
.nC1/
B

pB0˝A ˝n ��

!!������������
0

��

A ˝pB˝n0 I
��

##������������

It is obvious that taking the quotient by this subdiagram gives us a diagram of the
kind we need.

We thus obtain a map .RF ŐR.n//1 ! R
.nC1/
B ˝ F . Moreover by its

construction this map fits into the commutative diagram

A ˝.nC1/ �� �� .RF ŐR.n//1

��

�� F˝.nC1/0
�� �� A ˝.nC1/

A ˝.nC1/ �� �� R.nC1/B ˝F �� F˝.nC1/0
�� �� A ˝.nC1/

with exact rows, hence by the five lemma it is an isomorphism.
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Using the lemma, we next construct the diagonal of RF given by

RB˝F

�G˝1
��

RF
1

@ ��

�

��

RF
0

�

��

F0

�

��
R
.2/
B ˝F

Š �� .RF ŐRF/1
@ Ő �� RF

0 ˝RF
0 F0˝F0:

Here �G is defined by the commutative diagram

RB

�G

��

� � �� B0

�G

��
R
.2/
B

� � �� B0˝B0;

(4.5.6)

where the diagonal �G on B0 is defined on generators by

�G.Sqn/D
nX
iD0

Sqi˝Sqn�i for p D 2,

�G.ˇ/D ˇ˝ 1C 1˝ˇ;

�G.Pn/D
X
iCjDn

Pi ˝Pj ;

�G.Pnˇ /D
X
iCjDn

.Piˇ ˝Pj CPi ˝Pj
ˇ
/

9>>>>>>=
>>>>>>;

for odd p

(with Sq0 D 1, P0 D 1 as usual) and extended to the whole B0 as the unique
algebra homomorphism with respect to the algebra structure on B0˝B0 given by
the nonstandard interchange formula

B0˝B0˝B0˝B0

�˝�

�����
����

����
���

B0˝B0˝B0˝B0

1˝TG˝1
''                 �˝ �� B0˝B0

with

TG WB0˝B0
Š
�!B0˝B0

TG.x˝y/D .�1/pdeg.x/deg.y/y˝ x:

In particular, clearly for all p one has TG�G D �G , i. e. the coalgebra structure
on B0 is cocommutative.
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The counit for RF is given by the diagram

A �� ��

�

��

RB˝F ��

���
�
� F0

�� ��

�

��

A

�

��
F F

0 �� F F

(4.5.7)

where the map RB˝ F ! F sends the generator .p1B0
/˝ 1 in degree 0 to 1 and

all elements in higher degrees to zero. It is then clear from the formula for �G that
this indeed gives a counit for this diagonal.

Finally, to prove coassociativity, by the lemma it suffices to consider the diagram

RB��

��
�G

����
��
��
��
��
��
��
��
��
��
��

�G

���
��

��
��

��
��

��
��

��
��

��
�

B0

�G

����
��
��
��
�

�G

���
��

��
��

��

R
.2/
B

� � ��

���
��

��
��

��
��

��
��

��
��

��
B˝20

1˝�G
���

��
��

��
�

B˝20

�G˝1����
��
��
��

R
.2/
B

����
��
��
��
��
��
��
��
��
��
�

� ���

B˝30

R
.3/
B

��

��

4.6. The algebra of secondary cohomology operations

Let us next consider a derivation of degree 0 of the form

~ WA !†A ;

uniquely determined by

~Sqn D†Sqn�1 for p D 2;

~ˇ D†1;

~.Pi /D 0;i > 0

)
for odd p:

(4.6.1)
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We will use ~ to define an A -A -bimodule

A ˚~ †A

as follows. The right A -module structure is the same as on A ˚†A above, i. e.
one has .x;†y/a D .xa;†ya/. As for the left A -module structure, it is given by

a.x;†y/D .ax;.�1/deg.a/†ayC ~.a/x/:

There is a short exact sequence of A -A -bimodules

0!†A !A ˚~ †A !A ! 0

given by the standard inclusion and projection.

Remark 4.6.2 The above short exact sequence of bimodules and the derivation ~
correspond to each other under the well known description of the first Hochschild
cohomology group in terms of bimodule extensions and derivations, respectively.
Indeed, more generally recall that for a graded k-algebra A and an A-A-bimodule
M , one of the possible definitions of the Hochschild cohomology of A with
coefficients in M is

HHn.AIM/D ExtnA˝kAı.A;M/:

On the other hand,HH 1.AIM/ can be also described in terms of derivations. Recall
that anM -valued derivation onA is a k-linear map ~ W A!M of degree 0 satisfying

~.xy/D ~.x/yC .�1/deg.x/x~.y/

for any x;y 2 A. Such derivations form a k-vector space Der.AIM/. A derivation
~ D �m is called inner if there is an m 2M such that

~.x/Dmx � .�1/deg.x/xmD �m.x/

for all x 2 A. These form a subspace Ider.AIM/ � Der.AIM/ and one has an
isomorphism HH 1.AIM/ Š Der.AIM/=Ider.AIM/. Moreover there is an exact
sequence

0!HH 0.AIM/!M
_
�! Der.AIM/!HH 1.AIM/! 0:

Explicitly, the isomorphism

Der.AIM/=Ider.AIM/Š Ext1A˝Aı.A;M/;
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can be described by assigning to a class of a derivation ~ W A!M the class of the
extension

0!M ! A˚~M ! A! 0

where as a vector space, A˚~ M D A˚M , the maps are the canonical inclusion
and projection and the bimodule structure is given by

a.x;m/D .ax;amC ~.a/x/;

.x;m/aD .xa;ma/:

Obviously A ˚~ †A above is an example of this construction.

Definition 4.6.3 A Hopf pair algebra V (associated to A ) is a pair algebra @ W
V1! V0 over F together with the following commutative diagram in the category
of F0-F0-bimodules

†A
��

��

†A
��

��
A ˚~ †A �� ��

q

����

V1
@ ��

q
����

V0 �� �� A

A �� �� RF
1

�� RF
0

�� �� A

(4.6.4)

with exact rows and columns. The pair morphism q W V ! RF will be called the
G-structure of V . Moreover V has a structure of a comonoid in Algr1˚† and q is
compatible with the Algpair

1 -comonoid structure on RF in (4.5.4), in the sense that
the diagrams

V1
�V ��

q

��

.V Ő V /1

q Ő q

��
RF
1

�R �� .RF ŐRF/1

(4.6.5)

and

V1

q

��

�V �� F ˚†F

��
RF
1

�R �� F

(4.6.6)

commute.
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We next observe that the following diagrams commute:

A
~ ��

ı

��

†A

†ı
��

A ˝A
~˝1 �� †A ˝A †.A ˝A /;

A
~ ��

ı

��

†A

†ı
��

A ˝A
1˝~ �� A ˝†A

� �� †.A ˝A /

where � is the interchange for † in (4.3.3). Or, on elements,X
~.a`/˝ ar D

X
~.a/`˝ ~.a/r D

X
�.a`˝ ~.ar//; (4.6.7)

where we use the Sweedler notation for the diagonal

ı.x/D
X

x`˝ xr :

Remark 4.6.8 The above identities have a simple explanation using dualization. We
will see in (5.1.7) below that the map dual to ~ is the map †A� ! A� given, for
p D 2, by multiplication with the degree 1 generator �1 2 A� and for odd p by the
degree 1 generator �0. Then the duals of (4.6.7) are the obvious identities for any
x;y 2A�

.�1x/y D �1.xy/D x.�1y/

for p D 2 and
.�0x/y D �0.xy/D .�1/

deg.x/x.�0y/

for odd p (recall that A� is graded commutative).

Using (4.6.7) we prove:

Lemma 4.6.9 For a Hopf pair algebra V there is a unique left action of F0 on
.V Ő V /1 such that the quotient map

.V N̋ V /1� .V Ő V /1

is F0-equivariant. Here we use the pair algebra structure on V N̋ V to equip
.V N̋ V /1 with an F0 ˝F0-bimodule structure and then turn it into a left F0-
module via restriction of scalars along � WF0!F0˝F0.

Proof: Uniqueness is clear as the module structure on the quotient of any module
M by a submodule is clearly uniquely determined by the module structure on M .

For the existence, consider the diagram

F0˝ .A ˚~ †A /

��

!!!!
!!!!

((!!!
!!!!

!

V1˝V1

((!!!
!!!!

!!!!
!!!!

!!!

))    
    

    
    

  
.A ˚~ †A /˝F0

��
    

    

))    
    

F0˝V1 A ˝A ˚~˝1†.A ˝A / V1˝F0:

(4.6.10)
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whose colimit, by (4.3.14), is .V Ő V /1, with the right F0˝F0-module structure
coming from the category Algr1˚†. It then suffices to show that all maps in this
diagram are also left F0-equivariant, if one uses the left F0-module structure by
restricting scalars along the diagonal F0!F0˝F0.

This is trivial except possibly for two of the maps involved. For the map

ˆ WF0˝ .A ˚~ †A /!A ˝A ˚~˝A †.A ˝A /

given by
ˆ.f 0˝ .x;†y//D .

NNf 0˝ x;.�1/deg.f 0/†
NNf 0˝y/;

this amounts to checking that for any f;f 0 2F0 and x;y 2A one must haveX
.f`˝fr/.

NNf 0˝ x;.�1/deg.f 0/†
NNf 0˝y/

Dˆ..�1/deg.fr /deg.f 0/
X

f`f
0˝ . NNfrx;.�1/

deg.fr /† NNfryC ~.
NNfr/x//;

where again the above Sweedler notation

�.f /D
X

f`˝fr ;

is used for the diagonal of F0 too, and NNf 0 denotes qF .f
0/ by the notation in (4.5.1).

The left hand side expression then expands as

X
..�1/deg.fr /deg.f 0/ NNf`

NNf 0˝ NNfrx;

.�1/deg.fr /deg.f 0/.�1/deg.f /.�1/deg.f 0/† NNf`
NNf 0˝ NNfryC .�1/

deg.fr /deg.f 0/~. NNf`/
NNf 0˝ NNfrx/

and the right hand side expands as

.�1/deg.fr /deg.f 0/
X

. NNf`
NNf 0˝ NNfrx;.�1/

deg.f`f 0/..�1/deg.fr /† NNf`
NNf 0˝ NNfryC

NNf`
NNf 0˝~. NNfr /x//:

Thus left equivariance of ˆ is equivalent to the equalityX
~. NNf`/

NNf 0˝ NNfrx D
X

.�1/deg.f`f 0/ NNf`
NNf 0˝ ~. NNfr/x:

This is easily deduced fromX
~. NNf`/˝

NNfr D
X

.�1/deg.f`/ NNf`˝ ~.
NNfr/;

which is an instance of (4.6.7).
For another map

‰ W .A ˚~ †A /˝F0!A ˝A ˚~˝A †.A ˝A /
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given by
‰..x;†y/˝f 0/D .x˝

NNf 0;†y˝
NNf 0/

the equality to check isX
.f`˝fr /.x˝

NNf 0;†y˝
NNf 0/

D‰..�1/deg.fr /deg.x;†y/
X

. NNf`x;.�1/
deg.f`/† NNf`yC ~.

NNf`/x/˝frf
0/:

Here the left hand side expands asX
..�1/deg.fr /deg.x/ NNf`x˝

NNfr
NNf 0;

.�1/deg.fr /deg.†y/.�1/deg.f`/ NNf`y˝
NNfr
NNf 0C .�1/deg.fr /deg.x/~. NNf`/x˝

NNfr
NNf 0/

and the right hand side expands as

.�1/deg.fr /deg.x;†y/
X

. NNf`x˝
NNfr
NNf 0;.�1/deg.f`/† NNf`y˝

NNfr
NNf 0C ~. NNf`/x˝

NNfr
NNf 0/I

these two expressions are visibly the same.
Given this left module structure on .V Ő V /1, one can measure the deviation

from left equivariance of the diagonal �V W V1! .V Ő V /1. For that, consider the
map OL W V0˝V1! .V Ő V /1 given by

OL.f ˝ x/ WD�V .f x/�f ��V .x/;

for any f 2 F0 D V0, x 2 V1, where � denotes the left F0-module action defined
in (4.6.9). Since the diagonal �R of RF is left equivariant, it follows from (4.6.5)
that the image of OL lies in the kernel of the map q Ő q, i. e. in †A ˝A . Moreover
if f D @v1 for some v1 2 V1, then one has

�V .@.v1/x/D�V .v1@x/D�V .v1/�F .@x/D�V .v1/@ Ő�V .x/

D @ Ő�V .v1/�V .x/D�F .@v1/�V .x/;

so that the image of @˝V1 W V1˝V1! V0˝V1 lies in the kernel of OL. Similarly
commutativity of

V1
�V ��

@

��

.V Ő V /1

@ Ő

��
V0

�F �� V0˝V0

(4.6.11)

implies that V0˝ ker@ is in the kernel of OL. It then follows that L factors uniquely
through a map

A ˝RF D .V0=im@/˝ .V1=ker@/! ker.q Ő q/D†A ˝A :
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Definition 4.6.12 The map

LV WA ˝RF !†A ˝A

given by the unique factorization of the map OL above is characterized by the
deviation of the diagonal �V of the Hopf pair algebra V from left equivariance.
That is, one has

�V .f x/D f ��V .x/CLV .
NNf ˝ @x/

for any f 2F0 D V0, x 2 V1 and the action � from (4.6.9).

Similarly one can measure the deviation of �V W V1 ! .V Ő V /1 from
cocommutativity by means of the map OS W V1! .V Ő V /1 given by

OS.x/ WD�V .x/�T�V .x/;

where T W .V Ő V /1 ! .V Ő V /1 is the interchange operator for Algr1˚† as
constructed in (4.3.13). Then similarly to OL above, OS admits a factorization in the
following way. First, by commutativity of (4.6.5) one has

.q Ő q/T�V D T .q Ő q/�V D T�Rq D�Rq D .q Ő q/�V ;

since the Algpair
1 -comonoid RF is cocommutative. Thus the image of OS is contained

in ker.q Ő q/ D †A ˝ A . Next, commutativity of (4.6.11) implies that ker@ is
contained in the kernel of OS . Hence OS factors uniquely as follows

RF D V1=ker@! ker.q Ő q/D†A ˝A :

Definition 4.6.13 The map

SV WRF !†A ˝A

given by the unique factorization of the map OS above is characterized by the
deviation of the diagonal �V of the Hopf pair algebra V from cocommutativity.
That is, one has

T�V .x/D�V .x/CSV .@x/

for any x 2 V1.

It is clear from these definitions that LV and SV are well defined maps by the
Hopf pair algebra V . Below in (6.1.5) we define the left action operator L W A ˝
RF ! †A ˝A and the symmetry operator S W RF ! †A ˝A with LD 0 and
S D 0 if p is odd. For p D 2 these operators are quite intricate but explicitly given.
We also will study the dualization of S and L.

The next two results are essentially reformulations of the main results in the
book [3].
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Theorem 4.6.14 (Existence) There exists a Hopf pair algebra V with LV D L and
SV D S .

Theorem 4.6.15 (Uniqueness) The Hopf pair algebra V satisfying LV D L and
SV D S is unique up to an isomorphism over the G-structure V !RF and under
the kernel A ˚~ †A � V .

The Hopf pair algebra appearing in these theorems is the algebra of secondary
cohomology operations over F , denoted by BF D .BF

1 ! BF
0 / D B ˝ F . The

algebra B has been defined over G in [3].

Proof of (4.6.14): Recall that in [3, 12.1.8] a folding product Ő is defined for pair
G-algebras in such a way that B has a comonoid structure with respect to it, i. e. a
secondary Hopf algebra structure. Let

�1 WB1! .B ŐB/1

be the corresponding secondary diagonal from [3, (12.2.2)]. It is proved in [3, 14.4]
that the left action operator L satisfies

�1.bx/D b�1.x/CL.q.b/˝ .@x˝ 1//

for b 2B0, x 2B1, @x˝ 1 2 RB˝F DRF
1 . Also in [3, 14.5] it is proved that the

symmetry operator S satisfies

T�1.x/D�1.x/CS.@x˝ 1/

for x 2B1. Moreover it is proved in [3, 15.3.13] that the secondary Hopf algebra
B is determined uniquely up to isomorphism by the maps ~, L and S .

Consider now the diagram

†A
��

��

†A
��

��
A ˚~ †A ��i~ ��

q
����

B1˝F
@˝1 ��

qD@˝1
����

B0˝F �� �� A

A �� �� RB˝F �� F0
�� �� A :

Here the inclusion i~ WA ˚~ †A �B1˝F is given by the inclusion †A �B1

and by the map
A !B1˝F
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which assigns to an element q.b/ 2 A , for b 2 B0, the element Œp� � b ˝ 1. Then
it is clear that i~ is a right A -module homomorphism. Moreover it is also a left
A -module homomorphism since for b 2B0 the following identity holds in B1:

b � Œp�� Œp� � bD ~.b/:

Compare [3, A20 in the introduction]. Now one can check that the properties of B
established in [3] yield the result.

Remark 4.6.16 For elements ˛;ˇ;� 2A with ˛ˇ D 0 and ˇ� D 0 the triple Massey
product

h˛;ˇ;�i 2A =.˛A CA �/

is defined. Here the degree of elements in h˛;ˇ;�i is deg.˛/Cdeg.ˇ/Cdeg.�/�1.
We can compute h˛;ˇ;�i by use of the Hopf pair algebra BF above as follows. For
this we consider the maps

A B0 �RB

qB���� qR �� �� RB˝F :

We choose elements N̨ ; Ň; N� 2 B0 which qB carries to ˛;ˇ;� respectively. Then
we know that the products N̨ Ň, Ň N� are elements in RB for which we can choose
elements x;y 2B1˝F with

q.x/D qR. N̨ Ň/;

q.y/D qR. Ň N�/:

Then the bimodule structure of B1 ˝ F yields the element N̨y � x N� in the kernel
†A of q WB1˝F ! RB˝F . Now N̨y � x N� 2†A represents h˛;ˇ;�i, see [3].

4.7. The dual of the G-relation pair algebra

We next turn to the dualization of the G-relation pair algebra of the Steenrod algebra
from section 4.5.

For this we just apply the duality functor D to (4.5.2). There results an exact
sequence

A� �� �� R0
F

d �� R1
F

�� �� A�;

i. e. the sequence

A� �� �� D.RF
0 /

D.@/ �� D.RF
1 /

�� �� A�

Hom.F0;F/ Hom.RB;F/:

(4.7.1)
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In particular, by the dual of (4.5.3) one has

Lemma 4.7.2 The pair RF D .d W R0
F ! R1

F / has a pair coalgebra structure
compatible with the standard bicomodule structure of A� over itself, so that RF

yields an object in Coalgpair
1 , see section 4.4.

Moreover the dual of (4.5.4) takes place, i. e. one has

Theorem 4.7.3 The pair coalgebra RF has a structure of a commutative monoid
in the category Coalgpair

1 with respect to the unfolding product L̋ .

The proof uses the duals of the pair algebras R.n/, n > 0, from (4.5.4). Namely,
applying to the short exact sequence

R
.n/
B

�� �� B˝n0
q˝n �� �� A ˝n

the functor D D Hom._;F/ gives, similarly to (4.7.2), a pair coalgebra

R.n/
� D

�
A ˝n�

�� �� F˝n�
�� R.n/B �

�� �� A ˝n�

�
such that the following dual of (4.5.5) holds:

Lemma 4.7.4 There is a canonical isomorphism R.n/
� Š .RF /

L̋ n in Coalgpair
1 .

Using this lemma one constructs the L̋ -monoid structure on RF by the diagram

F�˝F�

��

��

R0
F ˝R0

F

d L̋ ��

�

��

.RF L̋RF /
1 Š ��

�

��

R
.2/
B �

�G
�

��
F� R0

F
d �� R1

F RB�

with �G as in (4.5.6).
Moreover the unit of RF is given by the dual of (4.5.7), i. e. by the diagram

F

1

��

F
0 ��

1

��

F

���
�
� F

1

��
A� �� �� F� �� RB�

�� �� A�

so that the unit element of RB� is the map RB! F sending the generator p1B0
in

degree 0 to 1 and all elements in higher degrees to zero.
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4.8. Hopf pair coalgebras

We next turn to the dualization of the notion of a Hopf pair algebra from (4.6.3),
using the dual RF of RF from the previous section.

Definition 4.8.1 A Hopf pair coalgebra W (associated to A�) is a pair coalgebra
d W W 0 ! W 1 over F together with the following commutative diagram in the
category of F�-F�-bicomodules

A� �� �� R0
F

�� R1
F
��
i

��

�� �� A�
��
i

��
A� �� �� W 0

d �� W 1

�†
����

. ��†/ �� �� A�˚~� †A�

����
†A� †A�

with exact rows and columns. The pair morphism i W RF ! W will be called
the G-structure of W . Moreover W must be equipped with a structure of a
monoid .mW ;1W / in Coalgr1˚† such that i is compatible with the Coalgpair

1 -monoid
structure on RF from (4.7.3), i. e. diagrams dual to (4.6.5) and (4.6.6)

.RF L̋RF /
1

mR ��

i L̋ i
��

R1
F

i

��
.W L̋ W /1

mW �� W 1;

F
1R ��

��

R1
F

i

��
F ˚†F

1W �� W 1

commute.

We next note that the dual of (4.6.9) holds; more precisely, one has

Lemma 4.8.2 For a Hopf pair coalgebra W the subspace

.W L̋ W /1 � .W NN̋ W /1

is closed under the left coaction of the coalgebra F� on .W NN̋ W /1 given by the
corestriction of scalars along the multiplication m� W F� ˝F� ! F� of the left
F�˝F� D .W NN̋ W /0-comodule structure given by the pair coalgebra W NN̋ W . In
other words, there is a unique map m` W .W L̋ W /1!F�˝ .W L̋ W /1 making the
diagram

.W L̋ W /1

��

��

m` ������������������ F�˝ .W L̋ W /1

��

��
.W NN̋ W /1 �� F�˝F�˝ .W NN̋ W /1

m�˝1 �� F�˝ .W NN̋ W /1
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commute.

Given this left coaction, one can define the dual of the left action operator
in (4.6.12) by measuring deviation of the multiplication .W L̋ W /1 ! W 1 from
being a left comodule homomorphism. For that, one first observes that the map
LL W .W L̋ W /1 ! F� ˝W 1 is given by the difference of two composites in the
diagram

.W L̋ W /1
m` ��

mW

��

F�˝ .W L̋ W /1

1˝mW

��
W 1

m` �� F�˝W 1:

Then by the argument dual to that before (4.6.12) one sees that the map LL factors
uniquely through coker.i L̋ i/ D

�
.W L̋ W /1�†A�˝A�

�
and into ker.d/ ˝

im.d/ D
�
A�˝RF ��W 0˝W 1

�
to yield a map †A� ˝ A� ! A� ˝ RF�.

We thus can make, dually to (4.6.12), the following

Definition 4.8.3 The map

LW W†A�˝A�!A�˝RF�

given by the unique factorization of the map LL above is characterized by the
deviation of the multiplication mW of the Hopf pair coalgebra W from being a
left F�-comodule homomorphism. That is, for any t 2 .W L̋ W /1 one has

.1˝mW /m
`.t/Dm`mW .t/CLW .�† L̋ �†/.t/:

Next, we define a map SW in a manner dual to (4.6.13), measuring noncom-
mutativity of the Coalgr1˚†-monoid structure on W . For that, we first consider the
map LS W .W L̋ W /1!W 1 given by

LS.t/DmW T .t/�mW .t/

for t 2 .W L̋ W /1 and then observe that, dually to (4.6.13), this map factors
uniquely through coker.i L̋ i/ D

�
.W L̋ W /1�†A�˝A�

�
and into im.d/ D�

RF��W 1
�

so we have

Definition 4.8.4 The map

SW W†A�˝A�! RF�



272 H.-J. BAUES & M. JIBLADZE

given by the unique factorization of the map LS above is characterized by being the
graded commutator map with respect to the L̋ -monoid structure on the Hopf pair
coalgebra W . That is, for any t 2 .W L̋ W /1 one has

mW T .t/DmW .t/CSW .�† L̋ �†/.t/:

We now dualize the left action operator (6.1.5) and the symmetry operator
(6.2.1).

Definition 4.8.5 The left coaction operator

L� WA�˝A�!A�˝RF �

of degree C1 is the graded dual of the left action operator (6.1.5).

Definition 4.8.6 The cosymmetry operator

S� WA�˝A�!RF�

of degree C1 is the graded dual of the symmetry operator (6.2.1).

It is clear that the duals of (4.6.14) and (4.6.15) hold. Let us state these explicitly.

Theorem 4.8.7 (Existence) There exists a Hopf pair coalgebra W with LW D L�
and SW D S�.

Theorem 4.8.8 (Uniqueness) The Hopf pair coalgebra W satisfying LW D L�
and SW D S� is unique up to an isomorphism over W �A�˚~� †A� and under
RF �W .

The Hopf pair coalgebra appearing in these theorems will be denoted by BF D

.B0
F !B1

F/DD.B
F/.

5. Generators of BF and dual generators of BF

In this chapter we describe polynomial generators in the dual Steenrod algebra A�
and in the dual of the free tensor algebra TF .EA / with the Cartan diagonal. We use
these results to obtain generators in the dual of the relation module RF .

5.1. The Milnor dual of the Steenrod algebra

Here we recall the needed facts from [15]. The graded dual of the Hopf algebra A
is the Milnor Hopf algebra A� D Hom.A ;F/DD.A /. It is proved in [15] that for
odd p as an algebra A� is a graded polynomial algebra, i. e. it is isomorphic to a
tensor product of an exterior algebra on generators of odd degree and a polynomial
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algebra on generators of even degree; for p D 2 the algebra A� is a polynomial
algebra. Moreover, in [15], explicit generators are given in terms of the admissible
basis.

First recall that the admissible basis for A is given by the following monomials:
for odd p they are of the form

M D ˇ�0Ps1ˇ�1Ps2 ���Psnˇ�n

where 	k 2 f0;1g and

s1 > 	1Cps2;s2 > 	2Cps3;:::;sn�1 > 	n�1Cpsn;sn > 1:

Then let �k 2 A2.pk�1/ D Hom.A 2.pk�1/;F/, k > 1 and �k 2 A2pk�1 D

Hom.A 2pk�1;F/, k > 0 be given on this basis by

�k.M/D

(
1; M D Pp

k�1

Pp
k�2

���PpP1;

0 otherwise
(5.1.1)

and

�k.M/D

(
1; M D Pp

k�1

Pp
k�2

���PpP1ˇ;

0 otherwise:
(5.1.2)

As proved in [15], A� is a graded polynomial algebra on these elements, i. e. it is
generated by the elements �k and �k with the defining relations

�i�j D �j �i ;

�i�j D �j �i ;

�i�j D��j �i

only.
For p D 2, the admissible basis for A is given by the monomials

M D Sqs1Sqs2 ���Sqsn

with
s1 > 2s2;s2 > 2s3;:::;sn�1 > 2sn;sn > 1

and the polynomial generators of A� are elements �k 2 A2k�1 D Hom.A 2k�1;F/

given by

�k.M/D

(
1; M D Sq2

k�1

Sq2
k�2

���Sq2Sq1;

0 otherwise:
(5.1.3)
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In terms of these generators, likewise, the coalgebra structure m� WA�!A�˝
A� dual to the multiplication m of A is determined in [15]. Namely, for odd p one
has

m�.�k/D �k˝ 1C �
p

k�1
˝ �1C �

p2

k�2
˝ �2C ���C �

pk�1

1 ˝ �k�1C 1˝ �k;

m�.�k/D �k˝ �0C �
p

k�1
˝ �1C �

p2

k�2
˝ �2C ���C �

pk�1

1 ˝ �k�1C 1˝ �k C �k ˝ 1:

(5.1.4)
For p D 2 one has

m�.�k/D �k˝ 1C �
2
k�1˝ �1C �

4
k�2˝ �2C ���C �

2k�1

1 ˝ �k�1C 1˝ �k : (5.1.5)

We will need an expression for the dual Sq1� W A� ! †A� to the map Sq1 � W
†A !A given by multiplication with Sq1 from the left.

Lemma 5.1.6 The map Sq1� is equal to @
@�1

. That is, on the monomial basis it is
given by

Sq1�.�
n1
1 �

n2
2 ���/D

(
�
n1�1
1 �

n2
2 ��� ; n1 	 1 mod2

0; n1 	 0 mod2:

Proof: Note that Sq1� is a derivation, since Sq1 � is a coderivation, i.e. the diagram

†A
Sq1 � ��

†ı
��

A

ı
��

†A ˝A
.Sq1 �˝1
1˝Sq1 �/�� A ˝A 
A ˝A

C �� A ˝A

commutes: indeed for any x 2A one has

ı.Sq1x/D ı.Sq1/ı.x/D .Sq1˝1C 1˝Sq1/ı.x/D .Sq1˝1/ı.x/C .1˝Sq1/ı.x/:

On the other hand, the derivation on the Milnor generators Sq1� acts as follows:

Sq1�.�n/.x/D �n.Sq1x/D

(
1; Sq1x D Sq2

n�1

Sq2
n�2

���Sq1;

0; Sq1x ¤ Sq2
n�1

Sq2
n�2

���Sq1 :

It follows that Sq1�.�1/ D 1; on the other hand for n > 1 the equation Sq1x D
Sq2

n�1

Sq2
n�2

���Sq1 has no solutions, since it would imply Sq1Sq2
n�1

Sq2
n�2

���Sq1 D
Sq1Sq1x D 0, whereas actually

Sq1Sq2
n�1

Sq2
n�2

���Sq1 D Sq1C2
n�1

Sq2
n�2

���Sq1 ¤ 0:

But @
@�1

is the unique derivation sending �1 to 1 and all other �n’s to 0.
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We will also need expression of the dual ~� of the derivation ~ from (4.6.1) in
terms of the above generators.

Lemma 5.1.7 The map ~� W†A�!A� is equal to the left multiplication by �0 for
odd p and by �1 for p D 2.

Proof: For any linear map � W A n ! F the map ~�.�/ W AnC1 ! F is the
composite of � with ~ WAnC1!An. Thus for p odd one has

~�.�/.ˇ
�0Ps1ˇ�1Ps2 ���Psnˇ�n/

D
X
�kD1

.�1/�0C�1C���C�k�1�.ˇ�0Ps1ˇ�1 ���ˇ�k�1PskPskC1ˇ�kC1 ���Psnˇ�n/:(5.1.8)

On the other hand, one has for M as above

.�0�/.M/D
X

�0.M`/�.Mr/D
X

M`Dcˇ
0¤c2F

c�.Mr/;

if
ı.M/D

X
M`˝Mr :

On the other hand one evidently has

ı.ˇ�0Ps1ˇ�1Ps2 ���Psnˇ�n /

D
X

0606�0
06i16s1
0616�1
���

06in6sn
06n6�n

.�1/
P
06�<�6n.����/�ˇ0Pi1ˇ1 ���Pinˇn ˝ˇ�0�0Ps1�i1ˇ�1�1 ���Psn�inˇ�n�n

so that for M D ˇ�0Ps1ˇ�1 ���Psnˇ�n one hasX
M`Dcˇ
0¤c2F

c�.Mr/

D
X
�kD1

X
0D0
i1D0
���

ikD0
kD1
ikC1D0
���

inD0
nD0

.�1/
P
06�<�6n.����/��.ˇ�0�0Ps1�i1ˇ�1�1 ���Psn�inˇ�n�n/

D
X
�kD1

.�1/
P
06�<k ���.ˇ�0Ps1ˇ�1 ���PskPskC1ˇ�kC1 ���Psnˇ�n/
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which is the same as (5.1.8) above.
Similarly for p D 2 the map ~�.�/ is given by

~�.�/.Sqs1 ���Sqsn/D �.~.Sqs1 ���Sqsn//D
nX
kD1

�.Sqs1 ���Sqsk�1 ���Sqsn/ (5.1.9)

and the map �1� is given by

.�1�/.M/D
X

�1.M`/�.Mr/D
X

M`DSq1

�.Mr/:

On the other hand one has

ı.Sqs1 ���Sqsn/D
X

06i16s1
���

06in6sn

Sqi1 ���Sqin˝Sqs1�i1 ���Sqsn�in ;

so that for M D Sqs1 ���Sqsn one has

X
M`DSq1

�.Mr /D

nX
kD1

X
i1D0
���

ik�1D0
ikD1
ikC1D0
���

inD0

�.Sqs1�i1 ���Sqsn�in/

which is equal to (5.1.9).
It is clear that with respect to the coalgebra structure on A� the map ~� is a

coderivation, i. e. the diagram

†A�
~� ��

†m�
��

A�

m�

��
†.A�˝A�/

.1�/ �� †A�˝A�˚A�˝†A�
.~�˝1;1˝~�/ �� A�˝A�

is commutative. Here � is the interchange of † as in (4.3.3). Then using dual of
the construction mentioned in (4.6.2) one may equip the vector space A� ˚†A�
with a structure of an A�-A�-bicomodule, in such a way that one has a short exact
sequence of A�-A�-bicomodules

0!A�!A�˚~� †A�!†A�! 0: (5.1.10)

Explicitly, one defines the right coaction of A� on A�˚~� †A� as the direct sum
of standard coactions on A� and on †A�, whereas the left coaction is given by the
composite

A�˚†A�
m�˚†m�
������!A�˝A�˚†A�˝A�

�
1 ~�˝1
0 �

�
������!A�˝A�˚A�˝†A� ŠA�˝ .A�˚†A�/:
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5.2. The dual of the tensor algebra F0 D TF.EA / for p D 2

We begin by recalling the constructions from [11] relevant to our case.
The Leibniz-Hopf algebra is the free graded associative ring with unit 1DZ0

Z D TZfZ1;Z2;:::g (5.2.1)

on generators Zn, one for each degree n > 1. Here we use notation as in (4.5.1). Z
is a cocommutative Hopf algebra with respect to the diagonal

�.Zn/D

nX
iD0

Zi ˝Zn�i :

Of course for p D 2 we have Z ˝ F D F0 D TZ.EA / by identifying Zi D Sqi ,
and moreover the diagonal � corresponds to �G ˝ F in (4.5.6). The graded dual
of Z over the integers is denoted by M ; it is proved in [11] that it is a polynomial
algebra. There also a certain set of elements of M is given; it is still a conjecture
(first formulated by Ditters) that these elements form a set of polynomial generators
for M . If, however, one localizes at any prime p, then there is another set of
elements, defined using the so called p-elementary words, which, as proved in [11],
is a set of polynomial generators for the localized algebra M . This in particular
gives a polynomial generating set for F� D Hom.F0;F2/ ŠM =2M . Moreover
it turns out that the embedding A��F� given by Hom.A ;F2/� Hom.F0;F2/

(dual to the quotient map F0�A ) carries the Milnor generators of A� to a subset
of these generators.

Choose a basis in M which is dual to the (noncommutative) monomial basis in
Z : for any sequence ˛ D .d1;:::;dn/ of positive integers, let M˛ DMd1;:::;dn be the
element of the free abelian group M d1C:::Cdn D Hom.Z d1C:::Cdn;Z/ determined
by

Md1;:::;dn.Zk1 ���Zkm/D

(
1; .k1;:::;km/D .d1;:::;dn/;

0 otherwise.

Since Z is a free algebra, dually M is a cofree coalgebra, i. e. the diagonal is
given by deconcatenation:

�.Md1;:::;dn/D

nX
iD0

Md1;:::;di ˝MdiC1;:::;dn : (5.2.2)

It is noted in [11] (and easy to check) that in this basis the multiplication in
M is given by the so called overlapping shuffle product. Rather than defining this
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rigorously, we will give some examples.

M5M2;4;1;9 DM5;2;4;1;9CM7;4;1;9CM2;5;4;1;9 CM2;9;1;9CM2;4;5;1;9CM2;4;6;9

CM2;4;1;5;9CM2;4;1;14 CM2;4;1;9;5 I

M8;5M1;2 DM8;5;1;2CM8;6;2CM8;1;5;2CM9;5;2CM8;1;7CM9;7CM1;8;5;2

CM1;8;7CM1;8;2;5CM9;2;5CM1;2;8;5CM1;10;5CM8;1;2;5

Thus in general, whereas the ordinary shuffle product of the elements, say,Ma1;a2;a3

and Mb1;b2;b3;b4;b5 contains all possible summands like Mb1;a1;a2;b2;b3;a3;b4;b5 , the
overlapping shuffle product contains together with each such summand also in
addition the summands of the form Mb1Ca1;a2;b2;b3;a3;b4;b5 , Mb1;a1;a2Cb2;b3;a3;b4;b5 ,
Mb1;a1;a2;b2;b3Ca3;b4;b5 , Mb1;a1;a2;b2;b3;a3Cb4;b5 , Mb1Ca1;a2Cb2;b3;a3;b4;b5 and so on,
obtained by replacing an ai and a bj standing one next to other with their sum, in
all possible positions.

Note that the algebra of ordinary shuffles is also a polynomial algebra, but over
rationals; it is not a polynomial algebra until at least one prime number remains
uninverted. On the other hand, over rationals M becomes isomorphic to the algebra
of ordinary shuffles.

To define a polynomial generating set for M , we need some definitions. To
conform with the admissible basis in the Steenrod algebra, which consists of
monomials with decreasing indices, we will reverse the order of indices in the
definitions from [11], where the indices go in the increasing order. Thus in our
case statements about some Md1;:::;dn will be equivalent to the corresponding ones
in [11] about Mdn;:::;d1 .

Definitions 5.2.3 The lexicographic order on the basis Md1;:::;dn of M is defined
by declaring Md1;:::;dn >Me1;:::;em if either there is an i with 16 i 6min.n;m/ and
di > ei , dn D em, dn�1 D em�1, ..., dn�iC1 D em�iC1, dn�i > em�i or n > m and
dn�mC1 D e1, dn�mC2 D e2, ..., dn D em.

A basis element Md1;:::;dn is Lyndon if with respect to this ordering one has
Md1;:::;dn < Md1;:::;di for all 1 < i 6 n. For example, M3;2;3;2;2 and M2;2;1;2;1;2;1

are Lyndon but M3;2;2;3;2 and M2;1;2;1;2;1 are not.
A basis elementMd1;:::;dn is Z-elementary if no number> 1 divides all of the di ,

i. e. gcd.d1;:::;dn/ D 1. The set ESL.Z/ is the set of elementary basis elements of
the form Md1;:::;dn;d1;:::;dn;::::;d1;:::;dn (i. e. d1;:::;dn repeated any number of times),
where Md1;:::;dn is a Lyndon element.

For a prime p, a basis element Md1;:::;dn is called p-elementary if there is a di
not divisible by p, i. e. p − gcd.d1;:::;dn/. The set ESL.p/ is defined as the set of
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p-elementary basis elements of the form

M d1;:::;dn;d1;:::;dn;:::;d1;:::;dn
Ÿ

pr times

with d1;:::;dn repeated pr times for some r , where Md1;:::;dn is required to be
Lyndon.

For example, M15;6;15;6;15;6;15;6 is in ESL.2/ but not in ESL.Z/ or in ESL.p/
for any other p, whereas M30;6;6 is in ESL.p/ for any p ¤ 2;3 but not in ESL.2/,
not in ESL.3/ and not in ESL.Z/.

One then has

Theorem 5.2.4 ([11]) The algebra M is a polynomial algebra.

Conjecture 5.2.5 (Ditters, [11]) The set ESL.Z/ is the set of polynomial generators
for M .

Theorem 5.2.6 ([11]) For each prime p, the set ESL.p/ is a set of polynomial
generators for M.p/ DM ˝Z.p/, i. e. if one inverts all primes except p.

In particular, it follows that ESL.p/ is a set of polynomial generators for M =pn

over Z=pn for all n.
Here are the polynomial generators in low degrees, over Z and over few first

primes. Note that the numbers of generators in each degree are the same (as it
should be since all these algebras become isomorphic over Q).

1 2 3 4 5

Z M1 M1;1 M2;1;M1;1;1 M3;1;M2;1;1;M1;1;1;1 M4;1;M3;2;M3;1;1;M2;2;1;M2;1;1;1;M1;1;1;1;1

p D 2 M1 M1;1 M3;M2;1 M3;1;M2;1;1;M1;1;1;1 M5;M4;1;M3;2;M3;1;1;M2;2;1;M2;1;1;1

p D 3 M1 M2 M2;1;M1;1;1 M4;M3;1;M2;1;1 M5;M4;1;M3;2;M3;1;1;M2;2;1;M2;1;1;1

p D 5 M1 M2 M3;M2;1 M4;M3;1;M2;1;1 M4;1;M3;2;M3;1;1;M2;2;1;M2;1;1;1;M1;1;1;1;1

It is easy to calculate the numbers of polynomial generators in each degree. Let
these numbers be m1,m2, ���. Then the Poincaré series for the algebra M (or Z , or
F , or F�, it does not matter) isX

n

dim.Mn/t
n D .1� t /�m1.1� t2/�m2.1� t3/�m3 ��� I
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on the other hand, we know that it is a tensor coalgebra with one generator in each
degree n > 1; this implies that dim.Mn/ D 2n�1 for n > 1 (and dim.M0/ D 1).
Thus we have equality of power series

1Y
kD1

.1� tk/�mk D 1C t C 2t2C 4t3C 8t4C ���

D 1C t .1C 2t C .2t/2C .2t/3C ���/D 1C t
1

1� 2t
D

1� t

1� 2t
:

Then taking logarithmic derivatives one obtains

1X
kD1

kmkt
k

1� tk
D

2t

1� 2t
�

t

1� t
D t C 3t2C 7t3C ���C .2n � 1/tnC ��� :

It follows that for all n one has

X
d jn

dmd D 2
n � 1;

which by the Möbius inversion formula gives

mn D
1

n

X
d jn

�.d/.2
n
d � 1/:

The latter expression is well known in the literature on combinatorics; it equals
the number of aperiodic bicolored necklaces consisting of n beads, and also the
dimension of the nth homogeneous component of the free Lie algebra on two
generators. See e. g. [18].

5.3. The dual of the relation module RF

We now turn to the algebra F� D Hom.F ;F2/ ŠM =2. By the above, we know
that it, as well as M.2/, is a polynomial algebra on the set of generators ESL.2/. As
an illustration, we will give some expressions of the M -basis elements in terms of
sums of overlapping shuffle products of elements from ESL.2/. We will give these
in M.2/ and then their images in F�.
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M2 DM
2
1 � 2M1;1

	M 2
1 mod2

M1;2 DM
3
1 �M3�M2;1 � 2M1M1;1

	M 3
1 CM3CM2;1 mod2

M1;1;1 DM1M1;1 �
1
3
M 3
1 C

1
3
M3

	M1M1;1CM
3
1 CM3 mod2

M4 D
4
3
M1M3�

1
3
M 4
1 C 2M

2
1;1 � 4M1;1;1;1

	M 4
1 mod2

M2;2 DM
2
1;1 � 2M

2
1M1;1 �

2
3
M1M3C

2
3
M 4
1 C 2M1;1;1;1

	M 2
1;1 mod2

M1;3 D
1
3
M 4
1 �

1
3
M1M3 � 2M

2
1;1 �M3;1C 4M1;1;1;1

	M 4
1 CM1M3CM3;1 mod2

M1;2;1 DM1M2;1 �M3;1 �M
2
1;1C 2M

2
1M1;1C

2
3
M1M3�

2
3
M 4
1 � 2M1;1;1;1 � 2M2;1;1

	M1M2;1CM3;1CM
2
1;1 mod2

M1;1;2 DM
2
1;1 �M

2
1M1;1 �

1
3
M1M3C

1
3
M 4
1 � 2M1;1;1;1CM3;1 �M1M2;1CM2;1;1

	M 2
1;1CM

2
1M1;1CM1M3CM

4
1 CM3;1CM1M2;1CM2;1;1 mod2

Moreover it is straightforward to calculate the diagonal in terms of these
generators. For example, in F� one has

�.M1/ D 1˝M1CM1˝ 1;

�.M1;1/ D 1˝M1;1CM1˝M1CM1;1˝ 1;

�.M3/ D 1˝M3CM3˝ 1

�.M2;1/ D 1˝M2;1CM
2
1 ˝M1CM2;1˝ 1

�.M3;1/ D 1˝M3;1CM3˝M1CM3;1˝ 1

�.M2;1;1/ D 1˝M2;1;1CM
2
1 ˝M1;1CM2;1˝M1CM2;1;1˝ 1

�.M1;1;1;1/ D 1˝M1;1;1;1CM1˝M1M1;1CM1˝M
3
1 CM1˝M3

CM1;1˝M1;1CM1M1;1˝M1CM
3
1 ˝M1CM3˝M1CM1;1;1;1˝ 1

�.M4;1/ D 1˝M4;1CM
4
1 ˝M1CM4;1˝ 1

�.M3;2/ D 1˝M3;2CM3˝M
2
1 CM3;2˝ 1

�.M2;1;1;1/ D 1˝M2;1;1;1CM
2
1 ˝M1M1;1CM

2
1 ˝M

3
1 CM

2
1 ˝M3CM2;1˝M1;1

CM2;1;1˝M1CM2;1;1;1˝ 1

�.M5/ D 1˝M5CM5˝ 1

�.M3;1;1/ D 1˝M3;1;1CM3˝M1;1CM3;1˝M1CM3;1;1˝ 1

�.M2;2;1/ D 1˝M2;2;1CM
2
1 ˝M2;1CM

2
1;1˝M1CM2;2;1˝ 1:

Also it follows from the results in [11] that one has

Lemma 5.3.1 For any prime p, in M.p/ one has

Mpd1;:::;pdn 	M
p

d1;:::;dn
modp:

To identify the elements to which the Milnor generators �k of A� go under the
isomorphism F� ŠM =2, we first identify A� with the graded dual of A ; then �k
corresponds to a linear form A2k�1! F given by (5.1.3).
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Proposition 5.3.2 Under the embedding A� � M =2, the Milnor generator �k
maps to the generator M2k�1;2k�2;:::;2;1. In particular, this generator is in ESL.2/,
i. e. is one of the polynomial generators of F�.

Note that this together with (5.2.2) and (5.3.1) implies the Milnor formula
(5.1.5) for the diagonal in A�. Identifying �k with its image in M =2 by (5.3.2),
one obtains

m�.�k/D�.M2k�1 ;2k�2;:::;2;1/D

kX
iD0

M2k�1;2k�2;:::;2i ˝M2i�1;:::;2;1

D

kX
iD0

M 2i

2k�1�i ;2k�2�i ;:::;2;1
˝M2i�1;:::;2;1

D

kX
iD0

�2
i

k�i ˝ �i :

(5.3.3)

Thus the set f�1;�2;:::g of polynomial generators for A� can be identified with
the subset

QD fM1;M2;1;M4;2;1;M8;4;2;1;:::g

of the set of polynomial generators ESL.2/ for M =2ŠF�. This in particular gives
an explicit basis for RF �: it is in one-to-one correspondence with those monomials
in the generators Md1;:::;dn from ESL.2/ not all of whose variables belong to Q. For
example, in the first few dimensions this basis contains the following monomials:

M1;1;

M1M1;1;M3;

M 2
1M1;1;M1M3;M

2
1;1;M3;1;M2;1;1;M1;1;1;1;

M 3
1M1;1;M

2
1M3;M1M

2
1;1;M1M3;1;M1M2;1;1;M1M1;1;1;1;M1;1M3;M1;1M2;1;

M5;M4;1;M3;2;M3;1;1;M2;2;1;M2;1;1;1:

We next note that obviously the embedding A� � F� identifies F� with a
polynomial algebra over A�, namely one has a canonical isomorphism

F� ŠA�ŒESL.2/ nQ�: (5.3.4)

In particular, as an A�-module F� is free on the generating set N.ESL.2/nQ/ (= the
free commutative monoid on ESL.2/ nQ). Then obviously the quotient module
RF� is a free A�-module with the generating set N.ESL.2/nQ/ n f1g.

We will need the dual F62� of the subspace F620 � F0 spanned by the
monomials of length 6 2 in the generators Sqi . Observe that F620 is a subcoalgebra
of F0, so that dually F��F62� is a quotient algebra. We have
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Proposition 5.3.5 The algebra F62� is a quotient of the polynomial algebra on
three generators M1, M1;1, M2;1 by a single relation

M1M1;1M2;1CM
3
1;1CM

2
2;1 D 0:

Proof: First of all, it is straightforward to calculate in F� the sum of the
overlapping shuffle products

M1M1;1M2;1CM
3
1;1CM

2
2;1 D

M1;4;1CM2;2;2CM2;3;1CM3;1;2CM3;2;1CM2;1;2;1

CM3;1;1;1CM1;1;3;1CM1;2;1;1;1CM1;2;1;2CM1;1;1;2;1

so that indeed this gives zero in F62� . Let

X D F Œx1;x2;x3�=.x1x2x3C x
3
2 C x

2
3/

be the graded algebra with deg.xi /D i , i D 1;2;3, so that there is a homomorphism
of algebras f W X ! F62� sending x1 7! M1, x2 7! M1;1, x3 7! M2;1. It is
straightforward to calculate the Hilbert function of X , i. e. the formal power seriesX

n

dim.Xn/tnI

it is equal to
1� t6

.1� t /.1� t2/.1� t3/
:

On the other hand F62� is dual to F620 and it is straightforward also to calculate
dimensions of homogeneous components of this space. One then simply checks that
these dimensions coincide for X and for F62� . Thus it suffices to show that f is
surjective, i. e. that F62� is generated by (the images of) M1, M1;1 and M2;1.

We will show by induction on degree that everyMn andMi;j can be obtained as
a polynomial in these three elements. In degree 1, M1 is the only nonzero element.
In degree 2, besides M1;1 we have M2 which is equal to M 2

1 by (5.3.1). In degree
3, we have

M1M1;1 DM1;2CM2;1CM1;1;1 	M1;2CM2;1 modF>2
�

and
M 3
1 DM3CM1;2CM2;1;

so that in F62� we may solve

M1;2 	M1M1;1CM2;1
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and
M3 	M

3
1 CM1M1;1:

Given now any degree n > 3, we can obtain any element Mi;j with i > 1, j > 1,
i C j D n from elements of lower degree since

Mi;j 	M1;1Mi�1;j�1:

Next we also can obtain the element Mn�1;1 from

Mn�1;1CM2;n�2 	M2;1Mn�3:

Then we can obtain M1;n�1 from

M1;n�1CMn�1;1 	M1;1Mn�2;

and finally we can obtain Mn from

MnCM1;n�1CMn�1;1 	M1Mn�1:

Let us also identify the dual of the product map

F610 ˝F610 !F620

in terms of the above generators. By dualizing it is clear that this dual is the unique
factorization in the diagram

F�
m� ��

����

F�˝F�

����
F62�

����� F61� ˝F61� :

In particular, it is an algebra homomorphism. Moreover the algebra F61� may be
identified with the polynomial algebra on a single generator M1 D �1, with the
quotient map F� ! F61� given by sending M1 to itself and all other polynomial
generators from ESL.2/ to zero. From this it is straightforward to identify the map
F62� !F61� ˝F61� with the algebra homomorphism

F Œx1;x2;x3�=.x1x2x3C x
3
2 C x

2
3/! F Œy1;z1�

given by
x1 7! y1C z1

x2 7! y1z1

x3 7! y21z1:

(5.3.6)
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Let us identify in these terms the map F62� � RF
62
� . One clearly has

R62F DRF \F620

in F0, so that dually one has that the diagram

F� �� ��

����

RF�

����
F62�

�� �� R62F �

is pushout. Thus R62F � is isomorphic to the quotient of F62� by the image of the
composite A��F��F62� . That image is clearly the subalgebra generated by
M1 and M2;1.

We can alternatively describe R62F � in terms of linear forms on R62F � F620 .
It is clear that the latter subspace is spanned by all Adem relations Œn;m�, n < 2m.
The map � WF62� � R62F � assigns to a linear form on F620 its restriction to R62F .
One then clearly has

�.M k
1 /D �.M

k
2;1/D 0 (5.3.7)

for all k > 0; moreover �.M1;1/ is dual to Œ1;1� in the basis given by the elements
Œn;m�, i. e. M1;1.Œ1;1�/ D 1 and M1;1.Œn;m�/ D 0 for all other n, m. Moreover for
x;y 2F62� we have

.xy/.Œn;m�/D
X

x.Œn;m�`/y.Œn;m�r / (5.3.8)

in the Sweedler notation

�.Œn;m�/D
X
Œn;m�`˝ Œn;m�r :

For example, we have

�.Œ1;2�/D .1CT /.1˝ Œ1;2�CSq1˝Œ1;1�/

which implies that M1M1;1 is dual to Œ1;2� in this basis, i. e. .M1M1;1/Œ1;2� D 1

and .M1M1;1/Œn;m�D 0 for all other n, m. Similarly

�.Œ1;3�/D .1CT /.1˝ Œ1;3�CSq1˝Œ1;2�CSq2˝Œ1;1�/

and

�.Œ2;2�/D .1CT /.1˝ Œ2;2�CSq1˝Œ1;2�CSq2˝Œ1;1�/C Œ1;1�˝ Œ1;1�
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imply that M 2
1;1 is dual to Œ2;2� whereas .M 2

1M1;1/Œ1;3� D .M
2
1M1;1/Œ2;2� D 1, so

that dual to Œ1;3� is M 2
1M1;1CM

2
1;1.

We will also need a description of the dual NR� of NR D RF=.RF � RF /. For
this first note that similarly to the above F� ˝ F� is a free A� ˝ A�-module
on N.ESL.2/nQ/ 
 N.ESL.2/nQ/ and RF� ˝ RF� is a free A� ˝ A�-module on�
N.ESL.2/nQ/ n f1g

�


�
N.ESL.2/nQ/ n f1g

�
. Moreover the diagonal �F W F� !

F� ˝F� and its factorization �R W RF� ! RF� ˝ RF� through the quotient
maps F�� RF�, F�˝F�� RF �˝RF� are obviously both equivariant with
respect to the diagonal ı WA�!A�˝A�, i. e. one has

�F .af /D ı.a/�F .f /;

�R.ar/D ı.a/�R.r/
(5.3.9)

for any a 2A�, f 2F�, r 2 RF�.

6. The invariants L and S and the dual invariants L� and S� in terms of
generators

As proved in [3] there are invariants L and S of the Steenrod algebra which
determine the algebra B of secondary cohomology operations up to isomorphism.
Therefore L and S and the dual invariants L� and S� also determine BF and BF

respectively. In this chapter we recall the definition of L and S and we discuss
algebraic properties of L� and S�.

6.1. The left action operator L and its dual

We recall constructions of the maps L and S from [3, 14.4,14.5] of the same kind
as the operators in (4.6.12) and (4.6.13) respectively. For that, we first introduce the
following notation:

NR WDRF=.RF �RF /; (6.1.1)

with the quotient map RF � NR denoted by r 7! Nr . There is a well-defined A -A -
bimodule structure on NR given by

NNf Nr D f r; Nr NNf D rf

for f 2F0, r 2 RF . As we show below NR is free both as a left and as a right A -
module (but not as a bimodule). A basis for NR as a right A -module can be found
using the set PAR � RF of preadmissible relations as defined in [3, 16.5]. These
are the elements of RF of the form

Sqn1 ���Sqnk Œn;m�
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where Œn;m�, n < 2m, is an Adem relation, the monomial Sqn1 ���Sqnk is admissible
(i. e. n1 > 2n2, n2 > 2n3, ..., nk�1 > 2nk), and moreover nk > 2n. It is then proved
in [3, 16.5.2] that PAR is a basis of RF as a free right F0-module.

It is equally true that RF is a free left F0-module. An explicit basis PAR0 of
RF as a left F0-module consists of left preadmissible relations — elements of the
form

Œn;m�Sqm1 ���Sqmk

where Œn;m�, n < 2m, is an Adem relation, the monomial Sqm1 ���Sqmk is
admissible, and moreover m> 2m1.

Using this, one also has

Lemma 6.1.2 NR is free both as a right A -module and as a left A -module.
Moreover, the images N� of the preadmissible relations � 2 PAR under the quotient
map RF � NR form a basis of this free right A -module, and the images of left
preadmissible relations form its basis as a left A -module.

Proof: This is clear from the obvious isomorphisms

A ˝F0 RF Š NRŠRF ˝F0 A

of left, resp. right A -modules.
In particular we see that every element of RF can be written uniquely in the

form
�.2/C

X
i

˛i Œni ;mi �ˇi (6.1.3)

with �.2/ 2 RF �RF , ˛i Œni ;mi � 2 PAR and ˇi an admissible monomial. Moreover
it can be also uniquely written in the form

%.2/C
X
i

˛0i Œn
0
i ;m
0
i �ˇ
0
i (6.1.4)

with %.2/ 2 RF �RF , admissible monomials ˛0i and Œn0i ;m
0
i �ˇ
0
i 2 PAR0.

Definition 6.1.5 The left action operator

L WA ˝RF !A ˝A

of degree �1 is defined as follows. For odd p let L be the zero map. For p D 2, let
first the additive map LF WF

62
0 !A ˝A be given by the formula

LF .SqnSqm/D
X

n1Cn2Dn
m1Cm2Dm
m1, n2 odd

Sqn1Sqm1˝Sqn2Sqm2
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(n;m > 0; remember that Sq0 D 1). Equivalently, using the algebra structure on
A ˝A one may write

LF .SqnSqm/D .1˝Sq1/ı.Sqn�1/.Sq1˝1/ı.Sqm�1/:

Restricting this map to R62F �F620 gives a map LR WR62F !A ˝A . It is thus an
additive map given on the Adem relations Œn;m�, for 0 < n < 2m, by

LRŒn;m�D LF .SqnSqm/C
minfn=2;m�1gX

kDmaxf0;n�mC1g

 
m� k� 1

n� 2k

!
LF .SqnCm�kSqk/:

Next we define the map
NL WA ˝ NR!A ˝A

as the right A -module homomorphism which satisfies

NL.a˝˛Œn;m�/D ı.~.a/ NN̨ /LRŒn;m� (6.1.6)

with ˛Œn;m� 2 PAR; by (6.1.2) such a homomorphism exists and is unique.
Finally, NL yields a unique linear map L WA ˝RF !A ˝A by composing NL

with the quotient map A ˝RF �A ˝ NR. Thus one has

L.A ˝ .RF �RF //D 0:

The map L is the left action operator in [3, 14.4] where the following lemma is
proved (see [3, 14.4.3]):

Lemma 6.1.7 The map NL satisfies the equalities

NL.a˝ Œn;m�/D ~.a/LRŒn;m�

NL.a˝ br/D NL.ab˝ r/C ı.a/ NL.b˝ r/

NL.a˝ rb/D NL.a˝ r/ı.b/

for any a;b 2A , r 2 NR.

We observe that L can be alternatively constructed as follows. Let

QL W NR!A ˝A

be the map given by
QL.Nr/D NL.Sq1˝Nr/:

Then one has
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Proposition 6.1.8 For any a 2A , r 2 RF one has

L.a˝ r/D ı.~.a// QL.Nr/I

moreover QL is a homomorphism of A -A -bimodules, hence uniquely determined by
its values on the Adem relations, which are

QL.Œn;m�/D LRŒn;m�:

Proof: For any a 2A , ˛Œn;m� 2 PAR and ˇ admissible we have

L.a˝˛Œn;m�ˇ/D NL.a˝˛Œn;m�/ NŇ

D ı.~.a/ NN̨ /LRŒn;m�ı
NŇ

D ı~.a/ı NN̨LRŒn;m�ı
NŇ

D ı~.a/ı.~.Sq1/ NN̨ /LRŒn;m�ı NŇ

D ı~.a/L.Sq1˝˛Œn;m�ˇ/

D ı~.a/ QL.˛Œn;m�ˇ/:

Then using (6.1.3) we see that the same identity holds for L.a˝r/with any r 2 RF .
Next for any a 2A , r 2 RF we have by (6.1.7) and ~Sq1 D Sq0 D 1,

QL.a Nr/D NL.Sq1˝a Nr/

D NL.Sq1a˝ Nr/C ı.Sq1/ NL.a˝ Nr/

D ı.~.Sq1a// QL.Nr/C ı.Sq1~.a// QL.Nr/

D ı.~.Sq1a/CSq1~.a// QL.Nr/

D ı.a/ QL.Nr/:

Thus QL is a left A -module homomorphism. It is also clearly a right A -module
homomorphism since NL is.

Finally by (6.1.6) we have

LRŒn;m�D ı.~.Sq1//LRŒn;m�D NL.Sq1˝Œn;m�/D QL.Œn;m�/:

Explicit calculation of the left coaction operator L� is as follows. For odd p it
is the zero map, and for p D 2 we first define the additive map LR� W A�˝A� !
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RF
62
� . It is dual to the composite map R62F !A ˝A in the diagram

R62F
�� ��

��

��
pull

RF
��

��
F610 ˝F610

�˝�

��

m �� �� F620
�� ��

LF

���
�
�
�
�
�
�
�
�
�
�

F0

F610 ˝F610 ˝F610 ˝F610

1˝ˆ˝ˆ˝1

��
F610 ˝F610 ˝F610 ˝F610

1˝T˝1

��
F610 ˝F610 ˝F610 ˝F610

m˝m�� �� F620 ˝F620
�� �� F0˝F0

����
A ˝A

(6.1.9)

where ˆ is restriction F610 !F610 of the map F0!F0 given by

ˆ.x/D Sq1~.x/;

so that one has

ˆ.Sqn/D

(
Sqn; n	 1 mod2

0; n	 0 mod2:

Indeed by (6.1.5) we have

LF .SqnSqm/D .1˝Sq1/�.Sqn�1/.Sq1˝1/�.Sqm�1/

D .1˝Sq1/�~.Sqn/.Sq1˝1/�~.Sqm/I

on the other hand we saw in (4.6.7) that

�~ D .~˝ 1/�D .1˝ ~/�;

so that we can write

LF .SqnSqm/D .1˝Sq1~/�.Sqn/.Sq1~˝ 1/�.Sqm/

D .1˝ˆ/�.Sqn/.ˆ˝ 1/�.Sqm/:
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Therefore, the map dual of ˆ is the map ˆ� W F Œ�1� ! F Œ�1� given by
factorization through A� � F Œ�1� of the map ˆ� W A� ! A� given on the
monomial basis by

ˆ�.�
n1
1 �

n2
2 ���/D

(
�
n1
1 �

n2
2 ��� ; n1 	 1 mod2

0; n1 	 0 mod2:

Equivalently, by (5.1.6) and (5.1.7), ˆ� D ~�Sq1� is the map �1 @
@�1

.

Thus the map LR� is the composite A�˝A�!R62F � in the diagram

A�˝A�
��

��
F�˝F� �� �� F62� ˝F62�

��m�˝m���

LF�

���
�
�
�
�
�
�
�
�
�
�

F61� ˝F61� ˝F61� ˝F61�

1˝T˝1

��
F61� ˝F61� ˝F61� ˝F61�

1˝ˆ�˝ˆ�˝1

��
F61� ˝F61� ˝F61� ˝F61�

��˝��
��

F� �� ��

����
push

F62�
�� m� ��

����

F61� ˝F61�

RF�
�� �� R62F �

(6.1.10)

Now by (6.1.8) we know that QL is a bimodule homomorphism, and moreover
NR is generated by R62F Š NR62 � NR as an A -A -bimodule, so knowledge of LR

(actually already of LF whose restriction it is) determines QL and, by (6.1.8), also
L. Dually, one can reconstruct QL� and then L� from LF� via the diagram

A�˝A�
QL� �����������

bicoaction
��

NR�
��

��

bicoaction �� A�˝ NR�˝A�
��

��
A�˝ .A�˝A�/˝A�

1˝LR˝1�� A�˝R
62
F �˝A� A�˝RF�˝A�:����
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Here the bicoaction A�˝A�!A�˝ .A�˝A�/˝A� is the composite

A�˝A�
m
.2/
� ˝m

.2/
��� .A�˝A�˝A�/˝ .A�˝A�˝A�/

.142536/

��
.A�˝A�/˝ .A�˝A�/˝ .A�˝A�/

ı�˝1˝1˝ı��� A�˝ .A�˝A�/˝A�

We next note the following

Lemma 6.1.11 The map QL� is a biderivation, i. e.

QL�.x1x2;y/D x1 QL�.x2;y/C x2 QL�.x1;y/;

QL�.x;y1y2/D y1 QL�.x;y2/Cy2 QL�.x;y1/

for any x;x1;x2;y;y1;y2 2A�.

It thus follows that QL� is fully determined by its values QL�.�n ˝ �n0 / on the
Milnor generators. To calculate the bicoaction on these, first note that we have

m.2/� .�n/D .1˝m�/m�.�n/D
X

iCi 0Dn

�2
i 0

i ˝m�.�i 0/D
X

iCjCkDn

�2
jCk

i ˝ �2
k

j ˝ �k;

where as always �0 D 1. For the coaction on �n˝ �n0 this then gives in succession

�n˝ �n0 7!
X

iCjCkDn
i 0Cj 0Ck0Dn0

�2
jCk

i ˝ �2
k

j ˝ �k ˝ �
2j
0Ck0

i 0 ˝ �2
k0

j 0 ˝ �k0

7!
X

iCjCkDn
i 0Cj 0Ck0Dn0

�2
jCk

i ˝ �2
j 0Ck0

i 0 ˝ �2
k

j ˝ �
2k
0

j 0 ˝ �k˝ �k0

7!
X

iCjCkDn
i 0Cj 0Ck0Dn0

�2
jCk

i �2
j 0Ck0

i 0 ˝ �2
k

j ˝ �
2k
0

j 0 ˝ �k�k0 ;

so that for the values of QL� we have the equation

� QL�.�n˝ �n0/D
X

iCjCkDn
i 0Cj 0Ck0Dn0

�2
jCk

i �2
j 0Ck0

i 0 ˝LR�.�
2k

j ˝ �
2k
0

j 0 /˝ �k�k0

where � is the above embedding NR�� A� ˝R
62
F � ˝A�. Thus we only have to

know the values of LF� on the elements of the form �2
k

j ˝ �
2k
0

j 0 for j > 0, k > 0.
Obviously these values are zero for j > 2 or j 0 > 2. They are also zero for j D 0
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or j 0 D 0 since ˆ�.1/ D 0. There thus remain four cases j D j 0 D 1, j D j 0 D 2,
j D 1, j 0 D 2, and j D 2, j 0 D 1. We then have under LF�

�2
k

1 ˝ �
2k
0

1

�m�˝m� �� .�1˝ 1C 1˝ �1/
2k ˝ .�1˝ 1C 1˝ �1/

2k
0

D

�2
k

1 ˝ 1˝ �
2k
0

1 ˝ 1C �
2k

1 ˝ 1˝ 1˝ �
2k
0

1 C 1˝ �
2k

1 ˝ �
2k
0

1 ˝ 1C 1˝ �
2k

1 ˝ 1˝ �
2k
0

1

� 1˝T˝1 �� �2
k

1 ˝ �
2k
0

1 ˝ 1˝ 1C �
2k

1 ˝ 1˝ 1˝ �
2k
0

1 C 1˝ �
2k
0

1 ˝ �
2k

1 ˝ 1C 1˝ 1˝ �
2k

1 ˝ �
2k
0

1

� 1˝ˆ�˝ˆ�˝1 �� 0C 0C 1˝ˆ��2
k0

1 ˝ˆ��
2k

1 ˝ 1C 0

� ��˝�� �� ˆ��
2k
0

1 ˝ˆ��
2k

1 :

We thus have

LF�.�
2k

1 ˝ �
2k
0

1 /D

(
M1;1; k D k0 D 0

0 otherwise.

We next take j D j 0 D 2; then

�2
k

2 ˝ �
2k
0

2

� m�˝m� �� .�21 ˝ �1/
2k ˝ .�21 ˝ �1/

2k
0

D �2
kC1

1 ˝ �2
k

1 ˝ �
2k
0C1

1 ˝ �2
k0

1

� 1˝T˝1 �� �2
kC1

1 ˝ �2
k0C1

1 ˝ �2
k

1 ˝ �
2k
0

1

�1˝ˆ�˝ˆ�˝1�� �2
kC1

1 ˝ˆ��
2k
0C1

1 ˝ˆ��
2k

1 ˝ �
2k
0

1 D 0

� ��˝�� �� 0;

so that
LF�.�

2k

2 ˝ �
2k
0

2 /D 0

for all k and k0. Next for j D 2, j 0 D 1 we have

�2
k

2 ˝ �
2k
0

1

� m�˝m� �� .�21 ˝ �1/
2k ˝ .�1˝ 1C 1˝ �1/

2k
0

D

�2
kC1

1 ˝ �2
k

1 ˝ �
2k
0

1 ˝ 1C �
2kC1

1 ˝ �2
k

1 ˝ 1˝ �
2k
0

1

� 1˝T˝1 �� �2
kC1

1 ˝ �2
k0

1 ˝ �
2k

1 ˝ 1C �
2kC1

1 ˝ 1˝ �2
k

1 ˝ �
2k
0

1

�1˝ˆ�˝ˆ�˝1�� �2
kC1

1 ˝ˆ��
2k
0

1 ˝ˆ��
2k

1 ˝ 1C 0

� ��˝�� �� �2
kC1

1 ˆ��
2k
0

1 ˝ˆ��
2k

1 ;
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hence

LF�.�
2k

2 ˝ �
2k
0

1 /D

(
M 2
1;1CM1M2;1; k D k0 D 0

0 otherwise.

Finally for j D 1, j 0 D 2 we get

�2
k

1 ˝ �
2k
0

2

� m�˝m� �� .�1˝ 1C 1˝ �1/
2k ˝ .�21 ˝ �1/

2k
0

D

�2
k

1 ˝ 1˝ �
2k
0C1

1 ˝ �2
k0

1 C 1˝ �
2k

1 ˝ �
2k
0C1

1 ˝ �2
k0

1

� 1˝T˝1 �� �2
k

1 ˝ �
2k
0C1

1 ˝ 1˝ �2
k0

1 C 1˝ �
2k
0C1

1 ˝ �2
k

1 ˝ �
2k
0

1

�1˝ˆ�˝ˆ�˝1�� 0C 0

� ��˝�� �� 0;

so that

LF�.�
2k

1 ˝ �
2k
0

2 /D 0

for all k and k0.

To pass to LR� from these values means just omitting all monomials which do
not contain M1;1; we thus obtain

LR�.�1˝ �1/DM1;1;

LR�.�2˝ �1/DM
2
1;1;

and LR�.�2
k

j ˝ �
2k
0

j 0 /D 0 in all other cases.

From this we easily obtain

Proposition 6.1.12 � QL�.�n˝ �n0 /D �
2
n�1�

2
n0�1˝M1;1˝ 1C �

4
n�2�

2
n0�1˝M

2
1;1˝ 1

where now �n�2 D 0 for nD 1 is understood.

Solving QL�.�n;�n0/ from these equations is then straightforward. In this way we
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obtain

QL�.�1;�1/DM1;1

QL�.�1;�2/DM2;1;1

QL�.�2;�1/DM2;1;1CM
2
1;1

QL�.�2;�2/DM4;1;1CM2;3;1CM2;1;2;1

QL�.�1;�3/DM4;2;1;1

QL�.�3;�1/DM4;2;1;1CM
2
2;1;1

QL�.�2;�3/DM6;2;1;1CM4;4;1;1CM4;2;3;1CM4;2;1;2;1 CM2;4;2;1;1

QL�.�3;�2/DM6;2;1;1CM4;4;1;1CM4;2;3;1CM4;2;1;2;1 CM2;4;2;1;1

CM 2
5 CM

2
4;1CM

2
3;2CM

2
2;1;1;1CM

2
1M

2
2;1;1CM

4
1M

2
3

QL�.�3;�3/DM8;4;1;1CM8;2;3;1CM8;2;1;2;1 CM4;6;3;1CM4;6;1;2;1

CM4;2;5;2;1 CM4;2;4;3;1 CM4;2;4;1;2;1 CM4;2;1;4;2;1

QL�.�1;�4/DM8;4;2;1;1

QL�.�4;�1/DM8;4;2;1;1 CM
2
4;2;1;1

QL�.�2;�4/DM10;4;2;1;1 CM8;6;2;1;1CM8;4;4;1;1 CM8;4;2;3;1 CM8;4;2;1;2;1

CM8;2;4;2;1;1 CM2;8;4;2;1;1

QL�.�4;�2/DM10;4;2;1;1 CM8;6;2;1;1CM8;4;4;1;1 CM8;4;2;3;1 CM8;4;2;1;2;1

CM8;2;4;2;1;1 CM2;8;4;2;1;1

CM 2
9 CM

2
7;2CM

2
5;4CM

2
6;2;1CM

2
4;4;1CM

2
4;3;2CM

2
4;2;1;1;1

CM 2
3;4;2CM

2
2;4;2;1 CM

2
1M

2
4;2;1;1CM

8
1M

2
5 CM

4
2;1M

2
3

QL�.�3;�4/DM12;6;2;1;1 CM12;4;4;1;1 CM12;4;2;3;1 CM12;4;2;1;2;1 CM12;2;4;2;1;1

CM8;8;4;1;1CM8;8;2;3;1CM8;8;2;1;2;1 CM8;4;6;3;1CM8;4;6;1;2;1

CM8;4;2;5;2;1 CM8;4;2;4;3;1 CM8;4;2;4;1;2;1 CM8;4;2;1;4;2;1

CM4;10;4;2;1;1 CM4;8;6;2;1;1 CM4;8;4;4;1;1 CM4;8;4;2;3;1

CM4;8;4;2;1;2;1 CM4;8;2;4;2;1;1 CM4;2;8;4;2;1;1 ;

etc.
Having QL� we then can obtain L� by the dual of (6.1.8) as

L�.x;y/D
X

�1x`y`0 ˝ QL�.xr ;yr 0/ (6.1.13)

for x;y 2A�, with

m�.x/D
X

x`˝ xr ; m�.y/D
X

y`0 ˝yr 0 :



296 H.-J. BAUES & M. JIBLADZE

6.2. The symmetry operator S and its dual

Definition 6.2.1 The symmetry operator

S WRF !A ˝A

of degree �1 is defined as follows. For odd p, let S be the zero map. For p D 2 let
the elements Sn 2A ˝A , n > 0, be given by

Sn D
X

n1Cn2Dn�1
n1 , n2 odd

Sqn1˝Sqn2 D .Sq1˝Sq1/ı.Sqn�3/;

i. e.

S2k D 0;

S2kC1 D
X
06i<k

Sq2iC1˝Sq2.k�i/�1;

k > 0. Then let the linear map SF WF
62
0 !A ˝A be given by

SF .SqnSqm/D Snı.Sqm/C ı.Sqn/SmC ı.Sqn�1/SmC1
D .Sq1˝Sq1/ı.Sqn�3Sqm/C ı.Sqn/.Sq1˝Sq1/ı.Sqm�3/

C ı.Sqn�1/.Sq1˝Sq1/ı.Sqm�2/;

n;m > 0. Next define the map SR W R62F ! A ˝A by restriction to R62F �F620 .
Thus on the Adem relations this map is given by

SRŒn;m�D SF .SqnSqm/C
minfn=2;m�1gX

kDmaxf0;n�mC1g

 
m� k� 1

n� 2k

!
SF .SqnCm�kSqk/:

(6.2.2)
Now let us define the map

NS W NR!A ˝A

as a unique right A -module homomorphism satisfying

NS.˛Œn;m�/D ı.˛/SRŒn;m�C .1CT / NL.˛˝ Œn;m�/

for ˛Œn;m� 2 PAR. Then finally this determines a unique linear map S W RF !

A ˝A by composing with the quotient map RF � NR.

The map S is the symmetry operator in [3, 14.5.2] where the following lemma
is proved.
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Lemma 6.2.3 The map NS satisfies the equations

NS.Œn;m�/D SRŒn;m�

NS.ar/D ı.a/ NS.r/C .1CT / NL.a˝ r/

NS.ra/D NS.r/ı.a/

for any 0 < n < 2m, a 2A and r 2 NR.

We now turn to the dual S� W A� ˝ A� ! RF� of S (dually to the above,
the image of this operator actually lies in NR� � RF� and so defines the operator
NS� WA�˝A�! NR�). Since we know that S� is a biderivation, it suffices to compute

the values S�.�n˝ �n0/. Now dually to the equation

S.aŒn;m�b/D ı.a/SR.Œn;m�/ı.b/C .1CT /L.a˝ Œn;m�b/

D ı.a/SR.Œn;m�/ı.b/C .1CT /.ı~.a/LR.Œn;m�/ı.b//

we have

�S�.�n˝ �n0/

D
X

iCjCkDn
i 0Cj 0Ck0Dn0

�
�2
jCk

i �2
j 0Ck0

i 0 ˝SR�.�
2k

j ˝ �
2k
0

j 0 /˝ �k�k0

C�1�
2jCk

i �2
j 0Ck0

i 0 ˝
�
LR�.�

2k

j ˝ �
2k
0

j 0 /CLR�.�
2k
0

j 0 ˝ �
2k

j /
�
˝ �k�k0

�

D
X

iCjCkDn
i 0Cj 0Ck0Dn0

�2
jCk

i �2
j 0Ck0

i 0 ˝SR�.�
2k

j ˝ �
2k
0

j 0 /˝ �k�k0

C �1�
4
n�2�

2
n0�1˝M

2
1;1˝ 1C �1�

2
n�1�

4
n0�2˝M

2
1;1˝ 1;

with �0 D 1 and �n D 0 for n < 0, as before.
It thus remains to find the values SR�.�2

k

j ˝ �
2k
0

j 0 / — which in turn are images
of the corresponding values of SF� under the map F�� RF�. To find the latter,
let us first define another intermediate operator

S1 WF610 !A ˝A

by the equation

S1.Sqn/D SnC1 D .Sq1˝Sq1/ı~~.Sqn/D
X

n1Cn2Dn
n1 , n2 odd

Sqn1˝Sqn2 ;
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so that we have

SFm.Sqn˝Sqm/D SF .SqnSqm/

D S1~.Sqn/ı.Sqm/C ı.Sqn/S1~.Sqm/C ı~.Sqn/S1.Sqm/:

We have the dual operator

S1� WA�˝A�!F61�

such that dual
SF� WA�˝A�!F62�

of SF is given by

m�SF�.x˝y/DX�
�1S

1
�.x`˝y`0/˝ .xryr 0/

61C .x`y`0/
61˝ �1S

1
� .xr ˝yr 0/

C.�1x`y`0/
61˝S1� .xr ˝yr 0/

�
(6.2.4)

where as before we use the Sweedler notation

m�.x/D
X

x`˝ xr ; m�.y/D
X

y`0 ˝yr 0

and
._/61 WA�!F61�

sends �1 to M1 and all other Milnor generators to 0. Thus we have

m�SF�.�
2k

j ˝ �
2k
0

j 0 /

D
X
`CrDj
`0Cr 0Dj 0

�1S
1
� .�

2rCk

` ˝ �2
r0Ck0

`0 /˝ .�2
k

r �
2k
0

r 0 /
61

C .�2
rCk

` �2
r0Ck0

`0 /61˝ �1S
1
� .�

2k

r ˝�
2k
0

r 0 /C .�1�
2rCk

` �2
r0Ck0

`0 /61˝S1�.�
2k

r ˝ �
2k
0

r 0 /

Now the operator S1� is obviously given by

S1�.x˝y/D

(
xy; x D �

n1
1 , y D �n21 , n1, n2 odd;

0 otherwise,
(6.2.5)

so that SF�.�
2k

j ˝ �
2k
0

j 0 / D 0 whenever k > 0 or k0 > 0. And among the remaining
values SF�.�j ˝ �j 0/ the only nonzero ones are given by

SF�.�1˝ �1/DM3CM1;2 DM
3
1 CM2;1;

SF�.�1˝ �2/D SF�.�2˝ �1/DM2;3CM3;2 DM1M
2
1;1;

SF�.�2˝ �2/DM5;2CM4;3 DM1M
2
2;1:
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Then further passing to SR� means, as before, removing the monomials not
containing M1;1, so that the only nonzero values of the form SR�.�

2k

j ˝ �
2k
0

j 0 / are

SR�.�1˝ �2/D SR�.�2˝ �1/DM1M
2
1;1:

Hence we obtain

Proposition 6.2.6

�S�.�n˝ �n0/D�
2
n�1�

4
n0�2˝M1M

2
1;1˝ 1C �

4
n�2�

2
n0�1˝M1M

2
1;1˝ 1

C �1�
4
n�2�

2
n0�1˝M

2
1;1˝ 1C �1�

2
n�1�

4
n0�2˝M

2
1;1˝ 1:

As for QL� above, we then solve these equations obtaining e. g.

S�.�1;�1/D 0;

S�.�1;�2/D S�.�2;�1/DM2;2;1CM1M
2
1;1;

S�.�2;�2/D 0;

S�.�1;�3/D S�.�3;�1/DM4;2;2;1 CM1M
2
2;1;1;

S�.�2;�3/D S�.�3;�2/DM6;2;2;1CM4;4;2;1 CM2;4;2;2;1 CM1M
2
5 CM1M

2
4;1

CM1M
2
3;2CM1M

2
2;1;1;1CM

3
1M

2
2;1;1CM

5
1M

2
3 ;

S�.�3;�3/D 0;

S�.�1;�4/D S�.�4;�1/DM8;4;2;2;1 CM1M
2
4;2;1;1 ;

S�.�2;�4/D S�.�4;�2/DM10;4;2;2;1 CM8;6;2;2;1 CM8;4;4;2;1 CM8;2;4;2;2;1

CM2;8;4;2;2;1

CM1M
2
9 CM1M

2
7;2CM1M

2
6;2;1CM1M

2
5;4CM1M

2
4;4;1

CM1M
2
4;3;2CM1M

2
4;2;1;1;1 CM1M

2
3;4;2CM1M

2
2;4;2;1

CM1M
2
2;1M

2
3 CM

3
1M

2
4;2;1;1CM

9
1M

2
5 ;

etc.

7. The extended Steenrod algebra and its cocycle

We show that the dual invariant S� determines a singular extension of the Hopf
algebra structure of the Steenrod algebra. We also give a formula for a cocycle
representing the extension. Then we show that S� is related to a formula which
describes the main result of Kristensen on secondary cohomology operations. A
proof of this formula has not appeared in the literature yet.
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7.1. Singular extensions of Hopf algebras

In this section we introduce a singular extension OA of the Steenrod algebra A
which is determined by the symmetry operator S .

Definition 7.1.1 A singular extension of a Hopf algebra A is a direct sum diagram

R
�� i ��

OA
p �� ��

q
���� A;��

s
��

i. e. one has ps D idA, qi D idR and spC iq D id OA, such that OA is an algebra with
multiplication � W OA˝ OA! OA and OA is also a coalgebra with diagonal Oı W OA! OA˝ OA.
(Here we do not assume that Oı is a homomorphism of algebras, or equivalently that
� is a homomorphism of coalgebras, so that in general OA is not a Hopf algebra).
In addition p is an algebra homomorphism, and s is a coalgebra homomorphism.
Moreover .i;p/must be a singular extension of algebras and .q;s/must be a singular
extension of coalgebras. This means that the ideal R D keri of the algebra OA is a
square zero ideal, i. e. xy D 0 for any x;y 2 R, and the coideal R D cokers of the
coalgebra OA is a square zero coideal, i. e. the composite

OA
Oı
�! OA˝ OA

q˝q
���!R˝R

is zero.

It follows that the OA- OA-bimodule and OA- OA-bicomodule structures on R descend
to A-A-bimodule and A-A-bicomodule structures respectively.

Our basic example of a singular Hopf algebra extension is as follows. We have
seen that NR from (6.1.1) has an A -A -bimodule structure. Now it also has an A -A -
bicomodule structure as follows. On the one hand, there is a diagonal �R W RF !

R
.2/
F D ker.qF ˝ qF / induced in the commutative diagram

RF
�� ��

�
���
�
� F0

qF �� ��

�

��

A

ı

��
R
.2/
F

�� �� F0˝F0

qF˝qF�� �� A ˝A

with short exact rows. Moreover there is a short exact sequence

RF ˝RF
��

i.2/D. iF˝1�1˝iF
/

�� F0˝RF ˚RF˝F0
�� �� R.2/F ;

where iF WRF ,!F0 is the inclusion. Since the composite of the quotient map

F0˝RF ˚RF˝F0�A ˝ NR˚ NR˝A
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with i .2/ is obviously zero, we get the induced map

R
.2/
F !A ˝ NR˚ NR˝A :

Moreover the diagonal of F0 factors through this map as follows

NR

.�`
�r
/

���
�
� RF
���� � � iF ��

�

���
�
� F0

qF �� ��

�

��

A

ı

��
A ˝ NR˚ NR˝A R.2/���� � � �� F0˝F0

qF˝qF�� �� A ˝A

(7.1.2)

giving the left, resp. right coaction �`, resp. �r of the desired A -A -bicomodule
structure on NR.

Note that the above construction is actually precisely dual to the standard
procedure for equipping the kernel of a singular extension with a structure of a
bimodule over a base. In particular we could use the dual diagram

A ˝ NR˚ NR˝A

.m`mr/
���
�
� R.2/���� � � ��

m

���
�
� F0˝F0

qF˝qF�� ��

m

��

A ˝A

m

��
NR RF

���� � � iF �� F0

qF �� �� A

(7.1.3)

to give NR via m` and mr the structure of A -A -bimodule.

Theorem 7.1.4 There is a unique singular extension of Hopf algebras

†�1 NR
�� i ��

OA
p �� ��

q
���� A ;��

s
��

where OA is the split singular extension of algebras, that is, as an algebra

OA DA ˚†�1 NR

is the semidirect product with multiplication

.a;r/.a0;r 0/D .aa0;ar 0C ra0/

and the following conditions are satisfied.
The induced A -A -bimodule and A -A -bicomodule structures on †�1 NR are

given by the ones indicated in (7.1.2) above, and the diagonal Oı of the coalgebra OA
fits into the commutative diagram

OA
Oı ��

����

OA ˝ OA

1CT

��
†�1 NR

S �� A ˝A
� � �� OA ˝ OA

(7.1.5)
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where S is the symmetry operator in (6.2.1).

We will prove this theorem together with the dual statement. Note that clearly
the dual of a singular extension of any Hopf algebra A is a singular extension of the
dual Hopf algebra A�. Clearly then the above theorem is equivalent to

Theorem 7.1.6 There is a unique singular extension of Hopf algebras

†�1 NR�
�� q� �� OA�

s� �� ��
i�

���� A�;��
p�

��

where OA� is the split singular extension of coalgebras, that is, as a coalgebra

OA� DA�˚†
�1 NR�

with diagonal

A�˚†
�1 NR�

0
@m� 0
0 m`�
0 mr�
0 0

1
A

�������!A�˝A�˚A�˝†
�1 NR�˚†

�1 NR�˝A�˚†
�1 NR�˝†

�1 NR�

where the diagonal m� is dual to the multiplication m WA ˝A !A and m`�,mr�
are the A�-A�-bicomodule structure maps dual to the A -A -bimodule structure
maps m` W A ˝ †�1 NR ! †�1 NR, mr W †�1 NR ˝ A ! †�1 NR in (7.1.3), where
the induced A�-A�-bimodule structure on NR� is dual to the A -A -bicomodule
structure indicated in (7.1.2) above, and where the multiplication Oı� of the algebra
OA� satisfies the commutation rule

p�.y/p�.x/D p�.x/p�.y/CS�.x˝y/

for any x;y 2A�, where

S� WA�˝A�!†�1 NR�

is the cosymmetry operator from (4.8.6).

Proof of (7.1.4) and (7.1.6): The diagonal Oı can be written as follows

A ˚†�1 NR

0
B@
	11 	12
	21 	22
	31 	32
	41 	42

1
CA

�������!A ˝A ˚A ˝†�1 NR˚†�1 NR˝A ˚†�1 NR˝†�1 NR:

Then the condition that s WA �A ˚†�1 NR is a coalgebra homomorphism implies
�11 D ı and �21 D 0, �31 D 0, �41 D 0. Moreover the condition that the A -
A -bicomodule structure induced on †�1 NR coincides with the one given in (7.1.2)
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implies �22 D�`, �32 D�r . Next the condition that .s;q/ is a singular extension of
coalgebras, i. e. the coideal NR has zero comultiplication, implies �42 D 0. Finally,
let us look at the diagram (7.1.5). The lower composite in this diagram sends .a;r/ 2
A ˚†�1 NR to

.S.r/;0;0;0/ 2A ˝A ˚A ˝†�1 NR˚†�1 NR˝A ˚†�1 NR˝†�1 NR:

The upper composite sends it to

.1CT / Oı.a;r/

D.1CT /.ı.a/C�12.r/;�`.r/;�r .r/;0/

D..1CT /ı.a/C .1CT /�12.r/;�`.r/CT�r.r/;�r .r/CT�`.r/;0/:

Since ı is cocommutative, one has .1C T /ı D 0. Moreover cocommutativity of
� WF0!F0˝F0 implies T�` D�r , T�r D�`. Thus commutativity of (7.1.5)
is equivalent to the condition

.1CT /�12 D S W†
�1 NR!A ˝A : (7.1.7)

Equivalently, passing to the dual we see that the dual map �� D �12� WA�˝A�!
†�1 NR� must satisfy

��.1CT /D S�:

Now it is easy to see that �� is in fact the algebra cocycle determining the algebra
extension

NR�
�� q� �� OA�

s� �� �� A�;

that is, in OA� DA�˚†�1 NR� one has

.˛;ˇ/.˛0;ˇ0/D .˛˛0;˛ˇ0Cˇ˛0C ��.˛˝˛
0//:

Hence by (7.1.7) one has

.˛;ˇ/.˛0;ˇ0/� .˛0;ˇ0/.˛;ˇ/D .0;S�.˛˝˛
0//:

Now recall that A� is actually a polynomial algebra. Using this fact it has been
shown in [3, 16.2] that the algebra structure of any of its singular extensions such as
OA� above is completely determined by its commutator map, i. e. by S�. Thus �12�

and hence the whole �ij matrix is uniquely determined. It is then straightforward
to check that indeed this matrix yields a coalgebra structure on OA with desired
properties.
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It follows immediately from (7.1.6) (and actually this was also deduced during
its proof) that one has

Corollary 7.1.8 For the cosymmetry operator S� from (4.8.6) there exists a map

�� WA�˝A�!†�1 NR�

which is a 2-cocycle, i. e. for any x;y;z 2A� one has

x��.y;z/C ��.x;yz/D z��.x;y/C ��.xy;z/

and such that its symmetrization is equal to S�, i. e. for any x;y 2A� one has

��.x;y/C ��.y;x/D S�.x;y/:

Proof: This follows since any extension

M �� i �� A0
p �� �� A

of a commutative algebra A by a symmetric A-module M is determined by a 2-
cocycle c W A˝A!M such that for any x;y 2 A0 one has

xy �yx D i.c.px;py/� c.py;px//;

i. e. the commutator map for A0 is given by the antisymmetrization of c. Of course
for p D 2 there is no difference between symmetrization and antisymmetrization.

Remark 7.1.9 The above corollary is easily seen to be exactly dual to [3, Theorem
16.1.5].

Using the extended Steenrod algebra we can next compute the deviation of the
cocycle �� from being an A�-comodule homomorphism. Namely, let

r�� WA�˝A�!A�˝†
�1 NR�

be the difference between the upper and lower composites in the diagram

A�˝A�

��
��

coaction�� A�˝A�˝A�

1˝��
��

†�1 NR�
coaction �� A�˝†�1 NR�:

(7.1.10)

Thus on elements we have

r��.x;y/D
X

��.x;y/A ˝ ��.x;y/R �
X

x`y`0 ˝ ��.xr ;yr 0/; (7.1.11)
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where again the Sweedler notation is used,

m�.x/D
X

x`˝ xr

for the diagonal
m� WA�!A�˝A�

and
a�.x/D

X
xA ˝ xC

for the coaction
a� W C !A�˝C

of a left A�-comodule C .
Let us also denote by rS� the similar operator but with S� in place of ��. That

is, we define

rS�.x;y/D
X

S�.x;y/A ˝S�.x;y/R �
X

x`y`0 ˝S�.xr ;yr 0/:

We then obviously have

r��.x;y/Cr��.y;x/DrS�.x;y/ (7.1.12)

for any x;y 2A�.

Lemma 7.1.13 The map r�� above is a 2-cocycle, i. e. for any x;y;z 2A� one has

m�.x/r��.y;z/Cr��.x;yz/Dr��.x;y/m�.z/Cr��.xy;z/:

Proof: First note that the diagram

A�˝ NR�
m�˝coaction��

action

��

A�˝A�˝A�˝ NR�
1˝T˝1

((���
����

����
����

�

A�˝A�˝A�˝ NR�

ı�˝action
��

NR�
coaction �� A�˝ NR�

commutes — this follows from the fact that the action and coaction of A� on NR�
are induced from the multiplication and comultiplication in F� which is a Hopf
algebra.
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We thus conclude that the coaction map

NR�!A�˝ NR�

is a homomorphism of A�-modules, so that its composite with the cocycle �� is a
cocycle. It thus remains to show that the composite

A�˝A�!A�˝A�˝A�!A�˝ NR�

in the diagram (7.1.10) is also a cocycle. Let us denote this composite by �.
Observe that the Hopf algebra diagram for A� expressing interchange of the

multiplication and diagonal can be written on elements as follows:X
.xy/`˝ .xy/r D

X
x`y`0 ˝ xryr 0 :

Using this identity we then have for any x;y;z 2A�

m�.x/�.y;z/D
X

x`y`0z`00 ˝ xr��.yr 0 ;zr 00/I

�.x;yz/D
X

x`.yz/`0 ˝ ��.xr ;.yz/r 0 /

D .ı�˝ ��/
�X

x`˝ .yz/`0 ˝ xr ˝ .yz/r 0
�

D .ı�˝ ��/
�X

x`˝y`0z`00 ˝ xr ˝yr 0zr 00
�

D
X

x`y`0z`00 ˝ ��.xr ;yr 0zr 00/I

�.xy;z/D
X

.xy/`z`0 ˝ ��..xy/r ;zr 0/

D .ı�˝ ��/
�X

.xy/`˝ z`0 ˝ .xy/r ˝ zr 0
�

D .ı�˝ ��/
�X

x`y`0 ˝ z`00 ˝ xryr 0 ˝ zr 00
�

D
X

x`y`0z`00 ˝ ��.xry
0
r ;zr 00/I

�.x;y/m�.z/D
X

x`y`0z`00 ˝ ��.xr ;yr 0/zr 00 :

These indentities readily imply that � is a cocycle as required.
We next use the fact the cocycle r�� is defined on a polynomial algebra and

hence can be expressed by its values on generators and by its (anti)symmetrization
rS�. Indeed the proof of [3, 16.2.3] works in this generality, i. e. one has

Proposition 7.1.14 Let P D kŒ�1;�2;:::� be a polynomial algebra over a commuta-
tive ring k, let M be a P -module, let

� W P ˝P !M
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be a Hochschild 2-cocycle, i. e. one has

x�.y;z/� �.xy;z/C �.x;yz/� z�.x;y/D 0

for all x;y;z 2 P , and let � be the antisymmetrization of � , i. e.

�.x;y/D �.x;y/� �.y;x/:

Then, up to coboundaries, � can be recovered from � , i. e. there is a cocycle ��
cohomologous to � which depends only on � .

Proof: To � corresponds a singular extension of k-algebras

M �� i �� E
p �� �� P

whose isomorphism class uniquely determines the cohomology class of � . Let us
choose for each polynomial generator �n 2 P an element s.�n/ 2 E with ps.�n/D
�n. Furthermore let us choose an ordering on the polynomial generators of P , �1 <
�2 < :::; these data determine uniquely a k-linear section of p, by the formula

s.�n1�n2 ���/D s.�n1/s.�n2/���

for any finite sequence n1 6 n2 6 ��� of positive integers. Then we can use s to
construct a cocycle �� cohomologous to � determined by

s.xy/D s.x/s.y/C i�� .x;y/:

But if x and y are monomials, then s.xy/ and s.x/s.y/ differ only by the order of
terms, so that i�� .x;y/ is contained in the ideal generated by commutators

�� .�i ;�j /D s.�i /s.�j /� s.�j /s.�i /D �.�i ;�j /

for i > j . So in fact one can express each �� .x;y/ by a linear combination of
elements of M of the form z�.�i ;�j / for z 2 P .

Remark 7.1.15 Obviously the above proof actually contains an algorithm for
expressing the cocycle �� in terms of � . For x D �n1�n2 ����nk and y D �m1�m2 ����ml ,
with n1 6 n2 6 ��� 6 nk , m1 6 m2 6 ��� 6 ml , either one has nk 6 m1, in which
case �� .x;y/ D 0 since s.x/s.y/ D s.xy/, or one has nk > m1, in which case one
can write

s.x/s.y/

Ds.�n1/���s.�nk�1/s.�m1/s.�nk /s.�m2/���s.�ml /C �n1 ����nk�1�m2 ����ml�.�m1 ;�nk /:
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Applying the same procedure again several times one finally arrives at s.xy/C(a
sum of elements of the form z�.�i ;�j /). In fact it is easy to see that one has

�� .�n1�n2 ����nk ;�m1�m2 ����ml /

D
X
ni>mj

�n1 ����ni�1�niC1 ����nk�m1 ����mj�1�mjC1 ����ml�.�mj ;�ni /:

In the characteristic p > 0 case further obvious simplifications occur. In
particular we can choose the cocycle �� in (7.1.8) in such a way that the formula

��.�
d1
1 �

d2
2 ��� ;�

e1
1 �

e2
2 ���/DX

i<j
ei , dj odd

�
d1Ce1
1 ����

di�1Cei�1
i�1 �

diCei�1
i �

diC1CeiC1
iC1 ���

�
dj�1Cej�1
j�1 �

djCej�1

j �
djC1CejC1
jC1 ���S�.�i ;�j /

(7.1.16)

holds

The operator rS� is readily computable. It is a symmetric biderivation, with
rS�.x;x/ D 0 for all x, thus uniquely determined by its values of the form
rS�.�n;�m/ for n < m, which are expressed easily from the corresponding values
of S�. For example, one has

rS�.�1;�2/D �1˝M
2
1;1;

rS�.�1;�3/D �
5
1 ˝M

2
1;1C �1˝M

2
2;1;1;

rS�.�2;�3/D
�
�71 C �1�

2
2

�
˝M 2

1;1C �
3
1 ˝M

2
2;1;1

C �1˝
�
M 2
1M3CM1M2;1;1CM5CM4;1CM3;2CM2;1;1;1

�2
;

rS�.�1;�4/D �1�
4
2 ˝M

2
1;1C �

9
1 ˝M

2
2;1;1C �1˝M

2
4;2;1;1;

rS�.�2;�4/D
�
�31�

4
2 C �1�

2
3

�
˝M 2

1;1C �
11
1 ˝M

2
2;1;1

C �91 ˝
�
M 2
1M3CM1M2;1;1CM5CM4;1CM3;2CM2;1;1;1

�2
C �31 ˝M

2
4;2;1;1

C �1˝
�
M 4
1M5CM

2
2;1M3CM

2
1M4;2;1;1CM9CM7;2CM6;2;1

CM5;4CM3;4;2CM4;3;2CM4;4;1CM2;4;2;1 CM4;2;1;1;1

�2
;

etc.
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7.2. The formula of Kristensen

We will next use certain elements defined in [13, Theorem 3.3] to derive more
explicit expressions for ��, hence for S�, rS� and r��. We recall that Kristensen
defines

AŒa;b�D .Sq1˝Sq0;1/ı

0
@Sqa�3Sqb�2CSqa�2Sqb�3

C
X
j

 
b� 1� j

a� 2j

!
.SqaCb�j�3Sqj�2CSqaCb�j�2Sqj�3/

1
A;

for natural numbers a;b. Obviously one has

AŒa;b�D .Sq1˝Sq0;1/ık.Œa;b�/;

where k is the operator determined by

k.xy/D ~.~~.x/~~.y//

for x;y 2F610 . We then interpret AŒa;b� as an F-linear operator of the form

K WF610 ˝F610 !A ˝A

given by
K.x˝y/D .Sq1˝Sq0;1/ı~.~~.x/~~.y//

which is factored through F610 ˝F610 �F620 and then restricted toR62F �F620 .
We then can dualize K to get

Definition 7.2.1 We define an F-linear operator

K� WA�˝A�! R62F �

as composite with the quotient map F62� � R62F � of the dual of K above (whose
image lies in that of m� WF62� �F61� ˝F61� .

Thus explicitly, K� is the composite

A�˝A�
Sq1 ��˝Sq0;1 ��
���������!A�˝A�

ı�
�!A�

�1
�!A�

�F�
m�
��!F�˝F��F61� ˝F61�

M2
1˝M

2
1

������!F61� ˝F61�
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landing in F62� � F61� ˝F61� and precomposed with F62� � R62F �. Or on
elements,

K�.x˝y/D .M
2
1 ˝M

2
1 /

�
m�.�1

@x

@�1

@y

@�2
/

�61
Dm�.M

2
1;1M1

@x

@�1

@y

@�2
/61:

One thus has

K�.�
n1
1 �

n2
2 ���˝ �

m1
1 �m22 ���/

D

(
M
n1Cm1
1 M

n2Cm2�1
2;1 M 2

1;1; n1, m2 odd, ni Dmi D 0 for i > 2;
0 otherwise.

(7.2.2)

We have

Proposition 7.2.3 Symmetrization of the operator K� dual to the operator SR in
(6.2.2), i. e. is given by precomposing SF� given in (6.2.4) with the restriction map
F62� � RF

62
� .

Proof: From the above formula (7.2.2), for monomials x D �n11 �
n2
2 �

n3
3 ��� and y D

�
m1
1 �

m2
2 �

m3
3 ��� we have

K�.x˝y/CK�.y˝ x/

D

(
M
n1Cm1
1 M

n2Cm2�1
2;1 M 2

1;1; n1m2Cm1n2 odd and ni Dmi D 0 for i > 2,
0 otherwise.

On the other hand, using the explicit expression (6.2.4) and the expression for the
operator S1� in (6.2.5) we can write

m�SF�.x˝y/DX
x`D�

2n�1
1

y`0D�
2n0�1
1

�
2.nCn0/�1
1 ˝.xryr 0/

61C.�1˝1C1˝�1/
X

xrD�
2n�1
1

yr0D�
2n0�1
1

.x`y`0 /
61˝�2.nCn

0�1/
1 :

From the expression (5.1.5) for the Milnor diagonal we thus see that for monomials
x D �n11 �

n2
2 �

n3
3 ��� and y D �m11 �m22 �m33 ��� one has SF�.x˝y/D 0 unless ni Dmi D
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0 for i > 2, whereas in the remaining cases one has

m�SF�.�
n1
1 �

n2
2 ˝ �

m1
1 �

m2
2 /D

X
06i6n1
06j6m1
i , j odd

 
n1

i

! 
m1

j

!
�
iCjC2.n2Cm2/C1
1 ˝ �

n1Cm1�i�jCn2Cm2
1

C.�1˝1C1˝�1/
X

06i6n1
06j6m1

n1 � iCn2 ,m1� j Cm2 odd

 
n1

i

! 
m1

j

!
�
iCjC2.n2Cm2/
1 ˝�

n1Cm1�i�jCn2Cm2
1 :

Let us now turn back to the symmetrization ofK�. We compute its image under
the map m�; by (5.3.6) it sends M1 to �1˝ 1C 1˝ �1, M1;1 to �1˝ �1 and M2;1 to
�21 ˝ �1. Thus the nonzero values of this image are, for n1m2Cm1n2 odd,

m�K�.1CT /.�
n1
1 �

n2
2 ˝�

m1
1 �

m2
2 /D .�1˝1C1˝�1/

n1Cm1.�21˝�1/
n2Cm2�1.�21˝�

2
1 /:

Then expanding .�1˝ 1C 1˝ �1/n1Cm1 D .�1˝ 1C 1˝ �1/n1.�1˝ 1C 1˝ �1/m1
via binomials we obtain

m�K�.1CT /.�
n1
1 �

n2
2 ˝ �

m1
1 �

m2
2 /

D
X

06i6n1
06j6m1

 
n1

i

! 
m1

j

!
�
iCjC2.n2Cm2/
1 ˝ �

n1Cm1�i�jCn2Cm2C1
1 :

It follows that nonzero values of the difference m�.SF��K�.1CT // on monomials
in Milnor generators are equal to

X
06i6n1
06j6m1
i , j odd

 
n1

i

! 
m1

j

!
�
iCjC2.n2Cm2/C1
1 ˝ �

n1Cm1�i�jCn2Cm2
1

C
X

06i6n1
06j6m1

n1 � iCn2,m1 � j Cm2 odd

 
n1

i

! 
m1

j

!
�
iCjC2.n2Cm2/C1
1 ˝ �

n1Cm1�i�jCn2Cm2
1

C
X

06i6n1
06j6m1

n1� i Cn2,m1� j Cm2 even

 
n1

i

! 
m1

j

!
�
iCjC2.n2Cm2/
1 ˝ �

n1Cm1�i�jCn2Cm2C1
1
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for n1m2Cm1n2 odd and m�SF�.�
n1
1 �

n2
2 ˝ �

m1
1 �

m2
2 / for n1m2Cm1n2 even.

The first expression can be rewritten as

.�21 ˝ �1/
n2Cm2

X
k

�kC11 ˝ �
n1Cm1�k
10

BBBB@
X

06i6n1
06k�i6m1
i , k� i odd

 
n1

i

! 
m1

k� i

!
C

X
06i6n1

06k�i6m1
n1 � iCn2 ,m1�kC i Cm2 odd

 
n1

i

! 
m1

k � i

!

C
X

06i6n1
06kC1�i6m1

n1 � iCn2,m1�k�1C i Cm2 even

 
n1

i

! 
m1

kC 1� i

!
1
CCCCA

and in the second case we may write

m�SF�.�
n1
1 �

n2
2 ˝ �

m1
1 �

m2
2 /D .�21 ˝ �1/

n2Cm2
X
k

�kC11 ˝ �
n1Cm1�k
10

BBBB@
X

06i6n1
06k�i6m1
i , k� i odd

 
n1

i

! 
m1

k� i

!
C

X
06i6n1

06k�i6m1
n1 � iCn2 ,m1�kC i Cm2 odd

 
n1

i

! 
m1

k � i

!

C
X

06i6n1
06kC1�i6m1

n1 � i Cn2,m1�k�1C i Cm2 odd

 
n1

i

! 
m1

kC 1� i

!1CCCCA:

One then shows that these expressions lie in the subalgebra of F61� ˝ F61�
generated by �21 ˝ �1 and �1 ˝ 1C 1˝ �1, without involvement of �1 ˝ �1. This
means that the image of the difference SF� �K�.1C T / under the restriction map
F62� � RF

62
� is zero.

8. Computation of the algebra of secondary cohomology operations and its
dual

We first describe explicit splittings of the pair algebra RF of relations in the
Steenrod algebra and its dual RF . Then we describe in terms of these splittings s
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the multiplication maps As for the Hopf pair algebra BF of secondary cohomology
operations and we describe the dual maps As determining the Hopf pair coalgebra
BF dual to BF . On the basis of the main result in [3] we describe systems of
equations which can be solved inductively by a computer and which yield the
multiplication maps As and As as a solution. It turns out that As is explicitly given
by a formula in which only the values As.�n/, n> 1, have to be computed where �n
is the Milnor generator in the dual Steenrod algebra A�.

8.1. Computation of RF and RF

Let us fix a function � W F !G which splits the projection G! F , namely, take

�.k modp/D k modp2; 06 k < p: (8.1.1)

We will use � to define splittings of RF D

�
RF
1

@
�!RF

0

�
. Here a splitting s of RF

is an F-linear map for which the diagram

RF
1

@

��
RF

� � ��

s

��																
F0 RF

0

(8.1.2)

commutes with RF D im.@/ D ker.qF W F0 ! A /. We only consider the case
p D 2.

Definition 8.1.3 (The right equivariant splitting of RF ) Using �, all Adem relations

Œa;b� WD SqaSqbC
Œ a2 �X
kD0

 
b� k� 1

a� 2k

!
SqaCb�kSqk

for a;b > 0, a < 2b, can be lifted to elements Œa;b�� 2 RB by applying � to all
coefficients, i. e. by interpreting Œa;b� as an element of B. As shown in [3, 16.5.2],
RF is a free right F0-module with a basis consisting of preadmissible relations.
For p D 2 these are elements of the form

Sqa1 ���Sqak�1 Œak;a� 2 RF

satisfying a1 > 2a2, ..., ak�2 > 2ak�1, ak�1 > 2ak , ak < 2a. Sending such an
element to

Sqa1 ���Sqak�1 Œak;a�� 2 RB
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determines then a unique right F0-equivariant splitting � in the pair algebra RF ;
that is, we get a commutative diagram

RF
	 ��

� �

��

RB˝F DRF
1

@

��
F0 RF

0 :

For a splitting s of RF the map s˝1˚ 1˝s induces the map s# in the diagram

RF
1

� ��

@
����

.RF ŐRF/1

@ Ő
����

RF
1 ˝F0˚F0˝RF

1
��

RF

s

**

"
�
#

� �

��

�R �� R.2/F

s#

**

"
�
#

� �

��

RF˝F0˚F0˝RF
��

s˝1˚1˝s

���
�
�

F0
� �� F0˝F0:

(8.1.4)

Then the difference U D s#�R ��s WRF ! .RF ŐRF /1 satisfies @ Ő U D 0 since

@ Ő s#�R D�R D�R@s D @ Ő�s:

Thus U lifts to ker@ Ő ŠA ˝A and gives an F-linear map

U s WRF !A ˝A : (8.1.5)

If we use the splitting s to identify RF
1 with the direct sum A ˚ RF , then it is

clear that knowledge of the map U s determines the diagonal RF
1 ! .RF ŐRF/1

completely. Indeed s# yields the identification .RF ŐRF /1 Š A ˝A ˚R.2/F , and
under these identifications � WRF

1 ! .RF ŐRF /1 corresponds to a map which by
commutativity of (8.1.4) must have the form

A ˚RF

�
�A U s

0 �R

�
�������!A ˝A ˚R.2/F (8.1.6)

and is thus determined by U s.
One readily checks that the map U s for s D � in (8.1.3) coincides with the map

U defined in [3, 16.4.3] in terms of the algebra B.
Given the splitting s and the map U s, the only piece of structure remaining to

determine the Algpair
1 -comonoid structure of RF completely is the F0-F0-bimodule
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structure on RF
1 ŠA ˚RF . Consider for f 2F0, r 2 RF the difference s.f r/�

f s.r/. It belongs to the kernel of @ since

@s.f r/D f r D f @s.r/D @.f s.r//:

Thus we obtain the left multiplication map

as WF0˝RF !A : (8.1.7)

Similarly we obtain the right multiplication map

bs WRF ˝F0!A

by the difference s.rf /� s.r/f .

Lemma 8.1.8 For s D � in (8.1.3) the right multiplication map b	 is trivial, that
is � is right equivariant, and the left multiplication map factors through qF ˝ 1

inducing the map
a	 WA ˝RF !A :

Proof: Right equivariance holds by definition. As for the factorization, RF ˝

RF �F0˝RF is in the kernel of a	 WF0˝RF !A , since by right equivariance
of s and by the pair algebra property (4.1.8) for RF one has for any r;r 0 2 RF

s.rr 0/D s.r/r 0 D s.r/@s.r 0/D .@s.r//s.r 0/D rs.r 0/:

Hence factoring the above map through .F0 ˝RF /=.RF ˝RF / Š A ˝RF we
obtain a map

A ˝RF !A :

Summarizing the above, we thus have proved

Proposition 8.1.9 Using the splitting s D � of RF in (8.1.3) the comonoid RF in
the category Algpair

1 described in (4.5.4) is completely determined by the maps

U 	 WRF !A ˝A

and
a	 WA ˝RF !A

given in (8.1.5) and (8.1.7) respectively.
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We next introduce another splitting s D  for which U s D 0. For this we use
the fact that A� D Hom.A ;F/ and

B# D Hom.B0;G/ (8.1.10)

with B0 D TG.EA / both are polynomial algebras in such a way that generators of
A� are also (part of the) generators of B#.

Using � in (8.1.1) we obtain the function

 � WA�!B# (8.1.11)

(which is not F-linear) as follows. Each element x in A� is uniquely an F-
linear combination x D

P
˛n˛˛ where ˛ runs through the monomials in Milnor

generators. Such a monomial can be also considered as an element in B# by (5.2.6)
so that we can define

 �.x/D
X
˛

�.n˛/˛ 2B#:

Definition 8.1.12 (The comultiplicative splitting of RF ) Consider the following
commutative diagram with exact rows and columns

A� �� ��

 � ++$
$

$
$ F� �� Hom.RB;F/

B#
q ��

����

Hom.RB;G/

��

A� ��qF� �� F�

�� j

��

�� Hom.RB;F/

�� jR

��

�� �� A�

q �,,% % % % % %

R0
F R1

F

with the columns induced by the short exact sequence F � G� F and the rows
induced by (4.7.1). In particular q is induced by the inclusion RB �B0. Now it is
clear that  � yields a map q � which lifts to Hom.RB;F/ so that we get the map

q � WA�!R1
F

which splits the projection R1
F � A�. Moreover q � is F-linear since for all

x;y 2 A� the elements  �.x/C �.y/� �.x C y/ 2 B# are in the image of the
inclusion jqF� WA��B# and thus go to zero under q.
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The dual of q � is thus a retraction .q �/� in the short exact sequence

RF

.q �/
�
? --&
&

&
&

& RB˝F
����� A����

RF
1

.q �/
�

..'
'

'
'

'

which induces the splitting  D .q �/�? of RF determined by

 .�.x//D x � �..q �/
�.x//:

Lemma 8.1.13 For the splitting s D  of RF we have U D 0.

Proof: We must show that the following diagram commutes:

RF
�R ��

 

��

R
.2/
F

 #

��
RB˝F

� �� .RF ŐRF /1:

Obviously this is equivalent to commutativity of the dual diagram

.RF L̋RF /
1

�� ��

. #/�
��

Hom.RB;F/

 �

��
R
.2/
F �

�R� �� RF�

which in turn is equivalent to commutativity of

A�˝A�

. #/
?
�

��

ı� �� A�

q �

��
.RF L̋RF /

1
�� �� Hom.RB;F/:

(8.1.14)

On the other hand, the left hand vertical map in the latter diagram can be included
into another commutative diagram

F�˝A�˚A�˝F�

1˝q �˚q �˝1

��

A�˝A�� �
.i˝11˝i/��

. #/
?
�

��
F�˝R1

F ˚R1
F˝F� .RF ˝RF /

1� ���



318 H.-J. BAUES & M. JIBLADZE

It follows that on elements, commutativity of (8.1.14) means that the equality

q �.xy/D i.x/q �.y/C q �.x/i.y/

holds for any x;y 2 A�. By linearity, it is clearly enough to prove this when x and
y are monomials in Milnor generators.

For this observe that for any x 2 A� D Hom.A ;F/, the element q �.x/ 2
Hom.RB;F/ is the unique F-linear map making the diagram

RB
�� ��

q �.x/

���
�
� B0

 �.x/

��

�� �� A

x

��
F �� �� G �� �� F

commute. This uniqueness implies the equality we need in view of the following
commutative diagram with exact columns:

RB
��

��

��

R
.2/
B
��

��

������� F ˝F
Š ��

��

��

F
��

��
B0

� ��

����

B0˝B0

����

 �.x/˝ �.y/�� G˝G

����

Š �� G

����
A

ı ��

xy

��A ˝A
x˝y �� F ˝F

Š �� F ;

since when x and y are monomials in Milnor generators, one has  �.xy/ D
 �.x/ �.y/.

Therefore we call  the comultiplicative splitting of RF . We now want to
compute the left and right multiplication maps a and b defined in (8.1.7). The
dual maps a D .a /� and b D .b /� can be described by the diagrams

.RB/� �� ��

m`�
��

A�

q �
)) �(�)*

m�

��
F�˝ .RF /�

� � �� F�˝ .RB/� �� �� A�˝A�

i˝q �

// *)�(�

(8.1.15)
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and

.RB/� �� ��

mr�
��

A�

q �
)) �(�)*

m�

��
.RF /�˝F�

� � �� .RB/�˝F� �� �� A�˝A�:

q �˝i

// *)�(�

(8.1.16)

Here m� is dual to the multiplication in A and m`� and mr� are induced by the F0-
F0-bimodule structure of RB˝F . One readily checks

a Dm
`
�q �� .i ˝ q �/m�

b Dm
r
�q �� .q �˝ i/m�:

We now consider the diagram

B#

mG
�

��

A�
 ���

m�

��
F�˝F�

� � �� B#˝B# A�˝A�
 
˝
���

Here  ˝� is defined similarly as  � in (8.1.11) by the formula

 ˝�

0
@X
˛;ˇ

n˛ˇ˛˝ˇ

1
ADX

˛;ˇ

�.n˛ˇ /˛˝ˇ

where ˛, ˇ run through the monomials in Milnor generators. Moreover mG
� is the

dual of the multiplication map mG of B0 D TG.EA /.

Lemma 8.1.17 The difference mG
�  �� 

˝
� m� lifts to an F-linear map r� WA�!

F�˝F� such that one has

a D .1˝�/r�

b D .� ˝ 1/r�:

Here � WF�� RF� is induced by the inclusion RF �F0.
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Proof: We will only prove the first equality; the proof for the second one is similar.
The following diagram

R
B
�

��

j
R

��������������������

m
` �

��

A
�

q
 
�

��

++
++
++
++
++
++
++
++

++
++
++
++
++
++
++
++

m
�

��

R
B

#

m
` #

��

B
#

m
G �

��

�

00� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

A
�

 
�

��

m
�

��
B

#
˝

B
#

1
˝
�

11��
��
��
��
��
��
��
�

A
�
˝

A
�

 
˝ � ��

B
#
˝
R

B
#

F
�
˝

F
�

��
��
��
��
��
��
��
��
��
�

1
˝
�

11��
��
��
��
��
��
��
��
��
�

��

22 , , , , , , , ,

F
�
˝
R

B
�

��

j
˝
j
R

�� � � � � � � � � � � � � � �
A
�
˝

A
�

i˝
q
 
�

��

- -
- -
- -
- -
- -
- -
- -
- -

- -
- -
- -
- -
- -
- -
- -
- -

F
�
˝
R

F
�

��

22 , , , , , , , ,

commutes except for the innermost square, whose deviation from commutativity
is r� and lies in the image of F� ˝F� ,! B# ˝B#, and the outermost square,
whose deviation from commutativity is a and lies in the image of F�˝RF � ,!
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F�˝RB�. It follows that .1˝ �/r� and a have the same image under j ˝ jR,
and since the latter map is injective we are done.

Let us describe the map r� more explicitly.

Lemma 8.1.18 The map r� factors as follows

A�
Nr�
��!F�˝A�

1˝i
��!F�˝F�:

Proof: Let A# � B# be the subring generated by the elements M1, M21, M421,
M8421, .... It is then clear that the image of  � lies in A# and the reduction B#�
F� carries A# to A�. Moreover obviously the image of  ˝m� lies in A#, hence it
only remains to show the inclusion

mG
� .A#/�B#˝A#:

Since mG
� is a ring homomorphism, it suffices to check this on the generators M1,

M21, M421, M8421, .... But this is clear from (5.3.3).

Corollary 8.1.19 For the comultiplicative splitting  one has

a D 0:

Moreover the map b factors as follows

A�
Nb 
��!RF�˝A�

1˝i
��!RF�˝F�:

Proof: The first statement follows as by definition �.A�/ D 0; the second is
obvious.

Using the splitting  we get the following analogue of (8.1.9).

Proposition 8.1.20 The comonoid RF in the category Algpair
1 described in (4.5.4)

is completely determined by the multiplication map

Nb WRF ˝A !A

dual to the map Nb from 8.1.19. In fact, the identification

RF
1 DA ˚RF

induced by the splitting s D  identifies the diagonal of RF with �A ˚�R (see
(8.1.5), (8.1.6)), and the bimodule structure of RF

1 with

f .˛;r/D .f ˛;f r/

.˛;r/f D .˛ NNf � Nb .r; NNf /;rf /

for f 2F0, r 2RF , ˛ 2A .
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8.2. Computation of the Hopf pair algebra BF

The Hopf pair algebra V D BF in (4.6.15), given by the algebra of secondary
cohomology operations, satisfies the following crucial condition which we deduce
from [3, 16.1.5].

Theorem 8.2.1 There exists a right F0-equivariant splitting

u WRF
1 DRB˝F !B1˝F DBF

1

of the projection BF
1 !RF

1 , see (4.6.4), such that the following holds. The diagram

A ˚~ †A

q

33

#
�
"

�� �� BF
1

q

44

#
�
"

�� BF
0

�� �� A

A

Nu

��

�� �� RF
1

u

��

�� RF
0

�� �� A

commutes, where Nu is the inclusion. Moreover in the diagram of diagonals, see
(4.6.5),

BF
1

�B �� .BF ŐBF/1 †A ˝A� ���

RF
1

�R ��

u

��

.RF ŐRF/1

u Ő u

��

the difference �Bu� .u Ő u/�R lifts to †A ˝A and satisfies

� N� D�Bu� .u Ő u/�R W R1
F
N� �� �� NR

� ��†A ˝A

where � is dual to �� in (7.1.8). Here N� is the projection RF � RF � NR. The
cocycle � is trivial if p is odd.

Definition 8.2.2 Using a splitting u of BF as in (8.2.1) we define a multiplication
operator

A WA ˝RB!†A

by the equation
A. N̨ ˝ x/D u.˛x/�˛u.x/

for ˛ 2 F0, x 2 RB. Thus �A is a multiplication map as studied in [3, 16.3.1].
Fixing a splitting s of RF as in (8.1.2) we define an s-multiplication operator As to
be the composite

As W A ˝RF
1˝s ��A ˝RB

A ��†A :

Such operators have the properties of the following s-multiplication maps.
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Definition 8.2.3 Let s be a splitting of RF as in (8.1.2) and let U s , as , bs be defined
as in section 8.1. An s-multiplication map

As WA ˝RF !A

is an F-linear map of degree �1 satisfying the following conditions with ˛;˛0;ˇ;ˇ0 2
F0, x;y 2RF

1. As.˛;xˇ/D As.˛;x/ˇC ~.˛/bs.x;ˇ/

2. As.˛˛0;x/D As.˛;˛0x/C ~.˛/as.˛0;x/C .�1/deg.˛/˛As.˛0;x/

3. ıAs.˛;x/D As˝.˛˝�x/CL.˛;x/Cr�.˛;x/C ı~.˛/U
s.x/.

Here As˝ WA ˝R
.2/
F !A ˝A is defined by the equalities

As˝.˛˝ x˝ˇ
0/D

X
.�1/deg.˛r /deg.x/As.˛`;x/˝˛rˇ

0;

As˝.˛˝ˇ˝y/D
X
.�1/deg.˛r /deg.ˇ/Cdeg.˛`/Cdeg.ˇ/˛`ˇ˝A

s.˛r ;y/;

where as always
ı.˛/D

X
˛`˝˛r 2A ˝A :

Two s-multiplication maps As and As 0 are equivalent if there exists an F-linear
map

� WRF !A

of degree �1 such that the equality

As.˛;x/�As
0
.˛;x/D �.˛x/� .�1/deg.˛/˛�.x/

holds for any ˛ 2 A , x 2 RF and moreover � is right F0-equivariant and the
diagram

A
ı �� A ˝A

RF

�

��

�
�� R.2/F

�˝

��

commutes, with �˝ given by

�˝.x˝ˇ/D �.x/˝ˇ;

�˝.˛˝y/D .�1/
deg.˛/˛˝ �.y/

for ˛;ˇ 2F0, x;y 2 RF .

Theorem 8.2.4 There exists an s-multiplication map As and any two such s-
multiplication maps are equivalent. Moreover each s-multiplication map is an s-
multiplication operator as in (8.2.2) and vice versa.
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Proof: We apply [3, 16.3.3]. In fact, we obtain by As the multiplication operator

A WA ˝RB DA ˝A ˚A ˝RF !†A

with
A.˛˝ x/D As.˛˝ Nx/C ~.˛/� (8.2.5)

where . Nx;�/ 2 RF ˚A D RB ˝ F corresponds to x, that is s. Nx/C �.�/ D x for
� WA �RB˝F .

Remark 8.2.6 For the splitting s D � of RF in (8.1.3) the maps

An;m WA !A

are defined by An;m.˛/ D A	.˛ ˝ Œn;m�/, with Œn;m� the Adem relations in
RF . Using formulæ in (8.2.3) the maps An;m determine the �-multiplication map
A	 completely. The maps An;m coincide with the corresponding maps An;m in
[3, 16.4.4]. In [3, 16.6] an algorithm for determination of An;m is described, leading
to a list of values of An;m on the elements of the admissible basis of A . The
algorithm for the computation of An;m can be deduced from theorem (8.2.4) above.

Remark 8.2.7 Triple Massey products h˛;ˇ;�i with ˛;ˇ;� 2 A , ˛ˇ D 0 D ˇ� , as
in (4.6.16) can be computed by As as follows. Let Ň N� 2RB be given as in (4.6.16).
Then Ň N� ˝ 1 2RB˝F satisfies

Ň N� ˝ 1D s. Nx/C �.�/

with Nx 2RF , � 2A and h˛;ˇ;�i satisfies

As.˛˝ Nx/C ~.˛/� 2 h˛;ˇ;�i:

Compare [3, 16.3.4].

Now it is clear how to introduce via as, bs, U s , � , ~, and As a Hopf pair algebra
structure on

A ˚†A ˚RF

q �� A ˚RF

BF
1 RF

1

(8.2.8)

which is isomorphic to BF , compare (8.1.9).
In the next section we describe an algorithm for the computation of a  -

multiplication map, where  is the comultiplicative splitting of RF in (8.1.12).
For this we compute the dual map A of A .
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8.3. Computation of the Hopf pair coalgebra BF

For the comultiplicative splitting s D  of RF in (8.1.12) we introduce the
following  -comultiplication maps which are dual to the  -multiplication maps
in (8.2.3).

Definition 8.3.1 Let Nb be given as in 8.1.19. A  -comultiplication map

A WA�!A�˝RF�

is an F-linear map of degree C1 satisfying the following conditions.

1. The maps in the diagram

A�˝RF�

1˝mr�
��

A�

m�

��

A ��

A�˝RF�˝F� A�˝A�
A ˝i
��

satisfy
.1˝mr�/A D .A ˝ i/m�C .~�˝

Nb /m�:

Here ~� is computed in (5.1.7) and mr� is defined in (8.1.16).

2. The maps in the diagram

A�˝RF�

1˝m`�
��

A�

A 

��

A ��

A�˝F�˝RF� A�˝A�˝RF �1˝i˝1
�� A�˝RF�m�˝1

��

satisfy

.1˝m`�/A D .1˝ i ˝ 1/.m�˝ 1/A � .� ˝ i ˝ 1/.1˝A /m�:

Here m`� is as in (8.1.15), and � WA�!A� is given by �.˛/D .�1/deg.˛/˛.

3. For x;y 2A� the product xy in the algebra A� satisfies the formula

A .xy/D A .x/m�.y/C .�1/
deg.x/m�.x/A .y/CL�.x;y/Cr��.x;y/:

Here L� and r�� are given in 6.1.13 and 7.1.11 respectively, with L� D
r�� D 0 for p odd.
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Two  -comultiplication maps A , A0 are equivalent if there is a derivation

�� WA�! RF�

of degree C1 satisfying the equality

A �A
0
 Dm

`
���� .� ˝ ��/m�:

As a dual statement to (8.2.4) we get

Theorem 8.3.2 There exists a  -comultiplication map A and any two such  -
comultiplication maps are equivalent. Moreover each  -comultiplication map A 
is the dual of a  -multiplication map A in (8.2.4) with A D A �.

Now dually to (8.2.8), it is clear how to introduce via a , b , ��, ~�, and A a
Hopf pair coalgebra structure on

A�˚†A�˚RF� A�˚RF�
i��

B1
F R1

F

which is isomorphic to BF , compare (8.1.20).
We now embark on the simplification and solution of the equations 8.3.1(1) and

8.3.1(2). To begin with, note that the equations 8.3.1(1) imply that the image of the
composite map

A�
A 
��!A�˝RF �

1˝mr�
����!A�˝RF�˝F�

actually lies in
A�˝RF�˝A� �A�˝RF�˝F�I

similarly 8.3.1(2) implies that the image of

A�
A 
��!A�˝RF �

1˝m`�
����!A�˝F�˝RF�

lies in
A�˝A�˝RF� �A�˝F�˝RF�:

Lemma 8.3.3 The following conditions on an element x 2 RF� D Hom.RF ;F/

are equivalent:

� m`�.x/ 2A�˝RF� �F�˝RF�;

� mr�.x/ 2RF �˝A� �RF�˝F�;

� x 2 NR� �RF�.
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Proof: Recall that NR D RF=RF
2, i. e. NR� is the space of linear forms on RF

which vanish on RF
2. Then the first condition means that x W RF ! F has the

property that the composite

F0˝RF
m`

��! RF
x
�! F

vanishes onRF˝RF �F0˝RF ; but the image ofRF˝RF underm` is precisely
RF

2. Similarly for the second condition.
We thus conclude that the image of A lies in A�˝ NR�.
Next note that the condition 8.3.1(3) implies

A .x
2/D L�.x;x/Cr��.x;x/ (8.3.4)

for any x 2A�. Moreover the latter formula also implies

Proposition 8.3.5 For any x 2A� one has

A .x
4/D 0:

Proof: Since the squaring map is an algebra endomorphism, by 6.1.11 one has

L�.x;y
2/D

X
�1x`y

2
`0 ˝
QL�.xr ;y

2
r 0/;

with
m�.x/D

X
x`˝ xr ; m�.y/D

X
y`0 ˝yr 0 :

But QL� vanishes on squares since it is a biderivation, so L� also vanishes on squares.
Moreover by (7.1.11)

r��.x
2;y2/D

X
��.x

2;y2/A ˝ ��.x
2;y2/R �

X
x2`y

2
`0 ˝ ��.x

2
r ;y

2
r 0/I

this is zero since ��.x2;y2/D 0 for any x and y by (7.1.16).
Taking the above into account, and identifying the image of i WA��F� with

A�, 8.3.1(1) can be rewritten as follows:

.1˝mr�/A .�n/D

A .�n/˝ 1C
�
L�.�n�1;�n�1/Cr��.�n�1;�n�1/

�
˝ �1C

nX
iD0

�1�
2i

n�i ˝
Nb .�i /;

or

.1˝ Qmr�/A .�n/D
�
L�.�n�1;�n�1/Cr��.�n�1;�n�1/

�
˝ �1C

nX
iD0

�1�
2i

n�i ˝
Nb .�i /:
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Still more explicitly one has

L�.�k;�k/D
X

06i;j6k
�1�

2i

k�i�
2j

k�j ˝
QL�.�i ;�j /

D
X
06i6k

�1�
2iC1

k�i ˝
QL�.�i ;�i /C

X
06i<j6k

�1�
2i

k�i�
2j

k�j ˝
QLS� .�i ;�j /;

where we have denoted

QLS� .�i ;�j / WD
QL�.�i ;�j /C QL�.�j ;�i /I

similarly
r��.�k;�k/D

X
06i<j6k

�2
i

k�i�
2j

k�j ˝S�.�i ;�j /:

As for b .�i /, by 8.1.17 it can be calculated by the formula

Nb .�i /D
X
0<j<i

v2
j�1

i�j ˝ �j ; (8.3.6)

where vk are determined by the equalities

M2k ;2k�1;:::;2 �M
2
2k�1;2k�2;:::;1

	 2vk mod4

in B#. For example,

v1 DM11;

v2 DM411CM231CM222CM2121;

v3 DM8411CM8231CM8222CM82121CM4631CM4622CM46121

CM4442CM42521CM42431CM42422CM424121CM421421;

etc.
Thus putting everything together we see

Lemma 8.3.7 The equation 8.3.1(1) for the value on �n is equivalent to

.1˝ Qmr�/A .�n/D
X
0<k<n

C
.n/

2n�2kC1
˝ �k

where

C
.n/
2n�1 D X

0<i<n

�1�
2iC1

n�1�i ˝
�
QL�.�i ;�i /C vi

�
C

X
0<i<j<n

�1�
2i

n�1�i�
2j

n�1�j ˝
QLS� .�i ;�j /C

X
0<i<j<n

�2
i

n�1�i�
2j

n�1�j ˝S�.�i ;�j /
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and, for 1 < k < n,

C
.n/

2n�2kC1
D

X
0<i6n�k

�1�
2kCi

n�k�i ˝ v
2k�1

i :

For low values of n these equations look like

.1˝ Qmr�/A .�2/ D 0;

.1˝ Qmr�/A .�3/ D �1˝ .�.M222/˝ �1C�.M22/˝ �2/

C�21 ˝�.M32CM23CM212CM122/˝ �1C �
3
1 ˝�M22˝ �1;

.1˝ Qmr�/A .�4/ D �1˝ .�.M8222CM722CM4622CM4442CM42422/˝ �1
C�.M822CM462CM444CM4242/˝ �2C�.M44/˝ �3/

C�41 ˝�.M632CM623CM6212CM6122CM542CM452CM443CM4412

CM4142CM3422CM2522CM2432CM2423CM24212CM24122

CM21422CM1622CM1442CM12422/˝ �1
C�51 ˝�.M622CM442CM2422/˝ �1
C�22 ˝�.M522CM432CM423CM4212CM4122CM1422/˝ �1
C�1�

2
2 ˝�.M422/˝ �1C �

9
1 ˝ .�.M222/˝ �1C�.M22/˝ �2/

C�41�
2
2 ˝�.M32CM23CM212CM122/˝ �1

C�51�
2
2 ˝�.M22/˝ �1;

etc. (Note that A .�1/D 0 by dimension considerations.)
As for the equations 8.3.1(2), they have form

.1˝ Qm`�/A .�n/

D . Qm�˝ 1/A .�n/C �
2n�1

1 ˝A .�n�1/C �
2n�2

2 ˝A .�n�2/C :::

C �4n�2˝A .�2/C �
2
n�1˝A .�1/:

Lemma 8.3.8 Suppose given a map A satisfying 8.3.1(3) and those instances of
8.3.1(1), 8.3.1(2) which involve starting value of A on the Milnor generators i.�1/,
i.�2/, ..., where i WA�!F� is the inclusion. Then A satisfies these equations for
all other values too.

Now recall that, as already mentioned in 6.1, according to [3, 16.5] NR is a free
right A -module generated by the set PAR � NR of preadmissible relations. More
explicitly, the composite

Rpre˝A
inclusion˝1
�������! NR˝A

mr

��! NR

is an isomorphism of right A -modules, where Rpre is the F-vector space spanned
by the set PAR of preadmissible relations. Dually it follows that the composite

ˆr� W
NR�

mr�
��! NR�˝A�

%˝1
���! Rpre˝A�
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is an isomorphism of right A�-comodules. Here % W NR� � Rpre denotes the
restriction homomorphism from the space NR� of F-linear forms on NR to the space
Rpre of linear forms on its subspace Rpre � NR spanned by PAR.

It thus follows that we will obtain equations equivalent to 8.3.1(1) if we compose
both sides of these equations with the isomorphism 1˝ˆr� WA�˝ NR�!A�˝Rpre˝

A�. Let us then denote

.1˝ˆr�/A .�n/D
X
�

�2n�j�j.�/˝�

with some unknown elements �j .�/ 2 .A� ˝Rpre/j , where � runs through some
basis of A�.

Now freedom of the right A�-comodule NR� on Rpre means that the above
isomorphism ˆr� fits in the commutative diagram

NR�
ˆr� ��

mr�
��

Rpre˝A�

1˝m�
��

NR�˝A�
ˆr�˝1 �� Rpre˝A�˝A�:

It follows that we have

.1˝ 1˝m�/.1˝ˆ
r
�/A .�n/D .1˝ˆ

r
�˝ 1/.1˝m

r
�/A .�n/:

Then taking into account 8.3.7 this gives equationsX
�

�2n�j�j.�/˝m�.�/D
X
�

�2n�j�j.�/˝�˝1C
X
0<k<n

.1˝ˆr�/.C
.n/

2n�2kC1
/˝�k;

with the constants C .j /n as in 8.3.7. This immediately determines the elements �j .�/
for j�j > 0. Indeed, the above equation implies that .1˝ˆr�/A .�n/ actually lies
in the subspace A�˝Rpre˝… �A�˝Rpre˝A� where … �A� is the following
subspace:

…D

8<
:x 2A� j m�.x/ 2

M
k>0

A�˝F�k

9=
;:

It is easy to see that actually
…D

M
k>0

F�k;

so we can write

.1˝ˆr�/A .�n/D
X
k>0

�2n�2kC1.�k/˝ �k
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where we necessarily have

�2n�2kC1.�k/˝ 1C �2n�2kC1C1.�kC1/˝ �
2k

1 C �2n�2jCkC1.�kC2/˝ �
2k

2 C :::

D .1˝ˆr /.C
.n/

2n�2kC1
/:

for all k > 1. By dimension considerations, �2n�2kC1.�k/ can only be nonzero
for k < n, so the number of unknowns in these equations strictly decreases as k
grows. Thus moving “backwards” and using successive elimination we determine
all �2n�2kC1.�k/ for k > 0.

It is easy to compute values of the isomorphism 1˝ˆr� on all elements involved
in the constants C .n/j . In particular, elements of the form ˆr�.v

2k

j / can be given by
an explicit formula. One has

ˆr�.vk/D
X
06i<k

�
Sq2

k

Sq2
k�1

���Sq2
iC2

Œ2i ;2i �
�
�
˝ �2i

and

ˆr�.v
2j�1

k /D
X
06i<k

�
Sq2

kCj�1

Sq2
kCj�2

���Sq2
iCjC1

Œ2iCj�1;2iCj�1�
�
�
˝ �2

j

i ;

so our “upside-down” solving gives

�2n�1C1.�n�1/ D �1˝ Œ2
n�2;2n�2��;

�2n�2n�2C1.�n�2/ D �
1C2n�1

1 ˝ Œ2n�3;2n�3��C �1˝
�

Sq2
n�1

Œ2n�3;2n�3�
�
�

�2n�2n�3C1.�n�3/ D �1�
2n�2

2 ˝ Œ2n�4;2n�4��C �
1C2n�1

1 ˝
�

Sq2
n�2

Œ2n�4;2n�4�
�
�

C�1˝
�

Sq2
n�1

Sq2
n�2

Œ2n�4;2n�4�
�
�

���

�2n�2n�kC1.�n�k/ D
X
16i6k

�1�
2n�kCi

k�i ˝
�

Sq2
n�kCi�1

Sq2
n�kCi�2

���Sq2
n�kC1

Œ2n�k�1;2n�k�1�
�
�

for k < n� 1.
As for �2n�1.�1/, here we do not have a general formula, but nevertheless it is

easy to compute this value explicitly. In this way we obtain, for example,

�1.�1/ D 0;

�3.�1/ D 0;

�7.�1/ D �
3
1 ˝ Œ2;2��C �

2
1 ˝ .Œ3;2��C Œ2;3��/;

�15.�1/ D �
5
1�
2
2 ˝ Œ2;2��C �

4
1�
2
2 ˝ .Œ3;2��C Œ2;3��/C �1�

2
2 ˝

�
Sq4Œ2;2�

�
�

C�22 ˝
�
.Sq5Œ2;2�/�C .Sq4Œ2;3�/�

�
C �51 ˝

�
Sq6Œ2;2�

�
�

C�41 ˝
�
.Sq7Œ2;2�/�C .Sq6Œ3;2�/�C .Sq6Œ2;3�/�

�
;

�31.�1/ D �1�
4
2�
2
3 ˝ Œ2;2��C �

4
2�
2
3 ˝ .Œ3;2��C Œ2;3��/C �

9
1�
2
3 ˝

�
Sq4Œ2;2�

�
�

C�81�
2
3 ˝

�
.Sq5Œ2;2�/�C .Sq4Œ2;3�/�

�
C �91�

4
2 ˝

�
Sq6Œ2;2�

�
�

C�81�
4
2 ˝

�
.Sq7Œ2;2�/�C .Sq6Œ3;2�/�C .Sq6Œ2;3�/�

�
C �1�

2
3 ˝

�
Sq8Sq4Œ2;2�

�
�

C�23 ˝
�
.Sq9Sq4Œ2;2�/�C .Sq8Sq4Œ2;3�/�

�
C �1�

4
2 ˝

�
Sq10Sq4Œ2;2�

�
�

C�42 ˝
�
.Sq11Sq4Œ2;2�/�C .Sq10Sq5Œ2;2�/�C .Sq10Sq4Œ2;3�/�

�
C �91 ˝

�
Sq12Sq6Œ2;2�

�
�

C�81 ˝
�
.Sq13Sq6Œ2;2�/�C .Sq12Sq6Œ3;2�/�C .Sq12Sq6Œ2;3�/�

�
;
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etc.
To summarize, let us state

Proposition 8.3.9 The general solution of 8.3.1(1) for the value on �n is given by
the formula

A .�n/D .1˝ˆ
r
�/
�1
X
k>0

�2n�2kC1.�k/˝ �k;

where the elements �j .�k/ 2 .A� ˝Rpre/j are the ones explicitly given above for
k > 0 while �2n.1/ 2 .A�˝Rpre/2n is arbitrary.

Let us now treat the equations 8.3.1(2) in a similar way, now using the fact that
NR is a free left A -module on an explicit basis PAR0 (see 6.1.2 again).

Then similarly to the above dualization it follows that the composite

ˆ`� W
NR�

m`�
��!A�˝ NR�

1˝%0

���!A�˝R
0
pre

is an isomorphism of left A�-comodules, where %0 W NR� � R0pre denotes the
restriction homomorphism from the space NR� of F-linear forms on NR to the space
R0pre of linear forms on the subspace Rpre0 of NR spanned by PAR0.

Thus similarly to the above the equations 8.3.1(2) are equivalent to ones
obtained by composing them with the isomorphism 1˝ ˆ`� W A� ˝ NR� ! A� ˝
A�˝R0pre. Let us then denote

.1˝ˆ`�/A .�n/D
X

�2PAR0
�2n�j�j.�/˝��

with some unknown elements �j .�/ 2 .A� ˝ A�/j , where �� denotes the
corresponding element of the dual basis, i. e. the unique linear form on R0pre
assigning 1 to � and 0 to all other elements of PAR0.

Now again as above, freedom of the left A�-comodule NR� on R0pre means that
the above isomorphism ˆ`� fits in the commutative diagram

NR�
ˆ`� ��

m`�
��

A�˝R0pre

m�˝1

��
A�˝ NR�

1˝ˆ`� �� A�˝A�˝R0pre:
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In particular one has

.1˝ 1˝ˆ`�/.1˝m
`
�/A .�n/D .1˝m�˝ 1/.1˝ˆ

`
�/A .�n/:

Using this, we obtain that the equations 8.3.1(2) are equivalent to the following
system of equations

.1˝m� �m�˝ 1/.�2n�j�j.�//D 1˝ �2n�j�j.�/C˙2n�j�j.�/;

where we denote

˙2n�j�j.�/

D �2
n�1

1 ˝ �2n�1�j�j.�/C �
2n�2

2 ˝ �2n�2�j�j.�/C :::

C �4n�2˝ �4�j�j.�/C �
2
n�1˝ �2�j�j.�/:

We next use the following standard fact:

Proposition 8.3.10 For any coalgebra C with the diagonal m� W C ! C ˝C and
counit " W C ! F there is a contractible cochain complex of the form

C
d1 �� C˝2
s1

00
d2 �� C˝3
s2

55
d3 �� C˝4
s3

55
d4 �� ��� ;
s4

55

i. e. one has
sndnC dn�1sn�1 D 1C˝n

for all n. Here,

d1 Dm�;

d2 D 1˝m� �m�˝ 1;

d3 D 1˝ 1˝m� � 1˝m�˝ 1Cm�˝ 1˝ 1;

d4 D 1˝ 1˝ 1˝m� � 1˝ 1˝m�˝ 1C 1˝m�˝ 1˝ 1�m�˝ 1˝ 1˝ 1;

etc., while sn can be taken to be equal to either

sn D "˝ 1C˝n

or
sn D 1C˝n ˝ ":
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Now suppose given the elements �2k�j�j.�/, k < n, satisfying the equations;
we must then find �2n�j�j.�/ with

d2�2n�j�j.�/D 1˝ �2n�j�j.�/C˙2n�j�j.�/;

with ˙2n�j�j.�/ as above. Then since d3d2 D 0, it will follow

d3.1˝ �2n�j�j.�/C˙2n�j�j.�//D 0:

Then

1˝ �2n�j�j.�/C˙2n�j�j.�/D .s3d3C d2s2/.1˝ �2n�j�j.�/C˙2n�j�j.�//

D d2s2.1˝ �2n�j�j.�/C˙2n�j�j.�//

Taking here sn from the second equality of 8.3.10, we see that one has

1˝ �2n�j�j.�/

D˙2n�j�j.�/C d2
�
1˝ .1˝ "/.�2n�j�j.�//C .1˝ 1˝ "/.˙2n�j�j.�//

�
:

It follows that we can reconstruct the terms �2n�j�j.�/ from .1˝ "/�2n�j�j.�/, i. e.
from their components that lie in A�˝F �A�˝A�.

Then denoting

�2n�j�j.�/D x2n�j�j.�/˝ 1C �
0
2n�j�j.�/;

with
� 02n�j�j.�/ 2A�˝ QA�;

the last equation gives

1˝ x2n�j�j.�/˝ 1C 1˝ �
0
2n�j�j.�/

D˙2n�j�j.�/C .m�˝ 1C 1˝m�/
X
i>0

�2
n�i

i ˝ x2n�i�j�j.�/:

By collecting terms of the form 1˝ ::: on both sides, we conclude that any solution
for � satisfies

�2n�j�j.�/Dm�.x2n�j�j.�//C
X
i>0
�2
n�i

i ˝ x2n�i�j�j.�/:

Thus the equation 8.3.1(2) is equivalent to the system of equations

.1˝m�Cm�˝ 1/
X
i>0

�2
n�i

i ˝ x2n�i�j�j.�/

D 1˝m�.x2n�j�j.�//C
X
i>0
1˝ �2

n�i

i ˝ x2n�i�j�j.�/C˙2n�j�j.�/
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on the elements xj .�/ 2 Aj . Substituting here back the value of ˙2n�j�j.�/ we
obtain the equations

X
i>0
�2
n�i

i ˝m�.x2n�i�j�j.�//C
X
i>0

m�.�i /
2n�i ˝ x2n�i�j�j.�/

D 1˝m�.x2n�j�j.�//C
X
i>0

1˝ �2
n�i

i ˝ x2n�i�j�j.�/

C
X
i>0

�2
n�i

i ˝m�.x2n�i�j�j.�//C
X

i 0>0;j>0
�2
n�i 0

i 0 ˝ �2
n�i 0�j

j ˝ x2n�i 0�j�j�j.�/:

These equations easily reduce to

m�.�i /
2n�i D 1˝ �2

n�i

i C
X
06j<i

�2
n�.i�j/

i�j ˝ �2
n�i

j ;

which is identically true. We thus conclude

Proposition 8.3.11 The general solution A .�n/ of 8.3.1(2) is determined by

A .�n/

D .1˝ˆ`�/
�1

X
�2PAR0

 
x2n�j�j.�/˝ 1C Qm�.x2n�j�j.�//C

X
i>0

�2
n�i

i ˝ x2n�i�j�j.�/

!
˝��;

where xj .�/ 2Aj are arbitrary homogeneous elements.

Now to put together 8.3.9 and 8.3.11 we must use the dual

ˆ� WRpre˝A�!A�˝R
0
pre

of the composite isomorphism

ˆ WA ˝Rpre0 ˆ
`�1

���! NR
ˆr

��! Rpre˝A :

We will need

Lemma 8.3.12 There is an inclusion

ˆ�
�
Rpre˝F1

�
�A�˝R

0
pre
62
;

where
R0pre
62
�R0pre

is the subspace of those linear forms on Rpre0 which vanish on all left preadmissible
elements Œn;m�a 2 PAR0 with a 2 QA .
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Similarly, there is an inclusion

ˆ�1�

�
F1˝R0pre

�
�Rpre

62˝A�;

where
Rpre
62 �Rpre

is the subspace of those linear forms onRpre which vanish on all right preadmissible
elements aŒn;m� with a 2 QA .

Proof: Dualizing, for the first inclusion what we have to prove is that given any
admissible monomial a 2 A and any Œn;m�b 2 PAR0 with b 2 QA , in NR one has the
equality

aŒn;m�b D
X
i

ai Œni ;mi �bi

with ai Œni ;mi � 2 PAR and admissible monomials bi 2 QA . Indeed, considering a as
a monomial in F0 there is a unique way to write

aŒn;m�D
X
i

ai Œni ;mi �ci

in F0, with ai Œni ;mi � 2 PAR and ci some (not necessarily admissible or belonging
to QF0) monomials in the Sqk generators of F0. Thus in F0 we have

aŒn;m�b D
X
i

ai Œni ;mi �cib:

In NR we may replace each cib with a sum of admissible monomials of the same
degree; obviously this degree is positive as b 2 QA .

The proof for the second inclusion is exactly similar.

This lemma implies that for any simultaneous solution A .�n/ of 8.3.1(1) and
8.3.1(2), the elements in A�˝Rpre˝A� and A�˝A�˝R0pre corresponding to it
according to, respectively, 8.3.9 and 8.3.11, satisfy

X
a2 QA

Œk;l�a2PAR0

 
x2n�k�l�jaj.Œk;l�a/̋ 1C Qm�.x2n�k�l�jaj.Œk;l�a//C

X
i>0

�2
n�i

i ˝x2n�i�k�l�jaj.Œk;l�a/

!
.̋Œk;l�a/�

D .1˝ 1˝ %>2/.1˝ˆ�/

 X
k>0

�2n�2kC1.�k/˝ �k

!
;
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where
%>2 WR0pre�R0pre

>2

is the restriction of linear forms on Rpre0 to the subspace spanned by the subset of
PAR0 consisting of the left preadmissible relations of the form Œk;l�a with a 2 QA .
Indeed the remaining part of the element from 8.3.9 is

�2n.1/˝ 1;

and according to the lemma its image under 1˝ˆ� goes to zero under the map %>2.
Since the elements �2n�2kC1.�k/ are explicitly given for all k > 0, this allows

us to explicitly determine all elements xj .Œk;l�a/ for Œk;l�a 2 PAR0 with a 2 QA . For
example, in low degrees we obtain

x2.Œ2;3�Sq1/D x2.Œ3;2�Sq1/D �21 ;

x3.Œ2;2�Sq1/D �31 ;

x10.Œ2;3�Sq1/D x10.Œ3;2�Sq1/D �41�
2
2 ;

x11.Œ2;2�Sq1/D �51�
2
2 ;

x26.Œ2;3�Sq1/D x26.Œ3;2�Sq1/D �42�
2
3 ;

x27.Œ2;2�Sq1/D �1�42�
2
3 ;

with all other xj .Œk;l�a/D 0 for j < 32 and Œk;l�a 2 PAR0 with a 2 QA .

Remark 8.3.13 Calculations can be performed for larger j too. But in fact a
pattern is clearly apparent here. It suggests the conjecture that actually all elements
xj .Œk;l�a/ for Œk;l�a 2 PAR0 with a 2 QA can be chosen to be

x2n�6.Œ2;3�Sq1/D x2n�6.Œ3;2�Sq1/D �4n�3�
2
n�2;

x2n�5.Œ2;2�Sq1/D �1�4n�3�
2
n�2;

for n> 3, with all other xj .Œk;l�a/D 0.

It remains to deal with the elements xj .Œk;l�/. These shall satisfy

X
k<2l

 
x2n�k�l.Œk;l�/˝ 1C Qm�.x2n�k�l.Œk;l�//C

X
i>0

�2
n�i

i ˝ x2n�i�k�l.Œk;l�/

!
˝ Œk;l��

D .1˝ˆ�/.�2n.1/˝ 1/C .1˝ 1˝ %
62/.1˝ˆ�/

 X
k>0

�2n�2kC1.�k/˝ �k

!
;
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where now
%62 WR0pre� R0pre

62

is the restriction of linear forms on Rpre0 to the subspace spanned by the Adem
relations. The last summandDn D .1˝1˝%62/.1˝ˆ�/

�P
k>0�2n�2kC1.�k/˝ �k

�
is again explicitly given; for example, in low degrees it is equal to

D1 D 0;

D2 D 0;

D3 D .�1˝ �1/
2˝ Œ2;2��;

D4 D
�
�21�2˝ �1C �2˝ �2C �

2
1 ˝ �1�2

�2
˝ Œ2;2��;

D5 D
�
�22�3˝�1C �

4
1�3˝�2C �

4
1�
2
2˝�1�2C �

4
1˝�2�3C �3˝�3C �

2
2˝�1�3

�2
˝Œ2;2��:

Then finally the equations that remain to be solved can be equivalently written as
follows:

.1˝1˝Q"/.1˝ˆ�/
�1

 X
k<2l

 
x2n�k�l.Œk;l�/˝ 1C Qm�.x2n�k�l.Œk;l�//C

X
i>0

�2
n�i

i ˝x2n�i�k�l.Œk;l�/

!
Œ̋k;l��

!

D .1˝ 1˝ Q"/.1˝ˆ�/
�1.Dn/;

where
Q" WA�� QA�

is the projection to the positive degree part, i. e. maps 1 to 0 and all homogeneous
positive degree elements to themselves. Again, the right hand sides of these
equations are explicitly given constants, for example, in low degrees they are given
by

0, nD 1;
0, nD 2;

�21 ˝ Œ2;2��˝ �
2
1 , nD 3;�

�41�
2
2 ˝ Œ2;2��C �

2
2 ˝ .Sq4Œ2;2�/�C �41 ˝ .Sq6Œ2;2�/�

�
˝ �21 , nD 4;�

�42�
2
3 ˝ Œ2;2��C �

8
1�
2
3 ˝ .Sq4Œ2;2�/�C �81�

4
2 ˝ .Sq6Œ2;2�/�C �23 ˝ .Sq8Sq4Œ2;2�/�

C�42 ˝ .Sq10Sq4Œ2;2�/�C �81 ˝ .Sq12Sq6Œ2;2�/�
�
˝ �21 , nD 5.

One possible set of solutions for �k with k 6 5 is given by

x5.Œ1;2�/D �
2
1�2;

x4.Œ1;3�/D �
4
1 ;

x13.Œ1;2�/D �
2
2�3;

x12.Œ1;3�/D �
4
2 ;

x29.Œ1;2�/D �
2
3�4;

x28.Œ1;3�/D �
4
3
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and all remaining xj .Œk;l�/D 0 for j C kC l 6 32.

Or equivalently one might give the same solution “on the other side of ˆ” by

�2.1/ D 0;

�4.1/ D 0;

�8.1/ D �
2
1�2˝ Œ1;2��C �

4
1 ˝ Œ1;3��C �2˝ .Sq2Œ1;2�/�C �21 ˝ .Sq3Œ1;2�/�;

�16.1/ D �
2
2�3˝ Œ1;2��C �

4
2 ˝ Œ1;3��C �

4
1�3˝

�
Sq2Œ1;2�

�
�
C �41�

2
2 ˝

�
Sq3Œ1;2�

�
�

C�3˝
�
Sq4Sq2Œ1;2�

�
�
C �22 ˝

�
Sq5Sq2Œ1;2�

�
�
C �41 ˝

�
Sq6Sq3Œ1;2�

�
�
;

�32.1/ D �
2
3�4˝ Œ1;2��:C �

4
3 ˝ Œ1;3��C �

4
2�4˝

�
Sq2Œ1;2�

�
�
C �42�

2
3 ˝

�
Sq3Œ1;2�

�
�

C�81�4˝
�
Sq4Sq2Œ1;2�

�
�
C �81�

2
3 ˝

�
Sq5Sq2Œ1;2�

�
�
C �81�

4
2 ˝

�
Sq6Sq3Œ1;2�

�
�

C�4˝
�
Sq8Sq4Sq2Œ1;2�

�
�
C �23 ˝

�
Sq9Sq4Sq2Œ1;2�

�
�
C �42 ˝

�
Sq10Sq5Sq2Œ1;2�

�
�

C�81 ˝
�
Sq12Sq6Sq3Œ1;2�

�
�

Remark 8.3.14 As in 8.3.13, here one also has a suggestive pattern which leads to
a conjecture that a simultaneous solution of (1) and (2) is determined by putting

x2n�3.Œ1;2�/D �
2
n�2�n�1;

x2n�4.Œ1;3�/D �
4
n�2

for n> 3, with all other xj .Œk;l�/D 0.

This then gives the solution itself as follows:

A .�1/ D 0;

A .�2/ D 0;

A .�3/D �
2
1�2 ˝M3

C�41 ˝.M31C �1M3/

C�31 ˝M221

C�2 ˝
�
M5CM41CM32C �

2
1M3

�
C�21 ˝.M51CM321CM231CM2121C �1.M5CM41CM32CM221/

C�21M
2
11C .�

3
1 C �2/M3

�
C�1 ˝M2221;
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A .�4/D �
2
2�3 ˝M3

C�42 ˝.M31C �1M3/

C�51�
2
2 ˝M221

C�41�3 ˝
�
M5CM41CM32C �

2
1M3

�
C�41�

2
2 ˝.M51CM321CM231CM2121C �1.M5CM41CM32CM221/

C�21M
2
11C .�

3
1 C �2/M3

�
C�91 ˝M2221

C�1�
2
2 ˝M4221

C�3 ˝
�
M9CM72CM621CM54CM441CM432CM342CM2421C �

4
1M5C �

2
2M3

�
C�22 ˝.M721CM451CM4321CM4231CM42121CM3421

C.M5CM41CM32CM2111/
2

C�1.M9CM72CM621CM54CM441CM432CM4221CM342CM2421/

C�41M
2
3 C �

5
1M5C .�1�

2
2 C �3/M3

�
C�51 ˝.M6221CM4421CM24221/

C�41 ˝.M831CM8121CM651CM6321CM6231CM62121CM4521CM4431

CM44121CM41421CM2721CM2451CM24321CM24231CM242121CM23421

C�1.M6221CM4421CM24221/C �
2
1 .M5CM41CM32CM2111/

2

C�2.M9CM72CM621CM54CM441CM432CM342CM2421/

C�41M
2
211C �

6
1M

2
3 C �3.M5CM41CM32/

C�41�2M5C .�
2
1�3C �

3
2 /M3

�
C�1 ˝.M82221CM44421CM46221CM424221/;

A .�5/D �
2
3�4 ˝M3

C�43 ˝.M31C �1M3/

C�1�
4
2�
2
3 ˝M221

C�42�4 ˝
�
M5CM41CM32C �

2
1M3

�
C�42�

2
3 ˝

�
M51CM321CM231CM2121C �1.M5CM41CM32CM221/C �

2
1M

2
11

C.�31 C �2/M3

�
C�1�

8
2 ˝M2221

C�91�
2
3 ˝M4221

C�81�4 ˝
�
M9CM72CM621CM54CM441CM432CM342CM2421C �

4
1M5C �

2
2M3

�
C�81�

2
3 ˝.M721CM451CM4321CM4231CM42121CM3421

C.M5CM41CM32CM2111/
2

C�1.M9CM72CM621CM54CM441CM432CM4221CM342CM2421/

C�41M
2
3 C �

5
1M5C .�1�

2
2 C �3/M3

�
C�91�

4
2 ˝.M6221CM4421CM24221/

C�81�
4
2 ˝.M831CM8121CM651CM6321CM6231CM62121CM4521CM4431CM44121

CM41421CM2721CM2451CM24321CM24231CM242121CM23421

C�1.M6221CM4421CM24221/C �
2
1 .M5CM41CM32CM2111/

2

C�2.M9CM72CM621CM54CM441CM432CM342CM2421/C �
4
1M

2
211C �

6
1M

2
3

C�41�2M5C �3.M5CM41CM32/C .�
2
1�3C �

3
2/M3

�
C�171 ˝.M82221CM44421CM46221CM424221/

C�4 ˝
�
M17CM134CM1142CM10421CM98CM872CM8621CM854CM8441

CM8432CM8342CM82421CM584CM3842CM28421C �
8
1M9C �

4
2M5C �

2
3M3

�
C�1�

2
3 ˝M84221
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C�23 ˝
�
M11421CM8721CM8451CM84321CM84231CM842121CM83421CM38421

C.M9CM72CM621CM54CM441CM432CM42111CM342CM2421/
2

C�1.M17CM134CM1142CM10421CM98

CM872CM8621CM854CM8441CM8432CM84221CM8342CM82421

CM584CM3842CM28421/

C�81M
2
5 C �

9
1M9C �

4
2M

2
3 C �1�

4
2M5C .�1�

2
3 C �4/M3

�
C�1�

4
2 ˝

�
M104221CM86221CM84421CM824221CM284221

�
C�42 ˝

�
M12521CM12431CM124121CM121421CM10721CM10451CM104321CM104231

CM1042121CM103421CM8831CM88121CM8651CM86321CM86231CM862121

CM84521CM84431CM844121CM841421CM82451CM82721CM823421CM824321

CM824231CM8242121CM49421CM48521CM48431CM484121CM481421CM418421

CM211421CM28721CM28451CM284321CM284231CM2842121CM283421CM238421

C�1.M104221CM86221CM84421CM824221CM284221/

C�21.M9CM72CM621CM54CM441CM432CM42111CM342CM2421/
2

C�2.M17CM134CM1142CM10421CM98CM872CM8621CM854CM8441

CM8432CM8342CM82421CM584CM3842CM28421/

C�41M
2
4211C �

10
1 M

2
5 C �

8
1�2M9C �

2
1�
4
2M

2
3 C �

5
2M5C �4.M5CM41CM32/

C.�21�4C �2�
2
3/M3

�
C�91 ˝

�
M126221CM124421CM1224221CM4104221CM88421

CM486221CM484421CM4824221CM4284221/

C�81 ˝
�
M14631CM146121CM142521CM142431CM1424121CM1421421CM12831CM128121

CM12651CM126321CM126231CM1262121CM124521CM124431CM1244121CM1241421

CM122721CM122451CM1224321CM1224231CM12242121CM1223421

CM86631CM866121CM862521CM862431CM8624121 CM8621421

CM844521CM844431CM8444121CM8441421 CM842631CM8426121CM8423421 CM84212421

CM610521CM610431CM6104121CM6101421CM68631CM686121CM682521CM682431

CM6824121CM6821421 CM629421CM628521CM628431CM6284121CM6281421 CM6218421

CM412521CM412431CM4124121CM4121421CM410721CM410451CM4104321CM4104231

CM41042121CM4103421CM48831CM488121CM48651CM486321CM486231CM4862121

CM484521CM484431CM4844121CM4841421 CM482721CM482451CM4824321CM4824231

CM48242121 CM4823421CM449421CM448521CM448431CM4484121 CM4481421CM4418421

CM4211421CM428721CM428451CM4284321 CM4284231CM42842121 CM4283421 CM4238421

C.M831CM8121CM7311CM7221CM71211CM651CM6411CM6321CM63111

CM62211CM612111CM43311CM43221CM431211CM422211CM421311CM421221

CM41421CM35211CM34311CM34221CM341211CM314211

CM2721CM26211CM252111CM2451CM24411CM24321CM243111CM242211

CM2412111 CM23421CM224211CM2142111/
2

C.M51CM411CM321/
4CM 8

3

C�1.M126221CM124421CM1224221CM88421CM4104221CM486221CM484421

CM4824221 CM4284221/
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C�41 .M5CM41CM32/
4

C�22 .M9CM72CM621CM54CM441CM432CM342CM2421/
2

C�3.M17CM134CM1142CM10421CM98CM872CM8621CM854CM8441CM8432

CM8342CM82421CM584CM3842CM28421/

C�81�
2
2M

2
5 C �

2
3.M5CM41CM32/

2C �81�3M9

C�4.M9CM72CM621CM54CM441CM432CM342/

C.�121 C �
4
2 /M

4
3 C .�

4
1�
2
3 C �

6
2/M

2
3 C .�

4
1�4C �

4
2�3/M5C .�

2
2�4C �

3
3/M3

�
C�1 ˝

�
M1682221CM1646221CM1644421CM16424221

CM8124421CM8126221CM81224221CM888421CM84104221CM8486221CM8484421

CM84824221 CM84284221/

The formulæ above were obtained via computer calculations. They lead to
the general patterns in 8.3.13 and 8.3.14 which would determine the map A 
completely.

9. The dual d.2/ differential

In this chapter we will compute the d.2/ differential in the E2 term

Ep;q2 D CotorpA�.F ;F/
q Š ExtpA .F ;F/

q

of the Adams spectral sequence. For this we will first set up algebraic formalism
necessary to carry out an analog of the computations in Chapter 3 in the dual setting.
First let us recall how the above isomorphism is obtained.

9.1. Secondary coresolution

One starts with a projective resolution of the A -module F , e. g. with the minimal
resolution as in (3.2.1). Its graded F-linear dual

F !A
fg00g
� !

M
n>0

A

n
g2
n

1

o
� !

M
ji�j j¤1

A

	
g
2iC2j

2



� ! ::: (9.1.1)

is then an injective resolution of F in the category of right A�-comodules. (This
is not entirely trivial since we take graded duals. However all (co)modules that
we encounter will be degreewise finite, i. e. having generating sets with finite
number of elements in each degree. Obviously then graded duality is a contravariant
equivalence between the categories of such (co)modules.)

There are isomorphisms

HomA .M;N/ŠM��A�N
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for any left A -modules M and N of the above kind (i. e. of graded finite type),
where on the right the graded dual M� is considered as a right A�-comodule and
N as a left A�-comodule in the standard way. It follows that applying HomA .�;F/

to (3.2.1) and applying ��A�F to (9.1.1) gives isomorphic cochain complexes (of
F-vector spaces). But by definition cohomology of the latter complex is given by

Hp.(9.1.1)�A�F/q D CotorpA�.F ;F/
q:

It then follows from (3.2.13) that in these terms the secondary differential

d
pq

.2/
W CotorpA�.F ;F/

q! CotorpC2A�
.F ;F/qC1

is given by

d
pq

.2/
. Ogqp/D

X
g
q
p appears in ı.gqC1pC2/

Og
qC1
pC2 D ı�. Og

q
p/
0: (9.1.2)

Here,

ı� W
M
q

†A
fgqpg
� !

M
q

A
fgqpC2g
�

is the dual of the map
ı WA

˝
g�pC2

˛
!†A

˝
g�p
˛

determined in 3.2.7, whereas Og�� denotes the dual basis of g��, i. e. Ogqp 2 A
fg��g
� is

the vector with the gqp-th coordinate equal to 1 and all other coordinates equal to
zero. Moreover by ı�. Og

q
p/
0 is denoted the zero degree component of ı�. Og

q
p/, i. e.

the result of applying to the element

ı�. Og
q
p/ 2

M
j>0

A

n
g
qCjC1

pC2

o
j

the projection to the .j D 0/-th component

M
j>0

A

n
g
qCjC1

pC2

o
j !A

n
g
qC1

pC2

o
0 :

Instead of directly dualizing the map ı, it is more convenient from the
computational point of view to dualize the conditions of 3.2.7 using (3.2.12) and
determine ı� directly from these dualized conditions. In fact using 8.2.5 we can
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further detalize the diagram (3.2.12) in the following way:

†A ˝VpC1
1˝d �� †A ˝A ˝Vp

m˝1



��
���

���
���

�

VpC3

ıA
pC1

��..........

d ��//
///

///
//

A ˝A ˝Vp

~˝1˝1
���������������

A ˝RF ˝Vp
1˝As �� †A ˝Vp

A ˝VpC2

1˝'A ;s

��

1˝'R;s

���������������

1˝ıA
p

�� A ˝†A ˝Vp

m˝1

��												

(9.1.3)

where As is the multiplication map corresponding to a splitting s of the G-relation
pair algebra used, as in 8.1, to identify RB with A ˚RF , and .'A ;s;'R;s/ are the
components of the corresponding composite map

VpC2
'
�! RB˝Vp DA ˝Vp˚RF˝Vp;

with ' as defined in (3.2.10).
Moreover just as the map ı is completely determined by its restriction to VpC2,

its dual ı� is determined by the composite ı0 as in

Hom.Vp;†A�/
ı�
�! Hom.VpC2;A�/

Hom.VpC2;"/
��������! Hom.VpC2;F/;

where graded Hom is meant, and " is the augmentation of A�. In fact we only need
this composite map ı0 as by (9.1.2) above we have

d
pq

.2/
. Ogqp/D ı0. Og

q
p/: (9.1.4)

Now the dual to diagram (9.1.3) is easy to identify; it is

†A�˝ OVpC1
ı0

��
















†A�˝A�˝ OVp
1˝d���

�1˝1˝1

�����
���

���
���

�

OVpC3 A�˝A�˝ OVp

1˝'A ;s
�

��

A�˝RF�˝ OVp
1˝'

R;s
�

�����
���

���
���

�
†A�˝ OVp

m�˝1
%%������������

As˝1��

m�˝1��			
			

			
			

A�˝ OVpC2

d�

��

A�˝†A�˝ OVp
1˝ı0

��

(9.1.5)

where OVp are the graded dual spaces of Vp .
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It is straightforward to reformulate the above in terms of elements: the values
of the map ı0 on arbitrary elements a˝g 2†A�˝ OVp must satisfy

ı0.
X

a`˝ d�.ar ˝g//D d�.
X

al ˝ ı0.ar ˝g//

C d�.
X

�1a`˝'
A ;s
� .ar ˝g//

C d�.
X

aA ˝'
R;s
� .aR˝g//;

(9.1.6)

where we have denoted by
�.a/D

X
a`˝ ar

the value of the diagonal � WA�!A�˝A� and by

As.a/D
X

aA ˝ aR

the value of the comultiplication map As W†A�!A�˝RF� on a 2A�.
We thus obtain

Proposition 9.1.7 The d.2/ differential of the Adams spectral sequence is given on
the cohomology classes represented by the generators Og in the minimal resolution
by the formula

d.2/. Og/D ı0.†1˝ Og/;

where
ı0 W†A�˝ OVs! OVsC2

are any maps satisfying the equations (9.1.6).

At this point the cooperation of the authors ended since the time of Jibladze’s
visit at the MPIM was over. Therefore our goal of doing computer calculations on
the basis of 9.1.7 is left to an interested reader.
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