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Introduction

Spheres are the most elementary compact spaces, but the simple question of
counting essential maps between spheres turned out to be a landmark problem.
In fact, progress in algebraic topology might be measured by its impact on this
question. Topologists have worked on the problem of describing the homotopy
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groups of spheres for around 80 years and there is still no satisfactory solution in
sight. Many approaches have been developed: a distinguished one is the Adams
spectral sequence

E5,E3,Eq4,...

converging to the (p-primary part of) homotopy groups of spheres. Adams
computed the E;-term and showed that

E, = Eth{(F,F)

is algebraically determined by the Ext-groups associated to the Steenrod algebra
/. Hence E, is an upper bound for homotopy groups of spheres and is given by an
algebraic resolution of the prime field F = IF,, over the algebra «/. The Steenrod
algebra o7 is in fact a Hopf algebra with wonderful algebraic properties. Milnor
showed that the dual algebra

o, = Hom(<,TF)

is a polynomial algebra. Topologically the Steenrod algebra is the algebra of
primary cohomology operations. Adams’ formula for E, shows a fundamental
connection between homotopy groups of spheres and primary cohomology oper-
ations. Much work in the literature exploits this connection. However, since E,
is only an upper bound, one cannot expect the Steenrod algebra to be sufficient
to determine homotopy groups of spheres. In fact, for this the “algebra of all
higher cohomology operations" is needed. The structure of this total algebra is
highly unknown; it is not even clear what kind of algebra is needed to describe the
additive properties of higher cohomology operations. The structure of the Adams
spectral sequence E»,E3,... shows that the total algebra can be approximated by
constructing inductively primary, secondary, tertiary ...operations. In doing so one
might be able to grasp the total algebra. This is the program of computing homotopy
groups of spheres via higher cohomology operations. The first step beyond Adams’
result is understanding the algebra of secondary cohomology operations which,
surprisingly, turned out to be a differential algebra, namely a pair algebra.

In the book [3] the pair algebra # of secondary cohomology operations is
computed. This enriches the known algebraic structure of the Steenrod algebra
considerably. The pair algebra 4 is given by an exact sequence

Y of B - By—T et . (%)

Here %, is the free associative algebra over G = Z/ p*Z generated by the Steenrod
operations, which also generate <7, and ¢ is the identity on generators. Moreover
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there is a multiplication map
m: BoQ®PB1 ® B1 & By — B
and a diagonal map
A: By — (BoQRSB1 D F$1QRBoy)/ ~

such that # = (#,m,A) is a “secondary Hopf algebra”, see [3], inducing the Hopf
algebra structure of the Steenrod algebra 7. It is proven in [3] that the structure
of % as a secondary Hopf algebra together with the explicit invariants L and S
determines & up to isomorphism. The nature of secondary homotopy operations
leads forcibly to this kind of new algebraic object which has wonderful properties
shedding light on the structure of the Steenrod algebra 7 as a Hopf algebra. By
a striking result of Milnor, the dual <7 of the Hopf algebra ./ is a polynomial
algebra with a nice diagonal which, for many purposes, is easier to deal with than
the algebra .7 itself, which is given by generators, the Steenrod squares, and Adem
relations. Thus this paper also describes the dualization %, of the secondary Hopf
algebra 8. We compute the invariants dual to L and S by explicit and easy formulz.
Therefore computations in terms of % can equivalently be carried out in terms of
the dual %, and often the dual formule are easier to handle. In this paper we use the
secondary Hopf algebra % and its dual %, for computating a secondary resolution
which determines the differential d(,) on E and hence E3.

Adams computed those special values of the differentials d(y) in E, which are
related to the Hopf invariant 1 problem. In the book of Ravenel [17] one finds a
list of all differentials up to degree 60 which, however, is only tentative in degrees
> 46. Corrections of published differentials in low degrees were made by Bruner
[10]. An explicit method for computing the differential d(,) in general, however,
has not been achieved in the literature. But it is done in the present paper. Our
result is thus showing the global computable nature of the E3—term of the Adams
spectral sequence. According to Ravenel’s observer, “who looks to the far distant
homotopy groups of spheres through a telescope,” such a global result on E3 seemed
impossible for a long time.

We show that the differential d(,) and the Ez-term can be completely computed
by the formula

E; = Ext4(GE,G%)

where the secondary Ext-groups Ext4 are given by an algebraic secondary resolu-
tion associated to the pair algebra %8. The computation of Ej3 yields a new algebraic
upper bound on homotopy groups of spheres improving the Adams bound given by
E,.
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In order to do explicit computations of the new bound E; one has to carry
out two tasks. On the one hand one has to describe the algebraic structure of
the secondary Hopf algebra & explicitly by equations which a computer can deal
with in an easy way. On the other hand one has to choose a secondary resolution
associated to 4, by solving inductively a system of explicit equations determined
by A.

In the first part (chapters 1, 2, 3) of this paper we describe the algebra
which yields the secondary resolution associated to %8 and which determines the
differential d(;) on E, by the resolution. In the second part (chapters 4, 5, 6,
7, 8) we study the algebraic properties of % and of the dualization of 4. In
particular we show that the results of Milnor on the dual Steenrod algebra .o
have secondary analogues. For the dualization of % we proceed as follows. The
projection g : By —» &7 in (x) above admits a factorization

q:PBo—> Fog—> o

where Fy = By QT is the free associative algebra over F = Z/ pZ generated by
the Steenrod operations. Now let

Ry = kernel(By — )
Rz = kernel(Fy — ).

Then one has an exact sequence of [F-vector spaces

which can be dualized by applying the functor Hom(—,F). Moreover the exact
sequence of F-vector spaces

YA > PB1QF - Rz QF

can be dualized by Hom(—,F). The main results of this work describe in detail
the multiplication in & and the diagonal in % on the level of %, ® F and on the
dual Hom(%4,,F). In this way we obtain explicit formula describing the algebraic
structure of & and of the dual of %. Of course the dual of % determines % and
vice versa.

We use these formule for computer calculations of the secondary resolution
associated to % and we derive in this way the differentials d(,) on E,. In section 3.2
we do such computations up to degree 40 in order to confirm the algebraic equations
achieved in the book [3]. The goal is to compute E3 up to degree 210 as this was
done for E, by Nassau [16]. A more effective computer implementation of Es,
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which is left to the interested reader, relies on the computation of the dual of %, see
the formula in section 8.3 below. The functions needed for the implementation are
described in the paper by tables of values in low degrees. These tables should be
helpful to control the implementation.

1. Secondary Ext-groups associated to pair algebras

In this chapter we introduce algebraically secondary Ext-groups Extp over a pair
algebra B. In [4] we already studied secondary Ext-groups in an additive track
category which yield the Ext-groups Extp as a special case if one considers the
track category of B-modules. In chapter 3 we shall see thet the Es-term of the
Adams spectral sequence is given by secondary Ext-groups over the pair algebra %
of secondary cohomology operations.

1.1. Modules over pair algebras

We here recall from [3] the notion of pair modules, pair algebras, and pair modules
over a pair algebra B. The category B-Mod of pair modules over B is an additive
track category in which we consider secondary resolutions as defined in [4]. Using
such secondary resolutions we shall obtain the secondary derived functors Extp in
section 1.3.

Let k be a commutative ring with unit and let Mod be the category of k-modules
and k-linear maps. This is a symmetric monoidal category via the tensor product
A ® B over k of k-modules A, B. A pair of modules is a morphism

X = (X1—8>X0) (1.1.1)

in Mod. We write 7o(X) = cokerd and 71(X) = kerd. A morphism f : X — Y of
pairs is a commutative diagram

X] —>Y1

||

X0—>'Y().

Evidently pairs with these morphisms form a category (@{z(Mod) and one has
functors
1,70 - (’%{z(Mod) — Mod.

A pair morphism is called a weak equivalence if it induces isomorphisms on mp and
.
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Clearly a pair in Mod coincides with a chain complex concentrated in degrees
0 and 1. For two pairs X and Y the tensor product of the complexes corresponding
to them is concentrated in degrees in 0, 1 and 2 and is given by

d 9
X10Y = X1QYo® Xo®Y; — Xo® Y

with dp = (0® 1,1®4d) and d; = (—1® 0,0 ® 1). Truncating X ® ¥ we get the pair
X&®Y = ((X®Y)1 — coker(d;) > Xo ® Yo = (X®Y)o)

with d induced by dy.

Remark 1.1.2 Note that the full embedding of the category of pairs into the category
of chain complexes induced by the above identification has a left adjoint Tr given
by truncation: for a chain complex

a a d0—
C:(...—>C2—1—>C1—0>C0—1—>C_1—>...),

one has

Te(C) = (coker(81) Do, co),
with 9y induced by 3. Then clearly one has
X®Y =Tr(X ®Y).

Using the fact that Tr is a reflection onto a full subcategory, one easily checks that
the category s (Mod) together with the tensor product ® and unit k = (0 — k)
is a symmetric monoidal category, and Tr is a monoidal functor.

We define the tensor product A ® B of two graded modules in the usual way,
i.e. by
(A®B)"'= @ A ®B’.
i+j=n

A pair module is a graded object of f’??m(Mod), i. e. asequence X" = (0 :
X1 — X{) of pairs in Mod. We identify such a pair module X with the underlying
morphism 9d of degree 0 between graded modules

Xz(XliXO).
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Now the tensor product X ®Y of graded pair modules X, Y is defined by
(X®Y)'= P x'&v/. (1.1.3)
i+j=n
This defines a monoidal structure on the category of graded pair modules. Mor-
phisms in this category are of degree 0.

For two morphisms f,g : X — Y between graded pair modules, a homotopy
H : f = gisamorphism H : X¢ — Y; of degree O as in the diagram

P e—1

81
al / la (1.1.4)
Jo

0

satisfying fo —go = dH and f; —g; = HoO.
A pair algebra B is a monoid in the monoidal category of graded pair modules,

with multiplication
u:BR®B — B.

We assume that B is concentrated in nonnegative degrees, that is B” = 0 forn < 0.
A left B-module is a graded pair module M together with a left action

L:BOM — M

of the monoid B on M.
More explicitly pair algebras and modules over them can be described as
follows.

Definition 1.1.5 A pair algebra B is a graded pair
ad: Bl — BO

in Mod with B = Bl = 0 for n < 0 such that By is a graded algebra in Mod, B,
is a graded By-Bo-bimodule, and 9 is a bimodule homomorphism. Moreover for
X,y € Bj the equality

d(x)y = xd(y)
holds in B;.

It is easy to see that there results an exact sequence of graded By-By-bimodules

0
0—m1B— By — By—>m9gB—0

where in fact o B is a k-algebra, 71 B is a wg B-m¢ B-bimodule, and By — mo(B)
is a homomorphism of algebras.
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Definition 1.1.6 A (left) module over a pair algebra B is a graded pair M = (0 :
My — My) in Mod such that M; and M, are left By-modules and 0 is By-linear.
Moreover, a By-linear map

n:B1®py, My — M

is given fitting in the commutative diagram

B1 ®pB, M1 183 B, ®p, My

Ml/lu

M, Moy,

where (b ® m) = d(b)m for b € By and m € My U M.

For an indeterminate element x of degree n = |x| let B[x] denote the B-module
with B[x]; consisting of expressions bx with b € B;, i = 0,1, with bx having
degree |b| + n, and structure maps given by d(bx) = d(b)x, u(b’ ® bx) = (b’'b)x
and (b’ ® bx) = (b'b)x.

A free B-module is a direct sum of several copies of modules of the form B[x],
with x € I for some set I of indeterminates of possibly different degrees. It will be
denoted

B[1] = P B[x].
x€el

For a left B-module M one has the exact sequence of By-modules
0—-m M —> M — My— oM — 0

where moM and w1 M are actually o B-modules.

Let B-Mod be the category of left modules over the pair algebra B. Morphisms
f = (fo,f1) : M — N are pair morphisms which are B-equivariant, that is, fy and
f1 are Bp-equivariant and compatible with [ above, i. e. the diagram

By ®p, Mo —> M,
1®fol lfl
B1 ®3, No LI N

commutes.
For two such maps f,g: M — N atrack H : f = g is a degree zero map

H:My— N (1.1.7)

satisfying fo — go = dH and f1 — g; = HO such that H is Bg-equivariant. For
tracks H : f = g, K : g = h their composition KOH : f = his K+ H.
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Proposition 1.1.8 For a pair algebra B, the category B-Mod with the above track
structure is a well-defined additive track category.

Proof: For a morphism f = (fy, f1) : M — N between B-modules, one has

Aut(f)={H € Homp,(Mo,N1) | 0H = fo— fo.Hd = f1— f1}
=~ Homy,g(mo M, N).

Since this group is abelian, by [6] we know that B-Mod is a linear track extension of
its homotopy category by the bifunctor D with D(M,N) = Homg,p(moM, 71 N).
It thus remains to show that the homotopy category is additive and the bifunctor D
is biadditive.

By definition the set of morphisms [M,N] between objects M, N in the
homotopy category is given by the exact sequence of abelian groups

Homp,(Mo,N1) = Homp(M,N) — [M,N].

This makes evident the abelian group structure on the hom-sets [M, N]. Bilinearity
of composition follows from consideration of the commutative diagram

Hom g, (Mo, N;) ® Homg (N, P) ® Homp(M,N) ® Homp, (No, P1) —— Homp, (Mo, Py)

|

Homp(M,N) ® Homp (N, P) Hompg (M, P)
[M,N]®[N,P]- - ————————— —— — — > [M, P]

with exact columns, where u(H® g+ f ® K) = g1 H + K fy. It also shows that the
functor B-Mod — B-Mod is linear. Since this functor is the identity on objects,
it follows that the homotopy category is additive.

Now note that both functors ¢, 71 factor to define functors on B-Mod~. Since
these functors are evidently additive, it follows that D = Homy,p(7w,71) is a
biadditive bifunctor. ]

Lemma 1.1.9 If M is a free B-module, then the canonical map
[M,N] — Homy,p(woM,moN)

is an isomorphism for any B-module N.

Proof: Let (gi)ier be a free generating set for M. Given a mo(B)-equivariant

homomorphism f : mgM — o N, define its lifting f to M by specifying f(g;) =
n;, with n; chosen arbitrarily from the class f([g;]) = [ni].
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To show monomorphicity, given f : M — N such that 77y f = 0, this means that
im fo C imd, so we can choose H(g;) € N; in such a way that 0H(g;) = fo(gi).
This then extends uniquely to a Bp-module homomorphism H : My — N; with
dH = fy; moreover any element of M, is a linear combination of elements of
the form b g; with by € By, and for these one has Hd(b1g;) = H(d(b1)gi) =

d(b1) H(gi). But f1(b1&i) = b1 fo(gi) = b19H (gi) = 9(b1) H(gi) too,so HI = f;.
This shows that f is nullhomotopic. U

1.2. X-structure
Definition 1.2.1 The suspension £ X of a graded object X = (X"),ez is given by
degree shift, (2 X)" = X"~

Let ¥ : X — XX be the map of degree 1 given by the identity. If X is a left
A-module over the graded algebra A then XX is a left A-module via

a-Tx =(=Dz@ x) (1.2.2)

for a € A, x € X. On the other hand if £ X is a right A-module then (Xx)-a =
3 (x - a) yields the right A-module structure on XX .

Definition 1.2.3 A X-module is a graded pair module X = (3 : X; — Xo) equipped
with an isomorphism

o:mX =XmyX
of graded k-modules. We then call o a X-structure of X. A X-map between X-
modules is a map f between pair modules such that (1 f) = (o f)o. If X isa
pair algebra then a X-structure is an isomorphism of 7y X -9 X -bimodules. If X is

a left module over a pair algebra B then a X-structure of X is an isomorphism o of
left 7o B-modules. Let

(B-Mod)* c B-Mod
be the track category of B-modules with X-structure and X-maps.

Lemma 1.2.4 Suspension of a B-module M has by (1.2.2) the structure of a B-
module and XM has a Z-structure if M has one.

Proof: Giveno : myM =~ XmgM one defines a X-structure on XM via

TEM = SmM 25 SSmoM = Sme M.
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Hence we get suspension functors between track categories

B-Mod B-Mod

| T

(B-Mod)® —=> (B-Mod)~.

Lemma 1.2.5 The track category (B—Mod)> is L-additive in the sense of [4], with
L =371 as well as R-additive, with R = 3.

Proof: The statement of the lemma means that the bifunctor
D(M.N) = Aut(Op)

is either left- or right-representable, i. e. there is an endofunctor L, respectively R
of (B-Mod)* and a binatural isomorphism D(M,N) = [LM,N], resp. D(M,N) =
[M,RN].

Now by (1.1.7), a track in Aut(Opz,n) is a Bp-module homomorphism H :
My — Ny with dH = H 0 = 0; hence

D(M,N)=Homy,g(moM,71N) = Hom,,OB(JTOE_lM,nON)
~ Homy, g (moM,moEN).

O

Lemma 1.2.6 If B is a pair algebra with X-structure then each free B-module has
a X-structure.

Proof: This is clear from the description of free modules in 1.1.6. O

1.3. The secondary differential over pair algebras

For a pair algebra B with a X-structure, for a 3-module M over B, and a module
N over B we now define the secondary differential

dp): EthOB(nOM,nON) — ExtzO“L;(noM,mN).

Here d(;) = d)(M,N) depends on the B-modules M and N and is natural in M
and N with respect to maps in (B—Mod)Z. For the definition of d(2) we consider
secondary chain complexes and secondary resolutions. In [4] such a construction
was performed in the generality of an arbitrary L-additive track category. We will
first present the construction of d() for the track category of pair modules and then
will indicate how this construction is a particular case of the more general situation
discussed in [4].
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Definition 1.3.1 For a pair algebra B, a secondary chain complex M, in B-Mod is
given by a diagram to be

dyt1.1 dy—1,1
n+21—>Mn+11—>Mn1—>Mn 1,1 ——=

Hyt1

n+20—>Mn+10—>Mn0d—>Mn 1,0 ——>-
n—1,0

where each M, = (0, : Mp,1 — My 0) is a B-module, each d, = (dpn,0.dp,1) 1s a
morphism in B-Mod, each H,, is By-linear and moreover the identities

dn,()dn+1,0 = anI_In
dp1dns1,1 = Hy0n42

and

Hudpy2,0 =dn1 Hos1

hold for all n € Z. We thus see that in this case a secondary complex is the same as
a graded version of a multicomplex (see e. g. [14]) with only two nonzero rows.
One then defines the fotal complex Tot(M,) to be
(% ) (i, ")

e My 10O Mp2) My o @My 11— Mut10B M1 <
Cycles and boundaries in this complex will be called secondary cycles, resp.
secondary boundaries of M,. Thus a secondary n-cycle in M, is a pair (c,y) with
¢ € My, y € My_1,1 such that d,—1 0¢ = dp—1Y, Hy—2¢ = dy—2,1y and such a
cycle is a boundary iff there exist b € M, 11,0 and B € My ; with ¢ = dp 0b + 9,8
and y = H,—1b + dy—1,18. A secondary complex M, is called exact if its total
complex is exact, that is, if secondary cycles are secondary boundaries.

Let us now consider a secondary chain complex M, in B-Mod. It is clear then
that

ﬂOdnJrl ﬂOdn ﬂOdn 1
7TOM. . —>7'L'()Mn+2————>7T0Mn+1 ———>7TOM ———)ﬂ()Mn 1.

is a chain complex of w9 B-modules. The next result corresponds to [4, lemma 3.5].

Proposition 1.3.2 Let M, be a secondary complex consisting of X-modules and -
maps between them. If wo(M.) is an exact complex then M, is an exact secondary
complex. Conversely, if moM, is bounded below then secondary exactness of M,
implies exactness of 7wy Mo.
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Proof: The proof consists in translating the argument from the analogous general
statement in [4] to our setting. Suppose first that 7o M, is an exact complex, and
consider a secondary cycle (c,y) € Mp,0 ® My—1,1, 1. €. one has d,—1,0¢ = 0y—1Y
and H,_»¢ = dp—2,1y. Then in particular [c] € moM, is a cycle, so there exists
[b] € moMy+1 with [c] = 7o(dn)[b]. Take b € [b], then ¢ — d, ob = 9, for some
B € Mpy1,1. Consider § = y — Hp,—1b —dy—1,18. One has 0,16 = 0p—1y —
On—1Hp—1b—0y—1dn—118 = dn—1,0c —dn—1,0dn,0b —dn—1,00, = 0, so that § is an
element of 71 M. Moreover d,—»10 = dp—2,1Y —dn—2,1Hp—1b—dn—2,1dn—118 =
Hy_»>c—Hp_»dpob—Hy,—20,8 =0,i.e. § isacycle in 7; M,. Since by assumption
oM, is exact, taking into account the X-structure 3 M, is exact too, so that there
exists ¥ € my M, with § = dp—1,1¥. Define ,3 = B+ . Then d, ob + 8,,,3 =
dn,ob + 0,8 = c since ¥ € kerd,. Moreover dn_l,lﬁ =dp—11B + dn—11V =
dy—1.1B + 8 = y — Hy—1b, which means that (c,y) is the boundary of (b,,3~). Thus
M, is an exact secondary complex.

Conversely suppose M, is exact, and moM. bounded below. Given a cycle
[c] € mo(M,), represent it by a ¢ € M,o. Then mod,—1[c] = O implies
dp—1,0c € imd,—1, so there is a y € M,_;; such that d,_10c = 0p—1Y.
Consider w = dp—2,1y — Hy—2¢. One has 0,20 = 0y—2dy—2,1Y — On—2Hp—2c =
dn—2,00n—1Y — dn—2,0dn—10¢ = 0, 1. e. w is an element of 7 M,_». Moreover
dp—3,10 = dp—31dn—2,1Y — dp—3,1Hp—2¢ = Hyp—30p—1Y — Hy—3dp0c = 0, so w
is a n — 2-dimensional cycle in m; M,. Using the X-structure, this then gives a
n — 3-dimensional cycle in moM.. Now since oM, is bounded below, we might
assume by induction that it is exact in dimension n — 3, so that w is a boundary.
That is, there exists @ € w3 M,—; with d,—» 100 = w. Define y = y — «; then
one has dy—2,17 = dp—2,1Y — dn—210 = dy—2,1y — 0 = Hp_c. Moreover
On—1Y = Op—1y = du—1,0c since « € ker(d)n — 1. Thus (c,y) is a secondary cycle,
and by secondary exactness of M, there exists a pair (b,) with ¢ = dp 0b + 9, 8.
Then [c] = mo(d,)[b], i. €. ¢ is a boundary. O

Definition 1.3.3 Let B be a pair algebra with X-structure. A secondary resolution
of a X-module M = (0 : M; — My) over B is an exact secondary complex F, in
(B—Mod)* of the form

d d d €
F 21 Fyy 11 o1 1

31 F11 Fo1 M, (‘) 0
H2| H|| H()| é| |
Foo " My 0 0

F3o Fxo Fio
dao dio doo

where each F,, = (0, : F,;1 — Fyo) is a free B-module.

It follows from 1.3.2 that for any secondary resolution F, of a B-module M
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with X-structure, o Fe Will be a free resolution of the o B-module oM, so that in
particular one has

Ext, p(moM,U) = H"Hom(rmo Fe,U)

for all n and any 7o B-module U'.

Definition 1.3.4 Given a pair algebra B with X-structure, a X-module M over B,
amodule N over B and a secondary resolution F, of M, we define the secondary
differential

d) 1 Exty p(moM,moN) —>Ext”+2(yroM m1N)

in the following way. Suppose given a class [c] € Ext p(moM,moN). First
represent it by some element in Homy, g (7o £, o N) which is a cocycle, i. e. its
composite with wo(dy,) is 0. By 1.1.9 we know that the natural maps

[Fu,N] — Homg,p (7o F,moN)

are isomorphisms, hence to any such element corresponds a homotopy class in
[Fu,N] which is also a cocycle, i. e. value of [d,,N] on it is zero. Take
a representative map ¢ : F, — N from this homotopy class. Then cd, is
nullhomotopic, so we can find a Bg-equivariant map H : F,,+1,0 — N; such that in
the diagram

dnt1.1
n+2 1 — Fn+1 1

n+2
3n+1 3n

Fut2,0 — Fn+1 0

one has cody,0 = 0H, c1dp,1 = H0,+41 and dc; = ¢pdy,. Then taking I' = ¢ H, —
Hd, 11,0 one has dI' = 0, I'd,4» = 0, so ' determines a map I : cokerd,ir —
kerod, i. e. from mgFy, 4, to 1 N. Moreover I_’no(d,,+2) = (0, so it is a cocycle in
Hom(mg(F,.), 1 N) and we define

doyle] =[T € Eth+2(7T0M a1 N).

Definition 1.3.5 Let M and N be B-modules with X-structure. Then also all
the B-modules %M, %N have Z-structures and we get by 1.3.4 the secondary
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differential
doy(M,ZkN
EXtr;;OB(JToM,JToEkN) e ) Ext”+2(710M 112k N)
Ext? p(moM.Z¥moN) 4 ExC"*2(mo M. =¥+ o).

In case the composite

2 (ro M, 5K 1o N) 5 Ext?  (ro M, SF 1o N) ExU 12 (mo M. =5 g N)

JTOB o B

vanishes we define the secondary Ext-groups to be the quotient groups
Ext’ (M,N)* :=kerd/imd.

Theorem 1.3.6 For a X-algebra B, a B-module M with X-structure and any B-
module N, the secondary differential d(yy in 1.3.4 coincides with the secondary
differential

d@) : Ext!(M,N) — Ext!T2(M,N)
from [4, Section 4] as constructed for the L-additive track category (B—Mod)* in
1.2.5, relative to the subcategory b of free B-modules with a = b~.

Proof: We begin by recalling the appropriate notions from [4]. There secondary
chain complexes Ae = (Aj,dn,0n)nez are defined in an arbitrary additive track
category B. They consist of objects A, morphisms d, : A,4+1 — A, and tracks
O i dndnt1 = 04,454, n € Z, such that the equality of tracks

Sndn+2 = dn8n+1

holds for all n. For an object X, an X -valued n-cycle in a secondary chain complex
A, is defined to be a pair (c,y) consisting of a morphism ¢ : X — A4, and a track
y :dp—1¢ = 0x, 4,_, such that the equality of tracks

Sn—2c =du—2y

is satisfied. Such a cycle is called a boundary if there exists amap b : X — A,
and a track 8 : ¢ = d,b such that the equality

Yy = Sn—lden—IIB

holds. Here the right hand side is given by track addition. A secondary chain
complex is called X-exact if every X-valued cycle in it is a boundary. Similarly
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it is called b-exact, if it is X-exact for every object X in b, where b is a track
subcategory of B. A secondary b-resolution of an object A is a b-exact secondary
chain complex A, with A, = 0forn < —1, A_; = A, A, € b for n # —1; the last
differentials will be then denoted d_; =€ : A9 - A, §—1 = € : €dy — 04,,4 and
the pair (¢,€) will be called the augmentation of the resolution. It is clear that any
secondary chain complex (Ae,de,8s) in B gives rise to a chain complex (A, [ds]), in
the ordinary sense, in the homotopy category B~ of B. Moreover if B is X-additive,
i. e. there exists a functor ¥ and isomorphisms Aut(Oy,y) = [¥X,Y], natural in X,
Y, then b-exactness of (Ae,de,0.) implies b~-exactness of (A.,[ds]) in the sense
that the chain complex of abelian groups [ X, (A.,[d.])] Will be exact for each X € b.
In [4], the notion of b~ -relative derived functors has been developed using such
b~ -resolutions, which we also recall.

For an additive subcategory a = b~ of the homotopy category B~, the a-relative
left derived functors L2 F, n > 0, of a functor F : B~ — ./ from B~ to an abelian
category 7 are defined by

(L F)A = Hy(F(4.)),

where A. is given by any a-resolution of A. Similarly, the a-relative right derived
functors of a contravariant functor F : B2 — .o/ are given by

(R"F)A = H"(F(A.)).

In particular, for the contravariant functor F = [_, B] we get the a-relative Ext-
groups
Ext}(A,B) := (R}[_,B])A = H"([A., B])

for any a-exact resolution A. of A. Similarly, for the contravariant functor Aut(0_ g)
which assigns to an object A the group Aut(04,p) of all tracks & : 04,5 = 04,p from
the zero map A — * — B to itself, one gets the groups of a-derived automorphisms

Aut’ (A, B) := (R” Aut(0_p))(A).

It is proved in [4] that under mild conditions (existence of a subset of a such that
every object of a is a direct summand of a direct sum of objects from that subset)
every object has an a-resolution, and that the resulting groups do not depend on the
choice of a resolution.

We next recall the construction of the secondary differential from [4]. This is a
map of the form

de)  Ext}(A,B) — Aut} (04,B);

it is constructed from any secondary b-resolution (Ae,de,de,€,€) of the object
A. Given an element [c] € Ext](A,B), one first represents it by an n-cocycle
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in [(Ae,[de]),B], i. e. by a homotopy class [¢c] € [A,,B] with [cd,] = O.
One then chooses an actual representative ¢ : 4, — B of it in B and a track
y 1 0 = cd,. It can be shown that the composite track I' = ¢6,0ydn+1 €
Aut(04,,,p) satisfies I'd,+1 = 0, so it is an (n + 2)-cocycle in the cochain
complex Aut(0(4, [d.]),B) = [(XAe.[Xds]), B], so determines a cohomology class
d(2)([c]) = [T'] € Ext"T2(Z A, B). Itis proved in [4, 4.2] that the above construction
does not indeed depend on choices.

Now turning to our situation, it is straightforward to verify that a secondary
chain complex in the sense of [4] in the track category B-Mod is the same as a
2-complex in the sense of 1.3.1, and that the two notions of exactness coincide. In
particular then the notions of resolution are also equivalent.

The track subcategory b of free modules is generated by coproducts from a
single object, so b~-resolutions of any B-module exist. In fact it follows from
[4, 2.13] that any B-module has a secondary b-resolution too.

Moreover there are natural isomorphisms

Aut(Opr,n) = Homy, g (mo M, 1 N).

Indeed a track from the zero map to itself is a Byp-module homomorphism H : My —
Ny with 0H =0, Hd = 0, so H factors through My —> moM and over 7y N > Nj.
Hence the proof is finished with the following lemma. U

Lemma 1.3.7 For any B-modules M, N there are isomorphisms
Ext; (M,N) = Ext} p(woM,moN)

and
(R (Homy, g (mo(_), 1 N))) (M) = Exty g(moM,m1 N).

Proof: By definition the groups Exty(M,N), respectively
(R (Homp, (o(_),m1N)))(M), are cohomology groups of the complex [F,,N],
resp. Homy, g (o (F.), 1 N), where F, is some a-resolution of M. We can choose
for F, some secondary b-resolution of M. Then mgF. is a free o B-resolution
of my M, which makes evident the second isomorphism. For the first, just note in
addition that by 1.1.9 [F,, N] is isomorphic to Homp, (7o (F.),moN). O

2. The pair algebra % of secondary cohomology operations

The algebra % of secondary cohomology operations is a pair algebra with X-
structure which as a Hopf algebra was explicitly computed in [3]. In particular the
multiplication map A of % was determined in [3] by an algorithm. In this chapter
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we recall the topological definition of the pair algebra %8 and the definition of the
multiplication map A. The main results of this work will provide methods for the
computation of A or its dual multiplication map A.. We express in terms of A the
secondary Ext-groups Extg over the pair algebra 4. This yields the computation of
the Es-term of the Adams spectral sequence in the next chapter.

2.1. The track category of spectra

In this section we introduce the notion of stable maps and stable tracks between
spectra. This yields the track category of spectra. See also [3, section 2.5].

Definition 2.1.1 A spectrum X is a sequence of maps
Xi 5> QXip1, i€

in the category Top™ of pointed spaces. This is an Q-spectrum if  is a homotopy
equivalence for all i.

A stable homotopy class f : X — Y between spectra is a sequence of homotopy
classes f; € [X;,Y;] such that the squares

X, —7 .y,

P
Qfit1

QXit1 —= QY41

commute in Top*.. The category Spec consists of spectra and stable homotopy
classes as morphisms. Its full subcategory $2-Spec consisting of 2-spectra is
equivalent to the homotopy category of spectra considered as a Quillen model
category as in the work on symmetric spectra of M. Hovey, B. Shipley and J. Smith
[12]. For us the classical notion of a spectrum as above is sufficient.

A stable map f = (f;, ﬁ )i : X — Y between spectra is a sequence of diagrams
in the track category [Top*] (i € Z)

X, — 7

l Fiy l

QX1 ETQYH—L

Obvious composition of such maps yields the category

[Spec],.
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It is the underlying category of a track category [Spec] with tracks (H : f = g) €
[Spec], given by sequences
Hi: fi = gi

of tracks in Top™ such that the diagrams

r fzﬂ r
Qfi
QX1 S QY

Qgit1

paste to g;. This yields a well-defined track category [Spec]. Moreover
[Spec] . = Spec

is an isomorphism of categories. Let [X,Y] be the groupoid of morphisms X — Y
in [Spec], and let [ X, Y]](l) be the set of pairs (f,H) where f : X — Y is a map and
H : f = 0Ois atrack in [Spec], i. e. a stable homotopy class of nullhomotopies for
f.

For a spectrum X let =¥ X be the shifted spectrum with (3¥X), = X,+x and
the commutative diagram

(KX ) — Q=F X)nta

Xntk ——= QXntk+1)

defining r for ¥ X. Amap f : Y — KX is also called a map f of degree k from
Y to X.

2.2. The pair algebra % and secondary cohomology of spectra as a -module

The secondary cohomology of a space was introduced in [3, section 6.3]. We here
consider the corresponding notion of secondary cohomology of a spectrum.
Let F be a prime field F = Z/pZ and let Z denote the Eilenberg-Mac Lane
spectrum with
Z" = K(F,n)
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chosen as in [3]. Here Z” is a topological [F-vector space and the homotopy
equivalence Z" — QZ"*1 is F-linear. This shows that for a spectrum X the sets

[[X k7 ]] 0 and [[X k7 ]](1) of stable maps and stable O-tracks repectively, are FF-
vector spaces.

We now recall the definition of the pair algebra & = (0 : b1 — HBo) of
secondary cohomology operations from [3]. Let G = Z/ p2Z and let

Bo =T (Ew)
be the G-tensor algebra generated by the subset

{Sq'.Sq%,...} for p =2,

o {P1.P%,...} U{B.BP' . BP2,...} forodd p

of the mod p Steenrod algebra <. We define % by the pullback diagram of graded
abelian groups

o

% —=[Z,2*Z]}
al ] (2.2.1)
Py —— [z.2*Z],

.

in which the right hand column is an exact sequence. Here we choose for « € E,
a stable map s(a) : Z — X!%Z representing « and we define s to be the G-linear
map given on monomials a; ---a, in the free monoid Mon(E /) generated by E ., by
the composites

s(ay-an) = s(ar)---s(an).

It is proved in [3, 5.2.3] that s defines a pseudofunctor, that is, there is a well-defined
track

I':s(a-b) = s(a)os(b)



224 H.-J. BAUES & M. JIBLADZE

for a,b € %y such that for any a, b, ¢ pasting of tracks in the diagram

s(a-b-c)
r
s(a-b)
r
s(a) s(b) s(c)
r
s(b-c)
r
s(a-b-c)

yields the identity track. Now 4 is a HBy-%PBp-bimodule by defining
ab,z)y=(a-b,aez)

with a e z given by pasting s(a)z and I". Similarly
(b,z)a=(b-a,zea)

where z e a is obtained by pasting zs(a) and I". Then it is shown in [3] that Z =
(0 : B, — HBo) is a well-defined pair algebra with 79 % = &/ and X-structure
7'[1:@ =X .

For a spectrum X let

H(X)o = Bo[X.5*Z],

be the free Zy-module generated by the graded set [X,X*Z],. We define /2 (X);
by the pullback diagram

SH*X
H(X)y — [x.z*z]°

| ;

H(X)g —= [X.3*Z],

H*X

where s is the G-linear map which is the identity on generators and is defined
on words ap---a, - u by the composite s(ay)---s(an)s(u) for a; as above and
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u € [X,2*Z],. Again s is a pseudofunctor and with actions e defined as above
we see that the graded pair module

HX) = (%(X)l LA %(X)o)

is a Z-module. We call 77 (X) the secondary cohomology of the spectrum X. Of
course 7 (X ) has a X-structure in the sense of 1.2.3 above.

Example 2.2.2 Let GT be the Z-module given by the augmentation % — G= in
[3]. Recall that GZ is the pair

G2=(]FeamiG)

with 3| the inclusion nad d|sxp = 0. Then the sphere spectrum S° admits a weak
equivalence of Z-modules

H(§%) 5 G
Compare [3, 12.1.5].

3. Computation of the E;-term of the Adams spectral sequence as a secondary
Ext-group

We show that the E3-term of the Adams spectral sequence (computing stable maps
in{Y,X };) is given by the secondary Ext-groups

E3(Y,X) = Extg(H° X, ).

Here 57 X is the secondary cohomology of the spectrum X which is the Z8-module
G? if X is the sphere spectrum S°. This leads to an algorithm for the computation
of the group

E5(S%,8%) = Ext4(GZ,G¥)

which is a new explicit approximation of stable homotopy groups of spheres
improving the Adams approximation

E»(5°,5%) = Ext, (F.F).

An implementation of our algorithm computed E3(S°,S?) by now up to degree 40.
In this range our results confirm the known results in the literature, see for example
the book of Ravenel [17].
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3.1. The Es-term of the Adams spectral sequence

We now are ready to formulate the algebraic equivalent of the Ez-term of the Adams
spectral sequence. Let X be a spectrum of finite type and Y a finite dimensional
spectrum. Then for each prime p there is a spectral sequence Ex = E. (Y, X) with
E. = [Y.2*X],
E, = Eth{(H*X,H*Y).

Theorem 3.1.1 The Es-term Ez = E3(Y, X) of the Adams spectral sequence is given
by the secondary Ext group defined in 1.3.5

E; = Ethg(c%ﬂ*X,c%ﬂ*Y)
Corollary 3.1.2 If X and Y are both the sphere spectrum we get
E3(S°,5°%) = Ext4(G*,G%).

Since the pair algebra % is computed in [3] completely we see that E3(S9,59) is
algebraically determined. This leads to the algorithm below computing E3(S°,59).

The proof of 3.1.1 is based on the following result in [3]. Consider the track
categories

b C [Spec]

b’ C (A—Mod)*
where [Spec] is the track category of spectra in 2.1.1 and (4—Mod)? is the track
category of Z-modules with X-structure in 1.2.3 with the pair algebra Z defined by
(2.2.1). Let b be the full track subcategory of [Spec] consisting of finite products
of shifted Eilenberg-Mac Lane spectra X% Z*. Moreover let b’ be the full track

subcategory of (4—Mod)> consisting of finitely generated free Z-modules. As in
[4, 4.3] we obtain for spectra X, Y in 3.1.1 the track categories

{Y,X}b C [Spec]
b {AX,HY} C (B—Mod)™
with {Y, X }b obtained by adding to b the objects X, Y and all morphisms and tracks

from [ X, Z], [Y,Z] for all objects Z in b. It is proved in [3, 5.5.6] that the following
result holds which shows that we can apply [4, 5.1].

Theorem [3] 3.1.3 There is a strict track equivalence

(Y. Xb)? S W {AX, Y}
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Proof of 3.1.1: By the main result 7.3 in [4] we have a description of the
differential d(,) in the Adams spectral sequence by the following commutative
diagram

d
Extly (XY )" —2 ExtF2(X,y)m+1

l; |-

d
Ext", (H*X,H*Y)" ——3 Ext"}>(H*X,H*Y )y +!

where a = b~. On the other hand the differential d(,) defining the secondary Ext-
group Extz(77 X, 7Y ) is by 1.3.6 given by the commutative diagram

Ext! (A X, HY )" —— Ext" (X, Y )"+

a/

Ext", (H*X,H*Y )™ — Ext""}2(H*X,H*Y )"+!

where a’ = b_. Now [4, 5.1] shows by 3.1.3 that the top rows of these diagrams
coincide. O

3.2. The algorithm for the computation of d(y) on Ext., (F,F) in terms of the
multiplication maps

Suppose now given some projective resolution of the left <7/-module F. For
definiteness, we will work with the minimal resolution

F o o/(gf) o (g¥ |n=0) (g2 i jl#1) ... (32D

where g;‘fl, d = m, is a generator of the m-th resolving module in degree d.
Sometimes there are more than one generators with the same m and d, in which

case the further ones will be denoted by ’ g;‘f,, " g;‘f,

These generators and values of the differential on them can be computed
effectively; for example, d(g3") = Sq°" g3 and d(g”) = Sq' g”~!; moreover e. g.
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an algorithm from [9] gives
d(g3) =Sq’g| +Sq° ¢}
d(g5) =Sq*gi +59°Sq' ¢ +5q' g1
d(g5) = Sq°¢7 + (Sq*+54°Sq" gt
d(g3) = Sq®g] + (S¢°+5q*Sq")g} + Sq' g}
d(g,°) = (S4*+59°Sq*Sq" g7 + (S4°Sq' +5q*Sq*) gt + Sq* ¢}
d(£,°) = (Sq4'*+59°Sq*Sq' +S4*Sq*Sq") gt + (Sq®+Sq”Sq' +59°Sq?) ¢}

d(g5) =Sq’g 2+Sq2 >+Sq'g3

d(g3°) =Sq® g3 + (Sq° +Sq*Sq")g3 +Sq' ¢

d(g3") = (Sq’ +Sq Sq*Sq')g5 + Sq° 2+Sq Sqlg8

d(g3%) = Sq°¢5 +(S4°Sq' +54°Sq*)¢5 + (Sq* +54°Sq') g5 + Sa’ g5 + Sa’ ¢5°

’

d(gs") = Sq®g3 + (Sq° +5q*Sq")g§ +Sq' g3°
d(g4>) =Sq*Sq® g3 + (Sq” +59*Sq*Sq" )¢5 + Sq>Sq' g3° + Sq* ¢3!

d(g5") =5q"°g3 +54°Sq' g5
d(g 6) — Sq12 4 —I—Sq4Sq g +Sq3 13
d(gl®) = Sq''gS + Sq? gl
etc.
By understanding the above formulza as matrices (i. e. by applying y degreewise

to them), each such resolution gives rise to a sequence of Z-module homomor-
phisms

G® « B(gl) « Blgl' 1n20) < B(Z+ |li—jI £1) < ... (22)

which is far from being exact — in fact even the composites of consecutive maps
are not zero. In more detail, one has commutative diagrams

2G <~ RYg)<~—0<~— -

L

G<—%Og0<—0<—---
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in degree 0,

(0.€) )
F <" RLg0@ %0 <Y~ RO gl «—— 0~ -

L

0 Bigd Blgl<— 0=~ -

in degree 1,

d 0) d
(43 )
0~— R%g0 @ o' g) < (Rlg| ® R%g?) & &/ g} <— R%g3

- | |

0 1 Bigi © Bogi Byg3

OS=——"7-0O

in degree 2, ...

)
_ 0d _ i i _1_ni i
0 Ryg0 ® /"0 @2’7Sangj2g% & Dy <p1 " el —

{ l d l Y
0 %580 Doi<n By % 87
in degree n, etc.

Our task is then to complete these diagrams into an exact secondary complex
via certain (degree preserving) maps

5R
Sm = ((Sg) :%o(gfn_,_z | n)—> (Re®EA)(gm | n).

Now for these maps to form a secondary complex, according to 1.3.1.1 one
must have 36 = dody, 60 = did;, and d1§ = §dy. One sees easily that these
equations together with the requirement that § be left %y-module homomorphism
are equivalent to

SR =dd, (3.2.3)
87 (bg) = m(b)§” (g) + A(m(b).dd(g)). (3.2.4)
ds? =687d, (3.2.5)

for b € Ay, g one of the g7, and A(a.rg) := A(a,r)g fora € &/, r € Ry. Hence §
is completely determined by the elements

S (&) € EB%”"H(g,’;) (3.2.6)
k
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which, to form a secondary complex, are only required to satisfy

dSrfz{(g:ln+2) = 5;2{—1d(g;1n+2),

where on the right §7_, is extended to %, (g; +1) via 3.2.4. In addition secondary
exactness must hold, which by 1.3.1 means that the (ordinary) complex

<~ Bo(gm—1) ® (Rz ® X ) (gy_2) < Polgm) ® (Rz ® X)) (gm_1)
<~ Bolgmi1)®(Rs ® ) (gr) <
with differentials
dnt+1 imt1 O . . .
(d'”d’”+1 dm O ) t Bo(gm2) ® Rz (gmi1) ® B (g 1)

82 0 dm

— Bolgn 1) ®Rz(gy) ® S (gh)

is exact. Then straightforward checking shows that one can eliminate R from this
complex altogether, so that its exactness is equivalent to the exactness of a smaller
complex

— Bolgm 1) DA (gh_s) < Bolgn) DA (gh_1) < Bolgni1)®EA (g) <

with differentials
(40 ) Bolgnia) @ S (g11) > Do) ® = (g).

Note also that by 3.2.4 § factors through 7 to give

S+ A (g ia) > T (g,).-

It follows that secondary exactness of the resulting complex is equivalent to
exactness of the mapping cone of this §, i. e. to the requirement that § is a
quasiisomorphism. On the other hand, the complex (<7 (gy),d«) is acyclic by
construction, so any of its self-maps is a quasiisomorphism. We thus obtain

Theorem 3.2.7 Completions of the diagram 3.2.2 to an exact secondary complex
are in one-to-one correspondence with maps 8y, : &/ (g; +2) — X4/ (gr) satisfying

dég =4dg, (3.2.8)
with §(ag) for a € &7 defined by
6(ag) =ad(g) + A(a,ddg)

where A(a,rg) for r € Ry is interpreted as A(a,r)g.
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O
Later in chapter 9 we will need to dualize the map §. For this purpose it is more
convenient to reformulate the conditions in 3.2.7 above in terms of commutative
diagrams.
Let

W, =Pw;

q=0

denote the free graded G-module spanned by the generators g7, so that we can write
Po(g? | q=0)=Bo@W,.

The differential in the ZB-lifting of (3.2.1), being HB-equivariant, is then given by
the composite

1®d ®1
Bo @ Wpi1 —> By @ By @ W ——> By @ W,

where
d: Wp+1 —>,@0®Wp

is the restriction of this differential to the generators. As a linear operator, this d is
given by the same matrix as the one giving the operator of the same name in (3.2.1),
i. e. it is obtained by applying the map y componentwise to the latter.
Moreover let us denote
Vo =W, QF,

so that similarly to the above the differential of (3.2.1) itself can be given by the
same formule, with 27 in place of %, and ¥}, in place of #),. Then by 3.2.7 the
whole map ¢ is determined by its restriction

§7  Vyso > XA RV,

(cf. (3.2.6)). Indeed 3.2.7 implies that § is given by the sum of the two composites
in the diagram

A REIA RV,

A ®@Vyia S V). (3.2.9)

M%

A @Rz®V,
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Here we set ¢ = dd ® F, where the map dd is the composite

d 1®d ®1
Wp2 = Bo ® Wpt1 ———h%’o@:%o@Wpﬁ——):@o@Wp
whose image, as we know, lies in
Rz @ W, C BoR Wp.

In other words, there is a commutative diagram

PBo @ Wpi1 164 Bo @ Bo @ W,
/ m®1
Wpia _ PBo @ Wp
i ad T~ N
Vp+2\ - RF/S’@ Wp
e i
Rz ® Vp

(3.2.10)
Then in terms of the above diagrams of F-vector spaces, the condition of 3.2.7
can be expressed as follows:

Corollary 3.2.11 Completions of 3.2.2 to a secondary resolution are in one-to-one

correspondence with sequences of maps

8 Vpra > Sd @V, p=0

making the diagrams below commute, with ¢ defined by (3.2.10).

S @Vpy1 2L SA ARV,

8;’/’ m

dRRzV, 2. S ®V, (3212

pH\\\\ ///// /////

<d®nﬂ__+ﬂ®zﬂ®v
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We can use this to construct the secondary resolution inductively. Just start
by introducing values of § on the generators as expressions with indeterminate
coefficients; the equation (3.2.8) will impose linear conditions on these coefficients.
These are then solved degree by degree. For example, in degree 2 one may have

8(¢3) = m3(Sq")Sq" g6
for some 73 (Sq') € .. Similarly in degree 3 one may have
8(¢3) = n3(Sa")Sq" g1 + m(Dgi.
Then one will get

d8(g3) =13(Sq")Sq" d(g}) + n3(Dd(g?) = 13(Sq")Sq' Sq" g§ + n3(1)Sq g§
=n3(1)Sq g

and

3d(g3)=8(Sq" g3) = Sq'8(g3) + A(Sq".dd(g3))
=n5(5q")Sq"'Sq' g0 + A(Sq'.d(Sq' 1)) = A(Sq"'.Sq'Sq' gJ) = 0;

thus (3.2.8) forces n3(1) = 0.

Similarly one puts §(g%) = Y om—r<di<d—12-a nd (a)ag?_,, with a running
over a basis in &7¢ 174’ and then substituting this in (3.2.8) gives linear equations
on the numbers r]fn (a). Solving these equations and choosing the remaining 7’s
arbitrarily then gives values of the differential § in the secondary resolution.

Then finally to obtain the secondary differential

d : Ext",(F,F)™ — Ext’F2(F,F)" !

from this §, one just applies the functor Hom,, (_,IF) to the initial minimal resolution
and calculates the map induced by § on cohomology of the resulting cochain
complex, i. e. on Ext},(F,IF). In fact since (3.2.1) is a minimal resolution, the
value of Hom,, (_,IF) on it coincides with its own cohomology and is the [F-vector
space of those linear maps 7 (g¥) — F which vanish on all elements of the form
agy with a of positive degree.

Let us then identify Ext® (F,F) with this space and choose a basis in it
consisting of elements g;f, defined as the maps sending the generator g;‘fl to 1 and all
other generators to 0. One then has

(doy(@d)) (gl = gd8(gd).
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The right hand side is nonzero precisely when g;‘ft appears in 8(g,‘f1/,) with coefficient
1, 1. e. one has

do)(8h) = > e (3.2.13)

g appears in S(g,'iilz)

For example, looking at the table of values of § below we see that the first
instance of a g;‘fl appearing with coefficient 1 in a value of § on a generator is

8(g3") =g1® +5q9"% ¢} +5q9'°Sq* g7 + (Sq°Sq*Sq* +59'°Sq° +Sq' ' Sq*) g -
This means
d)(81%) = g3’

and moreover d () (gr;{,) = 0 for all g;‘ft with d < 17 (one can check all cases for each
given d since the number of generators g,i for each given d is finite).

Treating similarly the rest of the table below we find that the only nonzero values
of d(2) on generators of degree < 40 are as follows:

do)(8%) =8’
do)(83") =82
do(87) =82
d(z)(g’?) = §%4
d2(83°) =83
d(z)(é’gl) =§f%
do(83?) =83
d (&) =83
do(83) =8¢
d(z)(§§3) = é;fg
doy(83h) =3
doy(&3Y) =83
doy(§7°) =85’
doy(83") =835

These data can be summarized in the following picture, thus confirming calculations
presented in Ravenel’s book [17].
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........ Qo - - @ -

....... ...'..}o

......... o000 @ -

3.3. The table of values of the differential § in the secondary resolution for G*

The following table presents results of computer calculations of the differential
6. Note that it does not have invariant meaning since it depends on the choices
involved in determination of the multiplication map A, of the resolution and of those
indeterminate coefficients r]fn (a) which remain undetermined after the conditions
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(3.2.8) are satisfied. The resulting secondary differential d(,) however does not
depend on these choices and is canonically determined.

8(g3) =0

8(g3) =0

8(g5) =0

s(gy) =0

8(g5) =0

8(g2) =0

8(g5) =Sq*gl

8(g) =

s(gh) =0

5(g¥) =0

s(gdh =0

8(g3) =0

8(gg) =0

§(gd% =

8(g3% =(Sq*Sq®>Sq' +5q")g?
+Sq®g!

8(g19) =0

8(g3h) =(Sq"Sq' +Sq*)g?
+Sq°Sq° g}

§(gih) =Sq°g
+Sq*Sq’ g3

§(gil) =0

8(g3%) =5q9'Sq’g]
§(gi3) =0
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8(g47)

8(gl3
8(ga"
8(git

8(23°)
8(g1°)

8(26%)

8(g37)
8(g37)

8(g¢")
8(23%)
8(g3®)

8(24®)

3(g4®

=Sq*g}

+(Sq”+59°Sq*) g5
+(Sq®+S¢°Sq*) g3
+(Sq”Sq*+Sq®Sq*+5q'%) g2
=0

=Sq*Sq>Sq' g%
+(Sq”Sq>+Sq*Sq*) g3
=0

=0
=Sq
+Sq4g§1
+5¢° g3°
+59'°Sq’ g3
=0

312
83

=0
=g}°

+Sq12g‘1‘

+8q'°Sq* ¢?
+(Sq”Sq*Sq*+5q'°Sq° +Sq' ' Sq*)g!
= (Sq°+Sq*Sq")g}!
+(Sq'*+5q'°Sq*) g}

=0
= (Sq''Sq*+5¢®Sq*Sq>Sq")g?
1

+(Sq'°Sq*Sq*+Sq'' Sq® +5q'*Sq* +Sq'* Sq* +Sq'®) g1

= (Sq°Sq" +5q")g3°

+(Sq°Sq® +5q”Sq” +5q°) g3

+5q%Sq* g3

+(SqIOSqZSq1 +Sq13 +Sqllsq2+sq128ql)g3
+(Sq”Sq*Sq* +Sq"° +5q'?Sq> +5q'°Sq°) g2
=Sq¢’Sq’ g5*

237
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5(g4°) =Sq°g3
+(59'°+5q9*Sq%) g5
+8q''Sq%¢3
+(Sq''Sq*Sq" +Sq"*Sq' +59®Sq*Sq* +Sq'°Sq*Sq) g4
+(Sq'*Sq* +5q'°Sq*Sq* +Sq'*Sq*) g2
8(g¥°) =Sq'gy’
+Sq4sq2 12
+8q*Sq Sq1 11
+(Sq°Sq? +Sq8)g§°
+(S9°Sq*+Sq''Sq")g§
+(Sq9"*Sq*+Sq'°Sq” +Sq"° +Sq' ' Sq*) g3

8(g3°) =0
8(¢3°) =(Sq'°+58q°Sq*Sq*)g?
+(89'%Sq° +Sq"*Sq* +5q'¢Sq")g?
+(Sq9''Sq°Sq*+5q'°Sq* +5q ' +5q'2Sq°) ¢!
8(g2°) =Sq*Sq>Sq’ g3
+(Sq’Sq" +5q¢*) g3’
+(5q'°Sq* +Sq®Sq*Sq' +Sq** +Sq'' Sq*) g$
+(Sq9**Sq>+5q'°Sq*Sq* +5q'* Sq° +Sq'*Sq*) g3
8('g2°) =Sq °Sq? g3
+Sq qu 10
+(Sq'%sq! +Sq1°Sq3+Sq88q4Sq1+Sq1°SqZSq1+Sq“Sq2)g§
+(Sq'*Sq*+Sq"*Sq>+5q'"' Sq° +Sq'® +5q'?Sq*) g3
(%) =(Sq°Sq>+Sq%)g}!
+(Sq'*Sq* +8q"° +8q' Sq*) g2

8(g3') =1(Sq'°Sq’Sq' +5q'"Sq" +5q'*Sq")¢7
+(Sq9"*Sq*Sq*+Sq'°Sq* +5q'°Sq*> +Sq"'"Sq*+Sq") g}
8(g3) =S’y
+(Sq1°+Sq9Sq1)g§°
+(Sq4°Sq*+5q''sq") g3
+(Sq"°+Sq"*Sq*+5q'°Sq°) g5
+(5q"3Sq%Sq" +5q'?Sq3Sq' +Sq'?sq*
+5q¢°Sq*Sq*Sq' +5q'°Sq*Sq?) g5
+(Sq'®Sq* +5q'?Sq® +Sq'° Sq?) g2
8(g2") =(Sq’+5q°Sq")g;’
+(Sq” +S¢*Sq") g}’
+58q''Sq° g4
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8(g3%)

8(g3%)

8('g¥?)

8(g2%)

8(g2%)

8(g3%)

+(Sq'®Sq*Sq" +5q'*Sq°+5q'*Sq*Sq*Sq" +Sq'?Sq°Sq)g?
+(S9"*Sq°Sq* +5q'7Sq> +Sq'#Sq* +Sq'*Sq*Sq*) g1

= Sq*gl7

_l_Sqllg%O

+(S9'*+59”Sq%)¢5

+(59°Sq*+5q"* +5¢°Sq*Sq")g3
+8q'2Sq* g3

+8q'%Sq’¢3
+(Sq"*Sq*Sq? +5q"° +Sq'*Sq®+Sq'*Sq°) g2
— SqZSqlg%S

+(S9°Sq*+5q'%)¢3
+(Sq°Sq*+5q"*+5q'*Sq" ) g8
+(S9'°+59"°Sq’) g3

+(Sq"°Sq*+Sq'°Sq" +Sq'*Sq* +Sq"'" Sq*Sq*) g4
+(Sq"*Sq° +5q"° +8q'7Sq?) g2

= (Sq”Sq>+54°Sq>Sq" +Sq°Sq*)g12
+Sq10g§1 +(Sq9sq2+sq85q3+sqll)g;’0
+(Sq"*Sq" +Sq''Sq>Sq"' +Sq'*Sq* +Sq"*Sq?)g$§
+Sql3sq5g§;

= g2!

+(Sq°Sq*+Sq®+Sq”Sq")gl3

+Sq10gil

+(Sq"*Sq* +Sq'°Sq*+5q"") g4

= (Sq"°Sq’>+8q'*Sq* +8q'%)¢3
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4. Hopf pair algebras and Hopf pair coalgebras representing the algebra of

secondary cohomology operations

We describe a modification %F of the algebra % of secondary cohomology

operations in chapter 2 which is suitable for dualization.

The resulting object

¥ and the dual object B will be used to give an alternative description of
the multiplication map A and the dual multiplication map A.. All triple Massey
products in the Steenrod algebra can be deduced from %Y or %F and from A and

A*.

We first recall the notions of pair modules and pair algebras from chapter 1 and
give the corresponding dual notions. Next we define the concept of M -algebras
and N-coalgebras, where M is a folding system and N an unfolding system. An
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M -algebra is a variation on the notion of a [p]-algebra from [3]. We show that the
algebra % of secondary cohomology operations gives rise to a comonoid %Y in the
monoidal category of M -algebras, and we describe the dual object Ay, which is a
monoid in the monoidal category of N -coalgebras.

In chapter 6 we study the algebraic objects ¥ and % in terms of generators.
This way we obtain explicit descriptions which can be used for computations. In
particular we characterize algebraically multiplication maps A4 and comultiplica-
tion maps A¥ which determine BF and Py completely, see sections 8.1, 8.2, 8.3.
For the dual object #F the inclusion of polynomial algebras <7, C %, will be
crucial. Here <7 is the Milnor dual of the Steenrod algebra and .%, is the dual of a
free associative algebra.

4.1. Pair modules and pair algebras

We here recall from 1.1 the following notation in order to prepare the reader for the
dualization of this notation in the next section. Let k be a commutative ring (usually
it will be actually a prime field F = F, = Z/pZ for some prime p) and let Mod
be the category of finite dimensional k-modules (i. e. k-vector spaces) and k-linear
maps. A pair module is a homomorphism

X = (Xl 3 XO) “.1.1)
in Mod. We write 7o(X) = cokerd and 1 (X) = kerd.

For two pair modules X and Y the tensor product of the complexes correspond-
ing to them is concentrated in degrees in 0, 1 and 2 and is given by

d d
X1QY = X10Yo® Xo®Y1 — Xo® Yo (4.1.2)

with dp = (0® 1,1®0d) and 0; = (_338,@13). Truncating this chain complex we get the
pair module

_ _ ) _
XQY = ((X®Y)1 = coker(d;) > Xo® Yy = (X®Y)0)
with 9 induced by dg. Clearly one has 7o(X ®Y) = 79(X) ® mo(Y) and

T (X®Y) = 1 (X) ®mo(Y) ® wo(X) @71 (Y). (4.1.3)

We next consider the category Mod' of graded modules, i. e. graded objects
in Mod (graded k-vector spaces A" = (A"),ez With upper indices, which in each
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degree have finite dimension). For graded modules A", B~ we define their graded
tensor product A" ® B’ in the usual way with an interchange

Tap A®B >B QA (4.1.4)

A graded pair module is a graded object of Mod,, i. e. a sequence X" = (9" :
X — X{[) with n € Z of pair modules. The tensor product X'®Y " of graded pair
modules X, Y is defined by

XYy =P x'®r/. (4.1.5)
i+j=n
For two morphisms f,g : X' — Y~ between graded pair modules, a homotopy
H : f = gisamorphism H : X; — Y, of degree 0 satisfying

fo—g():aH and fl—g1=H8. (416)

Definition 4.1.7 A pair algebra B’ is a graded pair module, i. e. an object
d: By — B,
in Mod;, with B = B = 0 for n < 0 such that By, is a graded algebra in Mod', B;
is a graded B-B,-bimodule, and 9" is a bimodule homomorphism. Moreover for
X,y € Bj the equality
d(x)y = x0d(y) (4.1.8)

holds in Bj;.

It is easy to see that a graded pair algebra B’ yields an exact sequence of graded
B,-B-bimodules

d
0—-mB — B;—By— B —0 4.1.9)

where in fact o B is a graded k-algebra, 71 B™ is a graded 7o B -9 B'-bimodule,
and By — mo B’ is a homomorphism of graded k-algebras.

The tensor product of pair algebras has a natural pair algebra structure, as it
happens in any symmetric monoidal category.

We are mainly interested in two examples of pair algebras defined below in
sections 4.5 and 4.6 respectively: the G-relation pair algebra % of the Steenrod
algebra </ and the pair algebra % of secondary cohomology operations deduced
from [3, 5.5.2].

By the work of Milnor [15] it is well known that the dual of the Steenrod algebra
&/ is a polynomial algebra and this fact yields important algebraic properties of <7
For this reason we also consider the dual of the G-relation pair algebra Z of </ and
the dual of the pair algebra % of secondary cohomology operations. The duality
functor D is studied in the next section.
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4.2. Pair comodules and pair coalgebras

This section is exactly dual to the previous one. There is a contravariant self-
equivalence of categories

D = Homy (_,k) : Mod®® — Mod
which carries a vector space V' in Mod to its dual
DV = Homg (V,k).

We also denote the dual of V' by Vi = DV, for example, the dual of the Steenrod
algebra & is o/, = D(</). We can apply the functor Homg (_,k) to dualize
straightforwardly all notions of section 4.1. Explicitly, one gets:

A pair comodule is a homomorphism

X = (Xl £ X°) 4.2.1)

in Mod. We write 7°(X) = kerd and !(X) = cokerd. The dual of a pair module
X is a pair comodule

DX = Homy (X ,k)
=(Dd: DXy — DXy)

with (DX)' = D(X;). A morphism f : X — Y of pair comodules is a commutative
diagram

Xl L)Yl

1,

X0 ——Y0O,

Evidently pair comodules with these morphisms form a category Mod™ and one has
functors
7% ! : Mod* — Mod.

which are compatible with the duality functor D, that is, for any pair module X one
has
wi(DX) = D(m; X) fori =0,1.

A morphism of pair comodules is called a weak equivalence if it induces isomor-
phisms on 7% and 1.
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Clearly a pair comodule is the same as a cochain complex concentrated in
degrees 0 and 1. For two pair comodules X and Y the tensor product of the cochain
complexes is concentrated in degrees in 0, 1 and 2 and is given by

1 0
Yler' x'ley'eX'er! <& x°x1°

with d° = (‘fg{}) and d! = (-1 ®d.d ® 1). Cotruncating this cochain complex we

get the pair comodule
XY = ((XQ:;)Y)l —ker(d) L X0 @ Y0 = (XQ:;)Y)O)

with d induced by dy. One readily checks the natural isomorphism
D(X®Y)=~ DX®DY. (4.2.2)

Remark 4.2.3 (compare 1.1.2) Note that the full embedding of the category of
pair comodules into the category of cochain complexes induced by the above
identification has a right adjoint Tr* given by cotruncation: for a cochain complex

1 0 —1
Cc* = (...<—c2<d—c1 Lol <—)

one has

70
Te*(C*) = (ker(dl) P CO),
with d© induced by d°. Then clearly one has
X®Y =Tr* (X ®Y).

Using the fact that Tr* is a coreflection onto a full subcategory, one easily checks
that the category Mod™ together with the tensor product ® and unit k* = (0 < k)
is a symmetric monoidal category, and Tr* is a monoidal functor.

We next consider the category Mod,. of graded modules, i. e. graded objects
in Mod (graded k-vector spaces A. = (Ay)nez With lower indices which in each
degree have finite dimension). For graded modules A., B. we define their graded
tensor product A. ® B. again in the usual way, i. e. by

(A.®@B).= P 4, ®B,.
i+j=n
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A graded pair comodule is a graded object of Mod*, i. e. a sequence X,, = (dy, :
X9 — X,}) of pair comodules. We can also identify such a graded pair comodule X.
with the underlying morphism d of degree O between graded modules

X = (X,l bl X,O).
Now the tensor product X QY. of graded pair comodules X., Y. is defined by

(X.@Y)= P Xi®Y;. (4.2.4)
i+j=n

This defines a monoidal structure on the category Mod, of graded pair comodules.
Morphisms in this category are of degree 0.
For two morphisms f,g : X. — Y. between graded pair comodules, a homotopy
H: f = gisamorphism H : X! — Y.° of degree 0 as in the diagram
1
X! f:; v!
gl
Td\H dT 4.2.5)

0—>f0\ 0
X' ==7Y",

gO

satisfying f©—g%= Hd and f' —g! =dH.
A pair coalgebra B. is a comonoid in the monoidal category of graded pair
comodules, with the diagonal

§:B — B.®B..

We assume that B. is concentrated in nonnegative degrees, that is B,, = 0 for n < 0.
Of course the duality functor D yields a duality functor

D : (Mod,,)*® — Mod”*
which is compatible with the monoidal structure, i. e.
D(X'®Y') = (DX)R(DY)).

We also write D(X') = X..
More explicitly pair coalgebras can be described as follows.
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Definition 4.2.6 A pair coalgebra B. is a graded pair comodule, i. e. an object
d:B°— B!

in Mod} with B! = B? = 0 for n < 0 such that B is a graded coalgebra in Mod.,
B!is a graded B°-B°-bicomodule, and d. is abullebullet homomorphism. Moreover
the diagram

Bl —*- B0 B!

/| s |

B! B® 1®% pi g B!

commutes, where A, resp. p is the left, resp. right coaction.

It is easy to see that there results an exact sequence of graded B°-B?-
bicomodules dual to (4.1.9)

d.
0« 7'B.« B! < B« 7°B. <0 4.2.7)

where in fact 7°B. is a graded k-coalgebra, 7!B. is a graded 7°B.-7n°B.-
bicomodule, and B? < 7%B. is a homomorphism of graded k-coalgebras.

One sees easily that the notions in this section correspond to those in the
previous section under the duality functor D = Homy (_,k). In particular, D carries
(graded) pair algebras to (graded) pair coalgebras.

4.3. Folding systems

In this section we associate to a “right module system” M a category of M -algebras
Alg), which is a monoidal category if M is a “folding system”. Our main examples
given by the G-relation pair algebra & of the Steenrod algebra .7 and by the pair
algebra # of secondary cohomology operations are in fact comonoids in monoidal
categories of such type, see sections 4.5 and 4.6. This generalizes the well known
fact that the Steenrod algebra .7 is a Hopf algebra, i. e. a comonoid in the category
of algebras.

Definition 4.3.1 Let A be a subcategory of the category of graded k-algebras. A
right module system M over A is an assignment, to each A € A, of a right A-
module M(A), and, to each homomorphism f : A — A’ in A, of a homomorphism
f« : M(A) — M(A’) which is f-equivariant, i. e.

Se(xa) = fi(x) f(a)
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for any a € A, x € M(A). The assignment must be functorial, i. e. one must have
(ida)« =1idpsa) for all A and (fg)« = f«gx for all composable f, g.

There are the obvious similar notions of a left module system and a bimodule
system on a category of graded k-algebras A. Clearly any bimodule system can be
considered as a left module system and a right module system by forgetting part of
the structure.

Examples 4.3.2 One obvious example is the bimodule system 1 given by 1(A4) =
A, fx = f for all A and f. Another example is the bimodule system X given by
the suspension. That is, X A is given by the shift

YA = (DA

(n € Z) which is the identity map denoted by 2. The bimodule structure fora,m € A4
is given by

a(Tm) = (=1)* @D (am),
(Em)a = X(ma).

We shall need the interchange of ¥ which for graded modules U, V, W is the
isomorphism

~

ouvw UQEV)QW S ZUQV QW) 4.3.3)

which carries ¥ @ Tv @ w to (=)W Ty @ v @ w).

Clearly a direct sum of module systems is again a module system of the same
kind, so that in particular we get a bimodule system 1 & ¥ with (1 & X)(A) =
AP XA

We are mainly interested in the bimodule system 1 and the bimodule system
1 & X which are in fact both folding systems, see (4.3.15) below.

Definition 4.3.4 For a right module system M on the category of algebras A and
an algebra A from A, an M -algebra of type A is a pair Dy = (0 : D1 — Dy)
with mo(D«) = A and 71(D4«) = M(A), such that Dy is a k-algebra, the quotient
homomorphism Dy —> mgD« = A is a homomorphism of algebras, D; is a right
Dy-module, 9 is a homomorphism of right Dy-modules, and the induced structure
of a right 7o(Dx)-module on 71 (D) conicides with the original right A-module
structure on M. For A, A’ in A, an M -algebra D, of type A, and another one D), of
type A’, a morphism D, — D/ of M-pair algebras is defined to be a commutative
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diagram of the form

9

0——= M(A) D4 Dy A 0
f*J/ J/fl lfo lf
00— M(A') D) Dy A 0

Y
where fp is a homomorphism of algebras and f; is a right fp-equivariant k-linear
map. It is clear how to compose such morphisms, so that M-algebras form a
category which we denote Alg),.

With obvious modifications, we also get notions of M -algebra of type A when
M is a left module system or a bimodule system; the corresonding categories of
algebras will be denoted by Algﬁ,, and Algﬁl, respectively. Moreover, for a bimodule
system M there is also a further full subcategory

Alghy" c Algh,

whose objects, called M -pair algebras are those M -algebras which satisfy the pair
algebra equation (dx)y = xdy for all x,y € D;.

Remark 4.3.5 Note that if A contains k, then Alg?M has an initial object given by
the M-algebra I = (0 : M(k) — k) of type k. Moreover if A contains the trivial
algebra 0, then Alg}’u also has a terminal object — the M -algebra 0 = M(0) — 0
of type 0. Here ? stands for £, r or b if M is a left-, right-, or bimodule system,
respectively.

Definition 4.3.6 Let A be a category of graded algebras as above which in addition
is closed under tensor product, i. e. k belongs to A and for any A4, A’ from A the
algebra A ®; A’ also belongs to A. A right folding system on A is then defined to be
a right module system M on A together with the collection of right A ®; A’-module
homomorphisms

Aaa A M(A) — M(A®; A),
paa: M(A) QA — M(A® A)

for all A, A" in A which are natural in the sense that for any homomorphisms f :
A— Ay, [ A — A in A the diagrams

Aaa W
A® M(A) "= M(A®; A)) M(A) @ A "2 M(A )y A)
f®f>él l(f@f’)* ) f*®f’l l(f®f/)*

A A Paq.A
A1 @ M(A)) 3 M4, @ AY) M(A1) @ Ay 5L M(4, @ A})

4.3.7)
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commute. Moreover the homomorphisms

Ak,a k@ M(A) - M(k ®i A),

(4.3.8)
PAK - M(A)Qrk —> M(AQ k)
must coincide with the obvious isomorphisms and the diagrams
A®k M(A" ®r A”)
A. . /. "
A A @ M(A") o M(A®; A @ A”),
(4.3.9)
M(A Rk A/) Rk A’
PA, A "
M(A) ®; A' @ A” A M(A®; A’ @ A”),
(4.3.10)
M(A Rk A/) Rk A’
A QR M(A/) Rk A" M(A Rk A’ Rk A//)
m /A{k/ﬂ’?
A®k M(A" ®r A”)
(4.3.11)

must commute for all 4, A’, A” in A. A folding system is called symmetric if in
addition the diagrams

n A ’
AQr M(A') ——= M(A Qi A')

TA.M(A’)\L lM(TA.A/)
M(A) @ A 224 MA@ A)
commute for all A, A’, where T is the graded interchange operator given in (4.1.4).
Once again, we have the corresponding obvious notions of a left folding system
and a bifolding system.

For a right folding system M, the category Alg}, has a monoidal structure given
by the folding product ® below. Given an M -algebra D of type A and another one,
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D' of type A’, we define an M -pair algebra D& D’ of type A ® A’ as the lower row
in the diagram

B 9 3
0— > AQM(A)®MUA)®A — > (DR®D'); —> (DRD")g — > AR A —>0
('lA.A'apA.A’)l push l H H
M(ARA) (D@D’)IT)DO®D6—>A®A/4>0_
®

(4.3.12)
Here the leftmost square is required to be pushout, and the upper row is exact by
(4.1.3).

Proposition 4.3.13 For any right (resp. left, bi-) folding system M, the folding
product defines a monoidal structure on Algh, (resp. Algh,, Algh,, Algp;[ir ), with
unit object I = (0 : M(k) — k). If moreover the folding system is symmetric, then
this monoidal structure is symmetric.

We only will use the monoidal categories Alg] g and Alg’;lair.

Proof: To begin with, let us show that & is functorial, i. e. for any morphisms f :
D — E, f': D' — E’in Alg,,, let us define a morphism f® f': DQE — D'®FE’
in a way compatible with identities and composition. We put (£ & f")o = fo® fos
and define (f® f’); as the unique homomorphism making the following diagram
commute:

B®M(B')® M(B)® B’ (E®E)
\%@w W
AQMA)® M(A)QA = (DR®D'),
(Ap.B’-PB.B") (AA.A’aPA.A/)J/ l
MA®A) (D®D'),
U®f)s F&FN > o
M(B® B') (EQE')

where the left hand trapezoid commutes by (4.3.7). Using the universal property
of pushout it is clear that right equivariance of f; and f| iplies that of (f &M
so that this indeed defines a morphism in Alg,,. The same universality implies
compatibility with composition.

Next to show that / = (0 : M(k) — k) is a unit object first note that for an
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M -algebra D by (1.1.2) one has

i} > 3,
I®D = Trs (M(k) ® D, M Dy @& M(k)® Do % Dy

d,
~ (D1 oMk 4% Do).

From this using (4.3.8) it is easy to see that (/ ®D); is given by the pushout

MA)dME) @A™ Do MK)® A

- |

M(A) (I®D),

so that there is a canonical isomorphism (I ® D); = D compatible with the canon-
ical isomorphism k& ® Doy = Dy. Symmetrically, one constructs the isomorphism
D®I = D.

Turning now to associativity, first note that the tensor product (4.1.2) can be
equivalently stated as defining (D® D’); by the requirement that the diagram

D1®D/1

/N

Do ® D/l push D ® D6

N

(D®D');

be pushout. Then combining diagrams we see that (D®D’); can be equivalently
defined as the colimit of the following diagram:

Do ® M(A') Dy ® D) M(A)® D),

<X

Dy®D; M(A® A’) D1 ® D

4.3.14)

where the map Dy ® M(A') - M(A ® A’) is the composite Dy ® M(A') —
AQ M(A') - M(A® A’) and similarly for M(A) ® Dy, — M(A ® A’). Hence
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((D&D')®D"), is given by the colimit of the diagram

Do® Dy® M(A")(D&D'), ® D! M(AQ A')® Dy

K28

Do®Dyg®D] M(A®A ®A") (D®D'); ® D).

Substituting here the diagram for (D®D’); we obtain that this is the same as the
colimit of a diagram of the form

Do® D}, ® D

_—

Do®D{®D] Do®M(A)Q Dy

-

Do®@Dy® D] <Dy ®D1QM(A")>M(A® A’ ® A”) D1 ®D|® Dy

\\

D,®D,® D] M(A)®D,® D]

hener

D, ® Dy ® Dy.

Treating now (D®(D'®D")); in the same way we obtain that it is colimit of a
diagram with same objects; then, using (4.3.9), (4.3.11), and (4.3.10), one can see
that also morphisms in these diagrams are the same.

Finally, suppose that M is a symmetric folding system. Then for any M-
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algebras D, D’ of type A, A’ respectively, there is a commutative diagram

M(A® A"

MM@A)

[%@AHA) MUD®D6
s
MMO@DJ%@MM)

[\

D’®D0<D ®D1>D/®D1

\
D1®D6

Dy® D/ D4 ® D/
which induces a map from the colimit of the outer triangle to that of the inner one,
i.e. by (4.3.14) amap (D®D’); — (D'®D);. It is then straightforward to check
that this defines an interchange for the monoidal structure. U

Examples 4.3.15 The bimodule system 1 above clearly has the structure of a
folding system, with A and p both identity maps. Also the bimodule system 1 & X
is a folding system via the obvious isomorphisms

Mg AQA ®ZA) =2 ARA ®ARTA 25 AR A @ T(ARA), (4.3.16)
paa (ASTAHRA = ARA S (SARA = AQA BL(ARA)  (4.3.17)

where in (4.3.16), the interchange (4.3.3) for X is used.

Lemma 4.3.18 The isomorphisms (4.3.16), (4.3.17) give the bimodule system 1%
with the structure of a symmetric folding system on any category A of algebras
closed under tensor products.

Proof: 1t is obvious that 1 with the identity maps is a folding system, and that a
direct sum of folding systems is a folding system again, so it suffices to show that
3 is a folding system.

The right diagram in (4.3.7) is trivially commutative, while commutativity of
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the left one follows from
oa ) (f(@@Ef (@) = () WE(fa)® f'(a"))
=2(f ® f(-D** 9@ ®a) = Z(f ® f)oamu)(a® Ia)

foranya € A,a’ e A', f 1 A — Ay, f': A — A). Next, the diagrams (4.3.8)
commute since k is concentrated in degree 0.

The diagrams (4.3.10) commute trivially, as only right actions are involved.
Commutativity of (4.3.9) follows from the obvious equality

(_l)deg(a)z(a ® (_l)deg(a’)a/ Q a//) — (_l)deg(a®a’)2(a ®a/ ®a//)

and that of (4.3.11) is also obvious from

(_l)deg(a)E(a ®a/) ® a’

7N

a®X(@)®a" (-)*eED T Qa’ ®a")
a®X(a ®ad")

O

Thus by (4.3.13) the folding system 1 @ X yields a well-defined monoidal
category Alg} s of 1@ X-algebras as in (4.3.4). The initial object and at the same
time the unit for the monoidal structure of Alg]’I@Z is by (4.3.5) and (4.3.13)

In@gz(]FeazFi]F).

Iy = (1F3>]F).

The projections g : A & XA — A can be used to construct a monoidal functor

For Algj it is

q 1 Algy o5 — Alg) (4.3.19)



254 H.-J. BAUES & M. JIBLADZE

carrying an object D in Alg] 4 to the pushout in the following diagram

Ad XA Dy Dy A

ql o |

A

q(D)1 ——=q(D)o — A.

Evidently ¢(/1ex) = I1-

4.4. Unfolding systems

It is clear how to dualize the constructions from the previous section along the lines
of section 4.2. We will not give detailed definitions but only briefly indicate the
underlying structures.

We thus consider a category C of graded k-coalgebras, and define a right
comodule system N on C as an assignment, to each coalgebra C in C, of a C-
comodule N(C), and to each homomorphism f : C — C’ of coalgebras of an
f-equivariant homomorphism fx : N(C) — N(C’), i. e. the diagram

N(C) coaction N(C) ®C
f*l J{f*®f
N(C,) coaction N(C,) ®Cl

is required to commute. Similarly one defines left comodule systems and bicomod-
ule systems. As before, we have a bicomodule system 1 given by 1(C) = C and
also X, 1 @ X defined dually to (4.3.2).

Then further for a right comodule system N on C and for a coalgebra C from
C one defines an N-coalgebra of type C by dualizing (4.3.4). It is thus a pair
D* = (d : D° — D') where D is a coalgebra, D! is a right D°-comodule and d
is a comodule homomorphism. Moreover one must have 7°(D*) = C, n1(D*) =
N(C), and the C-comodule structure on N(C) induced by this must be the one
coming from the comodule system N. With morphisms defined dually to (4.3.4),
the N -coalgebras form a category Coalg’y, . Similarly one defines categories Coalgf\,
and Coalg';\?ir C Coalg?\, for a left, resp. bicomodule system N. These categories
have the initial object 0 : 0 — N(0) and the terminal object 0: k — N (k).

Also dually to (4.3.6) one defines unfolding systems as comodule systems N
equipped with C ® C’-comodule homomorphisms

1€ N(C®C)—> CQN(C)
r&C NC®C)—> NC)®C’
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for all C,C’ € C required to satisfy obvious duals to the diagrams (4.3.7) — (4.3.11).
Also there is an obvious notion of a symmetric unfolding system.

Then for an unfolding system N we can dualize (4.3.12) to obtain definition of
the unfolding product D& D’ of N-coalgebras via the upper row in the diagram

® v
0—=C®C' —= pOg p°® = (D&D)! N(C &)

H H | ow e
- ®

0—=C®C —= (DD’ > (D&D)! —= CRN(C)BN(C)®C' —=0

where now the rightmost square is required to be pullback and the lower row is exact
by the dual of (4.1.3).

It is then straightforward to dualize (4.3.13), so we conclude that for any
unfolding system N the unfolding product equips the category Coalg?N with the
structure of a monoidal category, symmetric if N is symmetric. Here, “?” stands
for “r”’, “I”, “b” or “pair”, according to the type of N. Obviously also the dual
of (4.3.18) holds, so that the categories Coalgﬁair and Coalg] gy have monoidal
structures given by the unfolding product.

4.5. The G-relation pair algebra of the Steenrod algebra

Fix a prime p, and let G = Z/ p2Z be the ring of integers mod p2, with the quotient
map G —»TF =TF, =Z/pZ. Let </ be the mod p Steenrod algebra and let

{Sq".S¢*....} for p =2,

E., —
7 (PP, U{B.BPLBP2,...} forodd p

be the set of generators of the algebra 7. We consider the following algebras and

homomorphisms
Z

of

q: P Fo —
H 45.1)

Tg(Ey) Tr(E)

For a commutative ring k, T (S) denotes the free associative k-algebra with unit
generated by the set S, i. e. the tensor algebra of the free k-module on S. The map
q# is the algebra homomorphism which is the identity on E.. For f € .%y we
denote the element ¢ (f) € < by

f =q7(f).
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Let R4 denote the kernel of ¢, i. e. there is a short exact sequence

Rg3>——e—330——za>&y:

This short exact sequence gives rise to a long exact sequence

Tor(R,F) = Tor(By,F) — = Tor(«/,F) ——> Ry ®F — > By @F — o/ QF.

Here AQF =~ A/pA and Tor(A,F) is just the p-torsion part of A for an abelian
group A, so the connecting homomorphism i sends @ = g(b) + p%Bo to pb + pR .
It follows that the second homomorphism in the above sequence is zero. Moreover
clearly we can identify %y @ F = .%, and Tor(«/,F) = .7, so that there is an exact

sequence
a

TE —> o

Rz QT Fo

o = FF
H (4.5.2)

One has

Lemma 4.5.3 The pair #F = (0 : %}F — %(]f ) above has a pair algebra structure
compatible with the standard bimodule structure of </ on itself. so that Z* yields
an object in Alg, “ see (4.3.4).

Proof: Clearly mod p reduction of any pair algebra over G is a pair algebra over
F. Then let Z% be the mod p reduction of the pair algebra Ry > %,. Thus
the .7-%¢-bimodule structure on %IIF = Rg/pRs is just the mod p reduction of
the HBy-%PBo-bimodule structure on Ry, i. €. b’ + pABy € ,@(]f = Bo/ pAo acts on
r+ pRz € #F = Rz/pRy via

(0" + pBo)(r + pRz) =b'r + pR.

Moreover the above inclusion <7 >> Rz/pR % sends an element g(b) to pb+ pR .
Then the action of @’ = ¢(b’) € &7 oni(a) = pb+ pR% € i(</) = kerd induced by
this pair algebra is given as follows:

a'i(a) =q7(b"+ p%o)(pb + pPRz) = pb'b + pRz =iq(b'b) = i(a'a)
and similarly for the right action. U

We call the object ZF of the category Alg’])lair the G-relation pair algebra of /.

Theorem 4.5.4 The 1-pair algebra #* has a structure of a cocommutative
comonoid in the symmetric monoidal category Alg}™".
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Proof: Forn =0, let ngg) denote the kernel of the map ¢®”, so that there is a short
exact sequence

Qn
Rg;) %§n 9 o ®n

and similarly to (4.5.3) there is a pair algebra of the form

Qn
A L — Rg;) ®F 9#6®n 947 o/ ®n

determining an object Z™ in Algh"". Then one has the following lemma which

yields natural examples of folding products in Algy

Lemma 4.5.5 There is a canonical isomorphism Z™ =~ (ZF)®" in Alg”]lmr.

Proof: Using induction, we will assume given an isomorphism «, : (%]F)@” =
2™ and construct a,, 11 in a canonical way. To do this it clearly suffices to construct
a canonical isomorphism ZF @ #™ =~ 77+ as then its composite with ZF &«
will give o 41.

To construct a map (Z¥ #™); — %fnﬂ) means by (4.3.14) the same as to
find three dashed arrows making the diagram

Ry ®R™W @F

/\

Fo®RW  Rp® F"

AN s
N s
\ ¥
A
I

Fo ® A —> @t ~— of @ FE"
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commute. For this we use the commutative diagram

Ry ®RD

/\

% ® R(n) R@ ® %(X)n

TS

(@0®£{®” — M@(n-i—l) - M@%‘Xm;

This diagram has a commutative subdiagram

p(Rs ® RD)

/\

PPBo R R(”) Rdg ® pBE"

/ PRG™Y \

pBo® A" A Q pABE";

It is obvious that taking the quotient by this subdiagram gives us a diagram of the
kind we need.

We thus obtain a map (ZFQ®#Z™), — Rg,fﬂ) ® F. Moreover by its
construction this map fits into the commutative diagram

O+ —— (ZF M), —>y§’("+1) — > y®(n+1)

\ | | ]

M@(n-ﬁ-l) P Rg;_’—l) QF —— L@}\&@(n-i-l) — s d@(n-ﬁ-l)

with exact rows, hence by the five lemma it is an isomorphism. U
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Using the lemma, we next construct the diagonal of Z¥F given by

d

|

Zo
LA
R QF —== (#F Q%)) —— KY © Fx Fo® Fo.

Here A€ is defined by the commutative diagram
Ry — %y

AGl AGl (4.5.6)
Rg) —— %o ® Ho,

where the diagonal A® on %, is defined on generators by

n
A%(Sq") =) Sq' ®Sq" for p =2,

i=0
ACB)=BR1+1R8,
APy = > PP,
itj=n for odd p
ACPR = Y (Py®P/ +P ®P))
i+j=n

(with Sq° = 1, P° = 1 as usual) and extended to the whole %, as the unique
algebra homomorphism with respect to the algebra structure on %y ® %, given by
the nonstandard interchange formula

Bo® Bo @ Bo @ Ho

y Lo

Bo @ Bo® Bo @ By e By ® By

with
TS : Bo @ Bo — Bo @ By
TG(x Ry) = (_l)pdeg(x)deg(y)y ® X.

In particular, clearly for all p one has T¢ A® = AC | i. e. the coalgebra structure
on Ay is cocommutative.
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The counit for ZF is given by the diagram

) Ll

I
I
Y

4.5.7)

where the map Ry ® F — I sends the generator (plg,) ® 1 in degree 0 to 1 and
all elements in higher degrees to zero. It is then clear from the formula for AC that

this indeed gives a counit for this diagonal.

Finally, to prove coassociativity, by the lemma it suffices to consider the diagram

R g e

1®AG\ /AG®1

®3
‘%0

4.6. The algebra of secondary cohomology operations

Let us next consider a derivation of degree O of the form
x. 9 — X,
uniquely determined by

xSq" = 2Sq"" ! for p =2,
xpB = 31,

. for odd p.
x(P)=0,i=0

4.6.1)
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We will use x to define an «7-47-bimodule
A B, X

as follows. The right «7-module structure is the same as on &7 ® Y.</ above, i. e.
one has (x,Xy)a = (xa,Xya). As for the left o7-module structure, it is given by

a(x.Zy) = (ax.(-1)*¥ D Zay + x(a)x).
There is a short exact sequence of .o/-47-bimodules
0—-XA > AP, XA > o -0

given by the standard inclusion and projection.

Remark 4.6.2 The above short exact sequence of bimodules and the derivation
correspond to each other under the well known description of the first Hochschild
cohomology group in terms of bimodule extensions and derivations, respectively.
Indeed, more generally recall that for a graded k-algebra A and an A-A-bimodule
M, one of the possible definitions of the Hochschild cohomology of A with
coefficients in M is

HH"(A;M) = Ext'ig, 40 (4. M),

On the other hand, H H ' (A; M) can be also described in terms of derivations. Recall
that an M -valued derivation on A is a k-linear map » : A — M of degree O satisfying

x(xy) = x(x)y + (=1)*ED xx(y)

for any x,y € A. Such derivations form a k-vector space Der(A; M). A derivation
X = L, 18 called inner if there is an m € M such that

x(x) = mx — (=% xm =, (x)
for all x € A. These form a subspace Ider(A4; M) C Der(A; M) and one has an

isomorphism HH'(A; M) = Der(A;M)/Ider(A;M). Moreover there is an exact
sequence

0— HH°(A;:M) — M 5 Der(A;: M) — HH'(4;:M) — 0.
Explicitly, the isomorphism

Der(A; M)/Ider(A; M) = Bxtyg 40 (4, M),
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can be described by assigning to a class of a derivation » : A — M the class of the
extension

O—-M-—>A®,, M >A—0

where as a vector space, A @, M = A @& M, the maps are the canonical inclusion
and projection and the bimodule structure is given by

a(x,m) = (ax,am + x(a)x),

(x,m)a = (xa,ma).

Obviously &7 @, .o/ above is an example of this construction.

Definition 4.6.3 A Hopf pair algebra ¥ (associated to /) is a pair algebra o :
Y1 — Yo over F together with the following commutative diagram in the category
of .%y-Zy-bimodules

A @y DA h— A o (4.6.4)
| )]
o RF RE o

with exact rows and columns. The pair morphism g : ¥ — Z¥ will be called the
G-structure of 7. Moreover ¥ has a structure of a comonoid in Algy 4+ and g is
compatible with the Algq""-comonoid structure on #¥ in (4.5.4), in the sense that
the diagrams

A N
N ———= (V&)

ql lm 4.6.5)

‘@]IF & (%]F@)%IF)I

and
1 —L~F@xF

ql l (4.6.6)

commute.
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We next observe that the following diagrams commute:

x

o S o S
| [P Jo
ARA LA QA ——S(ARA), ARA —% A RS — > T(A RA)

where o is the interchange for X in (4.3.3). Or, on elements,

> xa)®ar =) x(@)®xa) =) olar®x(ar)). (4.6.7)

where we use the Sweedler notation for the diagonal

8(x) = sz ® Xxr.

Remark 4.6.8 The above identities have a simple explanation using dualization. We
will see in (5.1.7) below that the map dual to x is the map X.of. — @7 given, for
p = 2, by multiplication with the degree 1 generator {; € % and for odd p by the
degree 1 generator 7. Then the duals of (4.6.7) are the obvious identities for any
X,y € s
(G1x)y = Gi(xy) = x(81y)
for p =2 and
(t0x)y = To(xy) = (=1)**Wx (o)
for odd p (recall that <7 is graded commutative).
Using (4.6.7) we prove:

Lemma 4.6.9 For a Hopf pair algebra V there is a unique left action of %y on
(V&)1 such that the quotient map

(VY )N — (V&N

is Fo-equivariant. Here we use the pair algebra structure on V'@V to equip
(Y®V)1 with an Foy @ Fo-bimodule structure and then turn it into a left Fy-
module via restriction of scalars along A : %9 — Fo Q Fy.

Proof: Uniqueness is clear as the module structure on the quotient of any module
M by a submodule is clearly uniquely determined by the module structure on M.
For the existence, consider the diagram

Fo® (F ®x 2A) NN (o ®x 2) ® Fo
\ /
Fo® N TR Bygl 2(H Q) N R F.

(4.6.10)
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whose colimit, by (4.3.14), is (¥ ®#)1, with the right .%y ® .%,-module structure
coming from the category Alg}gy. It then suffices to show that all maps in this
diagram are also left .#y-equivariant, if one uses the left .#p-module structure by
restricting scalars along the diagonal %y — %y ® .

This is trivial except possibly for two of the maps involved. For the map

D: F QR (I By X)) > A QA Dugw 2(F Q)
given by . .
o(f' ®(x.Zy) = (f @x.(-D)Ef @ y).
this amounts to checking that for any f, f/ € % and x,y € &/ one must have
SN ® ) @x. (- T f g y)
=@((~1)¥eNEEUIN" £ @ (fox (~DFEIIE Fy (f)x)).
where again the above Sweedler notation

Af)=D_fi® fr.

is used for the diagonal of .%, too, and ; " denotes gz (f') by the notation in (4.5.1).
The left hand side expression then expands as

S (kDU f @ fx,
(—1ydee()dea(/) (_1)dee(N) (_1)4eU )5 7 £ @ Fry + (= 1)%eeUndesf) 0 (7) ' @ fox)
and the right hand side expands as
(— 1)U 1 e (1) RS N () IS Fy 8 oy + fo f @, )x)).
Thus left equivariance of ® is equivalent to the equality

S v f'® frx = S (=S J £ @ x(f)x.
This is easily deduced from
YN x(f)® fr =Y (D f @ x(f,).

which is an instance of (4.6.7).
For another map
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given by . .
V(2 )= f.Zye )
the equality to check is

S i@ e f. Sy ® )

=Q((— 1) EEEIN N Fox (~1)EEIIT fyy 4 (f)x) ® fr f).
Here the left hand side expands as

Y (1)t ® fv @
(—1)dee(f)dea(Zy) (_ydea(fo) ﬂ y® jr f/ (= 1)dea(rde0) fz)x ® jr j/)

and the right hand side expands as

()N INS (fx @ f (D)L fy © fo f 2 (fx ® fr f):
these two expressions are visibly the same. U
Given this left module structure on (¥ ®¥');, one can measure the deviation
from left equivariance of the diagonal Ay : #; — (¥ &¥);. For that, consider the
map L : % ® ¥1 — (Y ®Y); given by
L(f ®x) = Ay (fx) = [ Ay (x),

for any f € %y = %, x € ¥1, where - denotes the left .%y-module action defined
in (4.6.9). Since the diagonal A of ZF is left equivariant, it follows from (4.6.5)
that the image of L lies in the kernel of the map ¢®q, i. e. in .o/ ® 7. Moreover
if f = dv; for some v; € ¥, then one has

Ay (d(v1)x) = Ay (v10x) = Ay (V1) Az (9x) = Ay (vV1)dg Ay (x)
=0 Ay (V1) Ay (x) = Az (v1) Ay (x),

so that the image of 0 ® 1 : /1 ® ¥1 — % ® 71 lies in the kernel of L. Similarly
commutativity of

"L (V&)
BL l% 4.6.11)
Yo 2= % ® %

implies that %y ® kerd is in the kernel of L. 1t then follows that L factors uniquely
through a map

o @ Ry = (¥5/imd) @ (1 /kerd) — ker(q®q) = X4 @ o .
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Definition 4.6.12 The map
Ly:dQRs —>Xd QA

given by the unique factorization of the map L above is characterized by the

deviation of the diagonal Ay of the Hopf pair algebra ¥ from left equivariance.

That is, one has :
Ay(fx)=f-Ay(x)+Ly(f ®0dx)

for any f € .%y = %, x € ¥1 and the action - from (4.6.9).

Similarly one can measure the deviation of Ay : ¥ — (¥®7%); from
cocommutativity by means of the map S : ¥} — (¥ ®¥'), given by

S(x) := Ay (x) = TAy(x),

where T : (Y&®7)1 — (¥&); is the interchange operator for Algjgy as
constructed in (4.3.13). Then similarly to L above, S admits a factorization in the
following way. First, by commutativity of (4.6.5) one has

@RNTAy =T(qRq)Ay = TAzqg = Azq = (qRq) Ay,

since the Algﬁair—comonoid ¥ is cocommutative. Thus the image of S is contained
in ker(g®q) = X/ ® «/. Next, commutativity of (4.6.11) implies that kerd is
contained in the kernel of S. Hence S factors uniquely as follows

R =71 /kerd — ker(q®q) = X4/ @ o .
Definition 4.6.13 The map
Sy Rg —> X QA

given by the unique factorization of the map S above is characterized by the
deviation of the diagonal Ay of the Hopf pair algebra ¥ from cocommutativity.
That is, one has

TAy(x) = Ay(x)+ Sy(dx)

for any x € 1.

It is clear from these definitions that L+ and Sy are well defined maps by the
Hopf pair algebra 7. Below in (6.1.5) we define the left action operator L : o/ ®
Ry — Yo/ ® o/ and the symmetry operator S : Ry — Yo/ ® of with L = 0 and
S =0if pisodd. For p =2 these operators are quite intricate but explicitly given.
We also will study the dualization of S and L.

The next two results are essentially reformulations of the main results in the
book [3].
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Theorem 4.6.14 (Existence) There exists a Hopf pair algebra ¥ with L = L and
Sy =38S.

Theorem 4.6.15 (Uniqueness) The Hopf pair algebra ¥ satisfying Ly = L and
Sy = S is unique up to an isomorphism over the G-structure v — %* and under

the kernel of @, X ~— V.

The Hopf pair algebra appearing in these theorems is the algebra of secondary
cohomology operations over F, denoted by B¥ = (#Y¥ — #Y) = ZQF. The
algebra 4 has been defined over G in [3].

Proof of (4.6.14): Recall that in [3, 12.1.8] a folding product & is defined for pair
G-algebras in such a way that % has a comonoid structure with respect to it, i. e. a
secondary Hopf algebra structure. Let

Al . %1 —> (%@%)1

be the corresponding secondary diagonal from [3, (12.2.2)]. It is proved in [3, 14.4]
that the left action operator L satisfies

Ay(bx) =bA1(x)+ L(g(h) ® (0x ® 1))

forbe By, x€ $B1,0xR@1€ Rz QF = %]IF. Also in [3, 14.5] it is proved that the
symmetry operator S satisfies

TA1(x) =A1(x)+S(Ox®1)

for x € %,. Moreover it is proved in [3, 15.3.13] that the secondary Hopf algebra
2 is determined uniquely up to isomorphism by the maps x», L and S.
Consider now the diagram

| |

A By S e B RF 225 By @F — of

qi ot |

o Rz ®F Fo .

Here the inclusion i, : & @, X</ > %, ®F is given by the inclusion .o/ C %
and by the map

d—)%l(@F
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which assigns to an element ¢(b) € <7, for b € Ay, the element [p]-b ® 1. Then
it is clear that i, is a right .27-module homomorphism. Moreover it is also a left
o/-module homomorphism since for b € A the following identity holds in %:

b-[pl—=Ip]-b=x(b).

Compare [3, A20 in the introduction]. Now one can check that the properties of %
established in [3] yield the result. O

Remark 4.6.16 For elements «, 8,y € o/ with @ = 0 and 8y = 0 the triple Massey

product
(a.B.y) e A [(ad + Ay)

is defined. Here the degree of elements in (&, 8,y) is deg(e) + deg(B) + deg(y) — 1.
We can compute (e, 8,y) by use of the Hopf pair algebra %¥ above as follows. For
this we consider the maps

ﬂ‘ﬁﬂoDRggﬂ»'Rg%@F

We choose elements &, 8,7 € HBo which gy carries to «,f,y respectively. Then
we know that the products @, By are elements in R for which we can choose
elements x,y € #; @ F with

q(x) = qr(@p).
q(») = qr(BY).

Then the bimodule structure of #; ® F yields the element &y — x¥ in the kernel
Yof of g: 81 QF - Ry ®F. Now ay —xy € X/ represents {«,,y), see [3].

4.7. The dual of the G-relation pair algebra

We next turn to the dualization of the G-relation pair algebra of the Steenrod algebra
from section 4.5.

For this we just apply the duality functor D to (4.5.2). There results an exact
sequence

Ay B~ B o,

i. e. the sequence
F DO F

H H 4.7.1)

Hom(.%y,TF) Hom(Rz,TF).
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In particular, by the dual of (4.5.3) one has

Lemma 4.7.2 The pair %r = (d : %]% — %%) has a pair coalgebra structure
compatible with the standard bicomodule structure of < over itself, so that X
yields an object in Coalgy", see section 4.4.

Moreover the dual of (4.5.4) takes place, i. e. one has
Theorem 4.7.3 The pair coalgebra Z¥ has a structure of a commutative monoid
in the category Coalg)"" with respect to the unfolding product ®.

O
The proof uses the duals of the pair algebras 2™, n > 0, from (4.5.4). Namely,
applying to the short exact sequence

Qn
Rg) @?” 9 o ®n

the functor D = Hom(_,FF) gives, similarly to (4.7.2), a pair coalgebra

*

%in) - <£{*®n 3{?" Rg;)>k o/ ®n )

such that the following dual of (4.5.5) holds:

Lemma 4.7.4 There is a canonical isomorphism %ff’) ~ (%]F)é’” in Coalg™".

O
Using this lemma one constructs the &®-monoid structure on %F by the diagram

ds ~
T ® Ty == K ® RY —> (g &Tx)' ——~ RD,
lA* \LM ‘/M lAf’

with A as in (4.5.6).
Moreover the unit of ZF is given by the dual of (4.5.7), i. e. by the diagram

F F——F F
|
A

»Q{* f* R%* »Q{*

so that the unit element of Rg, is the map Rz — I sending the generator plg, in
degree O to 1 and all elements in higher degrees to zero.
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4.8. Hopf pair coalgebras

We next turn to the dualization of the notion of a Hopf pair algebra from (4.6.3),
using the dual Zf of Z¥ from the previous section.

Definition 4.8.1 A Hopf pair coalgebra % (associated to .o7) is a pair coalgebra
d:#wW° — W7 over F together with the following commutative diagram in the
category of .%,-.%,-bicomodules

e B ) o
N R
d (rrnz)
s 0 wl Ay D, A
]

with exact rows and columns. The pair morphism i : Zr — # will be called

the G-structure of #'. Moreover # must be equipped with a structure of a
pair

monoid (my , 1) in Coalg] &5 such that i is compatible with the Coalg}™ -monoid
structure on Z from (4.7.3), i. e. diagrams dual to (4.6.5) and (4.6.6)

(%x &%) —— R F—% 7}
T T
W) Ly, FeSF -2yt
commute.
We next note that the dual of (4.6.9) holds; more precisely, one has
Lemma 4.8.2 For a Hopf pair coalgebra W the subspace
W W) (W W)

is closed under the left coaction of the coalgebra .7, on (7/6:97/)1 given by the
corestriction of scalars along the multiplication my : Fs @ Fx — Fy of the left
Fx @ F = (W W )°-comodule structure given by the pair coalgebra W @W . In
other words, there is a unique map m* : (W QW) — Fo @ (W QW)' making the
diagram

AW ——————— - —————— = Ze @ W W)

| |

W W) —= F @ Fu @ (W W) 225 Z @ WEW)!
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commute.

O

Given this left coaction, one can define the dual of the left action operator

in (4.6.12) by measuring deviation of the multiplication (# @#)! — #1 from

being a left comodule homomorphism. For that, one first observes that the map

L:WeW) - Z. QW' is given by the difference of two composites in the
diagram

W W) " T @ (W W)

4

Wl = Fe QW

Then by the argument dual to that before (4.6.12) one sees that the map L factors
uniquely through coker(i®i) = ((7/59“//)1 — X.o/, ® o) and into ker(d) ®
im(d) = (% Q@ Rz — W(’@V/l) to yield a map %% ® “ — 4 @ Rzy.
We thus can make, dually to (4.6.12), the following

Definition 4.8.3 The map

given by the unique factorization of the map L above is characterized by the
deviation of the multiplication my of the Hopf pair coalgebra % from being a
left .%,-comodule homomorphism. That is, for any # € (# ®# )" one has

(1@ my)m*(t) = m*my (1) + Ly (ms@ms)(0).

Next, we define a map Sy in a manner dual to (4.6.13), measuring noncom-
mutativity of the Coalgj,5-monoid structure on % . For that, we first consider the

map S : (# QW) — #! given by
Sty =my T () —my(t)

for t € (#®#)' and then observe that, dually to (4.6.13), this map factors
uniquely through coker(i®i) = ((7/597%)1 —> Dy ®mf*) and into im(d) =
(Rz«>> #'!) so we have

Definition 4.8.4 The map
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given by the unique factorization of the map S above is characterized by being the
graded commutator map with respect to the ®-monoid structure on the Hopf pair
coalgebra % . That is, for any ¢ € (# @#')! one has

my T(t) = my (1) + Sy (12 Qmz)(1).
We now dualize the left action operator (6.1.5) and the symmetry operator

6.2.1).

Definition 4.8.5 The left coaction operator

of degree +1 is the graded dual of the left action operator (6.1.5).

Definition 4.8.6 The cosymmetry operator

of degree +1 is the graded dual of the symmetry operator (6.2.1).
It is clear that the duals of (4.6.14) and (4.6.15) hold. Let us state these explicitly.

Theorem 4.8.7 (Existence) There exists a Hopf pair coalgebra W with Ly = L.
and Sy = Sk.

Theorem 4.8.8 (Uniqueness) The Hopf pair coalgebra W satisfying Ly = Ly
and Sy = S« is unique up to an isomorphism over W —» oy @y, LI and under

The Hopf pair coalgebra appearing in these theorems will be denoted by Zr =
(B — Bg) = D(%").

5. Generators of Zr and dual generators of %¥

In this chapter we describe polynomial generators in the dual Steenrod algebra .27
and in the dual of the free tensor algebra TF (E /) with the Cartan diagonal. We use
these results to obtain generators in the dual of the relation module R .

5.1. The Milnor dual of the Steenrod algebra

Here we recall the needed facts from [15]. The graded dual of the Hopf algebra .o/
is the Milnor Hopf algebra <7, = Hom(«/,F) = D(«). It is proved in [15] that for
odd p as an algebra o7 is a graded polynomial algebra, i. e. it is isomorphic to a
tensor product of an exterior algebra on generators of odd degree and a polynomial



Dualization of the Hopf algebra of secondary cohomology operations 273

algebra on generators of even degree; for p = 2 the algebra 7 is a polynomial
algebra. Moreover, in [15], explicit generators are given in terms of the admissible
basis.

First recall that the admissible basis for o7 is given by the following monomials:
for odd p they are of the form

M — ﬂeopslﬂelpszn_Psnﬂen
where € € {0,1} and
S1Z €1+ pS$2,52 = €3+ PS3,...,80—1 = €p—1 + PSp,Sp = 1.

Then let & € GHhph_yy = Hom(dz(pk_l),IF), k = 1and ©p € hpu_y =
Hom(otzfzpk_1 ,JF), k = 0 be given on this basis by

1, M =pr'pr..prp!
E(M)=1 ’ (5.1.1)

0 otherwise

and k—1 k—2
1, M=PP T prtT..prp! ,
(M) = , P (5.1.2)
0 otherwise.
As proved in [15], @/ is a graded polynomial algebra on these elements, i. e. it is
generated by the elements &, and t; with the defining relations

&5 =68,
§itj =156,
TiT; = —T,T

only.
For p = 2, the admissible basis for <7 is given by the monomials

M = Sq°'Sq*2---Sq*"

with
S1 = 282,852 =283,...,81—1 = 283,85, = 1

and the polynomial generators of <7, are elements {; € o%«_; = Hom(of zk_l,IE")
given by

1. M=S8q>""sq® "...8q?Sq".
L (M) = 4 14 (5.1.3)
0 otherwise.
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In terms of these generators, likewise, the coalgebra structure my : s — 4 ®
o/ dual to the multiplication m of <7 is determined in [15]. Namely, for odd p one
has

2 k—1
mer) =& @146 Qb1+& , Qb+ +& Qb—1+1Q&,

2 k—1
my(i) =5 @+ & @u+E @t +E Quat+l®u+udl
(5.1.4)
For p = 2 one has

maC) =G @1+ @O+ , 00 ++0 QG 1+1®4. (5.1.5)

We will need an expression for the dual Sql : &% — X.o7 to the map Sq'- :
Y./ — </ given by multiplication with Sq' from the left.

Lemma 5.1.6 The map Sql is equal to %. That is, on the monomial basis it is
given by
ni—1 na

Si nygna )51 2 7
SHURNCIY {0, ny =0 mod2.

ni=1 mod2

Proof: Note that Sq. is a derivation, since Sq'- is a coderivation, i.e. the diagram

Sq1~
Yof o

S I

1®Sql‘

A @A L A DA X ARQA —— A QA

commutes: indeed for any x € &/ one has
8(Sq" x) = 8(Sq")8(x) = (Sq' ®1 + 1 ®Sq")8(x) = (Sq' ®1)8(x) + (1 ® Sq")8(x).
On the other hand, the derivation on the Milnor generators Sq. acts as follows:

1, Sq'x =Sq%" 'Sq¥" --Sql,

0, Sq'x #Sq¥" 'S¢ --Sq"

S4 (n) (¥) = Gn(Sq" x) = { Sq

It follows that Sql(¢1) = 1; on the other hand for n > 1 the equation Sq'x =

2}’!72 . 1

Sq2"' Sq2" " ---Sq" has no solutions, since it would imply Sq' Sq2" " Sq -Sq' =

Sq'Sq!x = 0, whereas actually
Sql qun—l qun_z.usql — Sq1+2”—1 qun_z___sql # 0.

But % is the unique derivation sending ¢; to 1 and all other ¢,’s to 0. O
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We will also need expression of the dual x, of the derivation x from (4.6.1) in
terms of the above generators.

Lemma 5.1.7 The map x. : X — <y is equal to the left multiplication by ty for
odd p and by ¢, for p = 2.

Proof: For any linear map ¢ : &/" — F the map x«(§) : <p4+1 — TF is the
composite of ¢ with x : 7,11 — <,. Thus for p odd one has

a ($) (BB BIPY2. P )
— Z (_1)€0+€1+"'+€k—l¢(IB€OP51IBGI ___IBGk—IPSkPSk+1ﬂ€k+1 ___Psnﬂen)(s‘l‘g)

er=1

On the other hand, one has for M as above

(top)(M) =Y 1o(M)p(My) = Y cp(M,),

My=cp
0#celF
if
S(M) =Y M;®M,.

On the other hand one evidently has

§(BEOPS1 BE1PS2...Psn Ben)
— Z (_1)20$u<v<n(eu_t,u.)lvﬁLOPilﬂll ,,,Pinﬂ‘n ® ﬁGO_‘OPsl_iIIBEI—LI _,,PSn—inIBEn—tn

0<(p<€o
0<i| <s1
0<t] <€)

0<ip<sp
0<i;,<ep

so that for M = B€0PS1 g€1...pPS» B€n one has

Z cp(M,)

My=cp

0#celF

= Z Z (_1)20$u<v<n(GIL—LIL)LU(p(ﬂeO_LOPSl_iIﬂel_tl,,,Psn_inﬁen_Ln)

ex=1 10=0

g i(1)=0
ix=0
=1
1 =0
ip,=0
1, =0

— Z (_I)Zo<u<k6u¢(ﬁ€opn,3ﬂ < PSKPSkH1 BEk+1 . PSn gen)

exr=1
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which is the same as (5.1.8) above.
Similarly for p = 2 the map x.(¢) is given by

21 ($)(Sq™ ++-Sq™") = p(x(Sq* ++Sq™)) = > $(Sq™ -+-Sq**'--Sq™)  (5.1.9)
k=1

and the map ;¢ is given by
GOM) =D "t(Mp(My) = Y ¢(M,).
M4=Sq1
On the other hand one has
8(Sq*--Sq*") = Z Sqil ---Sqi" ®sq31—i1 ...sqsn—in’

0<i|<s1

0<ip<sp

so that for M = Sq*!---Sq*” one has

DO pM) =) > $(Sq T Sq i)

Mo=sq' k=1 i1=0
ix—1=0
ir=1
k+1=0
in=0
which is equal to (5.1.9). O

It is clear that with respect to the coalgebra structure on o7 the map x is a
coderivation, i. e. the diagram

Hx

Em*l lm*
1
(A @A) — Do Sty @ e @ Ay @ Tt O o,

is commutative. Here o is the interchange of X as in (4.3.3). Then using dual of
the construction mentioned in (4.6.2) one may equip the vector space @7 @ 3.
with a structure of an o7 -o-bicomodule, in such a way that one has a short exact
sequence of .o - -bicomodules

0 —> Ay — Yy By, Do — Ly — 0. (5.1.10)

Explicitly, one defines the right coaction of o7 on 7 ®,, X% as the direct sum
of standard coactions on 2% and on X.o7%, whereas the left coaction is given by the
composite

m«@Lmy ((1) Jt*f)l)
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5.2. The dual of the tensor algebra Fo = Tr(E ;) for p =2

We begin by recalling the constructions from [11] relevant to our case.
The Leibniz-Hopf algebra is the free graded associative ring with unit 1 = Zj

% =Tz{Z:1,2Z,,...} (5.2.1)

on generators Z,, one for each degree n > 1. Here we use notation as in (4.5.1). 2
is a cocommutative Hopf algebra with respect to the diagonal

n
AZn) =Y Zi ® Zn-i.
i=0

Of course for p = 2 we have Z @ F = .%, = Tz(E,,) by identifying Z; = Sq’,
and moreover the diagonal A corresponds to A® @ IF in (4.5.6). The graded dual
of 2 over the integers is denoted by .#; it is proved in [11] that it is a polynomial
algebra. There also a certain set of elements of .# is given; it is still a conjecture
(first formulated by Ditters) that these elements form a set of polynomial generators
for .#. Tf, however, one localizes at any prime p, then there is another set of
elements, defined using the so called p-elementary words, which, as proved in [11],
is a set of polynomial generators for the localized algebra .#. This in particular
gives a polynomial generating set for %, = Hom(.%¢,F,) =~ .# /2.4 . Moreover
it turns out that the embedding % > %, given by Hom(«,IF») >> Hom(.%y,FF>)
(dual to the quotient map .% ¢ —» /) carries the Milnor generators of .7 to a subset
of these generators.

Choose a basis in .# which is dual to the (noncommutative) monomial basis in
Z: for any sequence o = (d1,....d,) of positive integers, let My = My, .. 4, be the
element of the free abelian group .#Z 4 *+4 = Hom(Z91++4 7) determined
by

1, (ki,..ekm) = (d1,.,dn),

Ma,.,..a4,(Zk,Zyg,,) = .
! (Z ) 0 otherwise.

Since Z is a free algebra, dually .# is a cofree coalgebra, i. e. the diagonal is
given by deconcatenation:

AMy,....a) =Y Ma,...a;®Ma,.,....4, (5.2.2)

It is noted in [11] (and easy to check) that in this basis the multiplication in
A is given by the so called overlapping shuffle product. Rather than defining this
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rigorously, we will give some examples.

MsM> 410=Ms5241,9+M74190+M25410+Mz0190+Mz4510+Mz469
+Mra150+Mzai,14a+Mr4195;
MgsMip=Mgs12+ Mger+ Mg 152+ Mosr+ Mg 17+ Mo7+Migs,
+Mig7+Migzs+Mozrs+Miass+ Miios+Msios

Thus in general, whereas the ordinary shuffle product of the elements, say, My, 45.45
and My, p, by.b4.bs cOntains all possible summands like My, 4, .45.b5.53,a3.b4,b5- the
overlapping shuffle product contains together with each such summand also in
addition the summands of the form My, 44, 45.65.b3.a3.b4.b5> Mb.a1,a2+b2,b3.a3,ba.bs>
Mp, a1 ,a2,b2,b3+a3,b4.bs> Mby,a1,a2,b5.b3,a3+ba,bs> Mbi+ay,az+b2,b3,a3,b4,bs aNd 50 on,
obtained by replacing an a; and a b; standing one next to other with their sum, in
all possible positions.

Note that the algebra of ordinary shuffles is also a polynomial algebra, but over
rationals; it is not a polynomial algebra until at least one prime number remains
uninverted. On the other hand, over rationals .# becomes isomorphic to the algebra
of ordinary shuffles.

To define a polynomial generating set for .#, we need some definitions. To
conform with the admissible basis in the Steenrod algebra, which consists of
monomials with decreasing indices, we will reverse the order of indices in the
definitions from [11], where the indices go in the increasing order. Thus in our
case statements about some My, . 4, Will be equivalent to the corresponding ones
in[11] about My, . 4.

Definitions 5.2.3 The lexicographic order on the basis My, .. 4, of .# is defined
by declaring My, .. a4, > M., ... e, if either there is an i with 1 <i < min(n,m) and
di >ei,dy =em, dy—1 = €m—1, ..., dy—i+1 = €m—i+1, dn—i > em—; or n > m and
dn—m+1=e1, dp—m+2 = €2, ..., dp = €.

A basis element My, . 4, is Lyndon if with respect to this ordering one has
My,.....d, < Mg, . a4 forall l <i <n. Forexample, M35322 and M221,2,1,2,1
are Lyndon but M35 232 and M> 12,1,2,1 are not.

Abasis element M, . 4, is Z-elementary if no number > 1 divides all of the d;,
i. e. ged(dy,...,dy) = 1. The set ESL(Z) is the set of elementary basis elements of
the form My, . 4,.d\....d,.....d,....d, (. €. di,....d, repeated any number of times),
where My, . 4, is a Lyndon element.

For a prime p, a basis element My, 4 is called p-elementary if there is a d;
not divisible by p,i.e. p t ged(dy,...,d,). The set ESL(p) is defined as the set of
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p-elementary basis elements of the form

M 4. .dpdy,dnsdy,..dy

—

p! times

with dy,...,d, repeated p” times for some r, where My, 4
Lyndon.

For example, M5.6,15,6,15,6,15,6 1S in ESL(2) but not in ESL(Z) or in ESL(p)
for any other p, whereas M3¢ 66 is in ESL(p) for any p # 2,3 but not in ESL(2),
not in ESL(3) and not in ESL(Z).

One then has

is required to be

n

Theorem 5.2.4 ([11]) The algebra . is a polynomial algebra.

Conjecture 5.2.5 (Ditters, [11]) The set ESL(Z) is the set of polynomial generators
for A .

Theorem 5.2.6 ([11]) For each prime p, the set ESL(p) is a set of polynomial
generators for M py = M Q Lp), i. e. if one inverts all primes except p.

In particular, it follows that ESL(p) is a set of polynomial generators for .# / p"
over Z/ p" for all n.

Here are the polynomial generators in low degrees, over Z and over few first
primes. Note that the numbers of generators in each degree are the same (as it
should be since all these algebras become isomorphic over Q).

Lrl2] 3 | 4 | 5

Z My | My | Mya My | M3 My 1. Mian | Majg,M32, M3 1,1, M221,M> 11,1, M1,1,1,1,1

p=2| M | M| M3Myy | M31,Mz1,1,Mi1,1.1 Ms, M1, M32,M31,1,M22,1,M>21,1,1

p=3|| M | My | My1,My111 My, M5 1, M3 1,1 Ms, My 1, M32,M31,1,M22,1,M>2 1,11

p=5|M | M M3, M> My, M3 1, M5 11 My, M32,M311,Mz51,M>1,1,1.M1,1,1,1,1

It is easy to calculate the numbers of polynomial generators in each degree. Let
these numbers be m 1, m,, ---. Then the Poincaré series for the algebra .# (or Z, or
F, or %, it does not matter) is

> dim( )" = (=) (1= 12) 72 (1= 3) 73
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on the other hand, we know that it is a tensor coalgebra with one generator in each
degree n > 1; this implies that dim(.#,) = 2"~! for n > 1 (and dim(My) = 1).
Thus we have equality of power series

[e o]
[Ja=5 =141 +202+ 4% +80% 4 .
k=1

1 1—1¢
=14+1(1+2t+ Q1)+ 2t +-) =141 = :
Hi 420+ Q)+ Q) ) =14t =
Then taking logarithmic derivatives one obtains
o
kmytk 2t t
= - =t 43247 2= D" e
gl—tk =2 1= TR * "+

It follows that for all n» one has

ded =2" 1,

dln

which by the Mobius inversion formula gives

=S (@)~ 1),

d|n

The latter expression is well known in the literature on combinatorics; it equals
the number of aperiodic bicolored necklaces consisting of n beads, and also the
dimension of the nth homogeneous component of the free Lie algebra on two
generators. See e. g. [18].

5.3. The dual of the relation module R &

We now turn to the algebra %, = Hom(%#,F,) =~ .# /2. By the above, we know
that it, as well as .#(z), is a polynomial algebra on the set of generators ESL(2). As
an illustration, we will give some expressions of the M -basis elements in terms of
sums of overlapping shuffle products of elements from ESL(2). We will give these
in () and then their images in Fa.
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M, =M?-2M,
EM12 mod2
M, =M}—M5—M,; —2M M,
= M13 + M3+ M>; mod2
M1,1,1 =1‘411‘/11,1_%]‘413—+_%1‘43
=M M, +M13 + M3 mod2
My =3MMz—iME+2M7 | —4My 110

= M14 mod?2
Abg::Mﬁ—QMﬁ%J—%MMh+%Mf+MﬁLU
=M?, mod2

M3 = %Mf— %MIM:’» —2M12,1 — M3 +4M111,1

M14+M1M3—|—M3’1 mod2

M1 =MiMy;—Ms, —Mlz,l +2MEMy + %MlMS - %Mf—ZMl,l,l,l —2M> 1,1
EM1M2,1+M3,1+M12,1 mod?2

My, = M12’1 — MM, —%M1M3 + %Mf—ZMl,l,l,l + Mz —MMy1+ M
EMlz’l+M12M1,1+M1M3—|—M14+M3,1—|—M1M2,1—|—M2,1,1 mod?2

Moreover it is straightforward to calculate the diagonal in terms of these
generators. For example, in .7, one has

AM) =1@M +M ®1,
AMi) =1Mi +Mi QM+ M1 ®1,
AM3) =10M3+M3®1
AMz1) =1@Mai +MZOM+M>; 1
AM31) =1Q@M31+Mz3QM+M;5;1®1
AMz11) =1Q@Moi1+ME@Mi1+Myi QM+ My ®1
AMi11,1) =1@Miii+ MMM+ M @M+ M ®M;
M @My + MM i @M +MP @M +M3Q M+ My 11,1 ®1
AMs1) =1@Ms1+ MM+ My R1
AMzz) =1@Ms+M3@ME+M;3,®1
AMzi1,1) =1@Mai110+MZQMiMiy+MEQ M3+ MEQMs+ My @ My
M1 1 QM1 +My1,1,1 ®1
AMs) =10Ms+Ms®1
AM31,1) =1@M311+M3QMy 1 +M31 QM+ Ms;,1®1
AMzp1) =1Q@Myp 1 +MIQMyy+MZ QM+ Mo ®1.

Also it follows from the results in [11] that one has
Lemma 5.3.1 For any prime p, in M, one has
Mpdl,...,pd,, = Mdpl,...,d,, mOdp'

To identify the elements to which the Milnor generators { of 7 go under the
isomorphism %, =~ .# /2, we first identify o7, with the graded dual of .<; then i
corresponds to a linear form 2%« _; — F given by (5.1.3).
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Proposition 5.3.2 Under the embedding </ > # |2, the Milnor generator (i
maps to the generator Myk—1 yk—2__ 5 1. In particular, this generator is in ESL(2),
i. e. is one of the polynomial generators of F .

Note that this together with (5.2.2) and (5.3.1) implies the Milnor formula
(5.1.5) for the diagonal in 7. Identifying {; with its image in .# /2 by (5.3.2),
one obtains

.....

.....

k
=ZM22127171‘,2/<724 2,1®M2i71 ,,,,, 2,1 (5.3.3)

k .
= Zé‘]%l_l ® ;.

Thus the set {{1,{5,...} of polynomial generators for <% can be identified with
the subset

0 ={M M1, Msp1,Mga21,...}

of the set of polynomial generators ESL(2) for .# /2 =~ .%.. This in particular gives
an explicit basis for Rz it is in one-to-one correspondence with those monomials
in the generators My, ... 4, from ESL(2) not all of whose variables belong to Q. For
example, in the first few dimensions this basis contains the following monomials:

M,

MM, 1, M3,

M12M1,1,M1M3,Mﬁ1,M3,1,M2,1,1,M1,1,1,1,
M13M1,1,M12M3,M1M12,1,M1M3,1,M1M2,1,1,MlM1,1,1,1,M1,1M3,M1,1M2,1,
Ms, My, M32,M31,1,M221.M21,1,1-

We next note that obviously the embedding % > %, identifies %, with a
polynomial algebra over <7, namely one has a canonical isomorphism

F, = of,[ESL(2) \ 0]. (5.3.4)

In particular, as an .o%-module .%, is free on the generating set NESLGN\D) (= the
free commutative monoid on ESL(2) \ Q). Then obviously the quotient module
R 7, is a free o7,-module with the generating set NESLND) \ (11,

We will need the dual .#=2 of the subspace Fy> C % spanned by the
monomials of length < 2 in the generators Sq'. Observe that 3552 is a subcoalgebra
of Fy, so that dually .7, — .Z52 is a quotient algebra. We have
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Proposition 5.3.5 The algebra 752 is a quotient of the polynomial algebra on
three generators My, M1,1, M1 by a single relation

MM 1M, + M13,1 + M22,1 =

Proof: First of all, it is straightforward to calculate in .%, the sum of the
overlapping shuffle products

3 2 _
MMy My + M7+ My, =
Mg+ Mrps+Myz1+Ms12+Mspg+ Mo
+M31010+Mi310+Miz2i010+Mipi2+Mii121

so that indeed this gives zero in .# 52, Let
X =F[x1,x2,x3]/(x1x2%x3 + xg + x%)

be the graded algebra with deg(x;) =i,i = 1,2,3, so that there is a homomorphism
of algebras f : X — Z=% sending x1 = My, xo = My, x3 = M, ;. Itis
straightforward to calculate the Hilbert function of X, i. e. the formal power series

> dim(X,)e;
n

it is equal to
1—18
A—0)(1—12)(1—13)

On the other hand .Z52 is dual to 3552 and it is straightforward also to calculate
dimensions of homogeneous components of this space. One then simply checks that
these dimensions coincide for X and for .#S2. Thus it suffices to show that f is
surjective, i. e. that ﬁfz is generated by (the images of) My, M;,; and M5 ;.

We will show by induction on degree that every M,, and M; ; can be obtained as
a polynomial in these three elements. In degree 1, M is the only nonzero element.
In degree 2, besides M7 ; we have M, which is equal to M by (5.3.1). In degree
3, we have

MMy =Mip+ Mg+ My, =Mp+ M,y modZ.?

and
M} = M3+ Mo+ Mg,

so that in .ZS? we may solve

Mip,=M M1+ M,
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and
M= M} + MM, ;.

Given now any degree n > 3, we can obtain any element M, ; withi > 1, j > 1,
i + j = n from elements of lower degree since

M; ;=M 1M;i_;1.
Next we also can obtain the element M,_; ; from
My 11+Myp =M1 M,_s.
Then we can obtain M; ,—; from
M1+ Mp—11 = M1 M2,
and finally we can obtain M,, from

M, + Ml,n—l + Mn—l,l =M M,_;.

Let us also identify the dual of the product map
FE @ FE > T

in terms of the above generators. By dualizing it is clear that this dual is the unique
factorization in the diagram

: :

T2 > 7@ TS,

In particular, it is an algebra homomorphism. Moreover the algebra .Z ! may be
identified with the polynomial algebra on a single generator M; = {;, with the
quotient map .%, — .Z=! given by sending M; to itself and all other polynomial
generators from ESL(2) to zero. From this it is straightforward to identify the map
F5? — Z5' @ Z5! with the algebra homomorphism

F[x1,X2,X3]/(X1X2X3 + x5 + x2) = F[y1,21]

given by
X1 Y1+ 21
X2 = Y1Zh (536)

2
X3 = Y1Z1-
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<2

Let us identify in these terms the map .#=2 — Rz 2. One clearly has

RS = Rz N.F572
in %y, so that dually one has that the diagram

ﬂ*—»-Rg*

N

< <
9*\2 Rﬂ“z*

is pushout. Thus R;z , is isomorphic to the quotient of .Z 52 by the image of the
composite @y >> F, —» F=2. That image is clearly the subalgebra generated by
M 1 and M. 2,1-

We can alternatively describe RS, in terms of linear forms on RS> C Z52.

It is clear that the latter subspace is spanned by all Adem relations [n,m], n < 2m.

< . . <2 . .. <
The map 7 : F5% —» RS, assigns to a linear form on % its restriction to RS>

One then clearly has
n(M{) =n(M5,)=0 (5.3.7)

for all k = 0; moreover w(Mj,1) is dual to [1,1] in the basis given by the elements
[n,m],i.e. M1 1([1,1]) = 1 and M, ;([n,m]) = O for all other n, m. Moreover for
x,y €. 752 we have

) (n,m]) = > x(ln,mle)y([n,m],) (5.3.8)
in the Sweedler notation
A(fn,m]) =) [n.mle ® [n,m],.
For example, we have
A(1L2) = (1+T)A®[1,2] +Sq' ®[1,1])

which implies that M;M;,; is dual to [1,2] in this basis, i. e. (M1M;,1)[1,2] =1
and (M1 M;,1)[n,m] = 0 for all other n, m. Similarly

A(1,3]) = 1+ T)(1 ®[1,3] + Sq' ®[1.2] + Sq> ®[1.,1])
and

A(2.2) = (1+T)(1®[2.2]+Sq'®[1.2] + S*®[1.1]) + [1.1] ® [1.1]
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imply that M12,1 is dual to [2,2] whereas (M2 M;,1)[1,3] = (MEM11)[2,2] = 1, so
that dual to [1,3] is MMy 1 + M7 .

We will also need a description of the dual R, of R = Rz/(Rg - Rg). For
this first note that similarly to the above %, ® %, is a free < ® /-module
on NESLOND) » NESLON\D and R, ® Rz, is a free % ® -module on
(NESLO\D N\ {1}) x (NESL@AD\ {1}). Moreover the diagonal Ay : Fy —
Fx ® Fy and its factorization Ag : Rzx — Rz, ® Rz, through the quotient
maps Fx« —» Rz, Fx @ F« —» Rz, ® Rz, are obviously both equivariant with
respect to the diagonal § : @ — @ ® s, i. e. one has

Agz(af)=68a)Az(f).

(5.3.9)
Ag(ar) = 8(a)AR(r)

forany a € @, f € Fu, 7 € Ray.

6. The invariants L and S and the dual invariants L. and S, in terms of
generators

As proved in [3] there are invariants L and S of the Steenrod algebra which
determine the algebra % of secondary cohomology operations up to isomorphism.
Therefore L and S and the dual invariants L, and S also determine Z¥ and %y
respectively. In this chapter we recall the definition of L and S and we discuss
algebraic properties of L, and S«.

6.1. The left action operator L and its dual

We recall constructions of the maps L and S from [3, 14.4,14.5] of the same kind
as the operators in (4.6.12) and (4.6.13) respectively. For that, we first introduce the
following notation:

R:= Ry/(RLgRLg), (611)

with the quotient map Ry —» R denoted by r — 7. There is a well-defined .o7-.o7 -
bimodule structure on R given by

fr=Tr. if=7F
for f € %y, r € R%z. As we show below R is free both as a left and as a right o7 -
module (but not as a bimodule). A basis for R as a right .«/-module can be found

using the set PAR C Rg of preadmissible relations as defined in [3, 16.5]. These
are the elements of R of the form

Sq*!'-+-Sq* [n,m]
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where [n,m], n < 2m, is an Adem relation, the monomial Sq"!---Sq"* is admissible
(i.e.ny =2ny,ny = 2n3, ..., ng—1 = 2ny), and moreover ny = 2n. It is then proved
in [3, 16.5.2] that PAR is a basis of R~ as a free right .%y-module.
It is equally true that R is a free left .%p-module. An explicit basis PAR’ of
R 7 as a left #y-module consists of left preadmissible relations — elements of the
form
[n,m]Sq™"---Sq"™*

where [n,m], n < 2m, is an Adem relation, the monomial Sq™!'---Sq™* is
admissible, and moreover m = 2m;.
Using this, one also has

Lemma 6.1.2 R is free both as a right </ -module and as a left < -module.
Moreover, the images p of the preadmissible relations p € PAR under the quotient
map Rz — R form a basis of this free right </ -module, and the images of left
preadmissible relations form its basis as a left </ -module.

Proof: This is clear from the obvious isomorphisms
&%QQ%)Rg-QARQERgr®gh&f

of left, resp. right .&/-modules. O

In particular we see that every element of Rz can be written uniquely in the
form

p? + Zoti [ni,m;]Bi (6.1.3)

with ,0(2) € Rz - Rz, ai[n;,m;] € PAR and B; an admissible monomial. Moreover
it can be also uniquely written in the form

0+ ) Jailni.mi1p; (6.1.4)
i

with 0@ € Rz - R», admissible monomials o and [n},m!]B} € PAR'.

Definition 6.1.5 The left action operator
L: A QRs —> A QA

of degree —1 is defined as follows. For odd p let L be the zero map. For p = 2, let
first the additive map L 7 : 5> — </ ® <7 be given by the formula

L#(Sq"Sq™)= >  Sq"'Sq" ®Sq">Sq™
ni+n>=n
mi+moy=m
ml,nzodd
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(n,m = 0; remember that Sq° = 1). Equivalently, using the algebra structure on
o/ ® </ one may write

L#(Sq"Sq™) = (1®Sq")8(Sq"")(Sq' ®1)8(Sq™ ).

Restricting this map to RS> C %> gives amap Lg : RS> — o/ ® 7. It is thus an
additive map given on the Adem relations [n,m], for 0 <n < 2m, by

min{n/2,m—1} m—k—1
LRrln.m]=L#(Sq"Sq™) + Z ( n—2k

) Lg:(sqn_'—m_k qu)
k=max{0,n—m+1}

Next we define the map
L:dRR— R
as the right &7-module homomorphism which satisfies
L(a ® a[n,m]) = §(x(a)&)L g[n,m] (6.1.6)

with a[n,m] € PAR; by (6.1.2) such a homomorphism exists and is unique. .
Finally, L yields a unique linear map L : &/ ® Ry — </ ® </ by composing L
with the quotient map &/ ® Rz —> </ ® R. Thus one has

L(#®(Rs-Rsz)) =0.

The map L is the left action operator in [3, 14.4] where the following lemma is
proved (see [3, 14.4.3]):

Lemma 6.1.7 The map L satisfies the equalities

I:(a ® [n,m]) = x(a)Lr[n,m]
La®br)=L(ab®r)+8a)L(b®r)
L(a®rb)= L(a®r)sb)

foranya,be o, r e R.

We observe that L can be alternatively constructed as follows. Let
L:R—> A QA

be the map given by )
L(7) = L(Sq' ®7).

Then one has
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Proposition 6.1.8 For any a € </, r € R4 one has
L(a®r) = §(x(a))L(7):

moreover L is a homomorphism of < -<f -bimodules, hence uniquely determined by
its values on the Adem relations, which are

L([n,m]) = Lg[n,m].

Proof: Forany a € o/, a[n,m] € PAR and  admissible we have

L@®a[n,m]B) = L(a ®@aln,m])B
— §(e(a)&) L r[n,m]8p
— §x(a)8G L g[n,m]Sp
= $(a)8(x(Sq")&) L rln.m8p
= 8%(a)L(Sq1®a[n,m]ﬁ)
= 8x(a)L(a[n,m)B).

Then using (6.1.3) we see that the same identity holds for L(a®r) withany r € R .
Next for any a € o7, r € Rz we have by (6.1.7) and xSq' = Sq° =1,

L(aF) = L(Sq' ®ar)
=L(Sq'a®7)+8(Sq")L(a®F)
= 8(x(Sq" @) L(F) + 8(Sq" x(a)) L(F)
= 8(x(Sq"a) +Sq' x(a)) L(F)
= 8(a)L(F).

Thus L is a left </ -module homomorphism. It is also clearly a right &/ -module
homomorphism since L is.
Finally by (6.1.6) we have

Lgln,m] = 8(¢(Sq"))Lr[n.m] = L(Sq' ®[n,m]) = L([n,m)).

O

Explicit calculation of the left coaction operator L, is as follows. For odd p it
is the zero map, and for p = 2 we first define the additive map Lg, : %% ® < —
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R 732, Ttis dual to the composite map RS> — o7 ® .7 in the diagram

RS’ Rz
I pull I
< < m <
F e 75! T2 Fo

yosl ®Lo}~0$1 ®Lo}~0$1 ®950$1
1990081 Ly (6.1.9)
<1 <1 <1 <1
Ty ®F; @F; ®F,

19T ®1

|

|

|

|

y
< < < <1 m®m < <

IR IN QI @ F E I P2 —— Fo @ Fo

where @ is restriction Z5! — Z5! of the map %y — F, given by
®(x) = Sq' x(x),

so that one has
Sq", n=1 mod2

®(Sq") =
(54" 0, n=0 mod2.

Indeed by (6.1.5) we have

L#(Sq"Sq™) = (1®5q9")A(Sq"")(Sq' ®1)A(Sq" )
=(1®5q")Ax(Sq")(Sq' ®1)Ax(Sq™);

on the other hand we saw in (4.6.7) that
Ax=xQ@1NA=(1Rx)A,
so that we can write

L#(59"Sq™) = (1®Sq" %) A(Sq")(Sq" x ® 1)A(Sq™)
= (1® D)AST)(® ® 1)A(Sq™).
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Therefore, the map dual of & is the map P, : F[{;] — F[{1] given by
factorization through <7, —» F[¢;] of the map @, : & — o given on the

monomial basis by

ni sn2

(M) = )01 2 T
G767 0, n1=0 mod2.

ni=1 mod2

Equivalently, by (5.1.6) and (5.1.7), ®. = x,Sq. is the map ¢; %.
Thus the map L g, is the composite 7% ® <% — RS, in the diagram

z%éébﬂﬁ

*

18T®1

A
gl
&

IR IS QFF!
182:@P«Q1

I

I

I

I

I

I

I

| *
I
I
Y

Ax®Ax
M
7. 7= 751 @ F5!
l push i
<2

(6.1.10)

Now by (6.1.8) we know that L is a bimodule homomorphism, and moreover
R is generated by R;z =~ RS? C R as an &/-</-bimodule, so knowledge of Lg
(actually already of L & whose restriction it is) determines L and, by (6.1.8), also

L. Dually, one can reconstruct L and then L from L 5, via the diagram

Ly — icoaction =
Ay Qg —— — —— — — — >R*b—t>d*®R*®«Q{*

bicoaction l I I

1®LRr®1
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Here the bicoaction @7 ® &y — 4 ® (P ® Fs) ® Iy is the composite

)®nﬁb

Ay @ Sy % (e @ e ® ) @ (e @ e @ i)
(142536)

(Ao ® ) @ (o ® ) @ (o @ o) 20

T ® (i ® ) ® i

We next note the following

Lemma 6.1.11 The map Lyisa biderivation, i. e.

L(x1x2.y) = x1 Ls(x2,y) + x2 L (x1.y),
La(x,y192) = y1La(x,y2) + y2 La(x, 1)

for any x,x1,X2,9,y1,y2 € Zx.

It thus follows that L, is fully determined by its values L« (¢, ® &) on the
Milnor generators. To calculate the bicoaction on these, first note that we have

PG = A@mam= Y & om@n= Y & e o

i+i’=n i+j+k=n

where as always (o = 1. For the coaction on ¢, ® ¢, this then gives in succession

i +k "tk K’
wotwr Y. e eued " 9 ow
i+j+k=n
i'+j +k'=n'

j+k "k’ k 2%
>y e el el sus

i+j+k=n
i+ K =n

e
= Z Pt ®L ®Ly @4k,
i+j+k=n
i+ ] k' =n’

so that for the values of L, we have the equation
~ J+k _oJ K k 14
L@ @b = Y GG ®Lr(E ®8 ) ®4ln
i+j+k=n

i'+j +k'=n'

where ¢ is the above embedding R, — e ® Rsz ® . Thus we only have to

know the values of Lz, on the elements of the form §]2.k ® Ejz.f{/ for j >0,k>=0
Obviously these values are zero for j > 2 or j’ > 2. They are also zero for j = 0
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or j/ = 0 since ®,(1) = 0. There thus remain four cases j = j' =1, j = j' =2,
j=1,j"=2,and j =2, j' = 1. We then have under L z,

ms«@m

e T el bl oG el +100)? =

o1 91+ 910102 +182 @ @1+10 10t
19T®1 ’ ¢ ’ o/ .
@ e glel+ elelel +1e o @l+1010¢}

139.39.®1 ’
040418 . @ P2 @140

Av®As
—_— 0, §2k ® @, §2k

We thus have
’ =k =
Lg*@%k ® E%k )= (])Ml,l, I:)therkwise?
We next take j = j’ = 2; then
o' M en)* e@en)? = e a2 M 0
18T ®1 %k+1 % é_zk +1 é_%k % @%k/
PRI g 0.l M @ 0.l @ =0
Av®A. 0.
so that

k 1%
Lg?*(f% ®§§ ) =0

for all k and k’. Next for j =2, j' = 1 we have

’ *® * 7
X o T (20 @@ 1+ 186)2 =
é_%k+l ® é_l é_zk ® 1 + é_2k+1 é_%k ® 1 ® é_%k
T®1 ,
1T ® é‘%k-i-l ® é_% é‘zk ® 1 + é_2/\-‘1-1 ® 1 ® é‘%k ® é‘%k

1®¢*®¢*®12k+1

4

k+1 k' k

® Dut?’ @ Dul? ®1+0

A®Ax
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hence

K Y M2 +MMy;, k=k'=0
Lzs(&F @t )=4 "1 .
0 otherwise.

Finally for j =1, j’ = 2 we get

ms Q@M «

e T el+100)* @ (2o i)Y =

2k +1 2k +1

Feled e vied o e

19T ®1 k k' +1 Kk’ k' +1 k K’
'R T I +10 T 9
1P, ®P.®1
—>04+0

A+®A 0

so that

k k'
Lz ® )=0

for all k and k’.

To pass to L g, from these values means just omitting all monomials which do
not contain M ;; we thus obtain

LR«(§1®&1) =My,
Lr«(2®81) = M7,

and L g4 (¢ jzk ¢ jzf’) = 0 in all other cases.
From this we easily obtain
Proposition 6.1.12 (L. ({y ® {w) =202, @My, @1+ ,02_ @M ®1

where now {,—» = 0 for n = 1 is understood. U

Solving L« (¢n, &) from these equations is then straightforward. In this way we
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obtain

Z‘*@l,fl) = Ml,l

«(01,82) = M2 13

#(02.81) = M2 1,1 + M12,1

#(82,00) =Ma1+Mrz1+ M2,

«(81,83) = M1 211

«(£3.00) = Map11 + M3,

%(82.03) = Mg 1,1+ Myan+Map31+Mapi121+Mran

Li(83,80) = Mgpa1 +Maa1q+Mapais+Mioiog+Mranin
FMZAMG A MG+ M7 A MIMG + MPMS

Li(£3,83) = Mg a11 + Mgo31+ Msga121 +Massi +Magion
+Msr521+Msp431+Mapaip1+Msn1,42.1

Lu(t1.04) = Ms 42,11

Lu(£4.51) = Ms 4211 + M3,

Li(82,8a) = M1o.a2,1,1 + Mg 6211 +Msaai1 +Msansi+Msanion
+Msg24211+M28421,1

Li(C4,82) = Mioa2,1,1 +Ms 621,10 +Msaan1 +Msansi+Msanioi
+ Mg421,1+Mrga21,1
+ Mg+ M7y + M3+ Mo+ Migy +Misn+ My,
+ Mg+ M3 40+ MIM, + MPMS + My M3

Li(83.84) = Mizsna1 +Mizaaig +Mizassi +Mizasizg +Mizoanin
+ Mg ga1,1+Mggo31+ Mssoi121+ Msgaes1+ Msaei.2,1
+Mgapns21+Mganaz1+Mganair1 +Mganiani
+ Mas 042,11 + Magen1,1 +Magasr +Magans

+Msga2121+Msgra21,1+Msng42.1,1,

M~ ot B

etc.
Having I:* we then can obtain L, by the dual of (6.1.8) as

La(x.y) =Y t1xeyp ® Lu(xr.yr) (6.1.13)
for x,y € o, with

ma(x) = Y X @ xr, ma() = Yy @ i
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6.2. The symmetry operator S and its dual

Definition 6.2.1 The symmetry operator

of degree —1 is defined as follows. For odd p, let S be the zero map. For p = 2 let
the elements S, € &/ ® o/, n = 0, be given by

Si= Y. Sq"®Sq" = (Sq'®Sq)s(Sq" ),
ny+nx=n—1
ni,nyp odd
1. €.
Sok =0,
S2k—|—1 — Z Sq2i+1®sq2(k—i)—l’
0<i<k

k = 0. Then let the linear map S : #5> — o/ ® </ be given by

S#(Sq"Sq™) = S,8(Sq™) + 8(Sq")Sm + 8(Sq" ™) Sm+1
= (Sq' ®S9")8(Sq"*Sq™) + 8(Sq")(Sq' ®Sq")5(Sq™ ?)
+8(S9" 1) (Sq' ®Sq")8(Sq™ ),

n,m = 0. Next define the map Sg : RS> — &/ ® 7 by restriction to RS> C F5>.
Thus on the Adem relations this map is given by

min{n/2,m—1} m—k—1
Sr[n,m] = Sz(Sq"Sq™) + Z ( n—2k

) S&T(Sqn-f-m—k qu)
k=max{0,n—m+1}

(6.2.2)
Now let us define the map o
S:R>Ad QA

as a unique right «/-module homomorphism satisfying
S(afn,m]) = §(a)Sr[n,m] + (1 + T)L(e ® [n,m])

for a[n,m] € PAR. Then finally this determines a unique linear map S : Ry —
o/ ® < by composing with the quotient map Rz — R.

The map § is the symmetry operator in [3, 14.5.2] where the following lemma
is proved.
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Lemma 6.2.3 The map S satisfies the equations

S(fn.ml) = Sgln,m]
S’(ar) = S(a)S’(r) + 1+ T)I:(a ®r)
S(ra) = S(r)é(a)
forany 0 <n <2m, a € o/ andr € R.

We now turn to the dual Sy : &% ® & — Rz, of S (dually to the above,
the image of this operator actually lies in R« C Rz, and so defines the operator
Sy @y — ﬁ*). Since we know that S, is a biderivation, it suffices to compute
the values S« (¢, ® {,/). Now dually to the equation

S(a[n,m]b) = §(a)Sr([n,m])8(b) + (1 + T)L(a ® [n,m]b)
= 8(a)Sr([n.m])8(b) + (1 + T)(8x(a)Lr([n,m])5(b))

we have

lS*(é_n &® zn/)

2Jtk ooJ +K! 2k 2k’
= > (T oS 9 ) @0t
i+j+k=n
i'+j k' =n

+082 " @ (Lra(F © ) + LentE ©8)) @ le)

2./ +k 2j/+k/ 2k zk/
= Z i i ® Sr«(§7 ®L5 ) ® Lplr
i+j+k=n
i'+j'+k’'=n’

+§1§:_2§5/_1 ®M12,1 ® 1 +§1§5_1§:/_2®M12,1 ® 1’

with o = 1 and ¢, = 0 for n < 0, as before.

It thus remains to find the values Sg.( jz»k ®¢ jsz ) — which in turn are images

of the corresponding values of Sz, under the map .%, — R z,. To find the latter,
let us first define another intermediate operator

SV I > AR

by the equation

S1(Sq") = Sn41 = (Sq'®SqNSxx(Sq") = ) Sq" ®Sq™,

ni1+n>=n
ni,np odd
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so that we have
Szm(Sq" ®Sq™) = S=(Sq" Sq™)
= S'%(Sq")8(Sq™) + 8(Sq™)S ' x(Sq™) + 8x(Sq") S (Sq™).
We have the dual operator
Sp: @ > F5!

such that dual

of S is given by
mxSz+(Xx ®y) =
Z(é‘l Si (xe®ye) ® (err/)sl + (xﬁ)’f/)$1 ® & S:: (xr ® yr/)

+(§1XKYK’)$1 ® Si (xr ® J’r’))
(6.2.4)
where as before we use the Sweedler notation

My (X) = ZXZ Qxr, mx(y) = ZJ’Z/ & yr

and
O e —» F5!

sends ¢ to M and all other Milnor generators to 0. Thus we have

k K

r+k 4k k ok’
= > aSi¢ T eq T HeE )
l+r=j
Ur'=j’

2r+k 2r’+k’ 2r+k 2r’+k’

k K’ k 14
+(@F T S OUS (G RG )+ Gt T T )SIeS (G ®8)
Now the operator S is obviously given by

n n
xy, x=¢0", y=1_ ny,nyodd,

Slx®y) = (6.2.5)

0 otherwise,

so that Sz, (¢ jzk ® Ejz-f(/) = 0 whenever k > 0 or k¥’ > 0. And among the remaining
values Sz .({; ® ;) the only nonzero ones are given by

Sz:(61®81) =Ms+Mip=M; + My,
S7x(81®8%) =S74((2®81) = Moz + Mz n = MiM7 |,
Sr((2®8) = Msa+ Mas =M M3 ,.
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Then further passing to Sg, means, as before, removing the monomials not
containing M 1, so that the only nonzero values of the form Sg. (¢ jz.k ® EJZZC ) are

Srx(C1 ®52) = Sra({2 ® &1) = M{ MY,

Hence we obtain

Proposition 6.2.6

(Sx(6n ® &n) =6p 1 Gy s @ MIMT @ 1+ 85 500 @ MiME &1
+ é‘]é‘:_zéﬁ/_l ® Mlz,l ® 1 + é‘léﬁ_lé‘:/_z ® M12,1 ® 1

O
As for L, above, we then solve these equations obtaining e. g.
Sx(¢1,¢1) =0,
Sx(1,82) = S«(82,81) = M1 + M1M12,1,
Sx(82,82) =0,

Sx(1,83) = S«(83,81) =Muppg + M1M22,1,1,
Se(82.83) = Sx(3.82) = Mo 21 + Maany + Maanog + MiMZ + Mi M7,
+MiM3, + MyM3 gy + MPMZ  + MM,
Sx(83.83) =0,
Se(81.84) = S (a.81) = Mgapog + MM, 4.
S«(82.84) = Sx(84.82) = M10,42,2,1 + Mg 62,21 +Mgaan1+Mgra221

77777

+ MiM§ + MiMZ,+ M{MZ, | + M{MZ,+ MM,
MM+ MM+ MIM3 o+ MiM3 5
+ MiM3 M3+ MPMZ, |+ M M2,

etc.

7. The extended Steenrod algebra and its cocycle

We show that the dual invariant S, determines a singular extension of the Hopf
algebra structure of the Steenrod algebra. We also give a formula for a cocycle
representing the extension. Then we show that S, is related to a formula which
describes the main result of Kristensen on secondary cohomology operations. A
proof of this formula has not appeared in the literature yet.
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7.1. Singular extensions of Hopf algebras

In this section we introduce a singular extension o of the Steenrod algebra o
which is determined by the symmetry operator S.

Definition 7.1.1 A singular extension of a Hopf algebra A is a direct sum diagram
p
R _~— A As
q =5 -

i. e. one has ps =idy4, gi =idg and sp +ig = id, such that Ais an algebra with
multiplication p : A®A — Aand Aisalsoa coalgebra with diagonal §:4A— A®A.
(Here we do not assume that isa homomorphism of algebras, or equivalently that
W is a homomorphism of coalgebras, so that in general A is not a Hopf algebra).
In addition p is an algebra homomorphism, and s is a coalgebra homomorphism.
Moreover (i, p) must be a singular extension of algebras and (gq,s) must be a singular
extension of coalgebras. This means that the ideal R = keri of the algebra Aisa
square zero ideal, i. e. xy = 0 for any x,y € R, and the coideal R = cokers of the
coalgebra Aisa square zero coideal, i. e. the composite
AL i i ReR
is zero.

It follows that the A-A-bimodule and A-A-bicomodule structures on R descend
to A-A-bimodule and A-A-bicomodule structures respectively.

Our basic example of a singular Hopf algebra extension is as follows. We have
seen that R from (6.1.1) has an .7 -.¢-bimodule structure. Now it also has an .o7-.o7 -
bicomodule structure as follows. On the one hand, there is a diagonal Ag : R —

Rg) =ker(¢.# ® ¢ ) induced in the commutative diagram
Rs Fo L of
|
Al ‘/A ls
' o 17997
RY —— 7@ Fy—= o @ o

with short exact rows. Moreover there is a short exact sequence

i@= (1§®1
Ry @Ry ——2 0@ Ry & Ry @ Fp — R,

where iz : Rz <> %y is the inclusion. Since the composite of the quotient map

FoQRz DRz ®F) > S RRO®RR A
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with i @ is obviously zero, we get the induced map
R > #QROR® .

Moreover the diagonal of .% factors through this map as follows

R Ry o 7y — 1y
| |
1(R9) A A lg (7.1.2)
\ Y
A RRHR® A RO = 7@ 22 of @ of

giving the left, resp. right coaction Ay, resp. A, of the desired 7-o7-bicomodule
structure on R.

Note that the above construction is actually precisely dual to the standard
procedure for equipping the kernel of a singular extension with a structure of a
bimodule over a base. In particular we could use the dual diagram

%@R@R@% R(Z)( tg&*()@JLI?@qu@d
|
(mr |m lm lm (713)
Y .
R Rg C i LO}‘O qz M

to give R via m; and m, the structure of .«7-.o7-bimodule.

Theorem 7.1.4 There is a unique singular extension of Hopf algebras
P
TTIR=—= = o ===,

where < is the split singular extension of algebras, that is, as an algebra
7= SR
is the semidirect product with multiplication
(a,r)(d',r") = (ad',ar’ +ra’)

and the following conditions are satisfied.

The induced <7 -/ -bimodule and <7 -2/ -bicomodule structures on 'R are
given by the ones indicated in (7.1.2) above, and the diagonal $ of the coalgebra o
fits into the commutative diagram

o PA-YA
i lHT (7.1.5)
SR A @A R
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where S is the symmetry operator in (6.2.1).

We will prove this theorem together with the dual statement. Note that clearly
the dual of a singular extension of any Hopf algebra A is a singular extension of the
dual Hopf algebra A.. Clearly then the above theorem is equivalent to

Theorem 7.1.6 There is a unique singular extension of Hopf algebras

_ qx N Sx
>R, e m—,A = 7
*

Ix
where <y is the split singular extension of coalgebras, that is, as a coalgebra
with diagonal
msx O
0 myx
0 my
0 0

@{*@E_IR* — Qs 6943{*®2_1R* @E_lﬁ* ® s ®2_1R*®E_1R*

where the diagonal m is dual to the multiplication m : &/ @ of — of and myy, My«
are the oy-<ly-bicomodule structure maps dual to the o -of -bimodule structure
maps my : & @ E'R — X7'R, m, : T'1RQ® o/ — 'R in (1.1.3), where
the induced y-<f-bimodule structure on Ry is dual to the < -<f -bicomodule
structure indicated in (7.1.2) above, and where the multiplication 8s of the algebra
o, satisfies the commutation rule

Px(Y)px(X) = px(x) px(y) + Sx(x ® y)
for any x,y € oy, where
Sy oy ® oy — SR,

is the cosymmetry operator from (4.8.6).
Proof of (7.1.4) and (7.1.6): The diagonal § can be written as follows

d11 P12
$21 $22
¢31 932

Pa1 P42
—_—

g DER IRADARXIEL'ROESTIRQII BI 'RQTIR.

Then the condition that s : &7 >> o/ @ 7! R is a coalgebra homomorphism implies
¢11 = 6 and ¢o; = 0, ¢31 = 0, ¢y = 9 Moreover the condition that the .o7-
<7 -bicomodule structure induced on X! R coincides with the one given in (7.1.2)
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implies ¢o2 = Ay, ¢p32 = A,. Next the condition that (s,q) is a singular extension of
coalgebras, i. e. the coideal R has zero comultiplication, implies ¢4, = 0. Finally,
let us look at the diagram (7.1.5). The lower composite in this diagram sends (a,r) €
o ®X 'R to

(S(r),0,0,0) e /A DA RIYL 'ROEZ'RRIFA BT 'ROZ"IR.
The upper composite sends it to

(14 T)s(a,r)
:(1 + T)((S((l) + ¢12(r)’A£(r)’Ar (r),O)
=((1+T)d(a) + (A +T)p12(r), Ag(r) + TA(r),Ar(r) + TAy(r),0).

Since § is cocommutative, one has (1 + 7)§ = 0. Moreover cocommutativity of
A Fo— Fo® Fg implies TA; = Ay, TA, = Ay. Thus commutativity of (7.1.5)
is equivalent to the condition

A1+T)p2=S:Z'R> d @ (7.1.7)

Equivalently, passing to the dual we see that the dual map &, = @12, : P Q@ s —
¥~ R, must satisfy
E«(1+T) = Ss«.

Now it is easy to see that &, is in fact the algebra cocycle determining the algebra
extension
_ g« A s

Ry —— o, —= s,
that is, in .7, = 7 ® X! R, one has
(@.8)(@.p') = (ad’,ap’ + pa’ + (@ @ ).
Hence by (7.1.7) one has
(e, )@, B") — (&', B') (. B) = (0.Sx(a ® ).

Now recall that 7 is actually a polynomial algebra. Using this fact it has been
shown in [3, 16.2] that the algebra structure of any of its singular extensions such as
o, above is completely determined by its commutator map, i. e. by S«. Thus ¢15,
and hence the whole ¢;; matrix is uniquely determined. It is then straightforward
to check that indeed this matrix yields a coalgebra structure on </ with desired
properties. U
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It follows immediately from (7.1.6) (and actually this was also deduced during
its proof) that one has

Corollary 7.1.8 For the cosymmetry operator S« from (4.8.6) there exists a map

which is a 2-cocycle, i. e. for any x,y,z € &y one has

xEx(y.2) +Ex(x,y2) = zEu(x,y) + £ (xy.2)

and such that its symmetrization is equal to S, i. e. for any x,y € <y one has

Ex (X, ) + 54 (X)) = Sk (x,y).
Proof: This follows since any extension

of a commutative algebra A by a symmetric A-module M is determined by a 2-
cocycle ¢ : A® A — M such that for any x,y € A’ one has

xy—yx =i(c(px,py)—c(py.px)),

i. e. the commutator map for A’ is given by the antisymmetrization of ¢. Of course

for p = 2 there is no difference between symmetrization and antisymmetrization.
O

Remark 7.1.9 The above corollary is easily seen to be exactly dual to [3, Theorem
16.1.5].

Using the extended Steenrod algebra we can next compute the deviation of the
cocycle &, from being an <7,-comodule homomorphism. Namely, let

be the difference between the upper and lower composites in the diagram

Ay @ Ay LI of, @ oy ®
E*l ll@&‘* (7.1.10)

1R, <2 s @3 1R,
Thus on elements we have

Ve, (x.0) = ) Ex )y ®E (R = ) Xy ®x(xryr), (111D
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where again the Sweedler notation is used,

Mx(X) = Zxﬁ ® Xr

for the diagonal
My : Sy — s @ s

and
ax(x) =) xoy ®xc

for the coaction
ax:C > . QC

of a left 2Z.-comodule C.
Let us also denote by Vg, the similar operator but with S, in place of &.. That
is, we define

Vsa(x,y) = ZS*(x,y)d ® S«(x,y)R — eryef ® Su (X7, yr).

We then obviously have

Ve (x,¥) + Ve, (y.x) = Vsu(x,y) (7.1.12)

for any x,y € .

Lemma 7.1.13 The map V¢ above is a 2-cocycle, i. e. for any x,y,z € /4 one has
My (X) Ve, (v.2) + Ve (x,yz2) = Ve (x,y)ma(2) + Vg, (xy.2).
Proof: First note that the diagram

—m s @coaction

WX

action o @ s Q@ Ay Q R*
lz?* ®action
R* coaction JZ{* ® R*

commutes — this follows from the fact that the action and coaction of .&Z on R,
are induced from the multiplication and comultiplication in .%, which is a Hopf
algebra.
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We thus conclude that the coaction map
R« — o7 ® R,

is a homomorphism of .o/.-modules, so that its composite with the cocycle & is a
cocycle. It thus remains to show that the composite

in the diagram (7.1.10) is also a cocycle. Let us denote this composite by ¢.
Observe that the Hopf algebra diagram for o7, expressing interchange of the
multiplication and diagonal can be written on elements as follows:

Z(xy)g Q® (xy)r = ery@/ & XrYrr.

Using this identity we then have for any x,y,z € o/

ma(X)$(y.2) =Y _Xeyezer @ XrEw(Yrr2pr);
$(x.yz) =Y xp(y2)r ® Ex(xr.(y2)r)
= (6« ® &) (Zw R(y2)e ®xr ® (yz),/>
= (6+ @ &x) (fo ® yuzer ® Xr ® yr’Zr”)
= erye/ze” ® Ex(xr, yrZpr);
P(xy.2) =Y (x)eze ® Ea((xY)r.2p)
= 028 (D () @20 ® (1), © )
= 3+ 28 (Y xeve @20 @ x, v @ 2,0)
=Y xeyuzer ® Ex(Xr ). zpm):;
GOx.)Ima(z) =D Xeyezer ® Ex(Xr.yr)ze.

These indentities readily imply that ¢ is a cocycle as required. U

We next use the fact the cocycle Vg is defined on a polynomial algebra and
hence can be expressed by its values on generators and by its (anti)symmetrization
Vs «. Indeed the proof of [3, 16.2.3] works in this generality, i. e. one has

Proposition 7.1.14 Let P = k[{1,(2,...] be a polynomial algebra over a commuta-
tive ring k, let M be a P-module, let

y:P®P—>M
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be a Hochschild 2-cocycle, i. e. one has

xy(y,z) —y(xy,z) + y(x,yz) —zy(x,y) =0

forall x,y,z € P, and let o be the antisymmetrization of v, i. e.

o(x,y) =y(x,y) =y (y.%).
Then, up to coboundaries, y can be recovered from o, i. e. there is a cocycle y,

cohomologous to y which depends only on o.

Proof: To y corresponds a singular extension of k-algebras

whose isomorphism class uniquely determines the cohomology class of y. Let us
choose for each polynomial generator {, € P an element s({,) € E with ps({,) =
. Furthermore let us choose an ordering on the polynomial generators of P, {; <
{2 < ...; these data determine uniquely a k-linear section of p, by the formula

S@nlgnz"') = S@nl)s(é‘nz)"'

for any finite sequence n; < n, < --- of positive integers. Then we can use s to
construct a cocycle y, cohomologous to y determined by

s(xy) =s(x)s(y) +iye(x,y).

But if x and y are monomials, then s(xy) and s(x)s(y) differ only by the order of
terms, so that i ¥ (x,y) is contained in the ideal generated by commutators

Vo (§i,Cj) = s(8i)s(§) = s(8j)s(8i) = 0 (&i.E5)

for i > j. So in fact one can express each y,(x,y) by a linear combination of
elements of M of the form zo(;,{;) forz € P. O

Remark 7.1.15 Obviously the above proof actually contains an algorithm for
expressing the cocycle yq in terms of 0. For x =, Cpy -8y and y = &y Cmy -+ Cmy s
with ny < n, < --- < ng, my < mp < --- < my, either one has n; < my, in which
case Y5 (x,y) = 0 since s(x)s(y) = s(xy), or one has n; > my, in which case one
can write

s(x)s(y)
=5(ny )5 (Cng_1 )5 (Cmy ) Gy )s (Cmy) S Cmy) + Cny++Cn—y Sma ++Cmy 0 Gy - S ) -
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Applying the same procedure again several times one finally arrives at s(xy)-+(a
sum of elements of the form zo'({;.{;)). In fact it is easy to see that one has

Va(§n1é‘nz“‘é‘nk,é‘mlé‘mz“‘é‘ml)
= Z énl ”.é‘njflé‘nlq»] “‘é‘nké‘ml "'é‘mjflé‘mjurl "'é‘ng(é‘mj ’é‘n,‘)'

n;>m;

In the characteristic p > 0 case further obvious simplifications occur. In
particular we can choose the cocycle £, in (7.1.8) in such a way that the formula

dy od
%‘*(é‘ll 22...’ fl ;2...) =
} : di+ di—1+ei_1 +di+ej—1.dit1+e;
é-ll el'”é-iill ej lé-iz €j é—i_ril i+1 .

i<j

e;,d; odd (7116)

dji—1+ej—1.dj+ej—1.dji1+e;
é‘jj—ll J lé-j/ J é—j:il j+1"'S*(§i,§j)

holds

The operator Vg, is readily computable. It is a symmetric biderivation, with
Vs« (x,x) = 0 for all x, thus uniquely determined by its values of the form
Vs« (Cn,Cm) for n < m, which are expressed easily from the corresponding values
of S.. For example, one has

Vs(l1.02) =61 @ M7,
Vsall1.83) =5 @ MP + 8L ® M3 4.
Vsx(82.83) = (({+01G) O MP + 3 @ M3
+4® (M12M3 +MiMy 11+ Ms+ My + Mso+ M2,1,1,1)2,
Vsalli.8a) =00 @MY + 5T @ M3y + 01 @ M3y 5.
Vsa(l2.0a) = (515 + 0E3) @ MP, + 51 @ M3,
+® (MEM3+ MiMa 11 + Ms + My + M, + M2,1,1,1)2
+7 ®M42,2,1,1
+4 ® (M Ms + M3 M3+ M} Msz11 + Mo+ M7p+ Mg,
+Ms4+M340+Mszo+Myar+Mrang+ M4,2,1,1,1)2,

etc.
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7.2. The formula of Kristensen

We will next use certain elements defined in [13, Theorem 3.3] to derive more
explicit expressions for &4, hence for Ss, Vs, and Ve . We recall that Kristensen
defines

Ala.b] = (Sq' ®8q°")8 [ Sq**Sq" "2 +8¢*"28¢" 3

b—1—j . . . .
S a+b—]—3S Jj—2 S a+b—j—zs Jj=3 ’
+§j<a—2j )(q q’""+5Sq qQ’7)

for natural numbers a,b. Obviously one has
Ala.b] = (Sq' ®Sq*")Sk ([a.b]),
where k is the operator determined by

k(xy) = 2x(ex(x)xx(y))
forx,y € 9}?1. We then interpret A[a,b] as an F-linear operator of the form
K:Z3 @75 > d o
given by
K(x ®y) = (Sq' ®8q*")8x (e (x)2x(y))

which is factored through 75! @ 75! — 752 and then restricted to RS> ~ F52.
We then can dualize K to get

Definition 7.2.1 We define an FF-linear operator
Ky : o ® o — RS,

as composite with the quotient map .#52 —» R;z . of the dual of K above (whose

image lies in that of my : 52 »> ZFS! @ Z 51

Thus explicitly, K is the composite

S 1'*®S 0’1'* 8*
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landing in 5% > 5! @ #S! and precomposed with .#=2 — R$?,. Or on
elements,
Kar® ) = 42 @ M) (o 25 20\ T a2, a0, 22y
X == m _ =m - < .
* Yy 1 1 * laé_1 BT * 1,1 laé_1 PT
One thus has
K*(é‘;’l ;’2®é‘;"1 ;"2)
_ M1'"+m‘M2'”21+m2_1Mil, ny, myodd, n; =m; =0fori > 2, (7.22)
0 otherwise.
We have

Proposition 7.2.3 Symmetrization of the operator K. dual to the operator Sg in
(6.2.2), i. e. is given by precomposing Sz, given in (6.2.4) with the restriction map
yfz —»> Rgfz

Proof:  From the above formula (7.2.2), for monomials x = ¢}'¢52¢3° - and y =

11265 -+ we have

Ki(x®y) + K«(y ® x)
_ M{“erlM;,zlerz_lMlZ’l, nims +min, odd and n; = m; =0 fori > 2,
o otherwise.

On the other hand, using the explicit expression (6.2.4) and the expression for the
operator S} in (6.2.5) we can write

miSzx(x Q@ y) =

S G0y ) S HGRIHIRL) Y (eye) ST,
xe=¢Pn! xp=¢3"!

yor=¢3"""1 yr=tn 1

From the expression (5.1.5) for the Milnor diagonal we thus see that for monomials

_ pn1gn2ens _ pmigmoems _ . —
x=101"07¢7and y =¢85 %837 - one has Sz (x ®y) = O unless n; =m; =
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0 for i > 2, whereas in the remaining cases one has
ny N2 mi smay _
m*S:ﬁJ*(é‘l 2 ®§1 é‘z )—

ni miy é.i+j+2(n2+m2)+1®é.n1+m1—i—j+n2+m2
i . 1 1

0<i<n; J
0<j<m
i,j odd
R\ [M1) it j4+2(na+ma) o wni+mi—i—j+na+ms
+(61®1+1®¢1) E (l. )( .)Zl ®&, :
0<i<n J
0<j<m

ni —i+n2,m1 —j +m> odd

Let us now turn back to the symmetrization of K.. We compute its image under
the map m4; by (5.3.6) itsends M1 t0 {1 ®@ 1 +1®¢&1, My,1t0o &1 ® 1 and M» ; to
¢ f ® 1. Thus the nonzero values of this image are, for nymy, + mn, odd,

ma K (14 T) (7 8> R 652) = (L@ 1+1®5)" ™ (5T @) T~ (G ®¢)).

Then expanding ({; ® 1 +1®@¢)" " = (1 @1+ 1Q¢)" (L1 @1+ 1Q¢)™
via binomials we obtain

maKe(14+T)(E > @8 EN?)

_ Z (nl) <m1)§i+j+2(n2+m2) ® é_n1+m1—i—j+n2+m2+l
= . . 1 1 .
0<i<n; ! J

0<j<m

It follows that nonzero values of the difference m, (S — K« (14T)) on monomials
in Milnor generators are equal to

(”1) (ml) i+j+2(na+my)+1 ® é.n1+m1—i—j+n2+m2
§ . . 1
1

0<i<ni J
0<j<m
i,j odd
Z ny\ [M1) ci+j+2(na+ma)+1 ni+my—i—j+no+mo
- l J
0<i<n

0<j<m
ni —i+n2,m1 —j +m> odd

ni
-z ()
0<i<ni

0<j<m
ny—i+ny,m —j+mseven

(ml é.i+j+2(n2+m2) ® é.n1+m1—i—j+n2+m2+1
. 1 1
J
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for nymo + miny odd and my Sz (7 E02 @ &1 E0*?) for nym, + ming even.
152 1 52
The first expression can be rewritten as

Goay=tmy et

k
ni my ni mi
E . L)+ E . .
- i k—i _ i k—i
0<i<n; 0<i<n;
0<k—i<m, 0<k—i<m,
i,k—iOdd nl—i+n2,m|—k+i+m20dd

ni mi
" 0; (i )<k+1_i>
<is<ny

0<k+1—-i<m,
ni—i+ny,m —k—1+i+mjeven

and in the second case we may write

meSza (G 8 @ G = (@ )ty gt e gt

k
ni my ni mi
> . )+ > : .
- i k—i _ i k—i
0<i<n; 0<i<n;
0<k—i<m, 0<k—i<m,
i,k—iOdd nl—i+n2,m|—k+i+m20dd
ni mi
* 2. (i)(k+1 i)
0<i<nm
0<k+1—i<m;

ni —1 +no,m —k—l"r‘i +mo odd

One then shows that these expressions lie in the subalgebra of .#S! @ F 5!
generated by {2 ® ¢; and {; ® 1 + 1 ® {;, without involvement of {; ® ¢;. This
means that the image of the difference Sz, — K«(1 + T') under the restriction map
FS2 > RS2 s zero. O

8. Computation of the algebra of secondary cohomology operations and its
dual

We first describe explicit splittings of the pair algebra Z¥ of relations in the
Steenrod algebra and its dual Zr. Then we describe in terms of these splittings s
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the multiplication maps A* for the Hopf pair algebra #F of secondary cohomology
operations and we describe the dual maps A determining the Hopf pair coalgebra
PBr dual to BF. On the basis of the main result in [3] we describe systems of
equations which can be solved inductively by a computer and which yield the
multiplication maps A® and Ay as a solution. It turns out that A; is explicitly given
by a formula in which only the values As(¢,), n = 1, have to be computed where ¢,
is the Milnor generator in the dual Steenrod algebra 7.

8.1. Computation of Z¥ and Ry

Let us fix a function y : F — G which splits the projection G — F, namely, take

y(k modp)=k modp? 0<k < p. (8.1.1)

a
We will use y to define splittings of ZF = (%}F — RE ) Here a splitting s of %

is an F-linear map for which the diagram

Za
’ la (8.1.2)
Ry = Fo —=HF

commutes with Rg = im(d) = ker(q# : %9 — &/). We only consider the case
p=2.

Definition 8.1.3 (The right equivariant splitting of Z¥) Using y, all Adem relations

Bl k-1
la.b] :=Sq"Sq”+) ( ok )Sq“+b_k8qk
k=0

for a,b > 0, a < 2b, can be lifted to elements [a,b], € Ry by applying x to all
coefficients, i. e. by interpreting [a,b] as an element of Z. As shown in [3, 16.5.2],
Rz is a free right .%p-module with a basis consisting of preadmissible relations.
For p = 2 these are elements of the form

Sq?'---Sq**~![ak.a]l € R»

satisfying a1 = 2as, ..., dg—» = 2ax—1, ax—1 = 2ay, ap < 2a. Sending such an
element to
Sq*'---8q*'[ak.a]y € Ry
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determines then a unique right .%y-equivariant splitting ¢ in the pair algebra %F ;
that is, we get a commutative diagram

Rz LRy @F = %F

| ;

90 — %(]F .
For a splitting s of Z¥ the map s ® 1 @ 1® s induces the map sy in the diagram

FE L (GF QAT ), ~— FF © Ty @ Fo @.FF

A A N
s ia S# | i(“)@ | s®1®1®s

\ \ ‘

Ry —="— R Rz ®F0® Fo® Ry (8.1.4)

!

Fo—2> Ty ® Fo.
Then the difference U = sgAg — As : Rz — (ZF Q%Y ), satisfies 8®U = 0 since
8®S#AR = AR = ARds = 8®As.
Thus U lifts to kerdg = &7 ® </ and gives an F-linear map
U Rz > Q. (8.1.5)

If we use the splitting s to identify %IIF with the direct sum « @ R, then it is
clear that knowledge of the map U? determines the diagonal %{F — (ZF Q%" ),
completely. Indeed sy yields the identification (Z¥ @ #¥ ), = o/ @ o/ & R?, and
under these identifications A : %]117 — (#® %" ), corresponds to a map which by
commutativity of (8.1.4) must have the form

(Agg Us
M@Rg—O—ARL@Z@@f@R? (8.1.6)

and is thus determined by U*.

One readily checks that the map U* for s = ¢ in (8.1.3) coincides with the map
U defined in [3, 16.4.3] in terms of the algebra 4.

Given the splitting s and the map U?, the only piece of structure remaining to
determine the Alg’f”—comonoid structure of ZF completely is the .%-.%,-bimodule
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structure on %{F ~ o/ ® Rz. Consider for f € %, r € R4 the difference s(fr) —
fs(r). It belongs to the kernel of d since

Is(fr) = fr= fos(r)=09(fs(r)).
Thus we obtain the left multiplication map
a’: FoQRg — . (8.1.7)
Similarly we obtain the right multiplication map
b Ry ® Fog— A

by the difference s(rf) —s(r) f.

Lemma 8.1.8 For s = ¢ in (8.1.3) the right multiplication map b? is trivial, that
is ¢ is right equivariant, and the left multiplication map factors through qz ® 1
inducing the map

a® . of Q Rz — .

Proof: Right equivariance holds by definition. As for the factorization, Rz ®
Rz > Zy® Rz is in the kernel of a? : . %, ® Rz — <7, since by right equivariance
of s and by the pair algebra property (4.1.8) for Z¥ one has for any r,r’ € R»

s(rr’y=s(r)r' =s(r)as(r’) = (0s(r)s(r’) = rs(r’).

Hence factoring the above map through (%9 ® R#)/(Rz ® Rz) =~ &/ ® Rz we
obtain a map
O
Summarizing the above, we thus have proved
Proposition 8.1.9 Using the splitting s = ¢ of ZF in (8.1.3) the comonoid ZF in

air

the category Alg)™" described in (4.5.4) is completely determined by the maps
U? . Rz - o @

and
a¢M®Rg—>M

given in (8.1.5) and (8.1.7) respectively.
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O
We next introduce another splitting s = ¥ for which U® = 0. For this we use
the fact that 2/, = Hom(/,F) and

By = Hom(%.G) (8.1.10)

with %y = Tg (E.,) both are polynomial algebras in such a way that generators of
<y are also (part of the) generators of HBy.
Using y in (8.1.1) we obtain the function

Uy e — By (8.1.11)

(which is not F-linear) as follows. Each element x in <7 is uniquely an [F-
linear combination x = ), nqa where o runs through the monomials in Milnor
generators. Such a monomial can be also considered as an element in %y by (5.2.6)
so that we can define

Yy (x) = Z)((na)a € Bs.

Definition 8.1.12 (The comultiplicative splitting of %Z¥) Consider the following
commutative diagram with exact rows and columns

fng* > 9* —_— Hom(R@,F)

N
N
'px\\T T

By —q> Hom(R#,G)

I/ IjR
4z x

H L “qvy

4 %

with the columns induced by the short exact sequence F > G — F and the rows
induced by (4.7.1). In particular ¢ is induced by the inclusion Rg C Hy. Now it is
clear that v, yields a map gy, which lifts to Hom(R4,F) so that we get the map

q¥y : s —»@11,1-

which splits the projection %]%. —» /. Moreover gV, is F-linear since for all
X,y € s the elements ¥/, (x) + ¥, (y) — ¥y (x + y) € Py are in the image of the
inclusion jqz, : & > %PBs and thus go to zero under q.
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The dual of g, is thus a retraction (¢v,)* in the short exact sequence

Ry <~ Ry QF ~—— o7
~ 7
N Ve
AN Ve
@¥)l o H 7 @yt

Z
which induces the splitting ¥ = ()7} of #¥ determined by

Y ((x) = x —1((g¥)* (%))
Lemma 8.1.13 For the splitting s = of Z#* we have UY = 0.

Proof: 'We must show that the following diagram commutes:

Ry — 2% - R®

Wl llﬁ#
Ry ®F —2> (%F @%F),.

Obviously this is equivalent to commutativity of the dual diagram

(ZF Q%r)! L Hom(Rz,F)

(W) l L Y

AR

which in turn is equivalent to commutativity of

A @y — o,

(w#)il lql/j‘x (8.1.14)
(% & %x)! —> Hom(Rz.F).

On the other hand, the left hand vertical map in the latter diagram can be included
into another commutative diagram

i®l

1®q1/fx@q1/fx®1l l(w)i

T @RL S RL® T~ (% ® Hp)!
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It follows that on elements, commutativity of (8.1.14) means that the equality

qUx(xy) = i(xX)q¥y(y) + q ¥y (x)i(y)

holds for any x,y € o/. By linearity, it is clearly enough to prove this when x and
y are monomials in Milnor generators.

For this observe that for any x € &% = Hom(«/,F), the element ¢y, (x) €
Hom(R %,F) is the unique F-linear map making the diagram

Rg,g>—>%()—>>@7

[
q¥y(x) | llfx(x)l lx
¥
F G F

commute. This uniqueness implies the equality we need in view of the following
commutative diagram with exact columns:

~

Ry R? - - - - >FQF ————

| | |

® ~
By A %0®%x(x) WX(y)G(X)G =

i .

T a2 S FRF —=

xy

A<~——<H

o

’

since when x and y are monomials in Milnor generators, one has v, (xy)

Uy () Uy (). |

Therefore we call v the comultiplicative splitting of Z¥. We now want to
compute the left and right multiplication maps a¥ and b¥ defined in (8.1.7). The
dual maps ay = (a¥)« and by = (b¥), can be described by the diagrams

9¥x_
(Rap)s — = o,
mgl lm (8.1.15)
Fe® (Rp)s = Fu® (Ra)s —= e ® o,

i®q¥y
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and

s

- _ —~

q¥y®i

319

(8.1.16)

Here m, is dual to the multiplication in .7 and m% and m”, are induced by the .%,-

Fo-bimodule structure of R4 ® F. One readily checks

avy =m£q1ﬂx_(i ®qYy)mx
by =mqVy—(q¥y ®i)m..

We now consider the diagram

B, Yy o,

®

Here w)‘? is defined similarly as v, in (8.1.11) by the formula

w? Znaﬂa B = ZX(”&,B)O‘ ®pB
a,B a,B

where «,  run through the monomials in Milnor generators. Moreover m
dual of the multiplication map m® of By = Tg(E ).

Lemma 8.1.17 The difference m€ Yy — W?m* lifts to an F -linear map V
F v« @ Fy such that one has

ay = (1@ m)Vy
by = (1 ® 1)Vy.

Here w : 4« — Rz is induced by the inclusion Rz C F.

G is the

s Ay —
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Proof: We will only prove the first equality; the proof for the second one is similar.
The following diagram

< X
*
N ®
X
*
3t
*
3
< N
=
" N
N2
0y g
s " 8\ 5 ¢
X ®
=
<
ETS
™ = ®
=
N
P X
B 2
*\ &
\?i —
* X
™ = ®

commutes except for the innermost square, whose deviation from commutativity
is V, and lies in the image of .7, ® %y — %y ® Py, and the outermost square,
whose deviation from commutativity is a and lies in the image of .#x ® Rz, —

192*®R55J*
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F+« ® Ry It follows that (1 ® 7)V, and ay have the same image under j ® jg,
and since the latter map is injective we are done. U

Let us describe the map V, more explicitly.

Lemma 8.1.18 The map V, factors as follows

v 1®i
Ay -5 Ty @ Ay —> T @ Fo.

Proof: Let oy C P be the subring generated by the elements My, My, My,
Ms341, .... It is then clear that the image of v, lies in .% and the reduction % —
F carries @y to </.. Moreover obviously the image of ¥ ®m, lies in .7, hence it
only remains to show the inclusion

mS (o) C By @ y.

Since m€ is a ring homomorphism, it suffices to check this on the generators M,
Mo, M4r1, Mgaoq, .... But this is clear from (5.3.3). O

Corollary 8.1.19 For the comultiplicative splitting \ one has
ay = 0.
Moreover the map by, factors as follows

i .

Proof: The first statement follows as by definition 7 (%) = 0; the second is
obvious. O

Using the splitting ¥ we get the following analogue of (8.1.9).

Proposition 8.1.20 The comonoid Z* in the category Alg’ﬁair described in (4.5.4)
is completely determined by the multiplication map

BW ReQ@d — o
dual to the map l;v, from 8.1.19. In fact, the identification
R = o @R

induced by the splitting s =  identifies the diagonal of Z#F with A ® AR (see
(8.1.5), (8.1.6)), and the bimodule structure of %{F with

Sfla,r)y=(fa,fr)
(@.r)f =(af =bY (. f).rf)
for f € Fo,re Rz, €.
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8.2. Computation of the Hopf pair algebra JB*

The Hopf pair algebra ¥ = ¥ in (4.6.15), given by the algebra of secondary
cohomology operations, satisfies the following crucial condition which we deduce
from [3, 16.1.5].

Theorem 8.2.1 There exists a right Fy-equivariant splitting
of the projection ,@IIF — %]IF, see (4.6.4), such that the following holds. The diagram

A @y LA 7 B o
/ /

Ao ||
N |

o i RE o

commutes, where u is the inclusion. Moreover in the diagram of diagonals, see
(4.6.5),

BF L2 (BFQBF), ~— S @ o
I
¥ 5 (G QAF),
the difference Azu — (uUQu)AR lifts to 2o/ ® o/ and satisfies
E = Agu — (URuU)AR : %%—ﬁ»R—E>E@7®@7
where £ is dual to & in (7.1.8). Here 7 is the projection #f — Rz —> R. The
cocycle & is trivial if p is odd.

Definition 8.2.2 Using a splitting u of 2 as in (8.2.1) we define a multiplication
operator

Ao/ ® Ry > X

by the equation
A(@ ® x) = u(ax) —au(x)

for @ € %y, x € Rg. Thus —A is a multiplication map as studied in [3, 16.3.1].
Fixing a splitting s of ZF as in (8.1.2) we define an s-multiplication operator A® to
be the composite

A A QR;—25% o/ @ Ry—2sS ot .

Such operators have the properties of the following s-multiplication maps.
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Definition 8.2.3 Let s be a splitting of ¥ asin (8.1.2) and let U®, a®, b’ be defined
as in section 8.1. An s-multiplication map

ASW®RLQ—>JZ{

is an IF-linear map of degree —1 satisfying the following conditions with a,&’, 8,8’ €
F0, X,y € Rz

1. A%(o,xB) = A% (0, x) B + % (2)b*(x,B)
2. A%(aa’,x) = A (a,a'x) + x(a)a® (o', x) + (—1)%e@D g A5 (o', x)
3. 4% (a,x) = Ag(a ® Ax) + L(a,x) + Ve(a,x) + 8x () U’ (x).
Here A% : &/ ® Rg) — o/ ® & is defined by the equalities
Ag@®@x®p) =) ()" ED L (@ x) @ ar ',
AR ® B @ y) = Y (—1yse @ e tisPo,f @ 4@, ),

where as always
S(a) = Zoug Qured Q.

Two s-multiplication maps A* and A%’ are equivalent if there exists an F-linear
map
Yy Ry — 4

of degree —1 such that the equality
A (@) = A (o) = p (o) = (= D)* @y (x)

holds for any « € &/, x € Rz and moreover y is right .%j-equivariant and the
diagram

oA @
b
2
Ry —5>RY
commutes, with yg given by
Ye(x ® f) =y(x) ® B,
ve@®y) = (=) @a @ y(y)
fora,B € %y, x,y € Rx.

Theorem 8.2.4 There exists an s-multiplication map A* and any two such s-
multiplication maps are equivalent. Moreover each s-multiplication map is an s-
multiplication operator as in (8.2.2) and vice versa.
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Proof: We apply [3, 16.3.3]. In fact, we obtain by A® the multiplication operator

A: QR = QA BAQRy — Xof

with

Al @ x) = A (¢ ® X) + x(x)& (8.2.5)
where (x,§) € Rz ® &/ = Rz ®F corresponds to x, that is s(x) 4+ ¢(§) = x for
t:9/ CRzQF. O

Remark 8.2.6 For the splitting s = ¢ of Z¥ in (8.1.3) the maps
Apm: o — of

are defined by A, m(e) = A%(ax ® [n,m]), with [n,m] the Adem relations in
R . Using formul® in (8.2.3) the maps A, determine the ¢-multiplication map
A% completely. The maps A, coincide with the corresponding maps Ay, in
[3,16.4.4]. In [3, 16.6] an algorithm for determination of A, ;, is described, leading
to a list of values of A, , on the elements of the admissible basis of /. The
algorithm for the computation of A4, , can be deduced from theorem (8.2.4) above.

Remark 8.2.7 Triple Massey products («,f,y) with , 8,y € &/, aff = 0= By, as
in (4.6;16) can be computed by A* as follows. Let 8y € R4 be given as in (4.6.16).
Then By ® 1 € Ry QF satisfies

By ®1=5(3)+1(5)
with X € Rz, £ € o7 and («, 8,y) satisfies
A (@ ® X) + x(a)E € (o, B,y).

Compare [3, 16.3.4].

Now it is clear how to introduce via a®, b5, U®, &, x, and A® a Hopf pair algebra
structure on

A DEAL DRy ——> A ® Ry
H H (8.2.8)
Za 74

which is isomorphic to %¥, compare (8.1.9).

In the next section we describe an algorithm for the computation of a -
multiplication map, where v is the comultiplicative splitting of ¥ in (8.1.12).
For this we compute the dual map Ay of AY.
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8.3. Computation of the Hopf pair coalgebra PBr

For the comultiplicative splitting s = ¥ of #Z¥ in (8.1.12) we introduce the
following v-comultiplication maps which are dual to the y-multiplication maps
in (8.2.3).

Definition 8.3.1 Let Ew be given as in 8.1.19. A -comultiplication map
is an F-linear map of degree +1 satisfying the following conditions.

1. The maps in the diagram

A
»Q{*®R&7* i d*

1®m,’kl \Lm*

satisfy .
(1@ my)Ay = (Ay @ i)mx + (tx ® by )m.

Here x, is computed in (5.1.7) and m’, is defined in (8.1.16).

2. The maps in the diagram

Ay
e @ Ry v oA

ll@mﬁ lAw

satisfy
(1@m)Ay =(1®i )My @ NAy — (1 ®i @ 1)(1® Ay )m..
Here m% is as in (8.1.15), and 7 : o7, — 4 is given by 7(a) = (—1)%e@g,
3. For x,y € 4/ the product xy in the algebra .7, satisfies the formula
Ay (xy) = Ay (Oma(y) + (=D*Em, (x) Ay (») + La(x,y) + Ve, (x.,)).

Here Ly and Vg, are given in 6.1.13 and 7.1.11 respectively, with L, =
Vg, = 0 for p odd.
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Two y-comultiplication maps Ay, Aﬁp are equivalent if there is a derivation
Vs o G = Ry
of degree +1 satisfying the equality
Ay — Ay =miye— (T ® y)ma.
As a dual statement to (8.2.4) we get

Theorem 8.3.2 There exists a y-comultiplication map Ay, and any two such -
comultiplication maps are equivalent. Moreover each \y-comultiplication map Ay
is the dual of a -multiplication map AV in (8.2.4) with Ay = AV ..
O
Now dually to (8.2.8), it is clear how to introduce via av,, by, §x, xx, and Ay a
Hopf pair coalgebra structure on

P i
which is isomorphic to %, compare (8.1.20).
We now embark on the simplification and solution of the equations 8.3.1(1) and

8.3.1(2). To begin with, note that the equations 8.3.1(1) imply that the image of the
composite map

Ay 1@m,

actually lies in

similarly 8.3.1(2) implies that the image of

Ay 1®@m}
lies in

Lemma 8.3.3 The following conditions on an element x € Rg, = Hom(R#,F)
are equivalent:

o mi(x) € Z @ Rzy C Fu @ Ry
o M (x) ER7+® Wy C Rys @ Fy;

e xRy CRz,.
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Proof: Recall that R = R /Rz%, 1. e. R, is the space of linear forms on R
which vanish on Rz2. Then the first condition means that x : R — F has the
property that the composite

¢
fo@RyLRgiF

vanishes on Rz ® Rz C %9 ® R #; but the image of Rz ® Rz under mtis precisely
R 2. Similarly for the second condition. U

We thus conclude that the image of Ay lies in % ® R..
Next note that the condition 8.3.1(3) implies

Ay (x*) = Li(x,x) + Vg, (x,x) (8.3.4)

for any x € .of,.. Moreover the latter formula also implies

Proposition 8.3.5 For any x € </, one has
Ay (x*) =0.
Proof: Since the squaring map is an algebra endomorphism, by 6.1.11 one has

L*(x7y2) = Zé‘ley(% ® Z’*(xr’yf’)’

with

My(x) = ng ® xr, m«(y) = ny/ Q yp.

But Z* vanishes on squares since it is a biderivation, so L also vanishes on squares.
Moreover by (7.1.11)

Ve, (x%,y%) = Zf*(xz,yz),af ® £ (X2, )% R — ngyé ® Ex(x2,y2);

this is zero since &4(x2,y?) = 0 for any x and y by (7.1.16). O

Taking the above into account, and identifying the image of i : &% »> %, with
Ay, 8.3.1(1) can be rewritten as follows:

(1®m)Ay(En) =

Al/f(é‘n) 1+ (L*(é‘n—l’é‘n—l) + VE* (é‘n—laé‘n—l)) ® é‘l + Zé‘léﬁl_l ® l;llf(é‘i)’

=0

or

A @) Ay (n) = (LalGumbumt) + Ve, Gumt b)) ® 1+ 3 0182, ® by (&1).

=0
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Still more explicitly one has

Lt =Y a2 @Lat.g)

0<i,j<k
i+1 ~ i i ~
= > Ol ®LGil)+ Y. LG ® LY.
0<i<k 0<i<j<k

where we have denoted

LE(6i,8)) = La(Gin &) + La(5.,80);

similarly ' '
Ve, (Gl = Y Gt @ Sk(lint)).
o<i<j<k
As for by (¢;), by 8.1.17 it can be calculated by the formula
by = > v¥, ®¢, (8.3.6)
0<j<i

where vy are determined by the equalities

Mzk,zk—l 2 M22k—l,2k—2 1 = 2vk m0d4

----------

in %s. For example,
= M,
Uy = Mu11 + Ma31 + Mooz + Maiaa,
V3 = Mga11 + Mgas1 + Mgooo + Msa121 + Maes1 + Maerz + Masi21
+ Myaaz + Maosz1 + Mazaz1 + Mapars + Masain1 + Mani421,

etc.
Thus putting everything together we see

Lemma 8.3.7 The equation 8.3.1(1) for the value on ¢, is equivalent to

(1@m)AyC) = Y. C . ®&

0<k<n

where
Cz(;l)_l =
21+l
L ® (Le(@inli) +vi)

0<z<n

S DN ST AN CAIE-3 2.1 (7 9) E U S AP AN RN (s 4))

o<i<j<n o<i<j<n
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and, for 1 <k <n,

(n) 2k+l 2k 1
G 2k Z C18n—k—i i

0<i<n—k

For low values of n these equations look like

(1@my)Ay (L) =0,
(1@m)Ay(§3) =81 @ (1(Ma22) ® {1 + 7(M22) ® {2)
+02 @ m(M3z + Maz + Maia + M122) ® {1 + 53 @ Man ® &4,
(1®@mL)Ay(§a) =1 ® (m(Msnaz + M7z + Masnz + Magar + Mananr) ® &
+(Ms2z + Maszr + Masa + Mazaz) ® o + m(Mas) ® {3)
+¢f ® 1(Me32 + Meas + Mea1a + Mer2a + Msaz + Masy + Maas + Maarz
+Ma1a2 + M3azz + Maszz + Maazz + Maaoz + Maao12 + Magi2z
+Moi1420 + Mi62o + Misazr + Mi2422) ® {4
+8 ® 1 (Moo + Maaz + Maaza) ® {1
+03 @ T(Msxp + Mazo + Mazs + Mazi2 + Marzz + Mian) ® &
+8185 @ T(M422) @ &1 4§} ® (1 (M222) @ &1 + m(M22) ® £2)
+HE2 @ m(Maz + Moz + Main + M) ® &
+8783 @ m(Ma) ® 1.

etc. (Note that Ay ({;) = 0 by dimension considerations.)
As for the equations 8.3.1(2), they have form

(1@ m%) Ay (Cn)
= (e @ DAY )+ @ Ay Gu) + & @ Ay (Gua) + .
F L ® Ay (G) + 82, ® Ay (4).

n—2

Lemma 8.3.8 Suppose given a map Ay, satisfying 8.3.1(3) and those instances of
8.3.1(1), 8.3.1(2) which involve starting value of <y on the Milnor generators i({1),
i($2), ..., where i : oy — F is the inclusion. Then <y, satisfies these equations for
all other values too.

Now recall that, as already mentioned in 6.1, according to [3, 16.5] R is a free
right .«7-module generated by the set PAR C R of preadmissible relations. More
explicitly, the composite

inclusion®1

R @ of 2Bl B o o T R

is an isomorphism of right .&7-modules, where RP™ is the F-vector space spanned
by the set PAR of preadmissible relations. Dually it follows that the composite

Lo omh 0®1
qD*:R*—)R*@d*—)Rpre@fQ{*
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is an isomorphism of right <%-comodules. Here ¢ : Ry —> Rpre denotes the
restriction homomorphism from the space R, of F-linear forms on R to the space
Ry of linear forms on its subspace RP™ C R spanned by PAR.

It thus follows that we will obtain equations equivalent to 8.3.1(1) if we compose
both sides of these equations with the isomorphism 1Q @, : o7, ® R, > . ® Rpre ®
7. Let us then denote

(1@ ) Ay (Gn) =D por—jul () ®
y2

with some unknown elements p; (i) € (% ® Rpye);, where p runs through some
basis of ..

Now freedom of the right .o7-comodule R, on R, means that the above
isomorphism @/, fits in the commutative diagram

r

_ @
R* Rpre ® JaZk

lmi l1®m*
PL®1

Ry ® oy — Rpre ® s ® .

It follows that we have
(1®1@m)(1®P)Ay () =182, 1)(1®@m,)Ay ().

Then taking into account 8.3.7 this gives equations

> o2 (W ®ma() = pri_ WO+ Y (1®P(C i, )@
I I

0<k<n

with the constants C,fj ) asin 8.3.7. This immediately determines the elements p; (1)
for || > 0. Indeed, the above equation implies that (1 @ ®%)Ay ({,) actually lies
in the subspace @7 ® Rpre ® I1 C %4 ® Rpre ® 2/ Where I1 C 7 is the following
subspace:

M=1{xed | mx)ePoeF

k=0

= PF,

k=0

It is easy to see that actually

SO We can write

(1@ DAy (Gn) = Y por—oe41(5) ® L
k=0
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where we necessarily have

k k
P2k 4 1(Ck) ® 1+ pon o141 (Ckt1) ® LT + pon_nith 1 1(Ck+2) ® L3 +

= (1 ® qDV)(Cz(lek_i_l)'

for all k > 1. By dimension considerations, p,»_,«({x) can only be nonzero
for k < n, so the number of unknowns in these equations strictly decreases as k
grows. Thus moving “backwards” and using successive elimination we determine
all pyn ok y1(8x) for k > 0.

It is easy to compute values of the isomorphism 1® ®’, on all elements involved

in the constants C]("). In particular, elements of the form @, (v?k) can be given by
an explicit formula. One has

k k—1 i+2 -
OLwe) = Y (s sq* s TR 21]) @
0<i<k

and

cpr( 27— 1) — Z (Sq2k+j71Sq2k+j72n.sq2i+j+l [2i+j—1’2i+j—1])* ®é_i2j’

0<i<k
so our “upside-down” solving gives
P41 (n-1) =0 ®2"72,2"7?,
prpaGna) = @R G @ (5 2 2
porczrsiilns) =037 @2 4 0 @ (s TR ).
+1® (Sa?' ' sq? 2

Pt 11 (Enic) Z qe keti ( on— k+i71qun—kJrifzn'qunfkle[zn—k—172n—k—l])

1<i<k

*

fork <n—1.
As for pon_1(&1), here we do not have a general formula, but nevertheless it is
easy to compute this value explicitly. In this way we obtain, for example,

p1(§1) =0,
p3(t1) =0,
p7(01) =3 ®[2.2] + 83 ® (3.2 +[2.3]4).
p15(81) =03 ®[2.2] + {103 ® (13.2]x + [2.3]4) + 5183 ® (Sq*[2.2]),
+8 ® ((Sa°[2,2)« + (Sq*[2.3])4) + &5 ® (Sq°[2.2]),
+0F ® ((Sq"[2.2])« + (Sq°[3.2])« + (Sq°[2.3])4).
p31(81) =058 @ 2.2+ 583 (13.2]s +[2.314) + {72 ® (Sq*[2.2]),
+2323 ® ((S9°[2.2)« + (Sq*[2.3])+) + £7¢5 ® (Sq°[2.2]),
+2503 ® ((Sq7[2.2])x + (Sa°[3.2))x + (S°[2.3]).) + 0183 ® (Sq*Sq*[2.2]) ,
+22 ® ((S°Sq*[2,2D)s + (S4®Sq*[2.3])+) + &1 84 ® (Sq'0Sq*[2.2])
+22 @ (59" Sq*12,2D)« + (59'°Sq°[2,2])« + (Sq'°Sq*[2,3])+) + &§ ® (Sq'2Sq°[2,2]),
+28 ® ((59"Sq°[2.2])« + (Sq'*Sq°[3.2])x + (Sq'?*Sq°[2.3])x).
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etc.
To summarize, let us state

Proposition 8.3.9 The general solution of 8.3.1(1) for the value on ¢, is given by
the formula
Ap(Gn) =A@ D)™ pon_gie 1 (G) ® i

k=0

where the elements p; ((x) € (x ® Ryre)j are the ones explicitly given above for
k > 0 while pyn (1) € (s ® Rpe)2n is arbitrary.

O

_ Letus now treat the equations 8.3.1(2) in a similar way, now using the fact that
R is a free left .o/-module on an explicit basis PAR’ (see 6.1.2 again).
Then similarly to the above dualization it follows that the composite

4 ’

®L 1 Re > ot ® Re —2> A ® R,
is an isomorphism of left .o/.-comodules, where ¢’ : R, — R}’)re denotes the
restriction homomorphism from the space R, of F-linear forms on R to the space
R}’)re of linear forms on the subspace RP*’ of R spanned by PAR’.

Thus similarly to the above the equations 8.3.1(2) are equivalent to ones
obtained by composing them with the isomorphism 1 ® ®¢ : @ ® Ry — “ ®
A @ R’ .. Let us then denote

pre*

(1PN Ay(Gn) = Y Oon—i|(7) ® s

7 EPAR’

with some unknown elements o;(7) € (<% ® @%);, where m, denotes the
corresponding element of the dual basis, i. e. the unique linear form on R;re
assigning 1 to r and O to all other elements of PAR'.

Now again as above, freedom of the left .%.-comodule R, on R}, means that

the above isomorphism ®¢ fits in the commutative diagram

_ &L
R« Ay @ R;)re

lmﬁ lm*®1

_ ¢
Ay ® Ry ot o ® e ® R
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In particular one has
(1®1® Q)1 ®m)Ay(En) = (1@ me ® 1)(1® ) Ay (G).

Using this, we obtain that the equations 8.3.1(2) are equivalent to the following
system of equations

(1 ®@myx—myx @ 1)(021 _17((7)) = 1 ® 091 |7 (7) + Zon_|7|(77),
where we denote
Son x| ()

n—1 n—2
= % ®O—2"*1—|n’|(n)+é‘§ ®O—2"*2—|n'|(7'[)+'~
+ 5:—2 ® 04—z () + fﬁ—l ® 02— ||(70).

We next use the following standard fact:

Proposition 8.3.10 For any coalgebra C with the diagonal m, : C — C ® C and
counit g : C — T there is a contractible cochain complex of the form

d, d> ds dy
®2 ®3 R4 e
§1 §2 s3 S4

i. e. one has
Sndy +dn—15n—1 = lcen

forall n. Here,
dl = My,
d2= 1®m*—m*®1,

d3=101Qms—1@m, @1 +m. 11,

etc., while s, can be taken to be equal to either
Spn =@ lcen

or
Sp=1lcen ®@e.
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Now suppose given the elements oy« _|,((), k < n, satisfying the equations;
we must then find o515 |(7r) with

d202n |7 |(T) = 1 @ O2n—|7|(7T) + Zon_|z| (1),
with X5n_ | (1) as above. Then since d3d, = 0, it will follow
d;(1® Gzn_|ﬂ|(7'[) + Ezn_|ﬂ|(7'[)) =0.
Then
1 ® 021 || () + Zon—|z|(7) = (s3d3 + d252) (1 ® 0O2n—|| () + Zon_|z|(7))
= d252(1 ® 0gn || () + Zon_ | (7))
Taking here s, from the second equality of 8.3.10, we see that one has
1 ® 01—z |(70)
= Zon_ix)(m) + da (1 ® (1 ® &) (021 1| (7)) + (1 ® 1 ® &)(Zon_||(77))).

It follows that we can reconstruct the terms 05n_||() from (1 ® £)on_||(7), 1. €.
from their components that lie in o @ F C o7, ® .
Then denoting
02”—|n|(77) = x2”—|n|(7[) ®1+ O—én_|n|(7[)v
with }
O'én_|,r|(7[) € oy ® s,

the last equation gives

= Tz () + Ma @ 1+ 1@ma) Y &7 ® Xgn-i_j (7).
i=0
By collecting terms of the form 1 ® ... on both sides, we conclude that any solution
for o satisfies

021 | () = (K21 (1)) + D2 ® Xyumi i) ().
i=0

Thus the equation 8.3.1(2) is equivalent to the system of equations

1M +me®DY 2" @ xpu-i_m (1)

i=0

= 1@ mx(xan_|7|(7)) + Zl ® fizn_i ® Xgn—i _|x|(77) + Zon_|z|(77)

=0
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on the elements x; () € «7;. Substituting here back the value of Xpn_| () we
obtain the equations

Zgizn_i ® m*(xani—lnl(”)) + Zm*@i)zn_l ® x2"*i—|ﬂ|(ﬂ)

i=0 i20
= 1@ ma(Xor () + D 1@ @ Xnmi (1)
i=0
D8 @malai () + Y G @G @iy ().
i>0 i’>0,7=0

These equations easily reduce to
n—i n—i n—((i—j) n—i
meG)? T =10+ 30 ey
0<<i
which is identically true. We thus conclude

Proposition 8.3.11 The general solution Ay (§,) of 8.3.1(2) is determined by

Ay (En)

=(leo)™ ) xzn_h<n>®1+m*<x2n_|ﬂ(n)>+2¢?""®x2n—f_.ﬂ|(n>)®m,
T EPAR’ i>0

where x j () € @/; are arbitrary homogeneous elements.

Now to put together 8.3.9 and 8.3.11 we must use the dual

qD*:Rpre@@{*_)eQ{*@R,

pre

of the composite isomorphism

, e e
O: A QR™ —— R— RV°Q .

We will need

Lemma 8.3.12 There is an inclusion

@ (Rye ®F 1) C i ® RS2,

pre

where
R/ <2 C R/

pre pre

is the subspace of those linear forms on RP™ which vanish on all left preadmissible
elements [n,mla € PAR' witha € .



336 H.-J. BAUES & M. JIBLADZE

Similarly, there is an inclusion
o (1F1 ® R;,m) C Roe™> ® .,

where
Rpre C Rpre

is the subspace of those linear forms on RP™® which vanish on all right preadmissible
elements a[n,m] witha € /.

Proof:  Dualizing, for the first inclusion what we have to prove is that given any
admissible monomial @ € <7 and any [n,m]b € PAR’ with b € &7, in R one has the

equality
aln,mlb = Zai [ni,m;]b;
i

with a;[n;,m;] € PAR and admissible monomials b; € . Indeed, considering a as
a monomial in .%, there is a unique way to write

aln,m] = Zai[niaml]cz

in Jo, with a;[n;,m;] € PAR and ¢; some (not necessarily admissible or belonging
to Jo) monomials in the Sq generators of .%¢. Thus in %, we have

a[n,m]b = Zai[ni,mi]cib.

In R we may replace each ¢;b with a sum of admissible monomials of the same
degree; obviously this degree is positive as b € 7.
The proof for the second inclusion is exactly similar. O

This lemma implies that for any simultaneous solution Ay (,) of 8.3.1(1) and
8.3.1(2), the elements in &7 ® Rpre ® 5 and s ® s ® R;re corresponding to it
according to, respectively, 8.3.9 and 8.3.11, satisfy

E (Xz 1 k—1—la|([k.1]a)®1 + 1t (x20 g —1- 10| ([k, l]a))+§ ol ®x2"i—k—l—|a([kel]a))@)([k-l]a)*
eod i>0
ke fjacPAr’

=(1®1®072)(1® dy) (szn—zkH@k) ® l'k) ,

k>0
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where

>2 ., p/ ; >2
o Rpre —> Rpre

is the restriction of linear forms on RP™’ to the subspace spanned by the subset of
PAR’ consisting of the left preadmissible relations of the form [k,/]a with a € <.
Indeed the remaining part of the element from 8.3.9 is

p2n (1) ®1,

and according to the lemma its image under 1 ® ®, goes to zero under the map o~2.

Since the elements p,n_ o« 1({x) are explicitly given for all k£ > 0, this allows
us to explicitly determine all elements x ; ([k,/]a) for [k,/]a € PAR" witha € <. For
example, in low degrees we obtain

x2([2.318q") = x»([3.2]8q") = 7,
x3([2.218q") = ¢3.
x10([2,3189") = x10([3,218q") = 163,
x11([2.2]8¢") = 723,
x26([2,3]8q") = x26([3,2]Sq") = {343,
x27(12.218q") = 618343,

with all other x; ([k,/]a) = 0 for j <32 and [k,/]a € PAR' witha € .

Remark 8.3.13 Calculations can be performed for larger j too. But in fact a
pattern is clearly apparent here. It suggests the conjecture that actually all elements
xj([k,l]a) for [k,l]a € PAR" with a € & can be chosen to be

x2n-6([2.31Sq") = x21-6([3.2]Sq") = {375,
xon-5([2,218q") = &1 _382 s,

for n > 3, with all other x ([k,/]a) = 0.
It remains to deal with the elements x  ([k,/]). These shall satisfy

3 <x2n_k_1<[k,z]) & 1 4y (rang i (K1) + S22 ®xznikl<[k,l1>) ® k.11

k<2l i>0

=(1®P)(px(HN®1)+(1®1®05)(1® ) szn_zk+1(§k) ® é'k),
k>0
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where now

0= R; } R;)resz
is the restriction of linear forms on RP™ to the subspace spanned by the Adem
relations. The last summand D, = (1®1®05%)(1® Px) (X5 -0027—2¢ +1 (k) @ L)
is again explicitly given; for example, in low degrees it is equal to

D, =0,

D, =0,

D3 =61 ®80)®[2.2s,

Di =(BLRU+000L+2®00) 2,2k

Ds = (2600 + 888 + (2R 0 + L @60 + 5380 + 2808) ®[2,2].

Then finally the equations that remain to be solved can be equivalently written as
follows:

(19198) (180.)~" (Z (xzu_k_l([k,m ® 1+ it (1 (k. 11)) + Zz?""®x2n,_k_,<[k,11>)®[k,1]*)
k<2l i>0
=(1®1®8)(1® ) (D),
where 3
&1 oy —> Gy
is the projection to the positive degree part, i. e. maps 1 to 0 and all homogeneous
positive degree elements to themselves. Again, the right hand sides of these

equations are explicitly given constants, for example, in low degrees they are given
by

0, n=1,
0, n=2
22,2« ®2, n=3;
(C13 @ 2,21« + 82 ® (Sq*[2.2])x + ¢ ® (Sq°[2.2])4) ® 7, n=4;
(323 ®[2.2]« + 5523 ® (Sq*[2.2])« + {523 ® (Sq°[2.2])« + 23 ® (S¢®Sq*[2.2])«
+83 ®(Sq'°Sq*2,2)« + & ® (Sq4'2Sq°[2,2])4) ® ¢7, n=5s.

One possible set of solutions for {x with k <5 is given by

x5([1,2]) = f%fz,
x4([1.3]) = ¢t

x13([1.2]) = &3¢,
x12([1.3]) = &5.
x20([1.2]) = {384,
x28([1.3]) = &3
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and all remaining x; ([k,l]) =0 for j +k +1 < 32.

Or equivalently one might give the same solution “on the other side of ®” by

p2(1) =0,
pa(l) =0,
ps() =230 ®[1,2]x + & ® [1,3]% + &2 ® (SG?[1,2])« + &2 ® (S [1,2))x,

p16(l) =38 ®[1,2], + 43 ® [13]w + £143 ® (Sq?[1.2]), + {162 ® (Sq®[1.2]),
+3 ® (Sq*Sq?[1.2]), + &3 ® (Sq°Sq?[1.2]), + ¢ ® (Sq°Sq?[1.2]), .

pa2(l) =304 @ [1.2]. + {3 @ [1.3]4 + 324 ® (Sq?[1.2]), + £322 ® (Sq?[1.2]),
+87¢a ® (Sq*Sq?(1,2]), + 583 ® (Sq°Sq?[1,2]), + £8¢3 @ (Sq°Sq’[1,2]),
+4 ® (Sq*Sq*Sq*[1.2]), + 2 ® (Sq°Sq*Sq°[1.2]), + &5 ® (Sq'°Sq’Sq[1.2]),
+¢3 ® (Sq'*Sq°Sq?[1,2])

*

Remark 8.3.14 As in 8.3.13, here one also has a suggestive pattern which leads to
a conjecture that a simultaneous solution of (1) and (2) is determined by putting

xon—3([1,2]) = @3_2@1—1,
xon—4([1,3]) = ;‘{—2

for n = 3, with all other x; ([k,[]) = 0.

This then gives the solution itself as follows:

Ay (&) =0,
Ay (L) =0,

Ap(3) =835 OM;
+} ®(M31 + {1 M3)
+8 @M
+8 ®(Ms+ May + M3z + {3 M3)
+87 ®(Msi + Maa1 + Mazy + Mooy + §1(Ms + May + Mo + Mazy)
+EIMZ + (5 + L) Ms)
+4 @Mao,
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Ay(Ga) =558 ®M;
+& ®(Ms1 + 1 M3)
+8783 ®Ma
+2183 ®(Ms + May + M3y + (3 M3)
+C02 ®(Msy + Mazy + Mazy + Maioy + 51 (Ms + May + Msy + May)
+EIME + (5 + L) Ms)
+4] @M
+8182 ®Muz
+83 ®(Mo+ M7z + Mez1 + Mss + Masy + Mazz + Maso + Maszy + T Ms + (3 M3)
+82 ®(M721 + Mast + Mazz1 + Mazz1 + Mazi21 + Mas
+(Ms + Ma1 + M3 + Ma111)?
+81 (Mg + M7z + Meay + Msa + Magy + Mazz + Mazzy + Mzaz + Mayoy)
HEEMZ + 8 Ms + (6185 + £3) M)
+8 ®(Mezo1 + Masz1 + Mauzo1)
+8}  ®(Msa1 + Mgia1 + Mgsi + Mezz1 + Meas1 + Me2121 + Masa1 + Masz
+Mas121 + Maraz1 + Maga1 + Massy + Maazzr + Magos1 + Maazi21 + Mazang
+81(Me221 + Maans + Maszo1) + 3 (Ms + May + Mz + Ma111)?
+82(Mo + M7z + Meay + Msg + Magr + Myzz + M3zgn + Masoy)
+EIMZ |+ EEMF + 63(Ms 4+ May + M3p)
+i16aMs + (§383 + E3)M3)
+81 ®(Mgaoa1 + Maaaz1 + Masz1 + Mazanoy),

Ay(Cs) =038 @M;
+05 ®(Ms1 + 51 M3)
+018382 ®Man
+83¢s ®(Ms+ May + M3y + {3 M3)
+2322 ®(Ms1 + Maa1 + Mozt + Maia1 + §1(Ms + May + Mar + M) + (ZME
+( +52)Ms)

+0188 @M

+5782 @Mana

+28¢4 ®(Mo+ M7z + Moz + Mss + Masy + Muzz + Maaz + Moz + i Ms + 2 M3)

+2882 @ (Ma21 + Mast + Muzz1 + Mazzt + Mazi21 + M3az
+(Ms + My + M3z + M2111)?
+81 (Mg + M7 + Meay + Msa + Maar + Mazz + Mazz1 + Mzaz + Magoy)
M2 + 8 Ms + (0133 + 53) M)

+878 @ (Meza1 + Maaz1 + Maanz1)

+883 ®(Msgs1 + Mgi21 + Mest + Mozt + Meas1 + Meai21 + Masar + Maazt + Maai21
+Ma1a21 + Ma721 + Magst + Maazz1 + Maazs1 + Maan121 + Mazant
+81(Me221 + Maant + Maazo1) + {3 (Ms + May + M3z + Ma111)?
+82(Mo + M7z + Mez1 + Mss + Maar + Mazz + Maaz + Maan1) + EE M2, + 8 M2
+300Ms + E3(Ms + May + M3;) + (8383 + 53)M3)

+017 ®(Msoza1 + Masaz1 + Mueaz1 + Maranar)
+l4 ®(Mﬂ+ Mi3s + Mi1a2 + Mioaz1 + Mog + Mg7z + Mger1 + Mgsa + Mgasr

+Msgszz + Ms3zaz + Msaaz1 + Mssa + Magas + Maga1 + {8 Mo + 3 Ms + (3 Ms)

+6183  ®Msan
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+§'§ ®(Mg421 + Mg721 + Mgast + Msgazz1 + Msgaoz1 + Mgaoi21 + Mg3an1 + M3gani
+(Mo + M7z + Mep1 + Mss + Mgy + Mazr + Mazi11 + Maaz + Maan1)?
+81(My7 4+ Mizs + Mi1az + Migaz1 + Mog
+Mg7z + Mger1 + Mgsa + Mgaay + Mgz + Mgaza1 + Mg3az + Msz421
+Msg4 + M3gar + Magsn1)
FEEM3 + 80 Mo + G M3 + 018 Ms + (5165 + §a) M)
+8183 ®(Myoa221 + Mse221 + Msaso1 + Ms2az21 + Masana1)
+¢3 ®(Mg521 + M12431 + M124121 + M121421 + M19721 + M10451 + M104321 + M104231
+Mio42121 + M103421 + Mgg31 + Msggi21 + Mses1 + Mgeza1 + Mge231 + Msge2121
+Mgasa1 + Mgaaz1 + Mgaai21 + Msaraz1 + Msoast + Mgara1 + Mga3an1 + Mgz
+Ms24231 + Mg242121 + Magaz1 + Masgsz1 + Magaz1 + Magar21 + Magi1a21 + Maisazr
+M>311421 + Mag721 + Magast + Magazz1 + Magaostr + Magaz121 + Magszant + M23gant
+81(M1o4221 + Mse221 + Mgaao1 + Mg2a21 + Magaza1)
+83(Mo + M7z + Mea1 + Msa + Maar + Mazz + Mazi11 + Maaz + Maaz1)?
+8(My7 4+ Mi3a + Miiaz + Migaz1 + Mog + Mg7z + Mgea1 + Mgss + Mgaar
+Mgazo + Mg3ar + Mgrar1 + Msga + M3gar + Magar1)
FEEME  + OMZ + E86Mo + $3E3 M2 + 5 Ms + §a(Ms + Myy + M3;)
+(838a + 8283 M3)
+8) ®(Mize221 + Mizaaz1 + Mio2a2o1 + Magoazz1 + Mssan
+Masge221 + Mygaaz1 + Magoao1 + Maogarar)
+8 ® (Mi4631 + Miss121 + Miazsa1 + Miazaz1 + Miazaio1 + Mia21a21 + Mi2s31 + Mizgi21
+Mizes1 + M126321 + M126231 + M1262121 + M124521 + M124431 + M1244121 + M1241421
+Mi22721 + Mi22451 + M1224321 + M1224231 + M12242121 + M1223421
+Msse31 + Mses121 + Mge2s21 + Mge2a31 + Mges2a121 + Mge21421
+Mgaas21 + Mgaaaz1 + Msaaa121 + Msaaraz1 + Mgazes1 + Mgaze121 + Msaz3az1 + Mgaz12421
+Me10521 + Me10431 + Me1o4121 + Me101421 + Mese3z1 + Mege121 + Megas21 + Megoasi
+Megaa121 + Mega1421 + Me29421 + Mezgsz1 + Me2gast + Meagar21 + Me2g1421 + Me218421
+Ma12501 + Mai2431 + Maiz4121 + Mai21421 + Maro721 + Matoas1 + Maioazo1 + Maioarst
+Mai042121 + Ma103421 + Maggs1r + Magsi21 + Mages1 + Magesz1 + Mage231 + Mage2121
+Magaszy + Mygaazt + Magasar21 + Magaraz1 + Maga721 + Magoast + Magaazar + Magoa231
+Mugr42121 + Mygo3an1 + Magoan1 + Maagso1 + Masgas1 + Maggar21 + Maggra21 + Magiga21
+Mar11421 + Marg721 + Margasi + Margazz1 + Maogars1t + Mazgari21 + Maogzan1 + Mazzgani
+(Mg31 + Msg121 + M7311 + M7221 + M71211 + Mes1 + Mear1 + Me3z1 + Me3z111
+Me2211 + Me12111 + Mazz11 + Mazoz1 + Mazi211 + Mazoa11 + Maz1311 + Maz1221
+Ma1421 + M3sz11 + Maazrn + Mzgoo1 + M3s1211 + M314211
+M3721 + Mae211 + Masai11 + Magst + Maaar1 + Maazzr + Magszi11 + Magoo11
+Maa12111 + Masaz1 + Mazazin + Maiazi11)?
+(Ms1 + May1 + Msp)* + M$
+81(M126221 + M124421 + M1224221 + Mggar1 + Ma104221 + Mage221 + Magaan:
+Mago4221 + Maogaror)
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+8H(Ms + Mgy + M3,)*
+83 (Mo + M7z + M1 + Msa + Maar + Mazz + Maaz + Magn1)?
+83(M17 4+ Mi3a + Mi1az + Migaz1 + Mog + Mg7z + Mgea1 + Mgss + Mgaar + Msgaso
+Mg3az + Mgaazy + Msga + M3gar + Magan1)
+EBIM2 + 03 (Ms + May + M32)? + 853 Mo
+8a(Mg + M7z + Mea1 + Msa + Maar + Mazz + M3zaz)
FQC2+ MY + (185 + M3 + (184 +8383)Ms + (8384 + §3) M3)
+& ®(M1jSZZZl + Mie46221 + Mieasar1 + Miearao1
+Mgi24421 + M3g126221 + Ms1224221 + Mgggar1 + Mga104221 + Mgager21 + Mgagaant
+Mgagra221 + Msarga21)

The formule above were obtained via computer calculations. They lead to
the general patterns in 8.3.13 and 8.3.14 which would determine the map Ay
completely.

9. The dual d() differential
In this chapter we will compute the d(,) differential in the E? term
E2? = Cotor?, (F.F)? = Ext?, (F.F)?

of the Adams spectral sequence. For this we will first set up algebraic formalism
necessary to carry out an analog of the computations in Chapter 3 in the dual setting.
First let us recall how the above isomorphism is obtained.

9.1. Secondary coresolution

One starts with a projective resolution of the .7-module F, e. g. with the minimal
resolution as in (3.2.1). Its graded F-linear dual

on 2 427
F — M*{gg} — @Mjgl } — @ Mjgz } — .. 9.1.1)

n=0 li—jl#1

is then an injective resolution of F in the category of right «%-comodules. (This
is not entirely trivial since we take graded duals. However all (co)modules that
we encounter will be degreewise finite, i. e. having generating sets with finite
number of elements in each degree. Obviously then graded duality is a contravariant
equivalence between the categories of such (co)modules.)

There are isomorphisms

Hom,, (M,N) = M,0,, N
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for any left @7-modules M and N of the above kind (i. e. of graded finite type),
where on the right the graded dual M, is considered as a right .o.-comodule and
N as a left o7,-comodule in the standard way. It follows that applying Hom, (—,F)
to (3.2.1) and applying — ., F to (9.1.1) gives isomorphic cochain complexes (of
[F-vector spaces). But by definition cohomology of the latter complex is given by

H?(9.1.1)O,,F)? = Cotor’;{* (F,F)4.
It then follows from (3.2.13) that in these terms the secondary differential

db : Cotor?, (F,F)? — Cotor” "> (F,F)¢ !

is given by
A~ A 1 A
dG@p= 2. &L= ©.12)
g3 appears in 8(ggié)

Here,

b DA S Patr
q q

is the dual of the map
8 (g5 0) = S (g5)

determined in 3.2.7, whereas g+ denotes the dual basis of g%, i. e. g5 € d*{g:} is
the vector with the g?-th coordinate equal to 1 and all other coordinates equal to
zero. Moreover by 8,(¢%)° is denoted the zero degree component of §(2%), i. e.
the result of applying to the element

8+(89) e@ﬂ{g;”iéﬂ}
*\Sp J

Jj=0
the projection to the (j = 0)-th component

@%{giié“} N %{giié}‘

Jj=0

Instead of directly dualizing the map §, it is more convenient from the
computational point of view to dualize the conditions of 3.2.7 using (3.2.12) and
determine § directly from these dualized conditions. In fact using 8.2.5 we can
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further detalize the diagram (3.2.12) in the following way:

1®d

S @ Vs 2% 2&%@&%@1/,,
Vi A RA DV, ARz ® V,,lM SRV,  (9.13)

M@Vp+2—>d®z;z/®vp

where A* is the multiplication map corresponding to a splitting s of the G-relation
pair algebra used, as in 8.1, to identify R, with &/ @ Rz, and (¢”*°,¢®>*) are the
components of the corresponding composite map

Voro > Rz @V, =@V, ® Rz V),

with ¢ as defined in (3.2.10).
Moreover just as the map ¢ is completely determined by its restriction to V2,
its dual d, is determined by the composite &y as in

Hom(Vp42,€)
Hom(V,, .a%) 5y Hom(Vp42, ) ————— Hom(Vy42,F),

where graded Hom is meant, and ¢ is the augmentation of .%. In fact we only need
this composite map 6o as by (9.1.2) above we have

g (g9) = 80(29). 9.1.4)
Now the dual to diagram (9.1.3) is easy to identify; it is

dx
Sty @ Vpy1 — Sty @ s @ V)

As®1

Vot i @ s ® s @Rzy @V, ~—— X ®V, (9.1.5)
s 1®wf°
1Q¢; ol
Ay @ Vpio~—— e @Sl @V,

where I7p are the graded dual spaces of V.
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It is straightforward to reformulate the above in terms of elements: the values
of the map &y on arbitrary elements ¢ ® g € X.%% ® V), must satisfy

80D ar ® dular ®g)) = du(Y a1 ®o(ar ® g))
+d(Y G1a,® ¢ (a, ® 2)) 9.1.6)
+du() ay ® R (ar®9)),

where we have denoted by
Aa) = Zae R ay
the value of the diagonal A : @7, — % ® <7 and by

As(a) = Zad ®agr

the value of the comultiplication map Ay : X.9% — 2 @ Rz, on a € ;.
We thus obtain

Proposition 9.1.7 The d(y) differential of the Adams spectral sequence is given on
the cohomology classes represented by the generators g in the minimal resolution
by the formula

di2)(8) =6(Z1® g),

where
80: X @ Vs — Vit

are any maps satisfying the equations (9.1.6).

O

At this point the cooperation of the authors ended since the time of Jibladze’s

visit at the MPIM was over. Therefore our goal of doing computer calculations on
the basis of 9.1.7 is left to an interested reader.
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