
Math. Proc. Camb. Phil. Soc. (2008), 144, 337 c© 2008 Cambridge Philosophical Society

doi:10.1017/S030500410700076X Printed in the United Kingdom

First published online 11 February 2008

337

Third Mac Lane cohomology

BY HANS–JOACHIM BAUES

Max-Planck-Institut für Mathematik, Vivatsgasse 7, Bonn 53111, Germany.
e-mail: baues@mpim-bonn.mpg.de

MAMUKA JIBLADZE

Razmadze Mathematical Institute, Alexidze st. 1, Tbilisi 0193, Georgia.
e-mail: jib@rmi.acnet.ge

AND TEIMURAZ PIRASHVILI

Department of Mathematics, University of Leicester, University Road, Leicester, LE1 7RH.
e-mail: tp59-at-le.ac.uk

(Received 26 April 2006; revised 5 March 2007)

Abstract

MacLane cohomology is an algebraic version of the topological Hochschild cohomology.
Based on the computation of the third author (see Appendix) we obtain an interpretation of
the third Mac Lane cohomology of rings using certain kind of crossed extensions of rings in
the quadratic world. Actually we obtain two such interpretations corresponding to the two
monoidal structures on the category of square groups.

1. Introduction

Let R be a ring and M a bimodule over R. Then there are three essential cohomo-
logy theories associated to the pair (R, M) due to Hochschild, Shukla and Mac Lane, see
[14, 21, 32]. We refer to [11] for a modern approach to Shukla cohomology. It is known that
Mac Lane cohomology coincides with topological Hochschild cohomology ([30]) and coin-
cides also with Baues–Wirsching cohomology of the category mod-R of finitely generated
free R-modules ([17]). These theories are connected by natural maps ([11])

Hn
(R; M) −→ SHn

(R; M)
τ n−→ HMLn

(R; M).

These maps are isomorphisms for n = 0 and n = 1. Moreover τ 2 is also an isomorph-
ism, while τ 3 is a monomorphism. We study the cohomologies in dimension n = 3. In this
case the elements in H3

(R; M) are represented by split crossed extensions and elements in
SH3

(R; M) are represented by all crossed extensions of R by M in the monoidal category
(Ab, ⊗) of abelian groups. See [20], [8] and [11, theorem 4·4·1]. Here a crossed extension
of R by M is an exact sequence in Ab,

0 −→ M
ι−→ C1

∂−→ C0
q−→ R −→ 0,

where C0 is a ring, C1 is a bimodule over it, q is a ring homomorphism and ι and ∂ are
C0-biequivariant maps satisfying b∂(c) = ∂(b)c for b, c ∈ C1.
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A similar result for group cohomology in dimension 3 is due to S. Mac Lane and
J. H. C. Whitehead [23].

The main aim of this paper is the construction of appropriate crossed extensions of R by
M which represent classes in the third Mac Lane cohomology HML3

(R; M).
To this end we recall that for any small category C with a natural system D on it, the

Baues–Wirsching cohomology group H3
(C ; D) can be represented by linear track exten-

sions of C by D, see [3, 25, 26]. Hence by the isomorphism

HML3
(R; M)�H3

(mod-R; HomR(−, − ⊗R M))

elements of HML3
(R; M) are represented by linear track extensions of mod-R. Such a de-

scription, however, is available for any category C and does not restrict to the specific nature
of Mac Lane cohomology of a ring.

In order to find specific crossed extensions for HML3
(R; M) we have to proceed from

linear algebra to quadratic algebra. Here “linear algebra” is the algebra of rings and modules.
A ring is a monoid in the monoidal category (Ab, ⊗) and a module is an object in Ab together
with an action of such a monoid.

In “quadratic algebra” abelian groups are replaced by square groups. In fact, if one con-
siders endofunctors of the category of groups which preserve filtered colimits and reflex-
ive coequalizers, then abelian groups can be identified with linear endofunctors and square
groups can be identified with quadratic endofunctors ([9]). The category SG of square groups
contains the category Ab as a full subcategory since a linear endofunctor is also quadratic.
Composition of functors leads to monoidal structures ⊗ and � in such a way that (Ab, ⊗) is
a monoidal subcategory of (SG, �). There is also another monoidal structure � on SG such
that the identity of SG is a lax monoidal functor (SG, �) → (SG, �). Here � is symmetric
while � is highly nonsymmetric. Compare [7].

Crossed extensions in the monoidal categories (SG, �) or (SG, �) are defined similarly to
the case (Ab, ⊗) above, see Section 2. As a main result we prove in this paper the following
theorem, compare the more detailed Theorem 2·1 below.

1·1. Main theorem

THEOREM 1·1. Elements in the third Mac Lane cohomology group HML3
(R; M) are in

1-1 correspondence with equivalence classes of linearly generated crossed extensions of R
by M in the monoidal category (SG, �), or in the monoidal category (SG, �).

Such an interpretation of the group HML3 was missing for many years; in terms of ob-
struction theory the problem first arose in the classical paper of Mac Lane [22], where the
image of τ 3 was described in terms of obstructions for ring extensions, but not the whole
third Mac Lane cohomology group. The theorem is based on the quadratic theory developed
in [7, 9] and emphasizes importance of the quadratic algebra of square groups. A crucial
step in the proof of the theorem relies on the vanishing result achieved by the third named
author in the Appendix.

As an application of the main theorem, we describe the connecting homomorphism ν in
the exact sequence (see [11, 16])

0 −→ SH3
(R; M)

τ 3−→ HML3
(R; M)

ν−→ H0
(R; 2 M) −→ SH4

(R; M)
τ 4−→ HML4

(R; M)

in terms of crossed extensions in SG, see Section 2·5. Here 2 M = {m ∈ M | 2m = 0}.
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It follows from the relationship between SH3
(R, M) and crossed extensions of rings

that SH3
(R, M) describes homotopy types of those chain algebras C∗ with H0(C∗) = R,

H1(C∗) = M , and Hi (C∗) = 0 for i � 0, 1. On the other hand, it follows from the re-
lationship between Mac Lane and topological Hochschild cohomology that HML3

(R; M)

describes homotopy types of ring spectra Λ with πi(Λ) = 0, i � 0, 1, π0(Λ) = R and
π1(Λ) = M [18]. It is known that any chain algebra gives rise to a ring spectrum [34].
Thus our result shows that crossed extensions of R by M in SG are algebraic models of
such ring spectra and the homomorphism ν is an obstruction for such a ring spectrum to be
representable by a chain algebra.

2. Crossed extensions

We shall apply the following general notion of crossed extension to the monoidal cat-
egories (Ab, ⊗), (SG, �) and (SG, �) where the category SG of square groups is defined in
Section 2·2.

2·1. Crossed extensions

Let (V, �) be a monoidal category and let L be a monoid in V. Recall that a L-biobject
is a tuple (A, l, r), where A is an object in V and l: L � A → A and r : A � L → A are
respectively left and right actions of L on A which are compatible in a natural way. We let
LVL be the category of L-biobjects in V. In particular the monoid structure on L defines also
a structure of a L-biobject on L . In what follows we always consider L as a biobject with
this particular structure.

A crossed L-biobject is a diagram C = (∂ : B → L) in the category LVL such that the
following diagram commutes:

B � B
Id �∂ ��

∂�Id
��

B � L

r

��
L � B

l
�� L .

Let R be a monoid in (V, �), let M be an R-biobject and assume that exact sequences are
defined in V. Then a crossed extension of R by M in (V, �) is an exact sequence

0 −→ M
ι−→ C1

∂−→ C0
q−→ R −→ 0 (2·1·1)

where ∂ is a crossed C0-biobject as above, q is a morphism of monoids and ι is a morphism
in C0 VC0 . A morphism between crossed extensions of R by M is a commutative diagram

0 �� M ��

Id

��

C1
∂ ��

f1

��

C0
��

f0

��

R ��

Id

��

0

0 �� M �� C ′
1

∂ ′
�� C0

�� R �� 0

where f0 is a morphism of monoids and f1 is f0-biequivariant. Let

Xext (R; M)V,� (2·1·2)

be the category of such crossed extensions and morphisms and let

Xext(R; M)V,� (2·1·3)

be the set of connected components of this category.
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One readily checks that crossed extensions in (Ab, ⊗) are the extensions defined in Sec-
tion 1. Hence if R is a ring and M is an R-bimodule then one has canonical bijections (see
[8], [11], [20, page 42])

Xext(R; M)Ab,⊗ ≈ SH3
(R; M) (2·1·4)

and

XextZ(R; M)Ab,⊗ ≈ H3
(R; M). (2·1·5)

Here XextZ(R; M)Ab,⊗ is the set of connected components of the following subcat-
egory Xext Z(R; M)Ab,⊗ of Xext (R; M)Ab,⊗: its objects are Z-split crossed extensions
(ι, ∂, q) in (Ab, ⊗), that is, with arrows ι, ∂ and q admitting a Z-splitting; morphisms in
Xext Z(R; M)Ab,⊗ are morphisms ( f0, f1) in Xext (R; M)Ab,⊗ such that both f0 and f1 are
Z-split.

2·2. Square groups

A square group is a diagram

A = (Ae
H �� Aee

P �� Ae)

where Aee is an abelian group and Ae is a group. Both groups are written additively.
Moreover P is a homomorphism and H is a quadratic map, meaning that the cross-effect

(x | y)H = H(x + y) − H(y) − H(x)

is linear in x, y ∈ Ae. In addition the following identities are satisfied

(Pa | y)H = 0,

P(x | y)H = [x, y],
PHP(a) = P(a) + P(a).

Here [x, y] = −y − x + y + x , a, b ∈ Aee and x, y ∈ Ae. It follows from the first two
identities that P maps to the center of Ae. The second identity shows also that

Aad := Coker(P)

is abelian. Hence Ae is a group of nilpotence class 2. It follows from the axioms that the
function T = HP− IdAee is an automorphism of Aee and T 2 = IdAee . Moreover, the function
�: Ae → Aee is linear, where

�(x) = HPH(x) + H(x + x) − 4H(x)

and furthermore one has the induced homomorphisms

(−, −)H : Aad ⊗ Aad −→ Aee

and

� : Aad −→ Aee.

We refer to [9] and [7] for more information on square groups. We denote by SG the
category of square groups. In what follows we identify abelian groups and square groups
with Aee = 0. In this way we obtain a full embedding of categories

Ab ⊂ SG



Third Mac Lane cohomology 341

This inclusion corresponds to the fact that any linear functor is quadratic. The inclusion
Ab ⊂ SG has a left adjoint given by A 	→ Aad.

The category SG has two monoidal structures �: SG × SG → SG [9] and �: SG × SG →
SG [7], which are related via a binatural transformation

σX,Y : X�Y → X�Y

such that the identity functor together with σ defines a lax monoidal functor Id : (SG, �) →
(SG, �) [7]. The monoidal category structure � is highly nonsymmetric, while the monoidal
category structure � is symmetric. For the definitions of the products � and � on SG we
refer the reader to [9] and [7] respectively. Below we shall, however, describe explicitly
the notion of crossed extension in (SG, �) and in (SG, �). Since (Ab, ⊗) is a monoidal
subcategory both in (SG, �) and in (SG, �), we see that a ring R, i. e. a monoid in (Ab, ⊗), is
also a monoid in (SG, �) and in (SG, �). Let M be an R-bimodule. Then crossed extensions

0 −→ M
ι−→ C(1)

∂−→ C(0)

q−→ R −→ 0

are defined in (SG, �) and in (SG, �) by (2·1·1). Such an extension is linearly generated if
R as an additive group is generated by the image of the linear elements of C(0)e in R. Here
an element x ∈ C(0)e is linear provided H(x) = 0.

As a main result we prove the quadratic analogue of (2·1·4).

THEOREM 2·1. Let R be a ring and let M be an R-bimodule. Then there are natural
bijections

XextL(R; M)SG,� ≈ XextL(R; M)SG,� ≈ HML3
(R; M)

where the index L indicates the full subcategories of linearly generated crossed extensions.
The first bijection is induced by the lax monoidal functor (SG, �) → (SG, �).

The proof of this result is given in Section 4·3.

Remark. For the second bijection in the theorem we use the isomorphism

HML3
(R; M)�H3

(mod-R; DM)

where mod-R is the category of finitely generated free right R-modules and DM = HomR

(−, −⊗R M). Here we use the following interpretation of crossed biobjects from Section 2·1.
Let (V, �) be a monoidal category and assume that finite colimits exist in V. Let pair(V)

be the category of pairs in V, objects are morphisms V = (V1
∂−→ V0) in V and morph-

isms V → W are pairs α = (α1: V1 → W1, α0: V0 → W0) in V with ∂α1 = α0∂ . Then
(pair(V), �) is a monoidal category with � defined by the diagram with the inner square
pushout

V1 � W1

push

1�∂ ��

∂�1

��

V1 � W0

��
∂�1

��

V0 � W1
��

1�∂ ��

(V �W )1

∂

���������������

V0 � W0 := (V �W )0.
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One readily checks that a crossed L-biobject C = (∂: B → L) in Section 2·1 is the same as
a monoid in (pair(V), �). Hence the action of the monoid C on an object X in pair(V) is
defined, compare [1, section 5·1]. In this case we call X a C-module.

Addendum. For a crossed extension C of R by M in either (SG, �) or (SG, �) let mod-C
be the category of finitely generated free left C-modules. Then mod-C is a linear track
extension which represents an element

〈mod-C〉 ∈ H3
(mod-R; DM)

and the bijections from Section 2·1 carry the component of the crossed extension C in
(SG, �), resp. in (SG, �), to the class 〈mod-C〉.

Since a crossed extension C is also a monoid in the category of pairs, we will also call C
a “pair algebra”. The addendum makes use of modules over such pair algebras.

2·3. Square rings and quadratic rings

A monoid in the monoidal category (SG, �) is termed a square ring, while a monoid in
the monoidal category (SG, �) is termed a quadratic ring.

More explicitly (see [5, 6, 9]), to provide a square group Q with a square ring structure is
the same as to give additionally a multiplicative monoid structure on Qe. The multiplicative
unit of Qe is denoted by 1. One requires that this monoid structure induces a ring structure
on the abelian group Qad through the canonical projection

Qe −→ Qad, a 	−→ ā.

Moreover the abelian group Qee must be a Qad ⊗ Qad ⊗ (Qad)op-module with action denoted
by (x̄ ⊗ ȳ) · a · z̄ ∈ Qee for x̄, ȳ, z̄ ∈ Qad, a ∈ Qee. In addition the following conditions must
be satisfied where H(2) = H(1 + 1):

(i) x(y + z) = xy + xz;

(ii) (x + y)z = xz + yz + P((x̄ ⊗ ȳ) · H(z));

(iii) (x | y)H = (ȳ ⊗ x̄) · H(2);

(iv) T ((x̄ ⊗ ȳ) · a · z̄) = (ȳ ⊗ x̄) · T (a) · z̄;

(v) P(a · x) = P(a)x ;

(vi) P((x̄ ⊗ x̄) · a) = x P(a);

(vii) H(xy) = (x̄ ⊗ x̄) · H(ȳ) + H(x) · ȳ.

Under the equivalence Quad(Gr) � SG square rings correspond to monads on the cat-
egory of groups, whose underlying functors lie in Quad(Gr). A quadratic ring structure on
a square group C is given by a multiplicative monoid structure on Ce and a ring structure on
Cee. The multiplicative unit of Ce is denoted by 1. One requires that these structures satisfy
the following additional conditions:

(i) x(y + z) = xy + xz;

(ii) (x + y)z = xz + yz + P((y | x)H H(z)).

Thus Cad is a ring. Moreover the maps

−T : Cee −→ Cee,

(− | −)H : Cad ⊗ Cad −→ Cee
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are ring homomorphisms, in other words one has:

(iii) (x | y)H (u | v)H = (xu | yv)H ;
(iv) T (ab) + T (a)T (b) = 0.

Let us observe that T (abc) = T (a)T (b)T (c). Furthermore the following equations hold:

(v) P(a�(x)) = P(a)x ;
(vi) P((x | x)H a) = x P(a);

(vii) H(xy) = (x | x)H H(y) + H(x)�(y).

It follows from the axioms that �: Cad → Cee is a ring homomorphism [7].
Let QR (resp. SR) denote the category of quadratic (resp. square) rings. One has the full

embedding of categories Rings ⊂ QR (resp. Rings ⊂ SR) which identifies rings with
quadratic (resp. square) rings C satisfying Cee = 0. This inclusion has a left adjoint given
by R 	→ Rad.

There is also a functor

U : QR −→ SR

which assigns to a quadratic ring C a square ring, whose underline square group is the same,
while the Cad ⊗ Cad ⊗ (Cad)op-module structure on Cee is given by

(x̄ ⊗ ȳ)az̄ = ( y | x)H a�(z).

The initial object in the category of quadratic rings (resp. square rings) is Znil, which is
given by

(Znil)e = Z = (Znil)ee, P = 0, H(x) = x(x − 1)

2
.

We now extend the monoid ring construction to quadratic rings and square rings. For a
monoid S one puts

Znil[S]ee = Z[S] ⊗ Z[S],
where Z[S] is the free abelian group generated by S. We take Znil[S]e to be the free nil2-
group generated by S. The homomorphism P is given by P(s ⊗ t) = [t, s], s, t ∈ S, while
the quadratic map H is uniquely defined by

H(s) = 0, (s | t)H = t ⊗ s s, t ∈ S.

One has

Znil[S]ad = Z[S].
There is a unique quadratic (resp. square) ring structure on Znil[S] for which the multiplica-
tion on Znil[S]e extends the multiplication on the monoid S and such that the ring structure
(resp. Z[S] ⊗ Z[S] ⊗ Z[S]op-module structure) on Znil[S]ee = Z[S] ⊗ Z[S] is the obvious
one (resp. is given by (x ⊗ y)(s ⊗ t)z = xsz ⊗ ytz). In this case Qad = Z[S] is the usual
monoid ring of S. The functor Znil[−]: Monoids → QR (resp. Znil[−]: Monoids → SR) is
left adjoint to the functor

L: QR −→ Monoids (resp. L: SR −→ Monoids),

where L(Q) consists of linear elements of Q, that is

L(Q) = {x ∈ Qe | H(x) = 0}.
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The equality H(xy) = (x̄ ⊗ x̄)H(y) + H(x)ȳ shows that linear elements indeed form a
multiplicative submonoid of Qe.

2·4. Quadratic pair algebras and crossed square rings

Now we consider crossed biobjects in the monoidal categories (SG, �) and (SG, �). Ac-
tually we restrict ourselves to considering only those crossed biobjects ∂: C1 → C0 which
induce isomorphisms on the ee-level. This is the condition which implies that Coker(∂)

is a usual ring and Ker(∂) is a usual bimodule. This forces us to introduce the following
definition.

A quadratic pair module (qpm for short) is a morphism of square groups ∂: C1 → C0 such
that the homomorphism ∂ee: C1ee → C0ee is an identity map. Thus explicitly a quadratic pair
module C is given by a diagram

Cee

P

����
��

��
��

C1
∂

�� C0

H

��

where C1 and C0 are groups, Cee is an abelian group, P and ∂ are group homomorphisms and
H is a quadratic map, and moreover the following identities are satisfied for any a ∈ Cee,
r, s ∈ C1 and x, y ∈ C0:

P H∂ P(a) = 2P(a);
H(x + ∂ P(a)) = H(x) + H∂ P(a);

P H(∂(r) + ∂(s)) = P H∂(r) + P H∂(s) + [r, s];
∂ P H(x + y) = ∂ P H(x) + ∂ P H(y) + [x, y].

The category of qpm’s is denoted by QPM. If C is a qpm, then Im(∂) is a normal subgroup
of C0 containing the commutator subgroup of C0. Thus

h0(C) := Coker(∂)

is an abelian group. Moreover

h1(C) := Ker(∂)

is a central subgroup of C1. We have an exact sequence of square groups

0 −→ h1(C) −→ C(1)

(∂,Id)−−→ C(0) −→ h0(C) −→ 0.

Here (C(1))ee = (C(0))ee = Cee, (C(1))e = C1 and (C(0))e = C0. The structural maps are
given by

PC(0) = ∂ P, PC(1) = P,

H C(0) = H, H C(1) = H∂.

A qpm together with crossed biobject structure in the monoidal category (SG, �) is called
a quadratic pair algebra (shortly qpa). Thus a qpa is a qpm C together with a ring structure
on Cee and a quadratic ring structure on C(0). Additionally a two-sided action of C0 on C1

is given, which is associative and unital and the following identities are satisfied for all
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x, y ∈ C0, r, s ∈ C1, a, b ∈ Cee:

(i) P((x |x)H a�(y)) = x P(a)y;

(ii) ∂(xry) = x∂(r)y;

(iii) ∂(r)s = r∂(s);

(iv) x(r + s) = xr + xs;

(v) r(x + y) = r x + ry;

(vi) (x + y)r = xr + yr + P((y|x)H H∂(r));

(vii) (r + s)x = r x + sx + P((s|r)H∂ H(x)).

If C is a qpa, then C(0) is a quadratic ring and the multiplication on C0 yields the mul-
tiplication on h0(C) which equips h0(C) with a structure of a ring. Moreover h1(C) is a
bimodule over h0(C).

A qpm together with a crossed biobject structure in the monoidal category (SG, �) is
called a crossed square ring (shortly csr). Thus a csr is a qpm C together with a square ring
structure on C(0) and a two-sided action of C0 on C1, which is associative and unital and
such that the following identities hold for all x, y, z, t ∈ C0, r, s ∈ C1, a, b ∈ Cee:

(i) P((x̄ ⊗ x̄) · a · y) = x · P(a) · y;

(ii) ∂(x · r · y) = x · ∂(r) · y;

(iii) ∂(r)s = r∂(s);

(iv) x(r + s) = xr + xs;

(v) r(x + y) = r x + ry;

(vi) (x + y)r = xr + yr + P((x̄ ⊗ ȳ) · H∂r);

(vii) (r + s)x = r x + sx + P((∂̄r ⊗ ∂̄s) · H x).

In a crossed square ring the quotient R = Coker(∂) has a ring structure and Ker(∂) is a
bimodule over R. We denote by CSR the category of crossed square rings.

Let R be a ring and M be a bimodule over R. A quadratic ring extension (resp. crossed
square ring extension) of R by M is an exact sequence

0 −→ M
i−→ C(1)

(∂,Id)−−→ C(0)

p−→ R −→ 0

where (∂, Id): C(1) → C(0) is a qpa (resp. csr), the induced homomorphisms p: Coker(∂) →
R is an isomorphism of rings and the induced homomorphism i : M → Ker(∂) is an iso-
morphism of bimodules over Coker(p). Here M is considered as a bimodule over Coker(∂)

via the isomorphism p: Coker(∂) → R.
Using the definition of the products � and � from [9], resp. [7], one readily checks:

LEMMA 2·2. A crossed extension of R by M in (SG, �) is isomorphic to a crossed square
ring extension. A crossed extension of R by M in (SG, �) is isomorphic to a quadratic ring
extension.

Hence we have explicitly described the objects in the category of Theorem 2·1.

Example 1. Let Q be a square ring. One can consider the quotient Qee/(Id −T ), where
as usual T = HP − Id. Let P̃: Qee → Qee/(Id −T ) be the canonical projection. It is
clear that the homomorphism P: Qee → Qe factors through Qee/(Id −T ). We denote by
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∂: Qee/(Id −T ) → Qe the quotient map. Then

Qee

P̃

������������

Qee/(Id −T )
∂

�� Qe

H

��

is a crossed square ring. Thus Theorem 2·1 assigns to any square ring Q an element in
HML3

(Qad; Qre), where Qre = Ker(∂: Q/(Id −T ) → Qe). In particular, for the square ring
Znil one obtains the following crossed square ring

Z

1

		��
��

��
��

Z/2Z
0

�� Z

H

��

where H(x) = (x2 − x)/2 which defines an element of HML3
(Z; Z/2Z) = Z/2Z, which is

actually the generator.

Example 2. Let k � 2. The generator of HML3
(Z/2k

Z; Z/2Z) = Z/2Z ([28]) is given
by the following crossed square ring

Z/2Z

1



���������

Z/2Z
0

�� Z/2k
Z

H

��

where H(x) = (x2 − x)/2.

2·5. The homomorphism ν: HML3
(R; M) → H0

(R; 2 M)

Let R be a ring and let M be a bimodule over R. Take a crossed square ring extension (∂)

of R by M

0 �� M
i �� C(1)

(∂,Id) �� C(0)

p �� R �� 0

and set

υ(w) := P H(2).

Since H(1) = 0 it follows that ∂ P H(2) = ∂ P(1 | 1)H = 0. On the other hand 2P H(2) =
P H∂ P H(2) = 0. Thus υ(w) ∈ 2 M . Actually

υ(w) ∈ H0
(R; 2 M)

and ν yields a well-defined map

ν: XextL(R; M)SG,� −→ H0
(R; 2 M).

LEMMA 2·3. Kernel of ν coincides with the image of

Xext(R; M)Ab,⊗ −→ XextL(R; M)SG,�.

In fact we obtain the lemma directly by the exact sequence in Section 1 and the bijec-
tions (2·1·4) and Section 2·1. We now show the lemma more directly in terms of crossed
extensions.
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Proof. If ∂ is a crossed ring extension then Cee = 0 and a fortiori H = 0, thus ν(∂) =
0. Conversely, assume (∂) is a crossed square ring extension with ν(∂) = 0. Without loss
of generality one can assume that C(0) is a monoid square ring C(0) = Znil[L] (see Section
4·3 below). In this case Cee = Z[L] ⊗ Z[L] and H(2) = (1 | 1)H = 1 ⊗ 1. The equality
P((x̄ ⊗ x̄ · m · y) = x · P(m) · y shows that P factors through ∧2(Z[L]). Thus one gets the
following diagram.

0

��∧2(Z[L]) Id ��

P̃
��

∧2(Z[L])
[−,−]

��
0 �� M ��

Id

��

C1
∂ ��

��

C0
��

��

R ��

Id

��

0

0 �� M �� Coker P̃ ��

��

Z[L] ��

��

R �� 0

0 0

Since C0 is a free nil2-group on L the commutator map [−, −] is a monomorphism. It fol-
lows that P̃ is also a monomorphism, the bottom row is exact and (∂) is equivalent to

0 −→ M −→ Coker P̃ −→ Z[L] −→ R −→ 0

which is a crossed ring extension in (Ab, ⊗).

2·6. Application to ring spectra

Since Mac Lane cohomology and topological Hochschild cohomology are isomorphic for
discrete rings it follows that for any ring spectrum Λ with πi (Λ) = 0 for i � 0, 1 there is
a well-defined element k(Λ) ∈ HML3

(π0(Λ); π1(Λ)) known as the first Postnikov invariant
(see [18]) and any element in this group comes in this way. Thus linearly generated crossed
square rings and quadratic pair algebras can be used to model such ring spectra. The explicit
functor from the category of crossed square rings to the category of ring spectra can be
constructed as follows. By Corollary 3·7 below one can associate to any crossed square ring
an internal groupoid in the category of square rings and hence an internal groupoid in the
category of algebraic theories (see 3·6 below). Now using the nerve construction one obtains
a simplicial object in the category of algebraic theories. Then one can use the well-known
construction of Schwede [33] to obtain a ring spectrum in a functorial way.

3. Recollections

3·1. Preliminaries on double categories and internal categories

Let A be a category with finite limits. An internal category C in A consists of the
following data: objects C0 (object of objects), C1 (object of morphisms) and morphisms
s, t : C1 → C0 (source and target), i : C0 → C1 (identity), m: C2 → C1 (composition)
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satisfying associativity and unitality conditions. Here C2 is defined by the pullback diagram

G2
p1 ��

p2

��

G1

s

��
G1 t

�� G0.

We denote by Cat(A) the category of internal categories in A. Let us also recall that an
internal category C is called an internal groupoid provided the diagram

G2
m ��

p2

��

G1

s

��
G1 s

�� G0

is a pullback diagram. We denote by Gpd(A) the category of internal groupoids in A.
An internal category in the category of sets Sets is nothing but a small category, while a

groupoid object in the category of sets Sets is a groupoid. We write Cat and Gpd instead of
Cat(Sets) and Gpd(Sets).

Let A be an object of A, then we can consider the internal groupoid Adis with (Adis)0 =
A = (Adis)1 and s = t = IdA. An internal category is called discrete if it is isomorphic to
Adis for some A. We will need also an internal groupoid Aadis with (Aadis)0 = A, (Aadis)1 =
A × A, where s and t are the projections. An internal category is called antidiscrete if it is
isomorphic to Aadis for some A.

Let B be a category with finite limits and let F : A → B be a functor which preserves
finite limits. Then obviously F yields functors Cat(A) → Cat(B) and Gpd(A) → Gpd(B)

which will be also denoted by F .
Let us recall that a double category is an internal category in the category Cat of small

categories. Let D be a double category with the object category D0 and morphism category
D1.

We have a functor Ob : Cat → Sets, which assigns to a category C the set of objects of
C. Since Ob preserves inverse limits, for any double category D we obtain a category O(D),
whose morphisms are objects of D1 and objects are objects of D0. A double category D is a
2-category if O(D) is a discrete category. Equivalently a 2-category is a category enriched
in the category Cat. Let us recall how one gets such an enrichment.

Let D is a 2-category. Then objects of the category D0 are called simply objects of D,
while morphisms of the category D0 are called simply morphisms of D. Let f, g: A → B
be morphisms of D. Then A and B are also objects in D1 and we can consider the set of
all morphisms α: A → B in D1 such that s(α) = f and t (α) = g. Such an α is called a
2-morphism from f to g. Thus for objects A and B we have a category D(A, B) with objects
morphisms from A to B in the category D0 and morphisms from f : A → B to g: A → B
being all 2-morphisms from f to g.

Conversely, if B is a a category enriched in the category Cat, then one can consider the
following categories B0 and B1. The category B0 has the same objects as B, while morphisms
in B0 are 1-arrows of B. The category B1 has the same objects as B0. The morphisms A → B
in B1 are 2-arrows α: f ⇒ f1 where f, f1: A → B are 1-arrows in B. Composition in B1 is
given by (β: x ⇒ x1)(α: f ⇒ f1) := (βα: x f ⇒ x1 f1), where

βα = β f1 + xα = x1α + β f.
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One furthermore has the source and target functors

B1

s ��

t
�� B0 ,

with s(α: f ⇒ f1) = f , t (α: f ⇒ f1) = f1, and the “identity” functor i :T0 → T1

assigning to an 1-arrow f the identity 2-arrow 0 f : f ⇒ f . One easily sees that in this way
we obtain a double category such that after applying the functor Ob : Cat → Sets one gets
a discrete category.

3·2. Preliminaries on Baues–Wirsching cohomology of small categories

For a small category C we denote by FC the category of factorizations of C [12].
Objects of FC are morphisms of C , and a morphism from α: x → y to β: u → v is a
pair (ν: u → x, ψ : y → v) of morphisms in C such that β = ψαν, that is, one has a
commutative diagram

x α �� y

ψ .

��
u

ν

��

β �� v

Composition in FC is defined by (ν, ψ)(ν ′, ψ ′) = (ν ′ν, ψψ ′). A natural system on C
is a covariant functor D:FC → Ab. Now, following [12], one defines the cohomology
H∗

(C ; D) as the cohomology of the cochain complex F∗(C ; D) given by

Fn(C ; D) =
∏

c0

α1←−··· αn←−cn

Dα1···αn

with the coboundary map

d : Fn(C ; D) −→ Fn+1(C ; D)

given by

(d f )(α1, · · · , αn+1) = (α1)∗ f (α2, . . . , αn+1)

+
n∑

i=1

(−1)i f (α1, . . . , αiαi+1, . . . , αn+1)

+ (−1)n+1(αn+1)
∗ f (α1, . . . , αn).

Here, and in the rest of the paper, we use the following convention. For a diagram u
β−→

x
α−→ y

γ−→ v and elements a ∈ Dβ , b ∈ Dγ , we write α∗a and α∗b for the image of the
elements a and b under the homomorphisms D(Idu, α): Dβ → Dαβ and D(α, Idv): Dγ →
Dγα respectively.

We also need the relative cohomologies of small categories. Let p:K → C be a functor
which is identity on objects and surjective on morphisms. Let D:FC → Ab be a nat-
ural system on C . We have an induced natural system p∗ D on K given by g 	→ Dpg,
which we will, abusing notation, still denote by D. Then p yields a monomorphism of co-
chain complexes F∗(C ; D) → F∗(K ; D). We let F∗(C ,K ; D) be the cokernel of this
homomorphism. The n-th dimensional relative cohomology Hn

(C ,K ; D) is defined as the
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(n −1)th homology of the cochain complex F∗(C ,K ; D). Then one has an exact sequence

0 → H0
(C , D) → H0

(K ; D) → H1
(C ,K ; D) → · · ·

→ Hn
(C , D) → Hn

(K ; D) → Hn+1
(C ,K ; D) → · · · .

We have a functor FC → C op × C which sends an arrow α: c → d to the pair (c, d).
This functor allows us to conclude that any bifunctor gives rise to a natural system. Thus
for any bifunctor D:C op × C → Ab we have well-defined cohomology groups H∗

(C ; D).
Among many equivalent definitions of the Mac Lane cohomology [17] for our purposes
the most convenient is via the Baues-Wirsching cohomology of small categories [12]. Let
R be a ring. Let Mod-R be the category of right R-modules and let mod-R be the full
subcategory of finitely generated free right R-modules. To avoid set-theoretic complications
we will assume that objects of mod-R are natural numbers and morphisms from y to x ,
x, y ∈ N are (x × y)-matrices with entries in R. We write f = ( f k

i ) for a morphism y → x ,
where f k

i ∈ R, 1 � i � x, 1 � k � y.
For an R-R-bimodule M , we denote by DM : (Mod-R)op × Mod-R → Ab the bifunctor

given by

DM(X, Y ) := HomR(X, Y ⊗R M), X, Y ∈ Mod-R.

Now one defines the Mac Lane cohomology of R with coefficients in M by

HML∗
(R; M) := H∗

(mod-R; DM).

We refer to [17] and [20, chapter 13] for relationship between different definitions of
Mac Lane cohomology. We use this definition of HML∗ also if R is a square ring or a
quadratic ring.

3·3. Third Baues–Wirsching cohomology and linear track extensions

We recall the relationship between third Baues–Wirsching cohomology and linear track
extensions. We start with recalling the definition of track categories.

A track category is a groupoid enriched category, i.e. a 2-category such that all of its
2-morphisms are invertible. Equivalently a track category T is an internal groupoid in the
category Cat such that O(T ) is a discrete category. We will use the following notation for
track categories. Composition of morphisms will be denoted by juxtaposition; for 2-arrows
we will use additive notation, so composition is + and identity 2-arrows are denoted by 0.
The hom-category for objects A, B of a track category will be denoted by [[A, B]]. If there
is a 2-arrow α: f ⇒ g between maps f, g ∈ Ob([[A, B]]), we will say that f and g are
homotopic and write f � g. We have the homotopy category T� = T0/ �. Objects of T�
are objects in Ob(T ), while morphisms of T� are homotopy classes of morphisms in T0.
A map f in T is called a homotopy equivalence if the class of f in T� is an isomorphism.

Two track categories T , T ′ are called weakly equivalent if there is an enriched functor
F :T → T ′ which induces equivalences of hom-groupoids [[X, Y ]]T → [[F X, FY ]]T ′

and is essentially surjective, i. e. any object of T ′ is homotopy equivalent to one of the form
F X .

Let C be a small category and let D be a natural system on C . A linear track extension
of C by D denoted by

0 −→ D −→ T1 −→−→T0 −→ C −→ 0
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is a pair (T , τ ). Here T is a track category equipped with a functor q:T0 → C which is
full and identity on objects. In addition for maps f, g in T0 we have q( f ) = q(g) iff f � g.
In other words the functor q identifies C with T�. Furthermore, for each map f : A → B in
T0 there is given an isomorphism of groups τ f : Dq f → T ( f, f ), such that for any ξ : f ⇒ g
and a ∈ Dq f = Dqg one has

ξ + τ f (a) = τg(a) + ξ.

Furthermore for any diagram
e−→ f−→ h−→ additionally one has

h∗τ f (a) = τh f (h∗a),

e∗τ f (a) = τ f e(e
∗a).

For a category C and a natural system D:FC → Ab we denote by Trext(C ; D) the
category of all linear track extensions of C by D, where the morphisms are the obvious
ones.

Linear track extensions of categories were first described in the preprint of [3] and the
following theorem in a slightly different terminology first was proved in [25] (see also [26])
and was proved by different methods in [4].

THEOREM 3·1 [25]. For a small category C and a natural system D:FC → Ab there ex-
ists a natural bijection between the set of connected components of the category Trext(C ; D)

and third cohomology:

π0(Trext(C ; D))�H3
(C ; D).

The proof of Theorem 3·1 given in [25] and [26] is based on the following Theorem 3·2,
which is going to be crucial in this paper as well.

Let p:K → C be a functor which is identity on objects and surjective on morphism. Let
D:FC → Ab be a natural system on C . We denote by Trext(C ,K ; D) the subcategory
of Trext(C ; D) whose objects are track categories T satisfying T0 = K ,

0 −→ D −→ T1 −→−→K
q−→ C −→ 0,

whereas morphisms are those morphisms in Trext(C ; D) which are identity on K .

THEOREM 3·2 [25, 26]. For a small category C , a bifunctor D:C op × C → Ab and a
functor p:K → C which is identity on objects and surjective on morphisms, the category
Trext(C ,K ; D) is a groupoid and there exists a natural bijection

π0(Trext(C ,K ; D))�H3
(C ,K ; D).

3·4. Relative track extensions of algebraic theories

An algebraic theory is a category with finite coproducts. A morphism of algebraic the-
ories is a functor preserving finite coproducts. We denote the coproduct by ∨. Let C be
an algebraic theory. A natural system D:FC → Ab is called cartesian if for any arrow
f : c = c1 ∨ · · · ∨ cn → d the natural map

D f −→ D f1 × · · · × D fn ,

given by x 	→ ((i1)
∗x, . . . , (in)

∗x), is an isomorphism. Here ik : ck → c is the standard inclu-
sion and fk = ik ◦ f : ck → d. For example if D:C × C op → Ab is a bifunctor such that for
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all c, d and x from C one has an isomorphism

D(c ∨ d, x)� D(c, x) × D(d, x)

natural in c, d and x , then the natural system corresponding to D is cartesian.
Let C be an algebraic theory and let D:FC → Ab be a cartesian natural system. A track

extension

0 −→ D −→ T1 −→−→T0
p−→ C −→ 0

is called a track extension of algebraic theories if T0 is an algebraic theory and the functor
p is a morphism of algebraic theories.

LEMMA 3·3. Let C be an algebraic theory and let D:FC → Ab be a cartesian natural
system. Let 0 → D → T1−→−→T0

p−→ C → 0 be a track extension of algebraic theor-
ies. Then T1 is also an algebraic theory and s, t :T1 → T0 are morphisms of algebraic
theories.

Proof. Let α: f ⇒ g and α′: f ′ ⇒ g′ be tracks, where f, g: A → B and f ′, g′: A′ → B
are 1-morphisms. We have to show that there is a unique track (α, α′): ( f, g) ⇒ ( f ′, g′)
such that i∗

A(α, α′) = α and i∗
A′(α, α′) = α′, where ( f, g): A ∨ A′ → B is the unique 1-

morphism with i A( f, g) = f and i A′( f, g) = g. Here i A: A → A ∨ B is the canonical
inclusion and similarly for i A′ . First we show the existence of such a track. By assumption
f � g and f ′ � g′. Since p preserves finite coproducts, it follows that ( f, f ′) � (g, g′).
Hence there exists a track η: ( f, f ′) ⇒ (g, g′). Since i∗

A(η): f ⇒ g, there exists a unique
element x ∈ Dp f such that i∗

A(η) = α + σ f (x). Similarly there exists a unique element
x ′ ∈ Dp f ′ such that i∗

A′(η) = α′ + σ f ′(x ′). By our assumptions there is a unique element
y ∈ D(p f,p f ′ such that i A(y) = x and i A′(y) = x ′. Then the track ξ = η − σ( f, f ′)(y) satisfies
the condition required. To prove uniqueness one observes that if ξ and η both satisfy the
condition, then they will differ by an element z ∈ D(p f,p f ′), whose restrictions to Dp f and
Dp f ′ are zero, hence it is itself zero and the lemma follows.

LEMMA 3·4. Let 0 → D → T1−→−→T0
p−→ C → 0 be a track extension of algebraic

theories and let ν: X → X ∨ X be an internal cogroup in T0. Then X is also a cogroup in
T1, where the cogroup structure is given by the morphism 0: ν ⇒ ν.

Proof. By Lemma 3·3 the “identity functor” T0 → T1 respects finite coproducts and
therefore carries a cogroups to cogroups.

3·5. Quadratic functors, quadratic categories and square objects

We now recall the relationship between square groups and quadratic functors. We consider
endofunctors F : Gr → Gr of the category of groups with F(0) = 0. Additionally we assume
that F preserves filtered colimits and reflexive coequalizers. The last condition means that
for any simplicial group G∗ the canonical homomorphism π0(F(G∗)) → F(π0(G∗)) is an
isomorphism. Such a functor F is completely determined by the restriction of F to the
subcategory of finitely generated free groups.

The second cross-effect F(X |Y ) of F is a bifunctor defined via the short exact sequence

0 −→ F(X |Y ) −→ F(X ∨ Y ) −→ F(X) × F(Y ) −→ 0.

Here ∨ denotes the coproduct in the category of groups and the last map is induced by the
canonical projections: r1 = (IdX , 0): X ∨ Y → X and r2 = (0, IdY ): X ∨ Y → Y . A functor
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F is called linear if the second cross-effect vanishes. Moreover, F is called quadratic if
F(X |Y ) is linear in X and Y . Let lin(Gr) (resp. Quad(Gr)) be the category of such linear
(resp. quadratic) endofunctors. Any endofunctor in lin(Gr) is isomorphic to a functor T of
the form T (X) = A ⊗ Xab where A is an abelian group. Therefore there is an equivalence
of categories

lin(Gr) � Ab.

Let F : Gr → Gr be a quadratic functor. We associate with F a square group cro(F) as fol-
lows. We put

cro(F)e = F(Z), cro(F)ee = F(Z | Z).

The homomorphism P of the square group cro(F) is the restriction of the homomorphism
(Id, Id)∗: F(Z∨Z) → F(Z). We denote by e1 and e2 the canonical free generators of Z∨Z.
The map H is given by

H(x) = µ∗(x) − p2(µ∗x) − p1(µ∗x).

Here µ: Z → Z ∨ Z is the unique homomorphism which sends 1 to e1 + e2, while p1 and
p2 are endomorphisms of Z ∨ Z → Z ∨ Z such that pi (ei) = ei , i = 1, 2 and pi (e j ) = 0, if
i � j .

The main result of [9] claims that the functor

cro: Quad(Gr) −→ SG

is an equivalence of categories. Under this equivalence square rings corresponds to monads
on the category of groups, whose underlying functors lie in Quad(Gr).

Let C be an algebraic theory with zero object 0. We will say that C is equipped with a
structure of quadratic theory if each object C in C is equipped with a cogroup structure
νC : C → C ∨ C and the functor C(C, −): C → Gr is quadratic. Thus for all X and Y in C

one has the following short exact sequence of groups

0 −→ C(C; X | Y ) −→ C(C, X ∨ Y ) −→ C(C, X) × C(C, Y ) −→ 0

and C(C; X | Y ) is linear in X and Y . This definition is equivalent but not identical to the
one given in [5].

LEMMA 3·5. Let C be an additive category, D:C op ×C → Ab be a biadditive bifunctor
and

0 −→ D −→ T1−→−→T0
p−→ C −→ 0

be a linear track extension. If T0 is a quadratic theory and p preserves finite coproducts,
then T1 is also a quadratic theory.

Proof. By Lemma 3·3 the category T1 is an algebraic theory. It is quite easy to show that
the zero object in T0 remains also a zero object in T1. By Lemma 3·4 any object in T1 has
a canonical cogroup structure. We claim that

T1(X, Y | Z)�T0(X, Y | Z) × T0(X, Y | Z),

which implies that T1(X, −) is a quadratic functor and hence Lemma. To prove the claim
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we put

r1 = (Id, 0): Y ∨ Z −→ Y and r2 = (0, Id): Y ∨ Z −→ Z .

By definition of the cross-effect T0(X, Y | Z) consists of 1-morphisms f : C → Y ∨ Z such
that r1 f = 0 = r2 f . On the other hand T1(X, Y | Z) consists of tracks α: f ⇒ g such that
r1 f = 0 = r2 f , r1g = 0 = r2g and r1∗α = 0 = r2∗α. Thus our claim is equivalent to the
following: suppose f, g: X → Y ∨ Z are 1-morphisms such that r1 f = 0 = r2 f , r1g = 0 =
r2g. Then there exists a unique track α: f ⇒ g such that r1∗α = 0 = r2∗α. If α and β both
satisfy the assertion, then β = α = σ f (x) with x ∈ D(X, Y ∨Z) = D(X, Y )⊕D(X, Z). The
conditions r1∗α = 0 = r2∗α = r1∗β = r2∗β show that x = 0. Hence we proved uniqueness.
Now we prove the existence. Since C is an additive category, p respects coproducts and
r1 f = 0 = r2 f it follows that p( f ) = 0 in C . Similarly p(g) = 0. In particular f � g. Thus
there exist a track ξ : f ⇒ g. Then r1∗(ξ): 0 ⇒ 0. Hence there exists a unique y ∈ D(X, Y )

such that r1∗(ξ) = σ0(y). Similarly r2∗(ξ) = σ0(z) for uniquely defined z ∈ D(X, Z). Since
D is biadditive, we have (y, z) ∈ D(X, Y ∨ Z). It is clear that α = ξ − σ f (y, z) satisfies the
conditions of the claim.

3·6. Square rings and single sorted quadratic theories

We recall the relationship between square rings and quadratic categories [5]. A quadratic
theory is a single sorted quadratic theory if the objects of C are natural numbers and the
coproduct on objects corresponds to the addition of natural numbers. Thus each object n in
C is an n-fold coproduct of 1. We additionally require that the cogroup structure on n is the
n-fold coproduct of the cogroup structure on 1.

Assume C is a single sorted quadratic theory. Then one has the square ring cro(C) with

cro(C)e = cro(C(1, −))e = C(1, 1)

and

cro(C)ee = cro(C(1, −))ee = C(1; 1 | 1).

The main result of [5] shows that the functor cro from the category of single sorted quadratic
theories to the category of square rings is an equivalence of categories. The inverse functor
is given by Q 	→ mod-Q. Here the objects of the category mod-Q are natural numbers,
while morphisms from y to x , x, y ∈ N are defined by product sets

Mor(y, x) :=
( y∏

k=1

x∏
i=1

Qe

)
×

( y∏
k=1

∏
1�i< j�x

Qee

)
.

For a morphism f : y → x we write f = ( f k
i , f k

i j ). If g = (gs
k, gs

kl) is a morphism z → y,
then the composite f g = (( f g)s

i , ( f g)s
i j ) is given by

( f g)s
i = f 1

i ◦ gs
1 + · · · + f y

i ◦ gs
y +

∑
k<l

P
((

f̄ k
i ⊗ f̄ l

i

) · gs
kl

)

( f g)s
i j =

∑
k

(
f k
i j · ḡs

k +
∑
i<l

((
f̄ k
i ⊗ f̄ l

i

) · gs
kl + (

f̄ l
i ⊗ f̄ k

j

) · T gs
kl

+ (
f l
i · gs

l

) ⊗ ( f k
j · gs

k) · H(2)

)
.

Actually mod-Q is a single sorted quadratic theory, the group structure on hom’s is defined
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by the formula:
(

f k
i , f k

i j

) + (
f ′k

i , f ′k
i j

) = (
f k
i + f ′k

i , f k
i j + f ′k

i j + ek
i j

)
where

ek
i j = (

f̄ k
i ⊗ f̄ ′k

j

) · H(2).

To get more hints on the category mod-Q, we recall that a right Q-module [5] is nothing
but a right Q-object in the monoidal category (SG, �). More explicitly, a right Q-module is
a group M together with maps M × Qe → M , (m, x) → mx and M × M × Qee → M ,
(m, n, a) 	→ [m, n]a satisfying the following identities:

m1 = m,

(mx)y = m(xy),

m(x + y) = mx + my,

(m + n)x = mx + nx + [m, n]H(a),

[m P(a) = [m, m]a,

[m, n]T a = [n, m]a,

[mx, ny]a = [m, n](x⊗y)a,

[[m, n]a, z]b = 0.

Moreover [m, n]a is linear in m, n and a and lies in the center of M . We denote by Mod-Q
the category of all right Q-modules. It is a standard fact of universal algebra that the forgetful
functor Mod-Q → Sets has the left adjoint, whose values on a set X is called the free right
Q-module generated by the set X . Now one checks directly [5] that the category mod-Q is
equivalent to the category of finitely generated free right Q-modules.

Let us observe that for Q = Znil, the category of right Znil-modules is nothing but the
category Nil of groups of nilpotence class two. More generally, if S is a monoid then the
category of right modules over the square ring Q = Znil[S] is isomorphic to the category
of pairs (G, α), where G is a group of nilpotence class two and α: S → Hom(G, G) is an
action of S on G via group homomorphisms.

3·7. Internal groupoids and crossed objects

We describe now internal groupoids in the category of square groups. Actually results
obtained in this section are very particular case of much more general results of Janelidze
[15].

Let A and G be square groups. An action of G on A is a homomorphism of abelian groups
ξ : Aad ⊗ Gad → Aee.

In particular we have the action of A on A given by (−, −)H , which is called the adjoint
action of A on itself.

Let ξ be an action of G on A. The semi-direct product of G and A denoted G � A is a
square group defined as follows. As a set (G � A)e is the cartesian product Ge × Ae while
the group structure is given by

(g, x) + (h, y) = (g + h, x + y + Pξ(g, h)).
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Moreover one puts

(G � A)ee = Gee ⊕ Ae,

P(u, a) = (Pu, Pa),

H(g, x) = (H(g), H(x) − ξ(x, g)).

One easily sees that

[(g, x), (h, y)] = ([g, h], [x, y] + Pξ(x, h) − Pξ(y, g))

and

((g, x) | (h, y))H = ((g |)H , (x | y)H + HPξ(x, h) − Pξ(x, h) − Pξ(y, g)).

Based on these identities one easily checks that (G � A)e is really a square group and one
has the following split short exact sequence of square groups

0 −→ A −→ A � G −→ G −→ 0

with obvious maps. Conversely, let

0 −→ A
i−→ B

p−→ G −→ 0

be a short exact sequence. Assume j : G → B is a morphism of square groups with pj =
IdG . Then

ξ(x, g) := (ie(x) | je(g))H

defines an action of G on A and the maps fe(g, x) = je(g) + ie(x) and fee(g, x) = jee(g) +
iee(x) define an isomorphism f = ( fe, fee): G � A → B of square groups.

A crossed square group is a morphism of square groups ∂: A → G together with an action
of G on A such that ∂ is compatible with the action of G, where G acts on itself via the
adjoint action and the action of A on A given via ∂ coincides with the adjoint action of A on
itself. In other words a homomorphism ξ : Aad ⊗ Gad → Aee of abelian groups is given and
the following identity holds

∂eeξ(x, g) = (∂e(x), g)H ,

ξ(x, ∂e(y)) = (x, y)H .

We denote by XSG the category of crossed square groups. The following is a specialization
of the main result of [15].

LEMMA 3·6. Any internal category in the category of square groups is an internal group-
oid. Thus Cat(SG) = Gpd(SG) and there is an equivalence of categories

Gpd(SG)� XSG.

Proof. The first fact is a general property of so called Maltsev categories [15]. The second
part can be proved by modifying the argument of Loday in [19] based on our description of
split short exact sequences. Alternatively one can check directly that the above definition is a
specialization of the general notion of Janelidze and use the main result of [15] on relation-
ship between internal groupoids and crossed objects in so called semi-abelian categories.
The checking is an easy exercise because of the explicit description of the coproduct in the
category SG of square groups given in [9].
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Since the functors (−)e: SG → Gr and (−)ee: SG → Ab preserve limits any internal
groupoid X in SG gives rise to two internal groupoids Xe and Xee in the category of groups
and abelian groups respectively.

An internal groupoid X ∈ Gpd(SG) is called ee-antidiscrete provided Xee is antidiscrete.
We denote by Gpdadee(SG) the category of ee-antidiscrete internal groupoids in the category
of square groups.

LEMMA 3·7. The equivalence Gpd(SG)� XSG restricts to an equivalence of categories

Gpdadee(SG)� QPM.

Proof. We have to show that qpms are exactly crossed square groups ∂: A → G for which
∂ee: Aee → Gee is the identity map. But this is clear, because after identification of Aee and
Gee via ∂e, the action ξ of G on A becomes redundant, ξ(x, g) = (∂e(x) | x)H .

Let Gpdadee(SR) denote the category of ee-antidiscrete internal groupoids in the category
of square rings. Lemma 3·7 implies the following result.

LEMMA 3·8. There is an equivalence of categories

Gpdadee(SR)� CSR.

4. Proof of the main result

4·1. Relative Mac Lane cohomology

Let Q be a square ring, then Qad is a ring. There is an obvious functor

q: mod-Q −→ mod-Qad

which is identity on objects and on morphisms it is given by

q
((

f k
i , f k

i j

)) := (
f̄ k
i

)
.

For any bimodule M over the ring Qad we let DM be the bifunctor on mod-Qad given by

(X, Y ) 	−→ HomQad(X, Y ⊗Qad M).

By abuse of notation we will denote by DM also the induced bifunctor on mod-Q. The
Mac Lane cohomology of the square ring Q with coefficients in M is defined by

HML∗
(Q; M) := H∗

(mod-Q; DM).

Thanks to Section 3·2 we recover for usual rings the classical Mac Lane cohomology.
Let R be a ring and let M be a bimodule over R. Assume also that a surjective morphism

p: Q → R is given from a square ring Q to R. Using the relative cohomology of small
categories defined in Section 3·2 one defines the relative Mac Lane cohomology groups
HML∗

(R, Q; M) to be H∗
(mod-R, mod-Q; DM). Thus one has the following long exact

sequence

0 −→ HML0
(R; M) −→ HML0

(Q; M) −→ HML1
(R, Q; M) −→ · · ·

−→ HMLn
(R; M) −→ HMLn

(Q; M) −→ HMLn+1
(R, Q; M) −→ · · · .

We denote by Xext (R, Q; M)
SG,� the subcategory of the category Xext (R, M)

SG,� whose
objects are crossed square ring extensions of the form

0 �� M �� C(1)

(∂,Id) �� C(0)

p �� R �� 0
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with C(0) = Q. Morphism are such morphisms of crossed square ring extensions which are
identity on Q

0 �� M ��

Id

��

C(1)

f

��

(∂,Id) �� Q

Id

��

p �� R

Id

��

�� 0

0 �� M �� C ′
(1)

(∂ ′,Id) �� Q
p �� R �� 0.

Then the category Xext (R, Q; M)
SG,� is a groupoid.

Quite similarly, for a given surjective morphism p: Q → R from a quadratic ring Q to R,
we denote by Xext (R, Q; M)

SG,� the subcategory of the category Xext (R, M)
SG,� whose

objects are crossed square ring extensions of the form

0 �� M �� C(1)

(∂,Id) �� C(0)

p �� R �� 0

with C(0) = Q. Then the category Xext (R, Q; M)
SG,� is a groupoid.

LEMMA 4·1. Let R be a ring and let L be a monoid and let p: Znil[L] → R be a sur-
jective morphism of quadratic rings (and hence also a surjective morphism of square rings).
Then for any R-bimodule M the functor Xext (R, M)

SG,� → Xext (R, M)
SG,� yields an

equivalence of categories

Xext (R, Znil[L]; M)SG,� �−→ Xext (R, Znil[L]; M)SG,�.

Proof. It is straightforward to check that the conditions posed on C1 and ∂ in the definition
of quadratic pair algebra and in the definition of crossed square ring are the same provided
C(0) = Znil[L].

The proof of the isomorphisms in Theorem 2·1 is based on a computation given in the
Appendix and on the following result.

THEOREM 4·2. Let p: Q → R be a surjective morphism from a square ring Q to a ring
R. Then

π0(Xext (R, Q; M)
SG,�

) ≈ HML3
(R, Q; M).

Proof. Let Trext(mod-R, mod-Q; DM) denote the category of such abelian track cat-
egories T that the corresponding homotopy category T� is mod-R, underlying category
T0 is mod-Q and the corresponding natural system is given by the bifunctor DM . We now
construct the functor

χ :Xext (R, Q; M)
SG,� −→ Trext(mod-R, mod-Q; DM)

as follows. Let

0 �� M �� Q̃
(w,Id) �� Q

p �� R �� 0,

be a crossed square ring extension. The underlying category of the track category χ(ω) is
mod-Q. If f = ( f k

i , f k
i j ) and g = (gk

i , gk
i j ) are morphisms y → x , x, y ∈ N in mod-Q,

then a track f ⇒ g is a collection (hk
i ) of elements in Q̃e such that ∂(hk

i ) = f k
i − gk

i for all
1 � i � x and 1 � k � y. Now the result follows from the fact that χ is an isomorphism
of categories. The inverse of χ is given as follows. Let T be a track category such that
T� = mod-R and T0 = mod-Q. By Lemma 3·5 T is an internal groupoid in the category
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of quadratic theories. By applying the functor cro one obtains an internal groupoid in the
category of square rings. Moreover, the proof of Lemma 3·5 shows that this groupoid is ee-

antidiscrete, therefore by Lemma 3·8 it defines an object in Xext (R, Q; M)
SG,�, which is

the value of the inverse of χ .

4·2. A pullback construction

We now give a construction in the category of crossed square ring extensions which is
needed in the proof of Theorem 2·1. Let

0 �� M �� C(1)

(∂,Id) �� C(0)

p �� R �� 0,

be a crossed square ring extension and let f : Q(0) → C(0) be a morphism of square rings,
such that p◦ fe: Q0 → R is surjective. Based on this data we construct the following crossed
square ring

Qee

P Q

����
��

��
��

Q1
∂ Q

�� Q0

H Q0

��

where the group Q1 is defined by the pullback diagram

Q1
∂ Q

��

ge

��

Q0

fe
��

C1
∂

�� C0

and P Q = (PC ◦ fee, P Q0): Qee → Q1. Then one has the following crossed square ring
extension

0 �� M �� Q(1)
∂ Q

�� Q(0)
�� R �� 0.

One easily sees that

0 �� M ��

Id

��

Q(1)

g

��

∂ Q
�� Q(0)

f

��

p f �� R

Id

��

�� 0

0 �� M �� C(1)
∂ �� C(0)

p �� R �� 0

is a morphism of crossed square ring extensions.
We call this construction the pullback construction and write f ∗∂ instead of (∂ Q). Assume

now that (∂) is linearly generated and the composite L(Q(0)) → L(C(0)) → R is surjective,
then one easily sees that ( f ∗∂) is also linearly generated.

Of course a similar constructions works for quadratic pair algebras.

4·3. Proof of Theorem 2·1
Let

0 �� M �� Q̃
(w,Id) �� Q

q �� R �� 0,

be an object of Xext L(R, M)SG,�. For simplicity we denote this object by (w). Then it
can be also considered as an object of Xext (R, Q; M)

SG,� and therefore (w) defines an
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element in HML3
(R, Q; M) thanks to Theorem 4·2. Then the boundary homomorphism

gives an element in HML3
(R; M). In this way we get a map

ζ : π0(Xext L(R, M)SG,�) −→ HML3
(R; M).

Composing it with π0(Xext L(R, M)SG,�) → π0(Xext L(R, M)SG,�) we obtain the map

ζ ′:π0(Xext L(R, M)SG,�) −→ HML3
(R; M).

We have to show that these maps are bijections. Take an a ∈ HML3
(R; M). Take any sur-

jective homomorphism L → R from a free monoid L to the multiplicative monoid of the
ring R. It yields a surjective morphism r : Znil[L] → R. Here Znil[L] can be considered as
a square ring as well as a quadratic ring. Since HMLi

(Znil[L]; DM) = 0 for i = 2, 3 (see
Theorem A1 in Appendix), we have an isomorphism

∂: HML3
(R, Znil[L]; M)�HML3

(R; M).

Let b = ∂−1(a) ∈ HML3
(R, Znil[L]; M) be the element corresponding to a. Thanks to

Theorem 4·2 the element b defines a crossed square ring extension of R by M

0 �� M �� Q̃
(v,Id) �� Znil[L] �� R �� 0

which is also linearly generated by construction and therefore is an object of
Xext L(R, M)SG,�. By Lemma 4·1 it can be considered also as a quadratic pair algebra
extension. Hence ζ and ζ ′ are surjections. It remains to show that ζ and ζ ′ are injections as
well. Suppose ζ(w) = ζ(w′) (resp. ζ ′(w) = ζ ′(w′)). We have to show that (w) and (w′) are
in the same connected component. Let L(Q) be the monoid of linear elements in Q. Via q it
maps to the multiplicative submonoid q(L(Q)) of R. Take any surjective homomorphism of
monoids F → q(L(Q)) with F a free monoid. It has a lifting to a monoid homomorphism
F → L(Q), which yields a square (resp. quadratic) ring homomorphism t : Znil[F] → Q.
The homomorphism t satisfies all conditions on f in Section 4·2 and hence yields a morph-
ism of crossed square ring extensions (resp. quadratic pair algebra extensions) t∗(w) → w.
Thus without loss of generality we can assume that (w) and (w′) are chosen in such a way
that Q = Znil[F] and Q ′ = Znil[F ′]. Let L and r be the same as above (see the proof of sur-
jectivity of ζ ). Since L → R is surjective, q(F) ⊂ R and F is free, there exists a morphism
of monoids F → L such that for the induced morphism k: Q = Znil[F] → Znil[L] one has
q = r ◦ k. Thus one has the following commutative diagram

HML3
(R, Znil[L]; M) ��

k∗

��

HML3
(R; M)

HML3
(R, Q; M).

����������������

Since both morphisms in the diagram with target H M L3(R, M) are isomorphisms, it fol-
lows that k∗: HML3

(R, Znil[L]; M) → HML3
(R, Q; M) is also an isomorphism. Consider-

ing an extension corresponding to k∗−1(w) one sees that there exists a morphism of square
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ring extensions (resp. quadratic pair algebra extensions)

0 �� M ��

Id

��

Q̃

��

(w,Id) �� Q

k

��

q �� R ��

Id

��

0

0 �� M �� Q̄
(w̄,Id) �� Znil[L] �� R �� 0.

In a similar manner we find a morphism of square ring extensions (resp. quadratic pair
algebra extensions)

0 �� M ��

Id

��

Q̃ ′

��

(w′,Id) �� Q

k

��

q ′
�� R ��

Id

��

0

0 �� M �� Q̄ ′ (w̄′,Id) �� Znil[L] �� R �� 0.

Since the square ring extensions (resp. quadratic pair algebra extensions) (w̄) and (w̄′) lie
in the same groupoid Xext (R, Znil[L]; M)SG,� and their classes in HML3

(R, Znil[L]; M)

are the same, it follows that they are isomorphic in the groupoid Xext (R, Znil[L]; M)SG,�.
Therefore we have the following diagram in Xext (R, M)

SG,� (resp. Xext (R, M)
SG,�):

(w′) ←− (w̄′) � (w̄) −→ (w),

hence the result.

Appendix A. Cohomology of free monoid square rings

T. PIRASHVILI

Here we prove the following result:

THEOREM A1. Let L be a free monoid and let Q = Znil[L] be the corresponding monoid
square ring. Then for any R-R-bimodule B one has

HML2
(Q; B) = 0 = HML3

(Q; B).

Proof of Theorem A1 is given in Section A·4. The argument is a modification of the one
given in [29].

A·1. Auxiliary results

For a ring R we denote by F(R) or simply by F the category of all covariant functors from
the category mod-R of finitely generated free right R-modules to the category Mod-R of all
right R-modules. It is well known [17] that

HML∗
(R; B)�Ext∗F(Id, (−) ⊗R B).

We need the following result, which is an easy consequence of [11, theorem 9·2·1] and
the fact that SHi

(R; −) = 0 for all i � 2, provided R is a free ring.

LEMMA A2. Let R be a free ring and let B be an R-R-bimodule. Then one has
HML2

(R; B) = 0 and HML3
(R; B)�H0

(R; 2 B), where H∗
(R; −) denotes the Hochschild

cohomology of R.
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We also need the following vanishing result.

LEMMA A3 [24]. Let R be a ring and let

T : (mod-R) × (mod-R) −→ Mod-R

be a bifunctor, which is covariant in both variables and T (0, X) = 0 = T (X, 0) for all X ∈
mod-R. Then for any additive functor F : mod-R → Mod-R one has

Ext∗F(F, T d) = 0 = Ext∗F(T d, F),

where T d(X) = T (X, X).

In the following we need the simplicial derived functors of the functor (−)ad: Q-Mod →
R-Mod, which are denoted by

TorQ
∗ (−, R): Mod-Q −→ Mod-R.

We recall the definition of these functors. According to [31] the category of simplicial ob-
jects in the category of right Q-modules has a closed model category structure where a
morphism f : X∗ → Y∗ of simplicial objects is a weak equivalence (resp. fibration) when it
is so in the category of simplicial sets. Let M be a right Q-module and let X∗ be a cofibrant
replacement of M . By [31] one can assume that each Xn , n � 0 is a free right Q-module.
We also have πi X∗ = 0 for i > 0 and π0 X∗ = M . Now one puts

TorQ
∗ (M, R) := π∗(X ad

∗ ).

It is well known that these are well-defined functors. Since Mod-R ⊂ Mod-Q, one can
consider also the restriction of TorQ

∗ (−, R) to Mod-(R) (see Proposition A4 below).

PROPOSITION A4. For any square ring Q and for any R-R-bimodule B, one has the
following spectral sequence

E2
pq = Extp

F

(
TorQ

q (−, R), F
)

=⇒ HMLp+q
(Q; B),

where R = Qad, F(−) = (−) ⊗R B.

Proof. Proposition follows immediately from the spectral sequence (8·2·2) and lemma
8·3·1 of [29].

A·2. Computation of TorQ

In this section we give a computation of Tor-groups involved in Proposition A4. It is based
on Lemma A·5 below, which is the specialization of the exact sequence (4·1) of [10]. Let us
recall that Eilenberg and Mac Lane [13] defined the quadratic functor

�: Ab −→ Ab

such that it commutes with filtered colimits,

�(A ⊕ B) = �(A) ⊕ �(B) ⊕ Tor(A, B)

and moreover

�(Z) = 0, �(Z/nZ) = Z/nZ.
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LEMMA A5 [10]. Let X∗ be a simplicial abelian group, which is degreewise free and has
homotopy groups πi = πi (X∗). Then one has

π0(
∧2 X∗) = ∧2(π0)

0 −→ π1 ⊗ π0 −→ π1(
∧2(X∗)) −→ �(

∧2π0) −→ 0

0 −→ π2 ⊗ π0 ⊕ �π1 −→ π2(
∧2(X∗)) −→ Tor(π1, π0) −→ 0.

Let us recall that if G is a free class two nilpotent group, then one has the following short
exact sequence

0 −→ ∧2(Gab) −→ G −→ Gab −→ 0,

where the first nontrivial map is induced by (x, y) 	→ −x − y + x + y. Assume now that
L is a monoid and Q = Znil[L] is the corresponding monoid square ring. As we already
mentioned a right Q-module is the same as a nilpotent group of class two together with an
action of L via group homomorphisms. It follows that if X is a free right Q-module, then
X is also free as a nilpotent group of class two. Furthermore, X ad in this case is simply Xab,
thus we have the following Lemma.

LEMMA A6. Let L be a monoid and let Q = Znil[L] be the monoid square ring. Then,
for any free right Q-module X, one has the following short exact sequence

0 −→ ∧2(X ad) −→ X −→ X ad −→ 0,

in the category of modules over the ring R = Qad = Z[L], where the first nontrivial map is
induced by (x, y) 	→ −x − y + x + y, and ∧2(X ad) is an R-module via the diagonal action
of L.

We would like to use these results in the following situation.

PROPOSITION A7. Let L be a monoid and let Q = Znil[L] be the monoid square ring.
Then, for any free right module M over the ring R = Qad, one has the following natural
isomorphisms

TorQ
0 (M, R)� M

TorQ
1 (M, R)� ∧2(M)

TorQ
2 (M, R)� M ⊗ ∧2(M)

TorQ
3 (M, R)� (M ⊗ M ⊗ ∧2(M)) ⊕ (�(

∧2(M))).

Proof. Let M be a free R-module. Let us take a free simplicial resolution Y∗ of M in the
category of Q-modules. Thanks to Lemma A6 one has an exact sequence

0 −→ ∧2 X∗ −→ Y∗ −→ X∗ −→ 0,

where X∗ = Y ad
∗ . Since πi Y∗ =0 for i > 0 and π0Y∗ = M we have π0 X∗ = M and

πi+1 X∗ =πi
∧2(X∗). Since M is a free abelian group, one can use Lemma A·5 to get

π1(X∗)� ∧2(M), π2(X∗) = M ⊗ ∧2(M)

π3(X∗)� ∧2(M) ⊗ M⊗2 ⊕ �(
∧2 M).

Comparing with definition of simplicial derived functors we obtain the expected result.
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A·3. Universal quadratic functors

Let A be an abelian group. We set

P(A) = I (A)/I 3(A),

where I (A) is the augmentation ideal of the group algebra of A. Let p: A → P(A) be the
map given by p(a) = (a − 1)(modI 3(A)). Then p is a quadratic map, meaning that the
cross-effect

(a | b)p := p(a + b) − p(a) − p(b)

is linear in a and b. Actually p is a universal quadratic function p: A → P(A) (see [27]).
A quadratic map f : A → B of abelian groups is called homogeneous if f (−a) = f (a). It
is well known that for any abelian group A there exists a universal homogeneous quadratic
function γ : A → �(A). If A is a module over a monoid ring R = Z[L], then P(A), �(A),
A ⊗ A are also R-modules, where the action of x ∈ L is given by

p(a)x = p(ax), (γ (a))x = γ (ax), (a ⊗ b)x = ax ⊗ bx .

LEMMA A8. If F ∈ F is an additive functor, then

HomF(� ◦ ∧2, F) = 0 = HomF(
∧2, F).

Proof. Let us recall that if T ∈ F is a functor with T (0) = 0, then the second cross-effect
of T fits in the decomposition

T (A ⊕ B)� T (A) ⊕ T (B) ⊕ T (A | B).

Putting B = A and using the codiagonal morphism (Id, Id): A⊕ A → A one obtains a natural
transformation ηA: T (A | A) → T (A). It is clear that any natural transformation from T to
an additive functor factors through Coker(η). We first take T = �(

∧2). Since the second
cross-effect of � ◦ ∧2 contains as a direct summand the term �(A ⊗ B) and for A = B it
maps via η surjectively to �(

∧2 A), we conclude that there is no nontrivial map from � ◦ ∧2

to any additive functor. Similarly for HomF(
∧2, F).

LEMMA A9. Let L be a free monoid and let R = Z[L] be the corresponding monoid
ring. Then

Extp
F(P, F) = 0

provided F is additive and 2 � p � 4.

Proof. Since R = Z[L] is torsion free as an abelian group and F is an additive functor the
main result of [27] shows that one has an isomorphism

Extp
F(P, F)�Extp

Q(P, F),

provided p � 4. Here Q is the abelian category of quadratic functors from mod-R to Mod-R.
For the functor P ⊗ R, which is given by X 	→ P(X) ⊗ R, one has an isomorphism (see
[27])

HomQ(P ⊗ R, T )� T (R), T ∈ Q.

It follows that P ⊗ R is a projective object in Q. Thus one can use the bar-resolution

0 ←− P ←− P ⊗ R ←− P ⊗ R ⊗ R ←− · · ·
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to get a projective resolution of P in the category Q. In particular one has an isomorphism

Ext∗Q(P, F)�H∗
(R; F(R))

and the result follows from the fact that the Hochschild cohomology vanishes for free rings
in dimensions � 2.

A·4. Proof of Theorem A1

We put F = (−) ⊗R B ∈ F. Thanks to Proposition A4 one has the following spectral
sequence

E2
pq = Extp

F

(
TorQ

q (−, R), F
)

=⇒ HMLp+q
(Q; B).

By Proposition A7 restriction of the functor TorQ
∗ (−, R) to the category mod-R is given by

TorQ
0 (−, R) = Id,

TorQ
1 (−, R) = ∧2,

TorQ
2 (−, R) = Id ⊗∧2,

TorQ
3 (−, R) = (

∧2 ⊗ Id⊗2
) ⊕ (� ◦ ∧2).

Since F is additive, Lemma A3 shows that

E p0
2 = Extp

F(Id, F),

E p1
2 = Extp

F(
∧2, F),

E p2
2 = 0,

E p3
2 = Extp

F(� ◦ ∧2, F).

We also have

E03
2 = 0 = E01

2

thanks to Lemma A8. Moreover E20
2 = 0 by Lemma A2. Thus it suffices to show that the

following differentials of the spectral sequence

d2 : E11
2 = Ext1

F(
∧2, F) −→ E30

2 = Ext3
F(Id, F)

and

d2 : E12
2 = Ext2

F(
∧2, F) −→ E40

2 = Ext4
F(Id, F)

are isomorphisms. Let us observe that in general the differential

d2: Extp
F(

∧2, F) −→ Extp+2
F (Id, F)

is given by the cup product with e ∈ Ext2
F(Id,

∧2) corresponding to the extension

0 ←− Id ←− P2 ←− Id⊗2 ←− ∧2 ←− 0.

We have e = e1 � e2, where e1 corresponds to the extension

0 −→ ∧2 −→ Id2 −→ S2 −→ 0,

while e2 corresponds to the extension

0 −→ S2 −→ P −→ Id −→ 0,
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where S2 is the second symmetric power and the first nontrivial map is induced by the
assignment a ⊗ b 	→ (a | b)p, while the second map is given by p(a) 	→ a.

It follows from Lemma A3 that the cup product with e1 yields an isomorphism

Extp
F(

∧2, F) −→ Extp+1
F (S2, F), p � −1.

Similarly Lemma A9 shows that the map

Extp
F(S2, F) −→ Extp+1

F (Id, F)

induced by the cup product with e2 is an isomorphism if 2 � p � 3 and we are done.
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