
  American Mathematical Society is collaborating with JSTOR to digitize, preserve and extend access to Proceedings of the 
American Mathematical Society.

http://www.jstor.org

American Mathematical Society

Characteristic Classes and Transfer Relations in Cobordism 
Author(s): M. Bakuradze, M. Jibladze and V. V. Vershinin 
Source:  Proceedings of the American Mathematical Society, Vol. 131, No. 6 (Jun., 2003), pp. 1935

 -1942
Published by:  American Mathematical Society
Stable URL:  http://www.jstor.org/stable/1194374
Accessed: 20-10-2015 17:46 UTC

 REFERENCES
Linked references are available on JSTOR for this article: 

 http://www.jstor.org/stable/1194374?seq=1&cid=pdf-reference#references_tab_contents

You may need to log in to JSTOR to access the linked references.

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at http://www.jstor.org/page/
 info/about/policies/terms.jsp

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content 
in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. 
For more information about JSTOR, please contact support@jstor.org.

This content downloaded from 132.174.254.155 on Tue, 20 Oct 2015 17:46:42 UTC
All use subject to JSTOR Terms and Conditions

http://www.jstor.org
http://www.jstor.org/action/showPublisher?publisherCode=ams
http://www.jstor.org/stable/1194374
http://www.jstor.org/stable/1194374?seq=1&cid=pdf-reference#references_tab_contents
http://www.jstor.org/page/info/about/policies/terms.jsp
http://www.jstor.org/page/info/about/policies/terms.jsp
http://www.jstor.org/page/info/about/policies/terms.jsp


PROCEEDINGS OF THE 
AMERICAN MATHEMATICAL SOCIETY 
Volume 131, Number 6, Pages 1935-1942 
S 0002-9939(02)06728-X 
Article electronically published on October 1, 2002 

CHARACTERISTIC CLASSES 
AND TRANSFER RELATIONS IN COBORDISM 

M. BAKURADZE, M. JIBLADZE, AND V. V. VERSHININ 

(Communicated by Paul Goerss) 

ABSTRACT. Decompositions of products of the Ray elements by free genera- 
tors of small dimensions in the symplectic cobordism ring are obtained. In 
particular it is stated that most of the 4n-dimensional generators, for n small, 
after multiplication by the Ray elements Oi, i ? 0, land in the ideal generated 
by Ray elements of low dimension. 

1. INTRODUCTION 

Immediately after its first appearance in the papers of J. Milnor [12] and S. P. No- 
vikov [14], the symplectic cobordism attracted attention of many homotopy theo- 
rists. However, unlike the cobordism theories corresponding to other classical Lie 
groups - e.g. nonoriented (O(n)), oriented (SO(n)) and complex (U(n)) - the 
structure of its coefficient ring remains largely unknown. In the study of sym- 
plectic cobordism various methods have been applied: the classical Adams spectral 
sequence [14], the Adams-Novikov spectral sequence [18, 20], the Atiyah-Hirzebruch 
spectral sequence [16], the use of characteristic classes and generalizations of for- 
mal groups [15, 5], and cobordism with singularities [19]. In this paper we apply 
the transfer maps to the study of the symplectic cobordism ring. Transfers first 
appeared in group theory at the beginning of the twentieth century in the works of 
I. Schur, as natural maps from the abelianization of a group to abelianizations of 
its subgroups, and then were generalized to other homologies and cohomologies of 
groups (see, e.g. [4]). In the work of J. C. Becker and P. H. Gottlieb [2], transfer 
maps were constructed as morphisms in the stable category and since then have 
been widely used in homotopy theory. 

Since the work of S. P. Novikov [14] it is known that rationally the symplectic 
cobordism ring MSp. is isomorphic to the polynomial ring on an infinite number 
of generators which appear in dimensions 4n for all natural n. In the torsion part 
the key role is played by the family of elements qji E MSp8i-3 of order 2 defined by 
Nigel Ray [15]. 
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Most of the relations between the Ray elements Oi and free generators in the 
torsion part of the symplectic cobordism ring up to dimension 32 [18, 19] can be 
conventionally subdivided into three types: to the first type correspond relations 
which mainly follow from relations in the integral part coming from MSp4". In 
more detail, relations of the first type have form (x + y)qib = 0, and these relations 
follow from the fact that the sum of free generators x + y is divisible by 2, whereas 
the Ray elements are of order 2. Relations of the second type have form zqbi = 0 
where z is again a 4n-dimensional generator from the free part. The aim of the 
present paper is to elucidate origins of relations of the third type mentioned in the 
abstract above. 

Let ( denote the universal Sp(1)-bundle. Then 1 0(c (2 0(c (3 is a symplectic 
bundle over BSp(1) x BSp(1) x BSp(1). Also 1 0(c (22 and (1 OR (2 are symplectic 
bundles over BSp(1) x BSp(1). 

Section 2 is devoted to the calculation of transfers [1, 6, 2, 11]. In Section 3 we 
prove the following main result: 

Theorem 1.1. Let xi = P1 ((i)I i = 1,2, be the first Conner-Floyd symplectic 
Pontyagin class. Let qj, j ) 0, be the Ray elements, and let n be such that MSP4m 
is torsion free for m < 2n - 1. Then: 

a) the element qjpi(4(j 0c (22) is divisible by q00X1 + 1X2 + ... + 2[/] 

b) $jP1 (41 OR (2) = O 

in the ring MSp*(IHP(n)2) = MSp* xl, x2 /(xn+l). 

In Section 4 we will see that in terms of the coefficients aklm of the first Conner- 
Floyd symplectic Pontryagin class 

Pi((, 03 2 0 ) = Z aklmPk ((1)Pl ((2)Pi(3) 
C C 

~k+l+m)1l 

the structure of MSp4k, k < 4, can be interpreted as follows: 

k | _MSP4k | generators 

1 z aoll 
2 

_ 
+Z 

_ 
ao12, aiii 

3 Z_+Z__+Z_ ao22, aoiiaill, a211 

4Z_+_Z_+_Z_+_Z_ +Z ao14, aoiia211, a122, a111, 2y4 

Then Theorem 1.1 implies 

Corollary 1.2. For i > 0 one has: 

a) qbiaoo1 = qbiao12 = q0ja022 = qOiao14 = 0; 
b) 0jaill and Oia122 belong to the ideal boMSp*; 
c) Oia2l, belongs to the ideal boMSp* + 0b1MSp*. 

Relations of Corollary 1.2 imply that multiplication by the elements qji, i ) 0, 
carries most of the low-dimensional generators from the free part of MSp4n to the 
ideal generated by the elements 00 and qb1. 
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2. PRELIMINARIES AND CALCULATIONS WITH TRANSFER 

Let ( and A be, respectively, the universal U(1)-bundle and the universal Spin(3)- 
bundle. Thus the sphere bundle of A is 7r: BU(1) -- BSp(1), and one has 

(2.1) + 
(2.2) ir*(A) = Z2 + RI 

(2.3) ( =A+RI 
H 

where ( is the universal Sp(1)-bundle as above. Let N denote the normalizer of the 
torus U(1) in Sp(1). The classifying space BN coincides with the orbit space of the 
complex projective space CP(oo) under the free involution I, which acts via 

I: [zo, Zl, *--] | 4 [- l Z0 *-- 

in homogeneous coordinates. 
The bundle p: BN -- BSp(1) coincides with the projective bundle of A and one 

has the canonical splitting 

(2.4) p*(A) = [L + V, 
defined by projectivisation p, where ,u and v denote real plane and line bundles, 
respectively. Of course for the double covering q: BU(1) -? BN one has q* (/) = 42 
and q*(v) = R. 

Let r7, and rp be the transfer maps of the bundles 7r and p [2, 6, 11]. The next 
lemma follows from [7]. 

Lemma 2.1. 7r*Tr,* = 1 + I* and 7r*p* = q*. 

The next lemma follows from the definitions. 

Lemma 2.2. (41+4142)! = ( OR ,u, where '(-)! 'denotes the Atiyah transfer 
for the double covering 1BU(1) x q. 

Consider the map f: BN -) BZ/2 induced by the projection of N onto the 
Weyl group Z/2 and let rl*xq be the transfer homomorphism for the above double 
covering 1BU(1) X q. 

Lemma 2.3. For some elements ai E MSp (BZ/2) the following formula holds: 

T'xq(P1((l12 + 4i1T) = Pi(G4i + 6i) oi') + S f*(?ti)I4((4i + 42) = ?,). 

Proof. Taking into account Lemma 2.2 the proof follows from the following formula 
[17]: let q be the double covering q : X -? B, let T1 -) X be the symplectic line 
bundle, T7! - B the Atiyah transfer bundle, Tq the transfer map of the covering q 
and f: X BZ/2 the classifying map of the real line bundle associated with q. 
Then for some elements ai from MSp (BZ/2) the following formula holds: 

<(P1 (T)) = P1 (7!) + E f* (ai )Pi (!) 
i)o 

D 

Lemma 2.4. Let T be the transfer of the sphere bundle of a Spin(3)-bundle. Then 
Oj Imr* =0,]j 0. 
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Proof. Of course it suffices to prove this for the universal Spin(3)-bundle A, that 
is, qbjT,*(a) = 0 for all a E MSp*(BU(1)). 

Let 6J, be the Boardman map [3]. Then as it is known from [2], 

*(a) = J1r(ae(42)). 

Here e(42) is the Euler class of the bundle (2 which is the bundle of tangents along 
the fibers. Then from [13, 8], qbje(42) = 0. This proves Lemma 2.4. D 

Recall from [13, 8, 9] that the bundle A is MSp-orientable and the corresponding 
Euler class has the form 

(2.5) e(A) = qop ()) + E jp2j(j) 
j?1 

The restrictions of 7r and p to the symplectic projective space HP(n) will be 
denoted by the same symbols. Total spaces of these bundles coincide, respectively, 
with the complex projective space CP(2n+1) and with the orbit space CP(2n+1)/I 
under the free involution I which acts via 

[kO, Zli ...-, Z2ni Z2n+1] [-4 Zi, ZO7 -Z2n+l i Z2n] 

in homogeneous coordinates. 

Proposition 2.5. OjF, 1(Pi(r . = 0 for 7r x 1 = 7r x 1BSP(1): BU(1) x 
BSp(1) -? BSp(1)2, j ) 0, and i = 1, 2. 

Proof. In MSp* (BU(1) x BSp(1)) = MSp* (BU(1)) [pi( one has pi(rf0R ) = 

Zk)O U)l) Then it follows from Lemma 2.4 that 

kk?O k)kO 

3. PROOF OF THEOREM 1.1 

The bundle 7r x 1: CP(2n + 1) x HP(n) -- HP(n) x HP(n) coincides with the 
sphere bundle of the pullback of A -? HP(n) along the projection on the first factor 
HP(n) x HP(n) -? HP(n). So taking into account the formula (2.5) we have to 
prove that 

(7r X lHP(n)) (qijP1i(1 0 22)) = 0 

in MSp* (CP(2n + 1) x HP(n)). The transfer T* = Trl*x, of the bundle 1CP(2n+1) X XF 

is a composite of two transfers, namely 

= T1 (T2) 

where Tr is the transfer of the bundle 1CP(2n+l) x q and T2 is the transfer of 
1CP(2n+1) x p, where the bundles p, 7r and q are the bundles defined above; that is, 

1 x q: CP(2n + 1) x CP(2n + 1) -* CP(2n + 1) x CP(2n + 1)/I, 
1 x p: CP(2n + 1) x CP(2n + 1)/I -- CP(2n + 1) x HP(n). 

Using (2.2) one obtains (&i + or) 2c 2 = (4i + OR) 0R(A + IR), hence 

(3.1) Pi((6 + (2 + 1) 0 A) +pi(4i + C R 

This content downloaded from 132.174.254.155 on Tue, 20 Oct 2015 17:46:42 UTC
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


CHARACTERISTIC CLASSES AND TRANSFER RELATIONS 1939 

Applying Lemma 2.2 and Lemma 2.3 one obtains 

rl(Pi (6162 + 4142 )) =pi ((6, + [L) )+ (tP(( +4 ) R 
0R 

Then by (2.4) 

Pi(G4i ?4)?Si) = (1 x p)*p1((i1 + 1)A) -P1((41 ?+ 0)v), 
R RR 

hence 

T*(P1(4142 + 4id)) 

= 2(Pi ( (61+4 )H 
+ 1 f *((P((+i) ((6 + 0 u)))) 

i)O 

+( X2 AE * (?iPi2 ((4l + 41 ) A)) -,2*(p 

i)O (3-2) ~~~ R1 (R4 1)S 2 2(1((1+( )v 

+2(E f * (ol0Ap((6 + W1 0 I)) 
R R 

i)O 

Now we have to prove that r2* (1) = 1, the second summand in (3.2) coincides 
with x1 = P1 (6i + 4,), and the third summand is zero. 

Note that the bundle (6+6) OR v is the pullback of the bundle T 0 --* BSp(1) x 
BZ/2 along the map (7r, f ). Thus P1 ( 0 TI) is an element from MSp* (BZ/2) [pi (41D 
hence 

Pi ( n r) =pi + E piil (0 
io 

for some elements /i E MSp (BZ/2). This implies 

Pi ((61 + V1 )v)pi P(61 + W1 + E f * (0)Pil (6 + W1) 
R i)O 

Similarly the bundle (4j + (1) OR ,u is the pullback of the bundle T r(2) 
BSp(1) x BO(2), where rj(2) BO(2) is the universal 0(2)-bundle. Hence 

P2 ( (6 + p1)S ) E MSp* (BN) [iP 4 + ) 
R 

and for the third summand of (3.2) one has 

Zf*(i)P%0((6 +?6)0IL) = yiPi ( +41) 
i O R i),O 

for some -~j E MSp (BN). 
So using (3.1) one has 

n 

*(P,(41,2 + ? )) =pl(((1 ? 1)? 2)T2* (1) - x(T'(1) + 1) ?ZT 'G(i)xl 
i=O 

for some Ji E MSp (*P(2n + 1)/I). 
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It is known from [18, 19] that up to dimension 32, MSp4, is torsion free. Moti- 
vated by this fact let us assume that MSP4m is torsion free when m < 2n - 1. Then 
it follows that MSp4k (HP(n)) is torsion free when k ) 1 - n. Then since the mini- 
mal dimension of the elements Ji from (3.3) is 4-4n, it follows from Lemma 2.1 that 
the third summand of (3.3) restricts to zero in MSp*(HP(n)). Also T*(p)(1) = 1 
and r*(7r)(1) = 2. 

Thus one obtains from (3.3) and then Lemma 2.4 

i0jP1((4, + (i) (22) = O7$jT*(p1(414 + (-4-2)) = 0. 

This proves Theorem 1.la). 
For the proof of b) note that it follows from Lemma 2.1 that for the bundle 7r x 1 

= XF x 1HP(n)) one has 

(7r x l)*T7,*X 1 (P1 (r61 0(2)) = (1 + I)* (P1 (( + (i) 0 2)) 
R C 

= 2p (((l + ?1) 2) = (w X 1)*P1 (((l 0 (2))- 
C R 

Then by (2.5) any element from ker(1 x 7r)* is divisible by e(A). On the other hand 
by hypothesis MSp4k (HP(n)) is torsion free for k > 1-rn. Hence one concludes that 
restriction of the homomorphism (7r x 1)* to MSp*(IHP(n)2) is a monomorphism, 
thus in MSp4(IHP(n)2) one has 

Pi((1 0 (2) = T*X 1 (P1 (r1 ? (2))- 

Now since Proposition 2.5 says that the right-hand side is zero after multiplication 
by qOj, this completes the proof of Theorem 1.1. 

4. PROOF OF COROLLARY 1.2 

Let h: 7r*(MSp) -? H*(MSp) = ZE[ql,q2,...] be the Hurevicz homomorphism. 
Since 7r4n(MSP) is torsion free for small n (see [16, 18, 19]), the Hurevicz homo- 
morphism is a monomorphism in these dimensions. So in low dimensions 4n the 
Hurevicz homomorhism determines all relations. Our aim here is to express the 
coefficients aklm from the Introduction through the generators x-es. 

Values of the Hurevicz homomorphism on these akim are calculated in [10]. In 
low dimensions one has 

h(aloo) = h(aolo) = h(aool) = 4, 
h(a2OO) = h(ao2O) = h(aOO2) = O0 

h(allo) = h(alol) = h(aoii) = 24qi, 

h(aill) = 360q2, 

h(a210) = ... = h(ao12) = 60q2 -24q, 

h(a3OO) = ... = h(aOO3) = 0, 

h(a220) = ... = h(ao22) = 280q3 - 120qq2 + 24ql, 

h(a310) = ... = h(aol3) = 112q3 - 96qlq2 + 48ql, 

h(a211) = ... = h(a112) = 1680q3 - 360qlq2, 

h(a122) = ... = h(a122) = 75600q4 - 3360qlq3 + 360q 2q2, 

h(a410) = *-- = h(a140) = 180q4 - 360qlq3 + 420q 2q2 - 120q2 - 120q . 

This content downloaded from 132.174.254.155 on Tue, 20 Oct 2015 17:46:42 UTC
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


CHARACTERISTIC CLASSES AND TRANSFER RELATIONS 1941 

Further, the Hurevicz images of generators of MSp are calculated in [16]. Namely, 
h(MSp4k) C H4k(MSp) has the following generators: 

k = 1: 24qj, 
k = 2: 2Oq2-8q2, 144q2, 

k = 3: 56q3 - 72qlq2 + 24q3, 120qlq2 - 48q3, 3456q3, 

k = 4: 12q4 - 24qq3 - 8q2 + 28qlq2 - 8ql, 5Oq2 + 168qiq3-256qlq2 + 8Oq1, 

1OOq2 - 8Oq2q2 + 16q , 288Oq2q2 - 1152q4, 20736q4. 

Thus one concludes that the elements aoll,alll,ao22,al22,al2,a12o,al4o are 
generators as in the Introduction. 

Remark 1. In terms of 2xi, the generators of MSp4n from [16], one has modulo 
2MSp*: 2x1 = ao1l, 2x2 = ao12, 2x3 = ao22, X4 = a014, X2 = a1ll, etc. 

Remark 2. Alternatively, images of the elements aijk in complex cobordism MU* 
can be calculated in terms of two-valued formal groups: 

W* (P1 ((1 (9 (2 (9 (3)) = (1 (X1, Y+) + (1 (X1 i Y ), 
C C 

where Y+ +Y- = e1(x2,x3), Y+Y- = e2(x2,x3); e1 and e2 are the coefficients 
of the two-valued formal group [5] and p* is the obvious map from the symplectic 
cobordism theory to the complex cobordism theory. 

Let us now consider Corollary 1.2. From Theorem .la), in MSp* (HP(4) xHP(4) 
one has a relation of the form 

Obj(aolix2 + allixix 2 + aO22X 2 + a211X2X2 + a122X1X4 + .--) 

- (0X1 + j Oix2i )b(x1, X2) 
1 1~ 

for some element b(xi, X2) E MSp*(IHP(n)2). Then by the equality of the coeffi- 
cients at the monomials xlx2, x2 and xx42 one obtains assertions b) and c) of 
Corollary 1.2. 

Similarly from Proposition 2.5 one has 
2 2 2 2 4 

q$j(ajjox2 + a120x1x2 + a220x1x2 + a140x1X2 + ...) = 0, 
and hence assertion a) of Corollary 1.2 is valid. 

Proposition 4.1. In dimension 32 there is an element y4 such that 2y4 does not 
belong to the ideal generated by b0 and 01. Moreover 02iY 2 does not belong to the 
ideal generated by b0, 01, , 02i-, i i 1. 

Proof. It follows from the calculations of the symplectic cobordism ring made in 
[18, 19]. 0 
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