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Abstract. We show that each category enriched in Abelian groupoids is a linear track extension and
hence is determined up to weak equivalence by a characteristic chomology class. We also discuss
compatibility with coproducts.
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Call a groupoid Abelian if all of its objects have Abelian automorphism groups.
We show that any category T enriched in Abelian groupoids is linear in the sense
that there is a canonical linear track extension

D
�� �� T1

���� T0
�� T�

as defined by Baues and Dreckmann [GL]. Here T� is the homotopy category of
T and D is the natural system associated with T . If T is small, this implies that
up to weak equivalence T is determined by a cohomology class 〈T 〉 ∈ H 3(T�;D)

called the universal Toda bracket of T . Conversely, given any natural system D on
a small category C and a cohomology class τ ∈ H 3(C;D), there is a unique weak
equivalence class of a category T enriched in Abelian groupoids such that τ =
〈T 〉. This yields a classification of small categories enriched in Abelian groupoids.
Important examples of Abelian track categories arise in the context of secondary
cohomology operations. (Compare the book [B].)

1. Categories Enriched in Groupoids

Recall that a groupoid is a small category all of whose morphisms are invertible.
We will use additive notation for groupoids; thus, the identity morphism of an
object x of a groupoid G will be denoted 0x , and for α : x → y, β : y → z their
composite will be denoted β + α : x → z. For a groupoid G, the set of its objects
will be denoted by G0 and the set of morphisms by G1. We have the canonical
source and target maps G1

���� G0 . A groupoid is termed an Abelian groupoid
if the automorphism group of each object is an Abelian group.

EXAMPLE 1.1. Given a topological space X one obtains the fundamental group-
oid �(X). Its objects are the points of X and morphisms x0 → x1 with x0, x1 ∈ X
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are homotopy classes rel. ∂I of paths ω : I → X with ω(0) = x0 and ω(1) =
x1. Here I = [0, 1] is the unit interval with boundary ∂I ={0, 1}. Composition in
�(X) is given by addition of paths. It is well known that �(X) is an Abelian
groupoid if X is a topological group or more generally if each path component of
X has the homotopy type of an H-space.

A category enriched in groupoids T , also termed track category for short, is the
same as a 2-category all of whose 2-cells are invertible. It is thus a class of objects
Ob(T ), a collection of groupoids T (A,B) for A,B ∈ ObT called hom-groupoids
of T , identities 1A ∈ T (A,A)0 and composition functors T (B,C)× T (A,B)→
T (A,C) satisfying the usual equations of associativity and identity morphisms.
For generalities on enriched categories the reader may consult Kelly [EC]. Obvi-
ously T enriched in Abelian groupoids means that all hom-groupoids T (A,B) for
A,B ∈ Ob(T ) are Abelian; in this case we say that T is an Abelian track category.
Objects of the hom-groupoids f ∈ T (A,B)0, called maps in T , constitute morph-
isms of an ordinary category T0 having the same objects as T . For f, g ∈ T (A,B)

we shall write f � g (and say f is homotopic to g) if there exists a morphism
α : f → g in T (A,B). Occasionally this will be also denoted as α : f � g or
α : f ⇒ g, α sometimes called a homotopy or a track from f to g. Homotopy is
a natural equivalence relation on morphisms of T0 and determines the homotopy
category T� = T0/ �. Objects of T� are once again objects in Ob(T ), while
morphisms of T� are homotopy classes of morphisms in T0. Let q : T0 → T� be
the quotient functor. Moreover, let Mor(T1) be the disjoint union of all tracks in T .
One then has the source and target functions between sets

Mor(T1)
s ��
t

�� Mor(T0)

with qs = qt . Here Mor(T0) denotes the set of morphisms in the category T0. The
functions s and t are actually induced by functors s, t : T1→ T0. Here the category
T1 has the same objects as T0 and the functors s, t are the identity on objects.
The morphisms A → B in T1 are triples (f, f1, ϕ) where f, f1 : A → B are
morphisms in T0 and ϕ : f ⇒ f1 is a track. Identity of A ∈ Ob(T1) is (1A, 1A, 01A),
and composition in T1 is the ∗-composition defined by (f, f1, ϕ) ∗ (g, g1, ψ) =
(fg, f1g1, ϕ ∗ ψ), where

ϕ ∗ ψ = ϕg1 + fψ = f1ψ + ϕg. (1.2)

Of course, we have s(f, f1, ϕ) = f and t (f, f1, ϕ) = f1.
Motivated by Example (1.3) below we borrow from topology the following

notation in a track category T . Let [A,B] = T (A,B)/ � be the set of homo-
topy classes of maps A→B and let [[A,B]] = T (A,B) be the hom-groupoid of
T so that [A,B] is the set of path components of the groupoid [[A,B]]. A map
f : A→ B is a homotopy equivalence if there exists a map g : B → A and tracks
fg � 1 and gf � 1. This is the case if and only if the homotopy class of f is
an isomorphism in the homotopy category T�. In this case, A and B are called
homotopy equivalent objects.
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It is easy to see that f : A→ B is a homotopy equivalence if and only if for all
objects X the functor f∗ : [[X,A]] −→ [[X,B]] is an equivalence of categories.

Remark. The morphisms in T0 are also termed 1-cells and the tracks in T1 are 2-
cells. In particular, the category Gpd of groupoids is a track category. Objects are
groupoids, morphisms are functors and tracks are natural transformations (since
they are natural isomorphisms). Moreover, any category C can be considered to be
a track category with only identity tracks.

EXAMPLE 1.3. The leading example is the track category Top∗ of compactly
generated Hausdorff spaces with basepoint ∗, given as follows. For pointed spaces
A, B let Top∗(A,B) be the fundamental groupoid of the function space BA of
pointed maps A → B with the compactly generated compact-open topology. See
8.14 of Gray [HT]. Hence maps are pointed maps f, g : A → B between pointed
spaces and tracks α : f ⇒ g are homotopy classes relative to A×∂I of homotopies
H : A × I/ ∗ ×I → B with H : f � g. In this case Top∗� is the usual homotopy
category of pointed spaces. Let X be a class of pointed spaces. Then Top∗(X ) is the
track category consisting of all spaces A with A ∈ X which is a full subcategory
of Top∗.

An H -group G is a topological space with a homotopy associative multiplica-
tion, a homotopy identity ∗ ∈ G, and a homotopy inverse in Top∗. The dual of an
H -group is a co-H -group. For example the suspension �X, resp. the loop space
�X, of a pointed space X is a co-H -group, resp. an H -group. The next result
yields many interesting examples of categories enriched in Abelian groupoids. For
example we can choose X to be the set of one point unions of spheres Sn, n� 1, or
the set of products of Eilenberg–Mac Lane spaces.

PROPOSITION 1.4. Let X be a class of H -groups or let X be a class of co-H -
groups. Then Top∗(X ) is an Abelian track category.

Proof. It is well known that the function space BA is an H -group if B is
an H -group or A is a co-H -group. Hence, the fundamental groupoid of BA is
Abelian.

DEFINITIONS 1.5. A track functor, or else 2-functor F : T → T ′ between track
categories is a groupoid enriched functor. Thus F assigns to each A ∈ Ob(T ) an
object F(A) ∈ Ob(T ′), to each map f : A → B in T – a map F(f ) : F(A) →
F(B), and to each track α : f ⇒ g for f, g : A→ B, a track F(α) : F(f )⇒ F(g)

in a functorial way, i.e. so that one gets functors FA,B : [[A,B]]→ [[F(A), F (B)]].
Moreover, these assignments are compatible with identities and composition, or
equivalently induce a functor T1 → T ′1, that is, F(1A) = 1F(A) for A ∈ Ob(T ),
F(fg) = F(f )F (g), and F(ϕ ∗ψ) = F(ϕ) ∗ F(ψ) for any ϕ : f ⇒ f1, ψ : g ⇒
g1, f, f1 : B → C, g, g1 : A→ B in T . It is evident from (1.2) that in presence of
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functoriality of the FA,B above, the latter condition is equivalent to requiring just
F(fψ) = F(f )F (ψ) and F(ϕg) = F(ϕ)F (g).

A track functor F : T → T ′ is called a weak equivalence between track cat-
egories if the functors [[A,B]] → [[F(A), F (B)]] are equivalences of groupoids
for all objects A, B of T and each object A′ of T ′ is homotopy equivalent to some
object of the form F(A). Such a weak equivalence induces a functor F : T� → T ′�
between homotopy categories which is an equivalence of categories.

A 2-transformation # : F ⇒ G between track functors F,G : T → T ′ is a
morphism of groupoid-enriched functors. So it is given by a collection of maps
#A : F(A)→ G(A) such that the resulting diagram in Gpd

[[F(A), F (B)]]

[[F(A),#B ]]
��

[[G(A), F (B)]]
[[#A,F (B)]]��

[[G(A),#B ]]
��

[[F(A),G(B)]] [[G(A),G(B)]]
[[#A,G(B)]]��

commutes.
For two 2-transformations #,$ : F ⇒ G between track functors F,G : T →

T ′, a 2-track H from # to $ is given by a collection of tracks HA : #A ⇒ $A

such that for any f, f1 : A → B in T and any ϕ : f ⇒ f1 one has HB ∗ F(ϕ) =
G(ϕ) ∗HA.

For any track categories T , T ′ track functors T → T ′, 2-transformations and
2-tracks between them form a track category which we denote T ′T .

These definitions are all particular cases of standard 2-categorical machinery,
see, e.g., [FC].

EXAMPLE 1.6. Any object A of a track category T gives rise to the representable
track functor [[A,−]] : T → Gpd sending an object X to the groupoid [[A,X]].
This 2-functor assigns to a map f : X → Y the functor [[A, f ]] : [[A,X]] →
[[A, Y ]] sending g : A→ X to fg and γ : g ⇒ g′ to γf . And this 2-functor assigns
to a track ϕ : f ⇒ f ′ the natural transformation [[A, ϕ]] : [[A, f ]]→ [[A, f ′]] with
components ϕg : fg ⇒ fg′.

Any map f : A → B induces a 2-transformation [[f,−]] : [[B,−]] ⇒ [[A,−]],
with components the functors [[f,−]]X = [[f,X]] : [[B,X]] → [[A,X]]; and any
track ϕ : f ⇒ f1 induces a 2-track [[ϕ,−]] from [[f,−]] to [[f1,−]], with com-
ponents the natural transformations [[ϕ,−]]X = [[ϕ,X]] : [[f,X]]→ [[f1, X]] with
components [[ϕ,X]]g = gϕ : gf → gf1 for g : B → X.

The standard ‘Yoneda’ argument then gives

LEMMA 1.7. For any objects A, B in a track category T the assignments as in
(1.6) above determine a (contravariant) track functor T op → Gpd

T , where T op is
the opposite track category of T , defined in an obvious way. Moreover, this track
functor has the property that the induced functors

[[A,B]]→ Gpd
T ([[B,−]], [[A,−]])
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are equivalences of groupoids. In particular, a map f : A → B is a homotopy
equivalence iff for any X ∈ Ob(T ) the functor [[f,X]] : [[B,X]] → [[A,X]] is an
equivalence in Gpd.

Proof. Most of this being standard, let us just sketch how to obtain an inverse
homotopy equivalence g : B → A for f : A→ B, given that [[f,X]] is an equival-
ence for any X. For that, just take X = A. Then since [[f,A]] : [[B,A]]→ [[A,A]]
is an equivalence, there is an object g of [[B,A]] whose image under [[f,A]] is
isomorphic to 1A, i.e. there is a track α : 1A � gf . But [[f,B]] : [[B,B]]→ [[A,B]]
is an equivalence too, so it induces a bijection between the set of tracks from 1B
to fg and the set of tracks from 1Bf to (fg)f . The latter set is nonempty as it
contains f α : f → fgf , hence there must be a track 1B � fg.

2. Linearity

We recall from [GL] the notion of a linear track extension and we show that any
category enriched in Abelian groupoids has canonically a structure of such an
extension.

DEFINITION 2.1. Let C be a category. Then the category FC of factorizations
in C is defined as follows. Objects of FC are morphisms f : A → B in C and
morphisms (α, β) : f → g in FC are commutative diagrams

B
α �� B ′

A

f

��

A′
β

��

g

��

in the category C. A natural system on C with values in a category G is a functor
D : FC → G. We write D(f ) = Df ∈ G and D(α, β) = α∗β∗. In the situation

f
��

g
��

h
�� the induced homomorphisms f∗ and h∗ will be denoted by

f∗ : Dg → Dfg, ξ �→ f ξ = f∗(ξ),

h∗ : Dg → Dgh, ξ �→ ξh = h∗(ξ).

A morphism of natural systems is just a natural transformation. For a functor
q : C′ → C, any natural system D on C gives a natural system D ◦ (Fq) on C′
which we will denote Dq .

EXAMPLE 2.2. For a track category T and for a map f : A → B in T denote
by Aut(f ) = hom(f, f ) the automorphism group of f in the groupoid [[A,B]] =
T (A,B). Then composition in T yields for

f�� g�� h�� in T0 the homo-
morphisms

h∗ : Aut(g)→ Aut(gh), ξ �→ ξh,
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f∗ : Aut(g)→ Aut(fg), ξ �→ f ξ.

Evidently this defines a natural system AutT on the category T0 with values in the
category of groups.

Note that moreover any track η : f ⇒ f1 induces a group homomorphism
(−)η : Aut(f1)→ Aut(f ) which carries α ∈ Aut(f1) to αη = −η + α + η.

DEFINITION 2.3. For a natural system D on a category C with values in Abelian
groups, a linear track extension of C by D denoted by

D
�� σ �� T1

���� T0
q �� C

is a track category T equipped with a functor q : T0 → C and an isomorphism
σ : Dq → AutT of natural systems on T0.

Thus such a linear extension consists of a collection of isomorphisms of groups
σf : Dq(f ) → Aut(f ) for each map f : A → B in T0, which have the following
properties.

(1) The functor q is full and the identity on objects, i.e. Ob(T ) = Ob(C). In
addition for f, g : A → B in T0 we have q(f ) = q(g) if and only if f � g.
In other words the functor q identifies C with T�. We also write q(f ) = [f ].
Hence, for any ϕ : f ⇒ g we have [f ] = [g].

(2) For ϕ : f ⇒ g and ξ ∈ D[f ] = D[g] we have σf (ξ) = σg(ξ)
ϕ.

(3) For any three maps like
f�� g�� h�� in T0 and any ξ ∈ D[g] one has

f σg(ξ) = σfg([f ]ξ), σg(ξ)h = σgh(ξ [h]).

We say that a track category is linear if it occurs as a linear track extension –
of its own homotopy category, necessarily – by some natural system D. Clearly
a linear track category has Abelian hom-groupoids by the definition above. The
following result shows that also the converse is true.

THEOREM 2.4. Any Abelian track category T is linear.
Proof. Given T we define the natural system D on T� as follows. Let f : A→ B

be a morphism in T� so that f is a homotopy class of morphisms in T0. We define Df

to be the Abelian group generated by elements [α] for α : f � f an automorphism
of any 1-arrow f in the class f, i.e. f ∈ f or f = [f ]. Defining relations of the
group Df are

[α]+ [β] = [α + β] for α, β : f ⇒ f and

[ϕ + ψ] = [ψ + ϕ] for any ϕ : f ⇒ f ′, ψ : f ′ ⇒ f

with f, f ′ ∈ f. Note that since all 2-arrows are isomorphisms, this second relation
is equivalent to

[αϕ] = [α] (*)
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for any α : f ⇒ f , ϕ : f ′ ⇒ f (indeed [αϕ] = [(−ϕ+ α)+ϕ] = [ϕ+ (−ϕ+α)]
by definition).

Define τf : Aut(f ) → D[f ] by α �→ [α]. Using (*) one easily sees that this
map is onto. By the same reason, all relations in D[f ] are consequences of re-
lations involving only elements [α] for α : f � f ; and these relations are as
follows:

[(ϕ + ψ)χ1] = [(ψ + ϕ)χ2]

for any χ1 : f ⇒ f1, ϕ : f2→ f1, ψ : f1 → f2, χ2 : f → f2; and

[(α + β)χ ] = [αχ ′]+ [βχ ′′ ]

for any χ, χ ′, χ ′′ : f ′ ⇒ f and any α, β : f ⇒ f . Now the first of these relations
can be rewritten as

[(−χ1 + ϕ + χ2)+ (−χ2 + ψ + χ1)]

= [(−χ2 + ψ + χ1)+ (−χ1 + ϕ + χ2)]

and the second as

[αχ + βχ ] = [−(−χ + χ ′)+ (−χ + α + χ)+ (−χ + χ ′)]+
+ [−(−χ + χ ′′)+ (−χ + β + χ)+ (−χ + χ ′′)].

And both of these hold in Aut(f ) since it is Abelian. One thus concludes that the τf
are also one-to one, hence are isomorphisms. Let σf = τ−1

f . Then the collection of
σf satisfies condition (2) for linear track extensions iff the τf satisfy τf (α) = τg(β)

whenever β = αϕ, for α : f � f , β : g � g, ϕ : g ⇒ f . In other words, one must
have [αϕ] = [α], which is (*).

One now defines actions of the natural system by [f ][α] = [f α], [α][h] = [αh]

for any
f�� g�� h�� and α : g ⇒ g. Here the right-hand-side does not depend

on the choice of f since for any ϕ : f ′ ⇒ f one has ϕg + f ′α = f α + ϕg, i.e.
f ′α = (f α)ϕg , hence [f α] = [f ′α] in D[fg]. And it also does not depend on the
choice of α since f (ϕ+ψ) = f ϕ+fψ for any ϕ : g′ ⇒ g, ψ : g ⇒ g′′. Similarly
for the right actions. Then one immediately has

[f ]τg(α) = τfg(f α), τg(α)[h]

= τgh(αh) for
f

��
g

��
h

�� , α : g � g,

which is clearly equivalent to condition (3) for the σ ’s.

3. Classification

For each linear track extension T a certain characteristic cohomology class 〈T 〉
is defined which via Theorem (2.4) and the result in [GL] leads to a classification
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of categories enriched in Abelian groupoids. We recall from [GL] the definition
of 〈T 〉 as follows. We assume that all categories used in this section are actually
small. We use the cohomology of a category C = T� with coefficients in a natural
system as defined in [CC].

DEFINITION 3.1. For a linear track category T , its universal Toda bracket 〈T 〉 is
the element of H 3(T�;D) represented by the following cocycle: choose, for each
morphism f in T�, a representative 1-arrow of T denoted s(f) ∈ f. Furthermore,
choose a track µ(f, g) : s(f)s(g) ⇒ s(fg). Then for each composable triple f, g, h
the composite track in the diagram

• •
s(f)

�� •s(g)����

s(fg)
�� ��
��−µ(f,g) •s(h)��

s(gh)

�� �� ��
�� µ(g,h)

s(fgh)

��

�� ��
�� −µ(fg,h)

s(fgh)

		

�� ��
��µ(f,gh)

determines an element in Aut(s(fgh)) and, hence, going back via σ , an element
c(f, g,h) ∈ Dfgh. It can be checked that this determines a 3-cocycle of T� with
coefficients in D, and that both choosing a different section s or another track
category which is weakly equivalent to T leads to a cohomologous cocycle. One
thus obtains a uniquely determined cohomology class 〈T 〉 ∈ H 3(T�;D).

DEFINITION 3.2. A classifying triple is a triple (C,D, τ) where C is a category,
D is a natural system on C and τ is a cohomology class τ ∈ H 3(C;D). Two
such triples (C,D, τ) and (C′,D′, τ ′) are equivalent if there exists an equiva-
lence of categories F : C′ → C and a natural isomorphism I : D′ ∼= F ∗D such
that F ∗τ = I∗τ ′. Compare [CC] for the definition of the induced maps I∗ and
F ∗ in cohomology. One readily checks that this is a well-defined equivalence
relation.

We say that a function is a one-to-one correspondence if the function is injective
and surjective.

CLASSIFICATION 3.3. There is a one-to-one correspondence between weak equi-
valence classes of Abelian track categories and equivalence classes of classifying
triples.

Proof. The one-to-one correspondence carries the weak equivalence class of
a track category T to the equivalence class of the triple (T�,D, 〈T 〉), where the
natural system is defined as in the proof of (2.4) and where 〈T 〉 is the universal
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Toda bracket (3.1) of the linear track extension given by the proof of (2.4). Now
we apply Theorem 4.6 from [GL] or VI.3.15 of [CH] to obtain the result.

For the classification above compare also [MC], [MH], [CA], and [BC].

4. Compatibility with Sums

Sums in a track category T can be understood either in the strong or in the weak
sense. In any case, the sum of objects A, B is the object A ∨ B equipped with the
maps iA : A→ A ∨ B, iB : B → A ∨ B such that the induced functor

[[A ∨ B,X]]→ [[A,X]]× [[B,X]] (4.1)

given by

f �→ (f iA, f iB), η �→ (ηiA, ηiB)

is an isomorphism of groupoids in the strong case, or an equivalence in the weak
case, for all objects X.

Evidently, a strong sum is a weak sum, too. Moreover, if iA : A → A ∨ B ←
B : iB is a sum in any sense and f : A ∨ B → S is an equivalence, then S with the
maps f iA, f iB can serve as a weak sum. Note however that it might be that strong
sums do not exist, whereas weak ones do.

Explicitly, the universal property of weak sums means that for any maps a : A→
X, b : B → X there is a map

(
a

b

)
: A ∨ B → X and tracks

(
a

b

)
iA � a,

(
a

b

)
iB � b.

Furthermore, these are unique in the sense that for any maps h, h′ : A ∨ B → X

and tracks α : hiA ⇒ h′iA, β : hiB ⇒ h′iB there is a unique track
(
α

β

)
: h⇒ h′ with

α = (
α

β

)
iA, β = (

α

β

)
iB . This uniqueness condition can be equivalently stated in two

parts:

(a) for any h, h′ : A ∨ B → X, if there are tracks hiA � h′iA and hiB � h′iB then
there is a track h � h′;

(b) for any h : A ∨ B → X, the group homomorphism Aut(h) → Aut(hiA) ×
Aut(hiB) given by α �→ (αiA, αiB) is an isomorphism.

Thus although for f : A→X, g : B → X, the map
(
f

g

)
: A ∨ B → X is not

uniquely defined, any two candidates are isomorphic – in particular they have iso-
morphic automorphism groups. We will assume that one such is chosen; as usual,
this implies functoriality of coproducts. So, for f : A → X, g : B → Y , the map(
f iX
giY

)
: A ∨ B → X ∨ Y will be denoted f ∨ g; and this also extends to group

homomorphisms Aut(f )× Aut(g)→ Aut(f ∨ g) similarly given by

(α, β) �→ α ∨ β =
(
αiX

βiY

)
.

Similarly, an initial object ∗ of T is strong if [[∗, X]] is a groupoid with a unique
morphism. Whereas a weak initial object is one for which [[∗, X]] is equivalent to
such a groupoid, i.e. for any maps f, f ′ : ∗ → X there is a unique track f � f ′.
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Remark 4.2. Sums as above are also termed coproducts in a track category T .
In a dual way one defines as usual products A × B in T in the strong sense and
the weak sense, respectively. Also a final object 1 in T in the strong (resp. weak)
sense is defined dually to the corresponding initial object above. The results below
formulated for coproducts in T have an obvious dualization for products in T .

DEFINITION 4.3. We say that a category T is a theory if T has an initial object
and finite sums, denoted by A ∨ B. Similarly we say that a track category T is
a track theory if weak sums exist in T . This is an Abelian track theory if T is
Abelian; i.e. if all hom-groupoids of T are Abelian.

One readily checks that the homotopy category T = T� of a track theory T is
a theory. We now want to classify track theories with Abelian hom-groupoids. For
this we recall the following notion; compare [SN] and [CT].

DEFINITION 4.4. A natural system D on a category T is said to be compatible
with sums if for any sum diagram ik : Xk → X1 ∨ . . . ∨Xn, k = 1, . . . , n, and any
morphism f : X1 ∨ . . . ∨Xn→ Y the homomorphism

Df
ξ �→(ξ i1,...,ξ in) �� Df i1 × · · · ×Dfin

is an isomorphism.

PROPOSITION 4.5. For any Abelian track theory T the associated natural system
D in (2.4) is compatible with sums.

Proof. Obviously the quotient functor T → T� preserves sums. Now given any
f : X1 ∨ . . . ∨Xn→ Y consider the diagram

D[f ]
ξ �→(ξ i1,...,ξ in) ��

σf∼=
��

D[f i1] × · · · ×D[f in]

σf i1×···×σf in∼=
��

Aut(f )
∼= �� Aut(f i1)× · · · × Aut(f in),

where the lower horizontal isomorphism is obtained from the equivalence of group-
oids

[[X1 ∨ . . . ∨Xn, Y ]]
([[i1,Y ]],...,[[in,Y ]]) �� [[X1, Y ]]× · · · × [[Xn, Y ]]. �

The converse of (4.5) also holds:

PROPOSITION 4.6. Let T be an Abelian track category and let D be the asso-
ciated natural system on the homotopy category T�. If T� is a theory and D is
compatible with sums then T is an Abelian track theory.

Proof. We can suppose given canonical sum diagrams ik : Xk → X1∨ . . .∨Xn,
k = 1, . . . , n, n� 0, for each finite family (X1, . . . , Xn) of objects of T�. Choose
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arbitrarily an 1-arrow i′k in T from each isomorphism class ik (it will also depend
on all of the i1, . . . , in in the family). Then for any such family and any other X,
the functors

[[X1 ∨ . . . ∨Xn,X]]
([[i′1,X]],...,[[i′n,X]])

�� [[X1, X]]× · · · × [[Xn,X]]

induce bijections on isomorphism classes of objects since T� is a theory; and
since the natural system D is compatible with sums, they also induce bijections
of automorphism groups of objects. Hence, they are equivalences.

DEFINITION 4.7. A weak theory-equivalence between track theories is a weak
equivalence between track categories which preserves weak sums; see (1.5). Ac-
cordingly a theory-equivalence between theories is an equivalence of categories
which preserves sums. Two classifying triples (T,D, τ) and (T′,D′, τ ′) for which
T and T′ are theories and D and D′ are compatible with sums are theory-equivalent
if there exist F and I as in (3.2) where F is a theory-equivalence and I is compat-
ible with sums.

Using (4.5) and (4.6) the classification in (3.3) yields the next result.

CLASSIFICATION 4.8. There is a one-to-one correspondence between weak
theory-equivalence classes of Abelian track theories and theory-equivalence classes
of classifying triples (T,D, τ) for which T is a theory and D is compatible with
sums.

Just as theories are used to describe various algebraic structures, track theories
determine structures in track categories that satisfy identities up to specified tracks.

DEFINITION 4.9. A model of a theory T in a category C is a contravariant func-
tor Top → C carrying sums to products. The category of all such functors and
their natural transformations is denoted T-mod(C), or, if C is the category of sets,
simply T-mod.

Similarly, for a track theory T a model of T in a track category C is a con-
travariant track functor from T to C which carries weak sums to weak products.
Such track functors, track transformations between them, and 2-tracks between the
transformations (see (1.5)) form a track category denoted T -mod(C), or just T -mod

when C = Gpd.

EXAMPLE 4.10. For any object X of a theory T, the representable functor
hom(−, X) from Top to the category of sets carries sums to products, by the very
definition of sums; hence, it is a model of T. It is a consequence of the Yoneda
lemma in category theory that in this way one can identify T with a full subcategory
of the category of its models. The models from this subcategory are called free.



310 HANS-JOACHIM BAUES AND MAMUKA JIBLADZE

Similarly, for any object X of a track theory T , the track functor [[−, X]] : T op

→ Gpd is a model of T , and such free models form a full track subcategory of
T -mod. There is an analog of the Yoneda lemma in enriched category theory (see
[EC]); in particular for categories enriched in groupoids it gives a weak equivalence
of T with the track category of free T -models.

Take, for example, the category of groups. Its smallest subcategory containing
the group of integers and closed under finite sums is a theory. Clearly, it is equiv-
alent to the category of free finitely generated groups. It is well known that the
category of models of this theory in any category C is equivalent to the category
of internal groups in C. Similarly for Abelian groups, and, in fact, any kind of
equational universal algebras.

For similar examples with track theories, we will need the corresponding
notions.

DEFINITIONS 4.11. A monoidal category G (see [EC]) – with operation written
as juxtaposition and the neutral object i – is termed a bigroup if it is a groupoid and,
moreover, for any object a of G there is an object x and a morphism i → ax in G.
A bigroup G is called braided if there are natural isomorphisms τ(a, b) : ab→ ba

for all objects a, b in G which fit into commutative diagrams

a1(ba2)
α(a1,b,a2)

�� (a1b)a2

τ (a1,b)a2



������������������

a1(a2b)

α(a1,a2,b)

�����������

a1τ (a2,b)

��������������������
(ba1)a2

(a1a2)b
τ(a1a2,b)

�� b(a1a2)

α(b,a1,a2)
���������

and

a(b1b2)
τ (a,b1b2) �� (b1b2)a

α(b1,b2,a)
−1 �������
�����

(ab1)b2

α(a,b1,b2)
−1

���������

τ (a,b1)b2 

������������������ b1(b2a),

(b1a)b2
α(b1,a,b2)

−1
�� b1(ab2)

b1τ (a,b2)

��������������������

where α(x, y, z) : x(yz) → (xy)z are the associativity isomorphisms included
in the monoidal structure of G. A braided bigroup is called symmetric if it is
symmetric as a monoidal category, that is, τ(a, b)−1 = τ(b, a) for any pair of
objects. Bigroups, monoidal functors between them, and natural isomorphisms
form a track category which we denote Big. It has track subcategories Sym ⊂ Br
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whose objects are symmetric, resp. braided bigroups, with morphisms those mon-
oidal functors which preserve the isomorphisms τ , and tracks – all isomorphisms
between such functors.
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