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EXTERIOR PROBLEMS WITH FRICTION IN THE
COUPLE-STRESS ELASTICITY

R. GACHECHILADZE

ABSTRACT. The exterior problem of statics with friction in the couple-
stress theory of elasticity for homogeneous isotropic media is consid-
ered. The question on the existence and uniqueness of weak solutions
of that problem is investigated, when the friction effect is taken into
account on the whole or on some part of the boundary.
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In this paper we consider the deformation of an elastic body on whose
whole or a part of the boundary are imposed the conditions of friction which
are described by Coulomb’s law. Such kind of problems of the classical
theory of elasticity in bounded regions have been studied mainly in [1]-[4],
while statical and dynamical problems in the couple-stress elasticity have
been investigated in [5]. In the present paper we first reduce equivalently the
exterior problem to the variational inequality at the boundary of an elastic
medium and then investigate the question on the existence and uniqueness
of a solution of that inequality.

Let Q C R3 be a bounded region with the boundary I'(T' € C*), O~ =
R3\ Q, v(x) be a unit vector of the exterior (with respect to Q) normal at
the point x € I'; suppose
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is the matrix differential operator of statics of the couple-stress elasticity,
where (see, for e.g., [5] and [6])
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and

NG(@D,v) © ND@D,v)
is the matrix differential operator of stress, where

0
NO@,v) = ING(0,0)llsxs, N (0,v) = aiunvs T

0
N @,0) = NG 0,0 laxa, N (0, v) = bisievi 5 - = assiezuea

0
N, v) = HM?(& V) ||3x3, /\/j(z)(a, V) = bikijvs o

N(4)(37 V) = HN'J(;) (8, V)||3><37 /\/j(:)(a, 1/) = CijlkVi a% - blrijz?lrkl/i,
€ijk is the Lewy-Civita symbol (here and throughout the paper, repetition
of the index denotes summation with respect to that index from 1 to 3).
U = (u,w), u = (u1, uz,us) is the displacement vector, w = (w1, ws,ws) is
the rotation vector, oU = N WMy + NPw is a force stress vector, ulU =
NG y+ Ny is a couple-stress vector; a, and ay denote, respectively, the
tangential and normal components of the vector a € R3.

Elastic constants a;ji, bijik, Cijix involved in the definition of the operator
M(9) satisfy the conditions

Qijik = Qlkijs  Cijlk = Clkij
and Joag > 0, V&'j, Nij € R:

@ijie&iiik + 2055168k + CijueMig e > 20§55 + M) (1)
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If
Qijie = X001 + (10— )03 051 + (p + )b djk,
Cijik = €0;501 + (v — B)0i 051 + (v + 3)0:0k, (2)
biji = 0,

then the medium is homogeneous and isotropic (A, p, «, €, v, § are elastic
constants, and ¢;; is the Kronecker symbol), and condition (1) is reduced
to the following one (see [6]):

>0, 3A+2u>0, a>0, v>0, 3¢+2v>0, 8>0.

By H5(Q2), H? (27) and H®(I') we denote Sobolev-Slobodetskii spaces
(S € R) whose definition and basic properties can be found in [7] (see also
[8]). It will also be admitted that w € X™, if every component of the vector

w = (w1,...,wn) belongs to some space X.
Let U = (u,w) € (HL.(27))%, V = (v,w) € (H}.(27))% and in the
neighborhood of |z| = co the conditions
Ou; Ov;
_ ~1 i Ovi _ -2
wo = O(el ). GE G o w=0(s] ) 3)

are satisfied.
Then the bilinear form B(U, V) is defined by the formula

B(U,V) = aijux /ffij(U)ﬁlk(V) dr + cijik /mj(U)mk(V) du,

Q- Q-
where a; ;i and c¢;;, are defined by formulas (2), &;,;(U) = 27“; —ijrwr and
ni (U) = §2.

Definition. The vector function U € (HJ.
the equation

(27))¢ is a weak solution of

M@)U(2) +G(x) =0 (G € (Line(27))%),

B(U7 (I)) = (g7 (I))O,Q* ((9071#)07(! = / 901P d.]?),
o-
for all ® € (C5°(027))°.

It should be noted that if U = (u,w) € (HL.(27))% u and w in the
neighborhood of |z| = oo satisfy conditions (3), and MU € (L?(Q7))°,
then we can define NU|. as the functional of the class (H~/%(I"))® by the
formula

<NU‘FaV‘F> = B(Ua V) + (MU, V)O,Q*a vV = (va) € (Hl(Qi))Gv

v and w satisfy conditions (3); here (-, -) denotes the duality relation between
the dual pairs (H~'/2(I"))¢ and (H'/2(I"))°.
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Let ' =T UTy, Ih'NTy = @ and G € (L2 (07))5, x € (HY2(I'1))S,
Fy € L®(T), ¢ € (L>(T3))3, F € L>=(I'y), F >0, g = F|Fy|.
We consider the following problem

Problem (I)~. Find the vector function U = (u,w) € (H} (27))°
which is a weak solution of the equation

MU (z)+G(x) =0, e, (4)

U satisfies at infinity conditions (3) and U = x on T'y, while on T’y the
conditions are fulfilled:

0,(U) € (L*(T2))*, on(U) = Fn, u(U)=1.
If |o,.(U)| < g, then u, = 0, and if |0,.(U)| = g, then I3y > 0 : w, =
—Y0r (U)

Let Uy = (ug,wo) € (HE.(27))® be a weak solution of equation (4),
satisfying conditions (3) and UO‘Fl = X, ./\/UO‘F2 = 0 (as is known, this
problem has the unique solution). Then for the vector function V = U — Uy
(instead of V' we again write U) we obtain the following problem.

Problem (F)~. Find the vector function U € (H} (27))® which is a
weak solution of the equation

MU (z)=0, z€Q7, (5)

satisfies in the neighborhood of |z| = oo conditions (3) and the condition
U = 0 on I'y, while on I'y satisfies the conditions

UT(U) € (LOO(FQ))Ba pU =, UN(U) = Fn.

If |o.(U)| < g, then u, = ¢, but if |o.(U)| = g, then I3y > 0 : u, =
Pr —V0r (U)7 where Pr = 7U0T|F € (H1/2(F))3

To reduce the problem to the variational inequality, we have first to
construct Green’s operator for the Dirichlet problem.

Let h € (H'/2(T"))%, and find the vector function U € (H}. (Q7))® which
is a weak solution of equation (5) satisfying in the neighborhood of |z| = 0o
conditions (3) and U = h on I'. Tt is known that this problem has the
unique solution which is given in terms of a simple layer potential

U(x) = / U — ) (K (W) () S, =€, (6)

where U is the fundamental solution of the differential operator M(9) (see
[6]), and the operator

@) = Jim [ 8- he)d,s
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As is known (see [9], [10]), the operator H is invertible, and
H: (HS(D))® — (HSTY(I))°,

-1 S 6 S—1 6 (7)
H': (HY(D) — (H°7HD))", VS eR,
but a simple layer operator itself maps continuously the space (H°(T))¢
1
into the space (Hlijpr2 (Q27))S.

The Green’s operator G~ for the first exterior problem is defined by
formula (6), i.e.,

M@) G h) @) =0, e,
G hl,=h
for all h € (H'/%(I"))%, and in the neighborhood of |2| = oo the conditions:

Gh=m, c=0(el ™), L o). (8)

) )
8Ij 8Ij

are satisfied.
We introduce the following operator:

S (HV2M)® — (HY(T))°,
Vhe (HV2I)": 5~h = {N(@,0)(G h)(x)}r
(note that the operator S~ is defined correctly because G~h € (H{ (27))°
satisfies at infinity conditions (8) and M(G~h) = O € (L*(Q27))%).

Taking into account the properties of the operator G, from Green’s
formula we have

Vh,ge (HVT))":

(S7h,g) =B(G"h,G"g) =
= Qijek /&j(G*h)ﬁek(Gfg) dx + Cijek /Th'j(th)nek(Gfg) di.
Q- Q-
To reduce Problem (F)~ to the variational inequality, we consider the
convex closed set

K={h=(gn e @ D) n|. =0},
the continuous convex functional
5€) = [ gléx — erlds

I'>

and the following variational inequality:
Find hg = (&, 10) € K such that

(S~ hosh — ho) + () — j(&0) > / [Fx(En — Eon) + 0 (1 — m0)] ds (9)

I
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for all h = (&,n) € K.

Let us prove that Problem (F)~ and the variational inequality (9) are
equivalent.

The following theorem is valid.

Theorem 1. The boundary variational inequality (9) and Problem (F')
are equivalent.

Proof. Tt should be noted that the equivalence is understood in the sense
that if U € (HL.(27))% is a solution of Problem (F)~, then U|r =hois a
solution of inequality (9), and vice versa, if hy € K is a solution of inequality
(9), then G~ hg € (H}.(27))8 is a solution of Problem (F)~.

Let U € (H\.(27))® be a solution of Problem (F)~ and U|, = hg (by
the definition of Green’s operator, it is clear that U = G~ hy).

It can be easily verified that if the conditions of Problem (F')~ are ful-
filled, then the inequality

0, (G"ho) - (& — &or) + 9(|ér — 2| — |€or — 04]) > 0. (10)

is valid on I's.
Integrating (10) on I's, we obtain

/ 00 (Gho) - (€ — Eor) ds + / 1(Gho) - (1 — o) ds+

+/0N(G7h0)(€N —&on)ds +5(§) — 4 (&) >
> [ Lo (G ho)(én — on) + 1(Gho) - (0= m)] ds,

i.e., inequality (9) is fulfilled.

Conversely, let hg € K be a solution of inequality (9). By the definition
of Green’s operator U = G~ hg is the weak solution of equation (5) and
Ul =G holp., = holp. =0, since ho € K.

Let h = (&,1) € K such that &, = &7, 7 = 1o, v = Eon £ 0, where
0 € HY?(T), suppf C I's. Then j(£) = j(&), and from (9) we find that

<0N(G*h0),9>:/FN9ds, V@EHI/Q(F), suppf C TI's.

T2

Therefore
O’N(CTViho)}F2 = Fy. (11)
Similarly, choosing h € K appropriately, we have

WG ho)ly, = v (12)
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If we take now into account (11) and (12), inequality (9) will take the
form

/ [0, (G~ ho) - x. +glx. ] ds - / [0 (G~ ho)  Xor + 9lxer|] ds > 0, (13)
F2 F2

where x_ = &, — ¢, and X, = o1 — Py
Let

o ={ce@">m)": ¢, =0}
Substituting in (13) x,, £ (, instead of x_, where ¢ € ©, and taking
into account [¢_| < [¢], after certain reasoning we obtain that

\/0T<G-ho>~<ds < [oldlas, veeo (14)
Ty Ty
and
/ [0 (G~ ho) - Xor + 0lxor]] ds < 0. (15)

T2

Consider on the set © the functional
o((¢) = /UT(G*hO) -(ds, V(e€O.
Iy

By virtue of (14), the functional ® in the space © C (L!(T"))? is linear
and continuous in the induced topology, and its norm does not exceed unity.
Since @‘m is dense in (L'(T'2))?, by the Hahn-Banach theorem we have

® € (L>®(T3))? and | @] < 1, i.e.,
0. (G ho) € (L™ (T'2))>.
We represent the functional ® in somewhat different form:
o(¢) = /g_laT(G_ho) - gCds (we mean that g > go > 0). (16)
I
Reasoning analogously for the functional (16), we find that
|02 (G™ho)| < g. (17)
If we take into account (17), from (15) we obtain
o (G ho) - Xor + 91Xor| =0,

which first of all implies that the friction conditions of Problem (F)~ are
fulfilled.
Thus the theorem is proved. O
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Let us now consider the question on the existence and uniqueness of the
solution of the variational inequality (9). To this end, we show that the
operator S~ satisfies the following conditions:

(i) (S~h.g) = (S—g,h) for all h, g € (H/2(I))5;

(ii) S~ : (HY/2(I"))5 — (H~Y%(I"))® is a continuous mapping;

(i) there exists ¢ > 0: (S™h,h) > cHhH%/lF for all h € (HY*(T'))°.

Properties (i) and (ii) follow directly from the fact that the bilinear form
B is symmetric and the singular integral operator in the space (H~1/?(T))5
is continuous. To prove (iii), we consider an auxiliary problem.

Let r = ||Tij||6x67 Tii = P, 1= 1,2,3, Tii = I, 1= 4,5,6 and Tij = 0, ) 75.7
where p and Z are physical characteristics of an elastic medium.

Problem (I;)~. Find U € (H'(Q7))® which is a weak solution of the
equation
MO (z) — k*rU(z) =0, 2 € Q™ (keR\{0})
and
Ul =g, ge (HVA1)°, lim U(z)=0.

|z|— o0

A unique solution of Problem (I})~ which we denote by G, ¢ is given as
a simple layer potential

(Gra)(z) = / U -y k) (H ) () S, =€ Q,

r

where

Heg)y) =, lim [0 tg(0)des.
r

and U(z, k) is the fundamental solution of the differential operator M(9) —
k?rI which is given by the formula

OO (2, k) 0 W (x K
VO (2, k) = |00 (@, k) [l3x3, 1=1,2,3,4,

o (2. k) f:{a A R
ii \T, = ijor + li} )
K pet / O0x;0x; ||
4 ,
: 20 0 e ol
D k) =0 (2, k) = 2 ip —
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V() =S L 45101
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: 2r(p+a)(o2—o2) ' 2mpk? 627
_ (DR = o)+ 0u) o J2u o
o 2y + B) (02 —03) ' 27(Tk: +4a) oF
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T a3 03 N ptal 2T v+ g
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A+ 2p0 2u+e
4a? 9

2 2 2 2 2 2,2
o5 +oy=ki+k5— o350y = kik;.

(n+a)(v+p5)’
Note that relations (7) are valid for the operators Hy, and H .
Introduce the operator S, : (HY/%(I"))¢ — (H~1/2(T"))® by the formula

Sy h={N(Gy;h)}., Vhe (HY*I))°.

Properties (i) and (ii) are satisfied for the operator S,  as well. Let us
prove property (iii).
From Green’s formula and the coerciveness of the bilinear form By
(Bx(U,V) =B(U,V)+k* [ rU -V dz) it follows that
o

(S hyh) = Bi(G h, G h) > c|| G b|F - (18)
Since the operator S, is continuous, we have
|<S;§h, h>‘ < ClH’lH?/zr-

Thus the operator
Gy (HV*(1)® — (H'(Q))° =

:{VG(Hl(Q*))G: MV — k*V =0, lim V(x):O}

|z|— o0
satisfies the condition
G hll1,0- < const |||z (19)

Taking into account inequality (19) and the fact that the space (H*(7))¢
is complete, we find that the operator G, is continuous, and since it is
surjective, the inverse operator (G,?)’1 is, by the Banach theorem, also
continuous, i.e.,

HG;h”l,sr 2 C||h||1/2,r~
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Thus taking into account (18), we can conclude that property (iii) is
fulfilled for the operator S, .
Consider the operator S, — 5~. We have

(g = S)h={N(Gy —G )}y
for all h € (H'Y*(T))%;

(G —G)h(x) = [ [U(z —y. k) — U(z,y)] (H; " (h)(y) dyS+

U — )[4~ H R @) dyS = I+ Do,

Denoting by oy (£') and o4, (') the principal symbols respectively of the
operators H and Hy, after simple, but cumbersome calculations we obtain
their representations explicitly:

on (&) =
A2+ B A& (N 0 0 E¢,
A&&  AS+B 0 0 0 —E&
0 0 A+ B —E& E& 0
0 0 B¢ 1 CE&+D  CE&& 0
0 0 ~E& 1 Ch4é&  C&+D 0
—F¢& E¢& 0o 0 0 C+D
and
OHp (5/) =
A&34B1 A166 0 : 0 0 Er&
A1&é A+ By 0 : 0 0 —E &
0 0 A+ B —-E1& Ei& 0
0 0 Ei& 1 Ci&+Dr Cihib 0
0 0 —Ei& L Ci&é& Ci&3+Dr 0
—Ei& Ei& 0 0 0 C+Dy
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N R Y
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T+l 2+ 0303 = o) + /I 12 + 03 — o3) )+
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1 1 )

lﬁ:(u+aXV+ﬂm%*0%(

gl = (§Ia€2) and k%7 k%a 0-%7 03,
It can be easily verified that

VIEP+ai  VIEP +03

UH(gl) — OHy (gl) = O(|€,|_3)7

and hence
I : (H*(I))® —
Let
On
then

2, 02 and o3 have been defined above.
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Clearly, the operator with the principal symbol L(£’) is of order —1, i.e.,

(Hi' = H ) (H3()® — (H*TY(T))", Vs eR.

Consequently,
s 6 5+3/2 /v—1\6
Iy (H*()" — (Hit*?(27)",
Thus we finally find that

(G —G7) s (HYVD)® — (HE(27))°

and for the operator S, — S~ we have

(Sp —S7): (HYV2(M)® — (HY*(T))°. (20)

Taking into account (20), property (iii) for the operator S, , and the fact

that the operator of embedding of the space (H/2~7(T'))® (0 < vy < 1/2) in
the space (H~3/2(I"))® is compact, we obtain

(S™h,h) = (S h,h) = ((S;; =S )h,h) >

> (Sy, hy h) = [[(S);, = STl —1y2,rllhll1/2,0 >
> cil|hlli a0 = collhlli 2, rllBll1 2,

Whence for every positive number N we have

_ 03 2 N2 2
(57h,h) > (o1 = 503 ) A2 0.0 = 10113 o o (21)

for all h € (H'Y/*(T))°.
By Erling’s lemma (see [11]), for all § > 0 there exists ¢(d) > 0 such that

12ll1/2—y.0 < 0l[All1/2,0 + ¢(8)[|Allo,r- (22)

If we take into account (22) and choose appropriately the positive num-
bers 6 and N, from (21) we get

(S™h.h) = c||h]|F 5 r — |11

for all h € (HY/2(I"))°.

Here we shall use the lemma whose proof can be found in [5] and which
is formulated as follows.

Let H and Y be the real Hilbert spaces, H C Y, H be dense in Y, and the
embedding operator I : H — Y be compact. Moreover,leta: HxH — R
be a nonnegative, symmetric, continuous bilinear form for which there exist
positive numbers oy and «s such that

or (23)

a(u,u) > as|lullf; — azulli

for all u € H.
By I — P we denote the operator of the orthogonal projection (in the
sense of H) of the space H onto Kera. Then the following lemma is valid.
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Lemma. Jc¢ > 0 such that
a(u,u) > ¢ Pull
forallu e H.

Taking now into account estimate (23) and the fact that the equation
(S~h,h) = 0 has only trivial solution, from that lemma (H = (H'/*(I"))%,
Y = (L3(T"))%, a(h, g) = (S~h, g)) we finally conclude that condition (iii) is
fulfilled for the operator S~:

(STh,h) > CHhH?/Q,F

for all h € (HY/2(I"))S.
Finally, for investigating the variational inequality (9), we consider on a
convex closed set IC the functional

I(h) = <S*h,h>+j<£)f/(FNstmds, Vhe () ek,

I

1
2

It can be easily verified that by virtue of property (i) of the operator
S~ the solution of inequality (9) is equivalent to the minimization of the
functional I(h) on the set K. Taking into account property (iii) of the
operator S~ and the fact that j(£) > 0, we obtain the coerciveness of the
functional I(h) (i.e. I(h) — 400 as [|hl /2,0 — 00):

I(h) = cl|hll3 jo,r — callhll/z,r

for all h € K.

On the basis of the well-known results concerning the variational inequal-
ities (see [12], [13), we conclude that Problem (F')~ has the unique solution
despite the fact that T'; is of positive measure or empty (in this case 'y =T
and the corresponding changes taking place in the statement of Problem
(I)~ are clear).

Thus we obtain the following theorem

Theorem 2. If Fy € L>®(Ty), ¢ € (HY/2())3, o € (L=(I'2)® and
F € L>®°(T3) (F > 0), then Problem (F)~ has the unique solution of the
class (HL, . (27))C.

In conclusion, it should be noted that the problem formulated below is
investigated analogously to Problem (I)~.

Problem (II)~. Let G € (L} .(Q7))% x € (HY(T1))® and f, ¢ €
L>=(T'y). Find the vector function U € (H} (©27))% which is a weak so-
lution of equation (4), tangential components of force and moment stresses
on I'y are the functions of the class (L*°(T'2))?, U = x on I'1, and on I's the
following conditions are fulfilled:

Un(U) = fa MH(U) =@, |UT(U)| < g1 == Uy = 0, |UT(U)| =01 =
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=3y >0: u, = —710,.(U);

r (U)| < g2 = w, =0, |u (U)| = g2 = 372> 0: wp = —72u,(U),
where g1 = F|(0,(U)| and g2 = |F|(pn (U)].

10.

11.

12.

13.
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