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EXTERIOR PROBLEMS WITH FRICTION IN THE

COUPLE-STRESS ELASTICITY

R. GACHECHILADZE

Abstract. The exterior problem of statics with friction in the couple-
stress theory of elasticity for homogeneous isotropic media is consid-
ered. The question on the existence and uniqueness of weak solutions
of that problem is investigated, when the friction effect is taken into
account on the whole or on some part of the boundary.

îâäæñéâ. à�êýæèñèæ� áîâç�áë�æï éëéâêðñîæ åâëîææï ïð�ðæçæï

à�îâ �éëù�ê� ý�ýñêæï à�åã�èæïûæêâ�æå âîåàã�îëã�êæ æäëðîë-

ìñèæ ïýâñèâ�æï�åãæï. öâïû�ãèæèæ� �é �éëù�êæï ïñïðæ �éëê�ý-

ïêâ�æï �îïâ�ë�æï� á� âîå�áâîåë�æï ï�çæåýæ, îëáâï�ù áîâç�áæ

ïýâñèæï éåâè ï�ä�ã�îäâ, �ê ï�ä�ãîæï à�îçãâñè ê�ûæèäâ à�åã�-

èæïûæêâ�ñèæ� ý�ýñêæï âòâóðæ.

In this paper we consider the deformation of an elastic body on whose
whole or a part of the boundary are imposed the conditions of friction which
are described by Coulomb’s law. Such kind of problems of the classical
theory of elasticity in bounded regions have been studied mainly in [1]–[4],
while statical and dynamical problems in the couple-stress elasticity have
been investigated in [5]. In the present paper we first reduce equivalently the
exterior problem to the variational inequality at the boundary of an elastic
medium and then investigate the question on the existence and uniqueness
of a solution of that inequality.

Let Ω ⊂ R
3 be a bounded region with the boundary Γ(Γ ∈ C∞), Ω− =

R
3 \Ω, ν(x) be a unit vector of the exterior (with respect to Ω−) normal at

the point x ∈ Γ; suppose

M(∂) =

∥∥∥∥∥∥∥∥

M(1)(∂)
... M(2)(∂)

. . . . . . . . . . . . . . . . . . . . . . .

M(3)(∂)
... M(4)(∂)

∥∥∥∥∥∥∥∥
6×6
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is the matrix differential operator of statics of the couple-stress elasticity,
where (see, for e.g., [5] and [6])

M(1)(∂) = ‖M
(1)
jk (∂)‖3×3, M

(1)
jk (∂) = aijlk

∂2

∂xi∂xl
,

M(2)(∂) = ‖M
(2)
jk (∂)‖3×3, M

(2)
jk (∂) = bijlk

∂2

∂xi∂xl
− εlrkaijlr

∂

∂xi
,

M(3)(∂) = ‖M
(3)
jk (∂)‖3×3, M

(3)
jk (∂) = blkij

∂2

∂xi∂xl
+ εirjairlk

∂

∂xl
,

M(4)(∂) = ‖M
(4)
jk (∂)‖3×3,

M
(4)
jk (∂) = cijlk

∂2

∂xi∂xl
− εlrkblrij

∂

∂xi
+ εirjbirlk

∂

∂xl
− εipjε

(1)
lrkaiplr ,

and

N (∂, ν) =

∥∥∥∥∥∥∥∥

N (1)(∂, ν)
... N (2)(∂, ν)

. . . . . . . . . . . . . . . . . . . . . . . . . .

N (3)(∂, ν)
... N (4)(∂, ν)

∥∥∥∥∥∥∥∥
6×6

is the matrix differential operator of stress, where

N (1)(∂, ν) = ‖N
(1)
jk (∂, ν)‖3×3, N

(1)
jk (∂, ν) = aijlkνi

∂

∂xl
,

N (2)(∂, ν) = ‖N
(2)
jk (∂, ν)‖3×3, N

(2)
jk (∂, ν) = bijlkνi

∂

∂xl
− aijlrεlrkνi,

N (3)(∂, ν) = ‖N
(3)
jk (∂, ν)‖3×3, N

(3)
jk (∂, ν) = blkijνi

∂

∂xl
,

N (4)(∂, ν) = ‖N
(4)
jk (∂, ν)‖3×3, N

(4)
jk (∂, ν) = cijlkνi

∂

∂xl
− blrijεlrkνi,

εijk is the Lewy–Civita symbol (here and throughout the paper, repetition
of the index denotes summation with respect to that index from 1 to 3).
U = (u, ω), u = (u1, u2, u3) is the displacement vector, ω = (ω1, ω2, ω3) is
the rotation vector, σU = N (1)u + N (2)ω is a force stress vector, µU =
N (3)u+N (4)ω is a couple-stress vector; a

T
and aN denote, respectively, the

tangential and normal components of the vector a ∈ R
3.

Elastic constants aijlk , bijlk, cijlk involved in the definition of the operator
M(∂) satisfy the conditions

aijlk = alkij , cijlk = clkij

and ∃α0 > 0, ∀ ξij , ηij ∈ R:

aijlkξijξlk + 2bijlkξijηlk + cijlkηijηlk ≥ α0(ξijξij + ηlkηlk). (1)
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If
aijlk = λδijδlk + (µ− α)δikδjl + (µ+ α)δilδjk,

cijlk = εδijδlk + (ν − β)δikδjl + (ν + β)δilδjk,

bijlk = 0,

(2)

then the medium is homogeneous and isotropic (λ, µ, α, ε, ν, β are elastic
constants, and δij is the Kronecker symbol), and condition (1) is reduced
to the following one (see [6]):

µ > 0, 3λ+ 2µ > 0, α > 0, ν > 0, 3ε+ 2ν > 0, β > 0.

By HS(Ω), HS
loc(Ω

−) and HS(Γ) we denote Sobolev-Slobodetskii spaces
(S ∈ R) whose definition and basic properties can be found in [7] (see also
[8]). It will also be admitted that ω ∈ Xm, if every component of the vector
ω = (ω1, . . . , ωm) belongs to some space X .

Let U = (u, ω) ∈ (H1
loc(Ω

−))6, V = (v, w) ∈ (H1
loc(Ω

−))6, and in the
neighborhood of |x| = ∞ the conditions

u, v = O(|x|−1),
∂ui

∂xj
,
∂vi

∂xj
, ω, w = O(|x|−2). (3)

are satisfied.
Then the bilinear form B(U, V ) is defined by the formula

B(U, V ) = aijlk

∫

Ω−

ξij(U)ξlk(V ) dx+ cijlk

∫

Ω−

ηij(U)ηlk(V ) dx,

where aijlk and cijlk are defined by formulas (2), ξij(U) = ∂ui

∂xj
− εijkωk and

ηij(U) = ∂ωi

∂xj
.

Definition. The vector function U ∈ (H1
loc(Ω

−))6 is a weak solution of
the equation

M(∂)U(x) + G(x) = 0
(
G ∈ (L2

loc(Ω
−))6

)
,

if

B(U,Φ) = (G,Φ)0,Ω−

((
ϕ, ψ

)
0,Ω−

=

∫

Ω−

ϕψ dx

)
,

for all Φ ∈ (C∞
0 (Ω−))6.

It should be noted that if U = (u, ω) ∈ (H1
loc(Ω

−))6, u and ω in the
neighborhood of |x| = ∞ satisfy conditions (3), and MU ∈ (L2(Ω−))6,
then we can define NU

∣∣
Γ

as the functional of the class (H−1/2(Γ))6 by the
formula

〈
NU

∣∣
Γ
, V

∣∣
Γ

〉
= B(U, V ) + (MU, V )0,Ω− , ∀V = (v, w) ∈ (H1(Ω−))6,

v and w satisfy conditions (3); here 〈·, ·〉 denotes the duality relation between
the dual pairs (H−1/2(Γ))6 and (H1/2(Γ))6.
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Let Γ = Γ1 ∪ Γ2, Γ1 ∩ Γ2 = ∅ and G ∈ (L2
loc(Ω

−))6, χ ∈ (H1/2(Γ1))
6,

FN ∈ L∞(Γ2), ψ ∈ (L∞(Γ2))
3, F ∈ L∞(Γ2), F ≥ 0, g = F|FN |.

We consider the following problem

Problem (I)−. Find the vector function U = (u, ω) ∈ (H1
loc(Ω

−))6

which is a weak solution of the equation

M(∂)U(x) + G(x) = 0, x ∈ Ω−, (4)

U satisfies at infinity conditions (3) and U = χ on Γ1, while on Γ2 the
conditions are fulfilled:

σ
T
(U) ∈ (L∞(Γ2))

3, σN (U) = FN , µ(U) = ψ.

If |σ
T
(U)| ≤ g, then u

T
= 0, and if |σ

T
(U)| = g, then ∃ γ ≥ 0 : u

T
=

−γσ
T
(U).

Let U0 = (u0, ω0) ∈ (H1
loc(Ω

−))6 be a weak solution of equation (4),
satisfying conditions (3) and U0

∣∣
Γ1

= χ, NU0

∣∣
Γ2

= 0 (as is known, this

problem has the unique solution). Then for the vector function V = U −U0

(instead of V we again write U) we obtain the following problem.

Problem (F )−. Find the vector function U ∈ (H1
loc(Ω

−))6 which is a
weak solution of the equation

M(∂)U(x) = 0, x ∈ Ω−, (5)

satisfies in the neighborhood of |x| = ∞ conditions (3) and the condition
U = 0 on Γ1, while on Γ2 satisfies the conditions

σ
T
(U) ∈ (L∞(Γ2))

3, µU = ψ, σN (U) = FN .

If |σ
T
(U)| < g, then u

T
= ϕ

T
, but if |σ

T
(U)| = g, then ∃ γ ≥ 0 : u

T
=

ϕ
T
− γσ

T
(U), where ϕ

T
= −u0T

∣∣
Γ
∈ (H1/2(Γ))3.

To reduce the problem to the variational inequality, we have first to
construct Green’s operator for the Dirichlet problem.

Let h ∈ (H1/2(Γ))6, and find the vector function U ∈ (H1
loc(Ω

−))6 which
is a weak solution of equation (5) satisfying in the neighborhood of |x| = ∞
conditions (3) and U = h on Γ. It is known that this problem has the
unique solution which is given in terms of a simple layer potential

U(x) =

∫

Γ

Ψ(x− y)
(
H−1(h)

)
(y) dyS, x ∈ Ω−, (6)

where Ψ is the fundamental solution of the differential operator M(∂) (see
[6]), and the operator

H(h)(x) = lim
Ω−∈z→x∈Γ

∫

Γ

Ψ(z − y)h(y) dyS.
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As is known (see [9], [10]), the operator H is invertible, and

H :
(
HS(Γ)

)6
−→

(
HS+1(Γ)

)6
,

H−1 :
(
HS(Γ)

)6
−→

(
HS−1(Γ)

)6
, ∀S ∈ R,

(7)

but a simple layer operator itself maps continuously the space (HS(Γ))6

into the space (H
S+1+ 1

2

loc (Ω−))6.
The Green’s operator G− for the first exterior problem is defined by

formula (6), i.e.,

M(∂)(G−h)(x) = 0, x ∈ Ω−,

G−h
∣∣
Γ

= h

for all h ∈ (H1/2(Γ))6, and in the neighborhood of |x| = ∞ the conditions:

G−h = (ξ, η), ξ = O(|x|−1),
∂ξi
∂xj

,
∂ηi

∂xj
, η = O(|x|−2). (8)

are satisfied.
We introduce the following operator:

S− :
(
H1/2(Γ)

)6
−→

(
H−1/2(Γ)

)6
,

∀h ∈
(
H1/2(Γ)

)6
: S−h =

{
N (∂, ν)(G−h)(x)

}−

Γ

(note that the operator S− is defined correctly because G−h ∈ (H1
loc(Ω

−))6

satisfies at infinity conditions (8) and M(G−h) = O ∈ (L2(Ω−))6).
Taking into account the properties of the operator G−, from Green’s

formula we have

∀h, g ∈
(
H1/2(Γ)

)6
: 〈S−h, g〉 = B(G−h,G−g) =

= aijek

∫

Ω−

ξij(G
−h)ξek(G−g) dx+ cijek

∫

Ω−

ηij(G
−h)ηek(G−g) dx.

To reduce Problem (F )− to the variational inequality, we consider the
convex closed set

K =
{
h = (ξ, η) ∈ (H1/2(Γ))6 : h

∣∣
Γ1

= O
}
,

the continuous convex functional

j(ξ) =

∫

Γ2

g|ξ
T
− ϕ

T
| ds

and the following variational inequality:
Find h0 = (ξ0, η0) ∈ K such that

〈S−h0, h− h0〉 + j(ξ) − j(ξ0) ≥

∫

Γ2

[
FN (ξN − ξ0N ) + ψ · (η − η0)

]
ds (9)
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for all h = (ξ, η) ∈ K.
Let us prove that Problem (F )− and the variational inequality (9) are

equivalent.
The following theorem is valid.

Theorem 1. The boundary variational inequality (9) and Problem (F )−

are equivalent.

Proof. It should be noted that the equivalence is understood in the sense
that if U ∈ (H1

loc(Ω
−))6 is a solution of Problem (F )−, then U

∣∣
Γ

= h0 is a

solution of inequality (9), and vice versa, if h0 ∈ K is a solution of inequality
(9), then G−h0 ∈ (H1

loc(Ω
−))6 is a solution of Problem (F )−.

Let U ∈ (H1
loc(Ω

−))6 be a solution of Problem (F )− and U
∣∣
Γ

= h0 (by

the definition of Green’s operator, it is clear that U = G−h0).
It can be easily verified that if the conditions of Problem (F )− are ful-

filled, then the inequality

σ
T
(G−h0) · (ξT

− ξ0T ) + g
(
|ξ

T
− ϕ

T
| − |ξ0T − ϕ

T
|
)
≥ 0. (10)

is valid on Γ2.
Integrating (10) on Γ2, we obtain

∫

Γ2

σ
T
(G−h0) · (ξT

− ξ0T ) ds+

∫

Γ2

µ(G−h0) · (η − η0) ds+

+

∫

Γ2

σN (G−h0)(ξN − ξ0N ) ds+ j(ξ) − j(ξ0) ≥

≥

∫

Γ2

[
σN (G−h0)(ξN − ξ0N ) + µ(G−h0) · (η − η0)

]
ds,

i.e., inequality (9) is fulfilled.
Conversely, let h0 ∈ K be a solution of inequality (9). By the definition

of Green’s operator U = G−h0 is the weak solution of equation (5) and
U

∣∣
Γ1

= G−1h0

∣∣
Γ1

= h0

∣∣
Γ1

= 0, since h0 ∈ K.

Let h = (ξ, η) ∈ K such that ξ
T

= ξ0T , η = η0, ξN = ξ0N ± θ, where
θ ∈ H1/2(Γ), supp θ ⊂ Γ2. Then j(ξ) = j(ξ0), and from (9) we find that

〈
σN (G−h0), θ

〉
=

∫

Γ2

FNθ ds, ∀ θ ∈ H1/2(Γ), supp θ ⊂ Γ2.

Therefore

σN (G−h0)
∣∣
Γ2

= FN . (11)

Similarly, choosing h ∈ K appropriately, we have

µ(G−h0)
∣∣
Γ2

= ψ. (12)
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If we take now into account (11) and (12), inequality (9) will take the
form
∫

Γ2

[
σ

T
(G−h0) · χ

T
+ g|χ

T
|
]
ds−

∫

Γ2

[
σ

T
(G−h0) · χ0T

+ g|χ
0T
|
]
ds ≥ 0, (13)

where χ
T

= ξ
T
− ϕ

T
and χ

0T
= ξ0T − ϕ

T
.

Let

Θ =
{
ζ ∈

(
H1/2(Γ)

)3
: ζ

∣∣
Γ1

= 0
}
.

Substituting in (13) χ
0T

± ζ
T

instead of χ
T
, where ζ ∈ Θ, and taking

into account |ζ
T
| ≤ |ζ|, after certain reasoning we obtain that
∣∣∣∣
∫

Γ2

σ
T
(G−h0) · ζ ds

∣∣∣∣ ≤
∫

Γ2

g|ζ| ds, ∀ ζ ∈ Θ (14)

and ∫

Γ2

[
σ

T
(G−h0) · χ0T

+ g|χ
0T
|
]
ds ≤ 0. (15)

Consider on the set Θ the functional

Φ(ζ) =

∫

Γ2

σ
T
(G−h0) · ζ ds, ∀ ζ ∈ Θ.

By virtue of (14), the functional Φ in the space Θ ⊂ (L1(Γ))3 is linear
and continuous in the induced topology, and its norm does not exceed unity.

Since Θ
∣∣
Γ2

is dense in (L1(Γ2))
3, by the Hahn–Banach theorem we have

Φ ∈ (L∞(Γ2))
3 and ‖Φ‖ ≤ 1, i.e.,

σ
T
(G−h0) ∈ (L∞(Γ2))

3.

We represent the functional Φ in somewhat different form:

Φ(ζ) =

∫

Γ2

g−1σ
T
(G−h0) · gζ ds (we mean that g ≥ g0 > 0). (16)

Reasoning analogously for the functional (16), we find that

|σ
T
(G−h0)| ≤ g. (17)

If we take into account (17), from (15) we obtain

σ
T
(G−h0) · χ0T

+ g|χ
0T
| = 0,

which first of all implies that the friction conditions of Problem (F )− are
fulfilled.

Thus the theorem is proved. �
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Let us now consider the question on the existence and uniqueness of the
solution of the variational inequality (9). To this end, we show that the
operator S− satisfies the following conditions:

(i) 〈S−h, g〉 = 〈S−g, h〉 for all h, g ∈ (H1/2(Γ))6;
(ii) S− : (H1/2(Γ))6 −→ (H−1/2(Γ))6 is a continuous mapping;
(iii) there exists c > 0 : 〈S−h, h〉 ≥ c‖h‖2

1/2,Γ for all h ∈ (H1/2(Γ))6.

Properties (i) and (ii) follow directly from the fact that the bilinear form
B is symmetric and the singular integral operator in the space (H−1/2(Γ))6

is continuous. To prove (iii), we consider an auxiliary problem.
Let r = ‖rij‖6×6, rii = ρ, i = 1, 2, 3, rii = I, i = 4, 5, 6 and rij = 0, i 6= j

where ρ and I are physical characteristics of an elastic medium.

Problem (Ik)−. Find U ∈ (H1(Ω−))6 which is a weak solution of the
equation

M(∂)U(x) − k2rU(x) = 0, x ∈ Ω−
(
k ∈ R \ {0}

)

and

U
∣∣
Γ

= g, g ∈
(
H1/2(Γ)

)6
, lim

|x|→∞
U(x) = 0.

A unique solution of Problem (Ik)− which we denote by G−
k g is given as

a simple layer potential

(G−
k g)(x) =

∫

Γ

Ψ(x− y, k)(H−1
k g)(y) dyS, x ∈ Ω−,

where

(Hkg)(y) = lim
Ω−∈z→y∈Γ

∫

Γ

Ψ(z − t, k)g(t) dtS,

and Ψ(x, k) is the fundamental solution of the differential operator M(∂)−
k2rI which is given by the formula

Ψ(x, k) =

∥∥∥∥∥∥∥∥

Ψ(1)(x, k)
... Ψ(2)(x, k)

. . . . . . . . . . . . . . . . . . . . . . . . .

Ψ(3)(x, k)
... Ψ(4)(x, k)

∥∥∥∥∥∥∥∥
6×6

,

Ψ(l)(x, k) = ‖Ψ
(l)
ij (x, k)‖3×3, l = 1, 2, 3, 4,

Ψ
(1)
ij (x, k) =

4∑

l=1

{
δijαl + βl

∂2

∂xi∂xj

} e−σl|x|

|x|
,

Ψ
(2)
ij (x, k) = Ψ

(3)
ij (x, k) =

2α

µ+ α

4∑

l=1

εlεijp
∂

∂xp

e−σl|x|

|x|
,
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Ψ
(4)
ij (x, k) =

4∑

l=1

{
δijγl + δl

∂2

∂xi∂xj

} e−σl|x|

|x|
,

αl =
(−1)l(δ3l + δ4l)(k

2
2 − σ2

l )

2π(µ+ α)(σ2
3 − σ2

4)
, βl =

δ1l

2πρk2
−
αl

δ2l
,

γl =
(−1)l(k2

1 − σ2
l )(δ3l + δ4l)

2π(ν + β)(σ2
3 − σ2

4)
, δl =

δ2l

2π(Ik2 + 4α)
−
γl

σ2
l

,

εl =
(−1)l(δ3l + δ4l)

2π(ν + β)(σ2
3 − σ2

4)
, k2

1 =
ρk2

µ+ α
, k2

2 =
Ik2 + 4α

ν + β
,

σ2
1 =

ρk2

λ+ 2µ
, σ2

2 =
Ik2 + 4α

2ν + ε
,

σ2
3 + σ2

4 = k2
1 + k2

2 −
4α2

(µ+ α)(ν + β)
, σ2

3σ
2
4 = k2

1k
2
2 .

Note that relations (7) are valid for the operators Hk and H−1
k .

Introduce the operator S−
k : (H1/2(Γ))6 −→ (H−1/2(Γ))6 by the formula

S−
k h =

{
N (G−

k h)
}−

Γ
, ∀h ∈ (H1/2(Γ))6.

Properties (i) and (ii) are satisfied for the operator S−
k as well. Let us

prove property (iii).
From Green’s formula and the coerciveness of the bilinear form Bk

(Bk(U, V ) = B(U, V ) + k2
∫

Ω−

rU · V dx) it follows that

〈S−
k h, h〉 = Bk(G−

k h,G
−
k h) ≥ c‖G−

k h‖
2
1,Ω−

. (18)

Since the operator S−
k is continuous, we have

∣∣〈S−
k h, h〉

∣∣ ≤ c1‖h‖
2
1/2,Γ.

Thus the operator

G−
k :

(
H1/2(Γ)

)6
−→

(
H̃1(Ω−)

)6
=

=
{
V ∈

(
H1(Ω−)

)6
: MV − k2rV = 0, lim

|x|→∞
V (x) = 0

}

satisfies the condition

‖G−
k h‖1,Ω− ≤ const ‖h‖1/2,Γ. (19)

Taking into account inequality (19) and the fact that the space (H̃1(Ω−))6

is complete, we find that the operator G−
k is continuous, and since it is

surjective, the inverse operator (G−
k )−1 is, by the Banach theorem, also

continuous, i.e.,

‖G−
k h‖1,Ω− ≥ c‖h‖1/2,Γ.
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Thus taking into account (18), we can conclude that property (iii) is
fulfilled for the operator S−

k .

Consider the operator S−
k − S−. We have

(S−
k − S−)h =

{
N (G−

k −G−)h
}−

Γ

for all h ∈ (H1/2(Γ))6;

(G−
k −G−)h(x) =

∫

Γ

[
Ψ(x− y, k) − Ψ(x, y)

]
(H−1

k (h))(y) dyS+

+

∫

Γ

Ψ(x− y)
[
(H−1

k −H−1)h
]
(y) dyS = I1 + I2.

Denoting by σH(ξ′) and σHk
(ξ′) the principal symbols respectively of the

operators H and Hk, after simple, but cumbersome calculations we obtain
their representations explicitly:

σH(ξ′) =

=

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

Aξ21 +B Aξ1ξ2 0
... 0 0 Eξ2

Aξ1ξ2 Aξ22 +B 0
... 0 0 −Eξ1

0 0 Ã+B
... −Eξ2 Eξ1 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 Eξ2
... Cξ21 +D Cξ1ξ2 0

0 0 −Eξ1
... Cξ1ξ2 Cξ22 +D 0

−Eξ2 Eξ1 0
... 0 0 C̃ +D

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

and

σHk
(ξ′) =

=

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

A1ξ
2
1 +B1 A1ξ1ξ2 0

... 0 0 E1ξ2

A1ξ1ξ2 A1ξ
2
2 +B1 0

... 0 0 −E1ξ1

0 0 Ã1 +B1

... −E1ξ2 E1ξ1 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 E1ξ2
... C1ξ

2
1 +D1 C1ξ1ξ2 0

0 0 −E1ξ1
... C1ξ1ξ2 C1ξ

2
2 +D1 0

−E1ξ2 E1ξ1 0
... 0 0 C̃1+D1

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

,
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where

A = −
(µ+ α)(ν + β)

8µ2(λ+ 2µ)

( a

2|ξ′|3
−

1

|ξ′|
+

1√
|ξ′|2 + a

)
−

−
(λ+ µ− α)(ν + β)

8µ2(λ+ 2µ)

( ab

2(b− a)|ξ′|3
−

1

|ξ′|
+

1√
|ξ′|2 + a

)
,

B =
ν + β

8µα

( b

|ξ′|
−

b− a√
|ξ′|2 + a

)
,

C =
1

2µ(a− c)

{c− a

|ξ′|
−

c√
|ξ′|2 + a

+
a√

|ξ′|2 + c

}
+

+
ε+ ν − β

2(a− c)(ν + β)(ε + 2ν)

{ 1√
|ξ′|2 + a

−
1√

|ξ′|2 + c

}
,

D =
1

2(ν + β)

1√
|ξ′|2 + a

,

Ã = −
(µ+ α)(ν + β)

8µ2(λ+ 2µ)

( a

2|ξ′|
+ |ξ′| −

√
|ξ′|2 + a

)
−

−
(λ+ µ− α)(ν + β)

8µ2(λ+ 2µ)

( ab

2(b− a)|ξ′|
+ |ξ′| −

√
|ξ′|2 + a

)
,

C̃ =
1

2µ(c− a)

{
(c− a)|ξ′| − c

√
|ξ′|2 + a+ a

√
|ξ′|2 + c

}
+

+
ε+ ν − β

2(a− c)(ν + β)(ε + 2ν)

{√
|ξ′|2 + c−

√
|ξ′|2 + a

}
,

E =
i

4µ

( 1

|ξ′|
−

1√
|ξ′|2 + a

)
,

a =
4αµ

(µ+ α)(ν + β)
, b =

4α

ν + β
, c =

4α

ε+ 2ν
,

A1 =
[(µ+ α)(λ + 2µ)]−1

(σ2
3 − σ2

1)(σ
2
4 − σ2

1)(σ2
3 − σ2

4)
×

×

{
2α2

ν + β

( σ2
4 − σ2

3√
|ξ′|2 + σ2

1

+
σ2

1 − σ2
4√

|ξ′|2 + σ2
3

+
σ2

3 − σ2
1√

|ξ′|2 + σ2
4

)
+

+
λ+ µ− α

2

((k2
2 − σ2

1)(σ2
4 − σ2

3)√
|ξ′|2 + σ2

1

+

+
(k2

2 − σ2
3)(σ2

1 − σ2
4)√

|ξ′|2 + σ2
3

+
(k2

2 − σ2
4)(σ2

3 − σ2
1)√

|ξ′|2 + σ2
4

)}
,

B1 =
1

2(µ+ α)(σ2
4 − σ2

3)

( k2
2 − σ2

3√
|ξ′|2 + σ2

3

−
k2
2 − σ2

4√
|ξ′|2 + σ2

4

)
,
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C1 =
[(ν + β)(ε+ 2ν)]−1

(σ2
3 − σ2

2)(σ
2
4 − σ2

2)(σ2
3 − σ2

4)
×

×

{( σ2
4 − σ2

3√
|ξ′|2 + σ2

2

+
σ2

2 − σ2
4√

|ξ′|2 + σ2
3

+
σ2

3 − σ2
2√

|ξ′|2 + σ2
4

) 2α2

µ+ α
+

+
ε+ ν − β

2

( (k2
1 − σ2

2)(σ2
4 − σ2

3)√
|ξ′|2 + σ2

2

+

+
(k2

1 − σ2
3)(σ2

2 − σ2
4)√

|ξ′|2 + σ2
3

+
(k2

1 − σ2
4)(σ2

3 − σ2
2)√

|ξ′|2 + σ2
4

)}
,

D1 =
1

2(ν + β)(σ2
4 − σ2

3)

( k2
1 − σ2

3√
|ξ′|2 + σ2

3

−
k2
1 − σ2

4√
|ξ′|2 + σ2

4

)
,

Ã1 =
[(µ+ α)(λ + 2µ)]−1

(σ2
3 − σ2

1)(σ
2
4 − σ2

1)(σ2
3 − σ2

4)

{
2α2

ν + β

(√
|ξ′|2 + σ2

1(σ2
3 − σ2

4)+

+
√
|ξ′|2 + σ2

3(σ2
4 − σ2

1) +
√
|ξ′|2 + σ2

4(σ2
1 − σ2

3)
)
+

+
λ+ µ− α

2

(√
|ξ′|2 + σ2

1(k2
2 − σ2

1)(σ2
3 − σ2

4)+

+
√
|ξ′|2 + σ2

3(k
2
2 − σ2

3)(σ2
4 − σ2

1)+
√
|ξ′|2 + σ2

4(k2
2 − σ2

4)(σ2
1 − σ2

3)
)}

,

C̃1 =
[(ν + β)(ε+ 2ν)]−1

(σ2
3 − σ2

2)(σ
2
3 − σ2

4)(σ2
4 − σ2

2)

{
2α2

µ+ α

(√
|ξ′|2 + σ2

2(σ2
3 − σ2

4)+

+
√
|ξ′|2 + σ2

3(σ2
4 − σ2

2) +
√
|ξ′|2 + σ2

4(σ2
2 − σ2

3)
)
+

+
ε+ ν − β

2

(√
|ξ′|2 + σ2

2(k2
1 − σ2

2)(σ2
3 − σ2

4)+

+
√
|ξ′|2 + σ2

3(k
2
1 − σ2

3)(σ2
4 − σ2

2)+
√
|ξ′|2 + σ2

4(k2
1 − σ2

4)(σ2
2 − σ2

3)
)}

,

E1 =
αi

(µ+ α)(ν + β)(σ2
3 − σ2

4)

( 1√
|ξ′|2 + σ2

4

−
1√

|ξ′|2 + σ2
3

)
,

ξ′ = (ξ1, ξ2) and k2
1 , k2

2 , σ
2
1 , σ2

2 , σ2
3 and σ2

4 have been defined above.
It can be easily verified that

σH(ξ′) − σHk
(ξ′) = O(|ξ′|−3),

and hence

I1 : (Hs(Γ))6 −→ (H
s+7/2
loc (Ω−))6, ∀ s ∈ R.

Let

σ−1
H (ξ′) − σ−1

Hk
(ξ′) = L(ξ′),

then

σHk
(ξ′) − σH(ξ′) = σH(ξ′)L(ξ′)σHk

(ξ′).
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Clearly, the operator with the principal symbol L(ξ′) is of order −1, i.e.,

(H−1
k −H−1) : (Hs(Γ))6 −→

(
Hs+1(Γ)

)6
, ∀ s ∈ R.

Consequently,

I2 :
(
Hs(Γ)

)6
−→

(
H

s+3/2
loc (Ω−)

)6
.

Thus we finally find that

(G−
k −G−) :

(
H1/2(Γ)

)6
−→

(
H3

loc(Ω
−)

)6

and for the operator S−
k − S− we have

(S−
k − S−) :

(
H1/2(Γ)

)6
−→

(
H3/2(Γ)

)6
. (20)

Taking into account (20), property (iii) for the operator S−
k , and the fact

that the operator of embedding of the space (H1/2−γ(Γ))6 (0 < γ < 1/2) in
the space (H−3/2(Γ))6 is compact, we obtain

〈S−h, h〉 = 〈S−
k h, h〉 − 〈(S−

k − S−)h, h〉 ≥

≥ 〈S−
k h, h〉 − ‖(S−

k − S−)h‖−1/2,Γ‖h‖1/2,Γ ≥

≥ c1‖h‖
2
1/2,Γ − c0‖h‖1/2−γ,Γ‖h‖1/2,Γ.

Whence for every positive number N we have

〈S−h, h〉 ≥
(
c1 −

c20
2N2

)
‖h‖2

1/2,Γ −
N2

2
‖h‖2

1/2−γ,Γ (21)

for all h ∈ (H1/2(Γ))6.
By Erling’s lemma (see [11]), for all δ > 0 there exists c(δ) > 0 such that

‖h‖1/2−γ,Γ ≤ δ‖h‖1/2,Γ + c(δ)‖h‖0,Γ. (22)

If we take into account (22) and choose appropriately the positive num-
bers δ and N , from (21) we get

〈S−h, h〉 ≥ c‖h‖2
1/2,Γ − ‖h‖2

0,Γ (23)

for all h ∈ (H1/2(Γ))6.
Here we shall use the lemma whose proof can be found in [5] and which

is formulated as follows.
Let H and Y be the real Hilbert spaces, H ⊂ Y , H be dense in Y , and the

embedding operator I : H −→ Y be compact. Moreover, let a : H×H −→ R

be a nonnegative, symmetric, continuous bilinear form for which there exist
positive numbers α1 and α2 such that

a(u, u) ≥ α1‖u‖
2
H − α2‖u‖

2
Y

for all u ∈ H .
By I − P we denote the operator of the orthogonal projection (in the

sense of H) of the space H onto Kera. Then the following lemma is valid.
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Lemma. ∃ c > 0 such that

a(u, u) ≥ c‖Pu‖2
H

for all u ∈ H.

Taking now into account estimate (23) and the fact that the equation
〈S−h, h〉 = 0 has only trivial solution, from that lemma (H = (H1/2(Γ))6,
Y = (L2(Γ))6, a(h, g) = 〈S−h, g〉) we finally conclude that condition (iii) is
fulfilled for the operator S−:

〈S−h, h〉 ≥ c‖h‖2
1/2,Γ

for all h ∈ (H1/2(Γ))6.
Finally, for investigating the variational inequality (9), we consider on a

convex closed set K the functional

I(h) = −
1

2
〈S−h, h〉 + j(ξ) −

∫

Γ2

(FN ξN + ψ · η) ds, ∀h ∈ (ξ, η) ∈ K.

It can be easily verified that by virtue of property (i) of the operator
S− the solution of inequality (9) is equivalent to the minimization of the
functional I(h) on the set K. Taking into account property (iii) of the
operator S− and the fact that j(ξ) ≥ 0, we obtain the coerciveness of the
functional I(h) (i.e. I(h) → +∞ as ‖h‖1/2,Γ → ∞):

I(h) ≥ c‖h‖2
1/2,Γ − c1‖h‖1/2,Γ

for all h ∈ K.
On the basis of the well-known results concerning the variational inequal-

ities (see [12], [13), we conclude that Problem (F )− has the unique solution
despite the fact that Γ1 is of positive measure or empty (in this case Γ2 = Γ
and the corresponding changes taking place in the statement of Problem
(I)− are clear).

Thus we obtain the following theorem

Theorem 2. If FN ∈ L∞(Γ2), ϕ ∈ (H1/2(Γ))3, ψ ∈ (L∞(Γ2)
3 and

F ∈ L∞(Γ2) (F ≥ 0), then Problem (F )− has the unique solution of the

class (H1
loc(Ω

−))6.

In conclusion, it should be noted that the problem formulated below is
investigated analogously to Problem (I)−.

Problem (II)−. Let G ∈ (L2
loc(Ω

−))6, χ ∈ (H1(Γ1))
6 and f, ϕ ∈

L∞(Γ2). Find the vector function U ∈ (H1
loc(Ω

−))6 which is a weak so-
lution of equation (4), tangential components of force and moment stresses
on Γ2 are the functions of the class (L∞(Γ2))

3, U = χ on Γ1, and on Γ2 the
following conditions are fulfilled:

σn(U) = f, µn(U) = ϕ, |σ
T
(U)| < g1 =⇒ u

T
= 0, |σ

T
(U)| = g1 =⇒
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=⇒ ∃ γ1 > 0 : u
T

= −γ1σT
(U);

|µ
T
(U)| < g2 =⇒ ω

T
= 0, |µ

T
(U)| = g2 =⇒ ∃ γ2 > 0 : ω

T
= −γ2µT

(U),

where g1 = F|(σn(U)| and g2 = |F|(µn(U)|.
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