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Chapter 10
Topological Interpretations of Provability Logic

Lev Beklemishev and David Gabelaia

In memory of Leo Esakia

Abstract Provability logic concerns the study ofmodality� as provability in formal1

systems such as Peano Arithmetic. A natural, albeit quite surprising, topological2

interpretation of provability logic has been found in the 1970s by Harold Simmons3

and Leo Esakia. They have observed that the dual � modality, corresponding to4

consistency in the context of formal arithmetic, has all the basic properties of the5

topological derivative operator acting on a scattered space. The topic has become a6

long-term project for the Georgian school of logic led by Esakia, with occasional7

contributions from elsewhere. More recently, a new impetus came from the study of8

polymodal provability logic GLP that was known to be Kripke incomplete and, in9

general, to have a more complicated behavior than its unimodal counterpart. Topo-10

logical semantics provided a better alternative to Kripke models in the sense that11

GLP was shown to be topologically complete. At the same time, new fascinating12

connections with set theory and large cardinals have emerged.We give a survey of the13

results on topological semantics of provability logic starting from first contributions14

by Esakia. However, a special emphasis is put on the recent work on topological15

models of polymodal provability logic. We also include a few results that have not16

been published so far, most notably the results of Sect. 10.4 (due to the second author)17

and Sects. 10.7, 10.8 (due to the first author).18
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10.1 Provability Logics and Magari Algebras20

Provability logics and algebras emerge from, respectively, a modal logical and an21

algebraic point of view on the proof-theoretic phenomena around Gödel’s incom-22

pleteness theorems. These theorems are usually perceived as putting fundamental23

restrictions on what can be formally proved in a given axiomatic system (satisfying24

modest natural requirements). For the sake of a discussion, we call a formal theory25

T gödelian if26

• T is a first order theory in which the natural numbers along with the operations +27

and · are interpretable;28

• T proves some basic properties of these operations and a modicum of induction29

(it is sufficient to assume that T contains Elementary Arithmetic EA, see [7]);30

• T has a recursively enumerable (r.e.) set of axioms.31

TheSecond IncompletenessTheoremofKurtGödel (G2) states that a gödelian theory32

T cannot prove its own consistency provided it is indeed consistent. More accurately,33

for any r.e. presentation of such a theory T , Gödel has shown how to write down34

an arithmetical formula ProvT (x) expressing that x is (a natural number coding)35

a formula provable in T . Then the statement Con(T ) := ¬ProvT (�⊥�) naturally36

expresses that the theory T is consistent. G2 states that T � Con(T ) provided T is37

consistent.38

Provability logic emerged from the question of what properties of formal prov-39

ability ProvT can be verified in T , even if the consistency of T cannot. Several such40

properties have been stated by Gödel himself [33]. Hilbert and Bernays [36] and41

then Löb [44] stated them in the form of conditions any adequate formalization of42

a provability predicate in T must satisfy. After Gödel’s and Löb’s work it was clear43

that the formal provability predicate calls for a treatment as a modality. It led to the44

formulation of the Gödel–Löb provability logic GL and eventually to the celebrated45

arithmetical completeness theorem due to Solovay [55].46

Independently, Macintyre and Simmons [45] and Magari [46] took a very natural47

algebraic perspective on the phenomenon of formal provability which led to the48

concept of diagonalizable algebra. Such algebras are now more commonly called49

Magari algebras. This point of view is more convenient for our present purposes.50

Recall that the Lindenbaum–Tarski algebra of a theory T is the set of all T -51

sentences SentT modulo provable equivalence in T , that is, the structure LT =52

SentT /∼T where, for all ϕ,ψ ∈ SentT ,53

ϕ ∼T ψ ⇐⇒ T � (ϕ ↔ ψ).54

Since we assume T to be based on classical propositional logic,LT is a boolean55

algebra with operations ∧, ∨, ¬. Constants ⊥ and � are identified with the sets of56
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10 Topological Interpretations of Provability Logic 259

refutable and provable sentences of T , respectively. The standard ordering onLT is57

defined by58

[ϕ] ≤ [ψ] ⇐⇒ T � ϕ → ψ ⇐⇒ [ϕ ∧ ψ] = [ϕ],

where [ϕ] denotes the equivalence class of ϕ.59

It is well known that for consistent gödelian theories T all such algebras are60

isomorphic to the unique countable atomless boolean algebra. (This is a consequence61

of a strengthening of Gödel’s First Incompleteness Theorem due to Rosser.) We62

obtain more interesting algebras by enriching the structure of the boolean algebra63

LT by additional operation(s).64

Gödel’s consistency formula induces a unary operator �T acting on LT :

�T : [ϕ] �−→ [Con(T + ϕ)].

The sentence Con(T + ϕ) expressing the consistency of T extended by ϕ can be65

defined as ¬ProvT (�¬ϕ�). The dual operator is �T : [ϕ] �−→ [ProvT (�ϕ�)], thus66

�T x = ¬�T ¬x for all x ∈ LT .67

Hilbert–Bernays–Löb derivability conditions ensure that �T is correctly defined68

on the equivalence classes of the Lindenbaum–Tarski algebra of T . Moreover, it69

satisfies the following identities (where we write �T simply as � and the variables70

range over arbitrary elements of LT ):71

M1. �⊥ = ⊥; �(x ∨ y) = �x ∨ �y;72

M2. �x = �(x ∧ ¬�x).73

Notice that AxiomM2 is a formalization of G2 stated for the theory T ′ = T + ϕ,74

where [ϕ] = x . In fact, the left hand side states that T ′ is consistent, whereas the75

right hand side states that T ′ + ¬Con(T ′) is consistent, that is, T ′
� Con(T ′). The76

dual form of Axiom M2, �(�x → x) = �x, expresses the formalization of Löb’s77

theorem [44].78

A Boolean algebra with an operator M = (M,�) satisfying M1, M2 is called79

Magari algebra. Thus, the main example of a Magari algebra is the structure80

(LT ,�T ) for any consistent gödelian theory T .81

Notice that M1 induces � to be monotone: if x ≤ y then �x ≤ �y. The tran-82

sitivity inequality ��x ≤ �x is often postulated as an additional axiom of Magari83

algebras, however, as discovered independently by de Jongh, Kripke and Sambin in84

the 1970s, it follows from M1 and M2.85

Proposition 1. In any Magari algebra M it holds that ��x ≤ �x for all x ∈ M.86

Proof Given any x ∈ M , consider y := x ∨ �x . On the one hand, we have

��x ≤ (�x ∨ ��x) = �y.

On the other hand, since �x ∧ ¬�y = ⊥ we obtain
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260 L. Beklemishev and D. Gabelaia

�y ≤ �(y ∧ ¬�y) ≤ �((x ∨ �x) ∧ ¬�y) = �(x ∧ ¬�y) ∨ �⊥ ≤ �x .

Hence, ��x ≤ �x . �87

In general, we call an identity of an algebraic structureM a formula of the form88

t (x) = u(x), where t, u are terms, such that M � ∀x (t (x) = u(x)). Identities of89

Maragi algebras can be described in terms of modal logic as follows. Any term (built90

from the variables using boolean operations and �) is naturally identified with a91

formula in the language of propositional logic with a new unary connective �. If92

ϕ(x) is such a formula and M a Magari algebra, we write M � ϕ iff ∀x (tϕ(x) =93

�) is valid in M , where tϕ is the term corresponding to ϕ. Since any identity in94

Magari algebras can be equivalently written in the form t = � for some term t , the95

axiomatization of identities ofM amounts to axiomatizing modal formulas valid in96

M . The logic of M , Log(M ), is the set of all modal formulas valid in M , that is,97

Log(M ) := {ϕ : M � ϕ}, and the logic of a class of modal algebras is defined98

similarly.99

One of themain parameters of aMagari algebraM is its characteristic ch(M ) :=100

min{k ∈ ω : �k� = ⊥} and ch(M ) := ∞ if no such k exists. If T is arithmetically101

sound, that is, if the arithmetical consequences of T are valid in the standard model,102

then ch(LT ) = ∞. Theories (whose algebras are) of finite characteristics are, in a103

sense, close to being inconsistent and may be considered a pathology.104

Solovay [55] proved that any identity valid in the structure (LT ,�T ) follows from105

the boolean identities togetherwithM1–M2, provided T is arithmetically sound. This106

has been generalized by Visser [58] to arbitrary theories of infinite characteristic.107

Theorem 1. (Solovay, Visser) Suppose ch(LT ,�T ) = ∞. An identity holds in108

(LT ,�T ) iff it holds in all Magari algebras.109

Apart from the equational characterization by M1, M2 above, the identities of110

Magari algebras can be axiomatized modal-logically. In fact, the logic of all Magari111

algebras, and by the Solovay theorem the logic Log(LT ,�T ) of the Magari algebra112

of T , for any fixed theory T of infinite characteristic, coincides with the familiar113

Gödel–Löb logic GL. Abusing the language we will often identify GL with the set114

of identities of Magari algebras.1115

A Hilbert-style axiomatization of GL is usually given in the modal language116

where � rather than � is taken as basic and the latter is treated as an abbreviation117

for ¬�¬. The axioms and inference rules of GL are as follows.118

Axiom schemata:119

L1. All instances of propositional tautologies;120

L2. �(ϕ → ψ) → (�ϕ → �ψ);121

1 For normal modal logics, going from an equational to a Hilbert-style axiomatization and back
is automatic, as they are known to be strongly finitely algebraizable (see [19, 31]). We do not
assume the reader’s familiarity with algebraic logic and prefer to give explicit axiomatizations for
the systems at hand.
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10 Topological Interpretations of Provability Logic 261

L3. �(�ϕ → ϕ) → �ϕ.122

Rules: ϕ, ϕ → ψ/ψ (modus ponens), ϕ/�ϕ (necessitation).123

By a well-known result of Segerberg [51], GL is sound and complete w.r.t. the124

class of all transitive and upwards well-founded Kripke frames. In fact, it is sufficient125

to restrict the attention to frames that are finite irreflexive trees. Thus, summarizing126

various characterizations above, we have127

Theorem 2. Let T be a gödelian theory of infinite characteristic. For any modal128

formula ϕ, the following statements are equivalent:129

(i) GL � ϕ;130

(ii) ϕ is valid in all Magari algebras;131

(iii) (LT ,�T ) � ϕ;132

(iv) ϕ is valid in all finite irreflexive tree-like Kripke frames.133

10.2 Topological Interpretation134

A natural, albeit quite surprising, topological interpretation of provability logic was135

found by Simmons [53]. He observed that the topological derivative operator act-136

ing on a scattered topological space satisfies all the identities of Magari algebras.137

Esakia [28], working independently, considered a more general problem of set-138

theoretic interpretations of Magari algebras.139

Let X be a nonempty set and let P(X) the boolean algebra of subsets of X .140

Consider any operator δ : P(X) → P(X) and the structure (P(X), δ). Can141

(P(X), δ) be a Magari algebra and, if yes, when? Esakia [28] found what may be142

called a canonical answer to this question (Theorem 4 below).143

Let (X, τ ) be a topological space, where τ denotes the set of open subsets of X ,144

and let A ⊆ X . Topological derivative dτ (A) of A is the set of limit points of A:145

x ∈ dτ (A) ⇐⇒ ∀U ∈ τ (x ∈ U ⇒ ∃y �= x (y ∈ U ∩ A)).146

Notice that cτ (A) := A ∪ dτ (A) is the closure of A and isoτ (A) := A \ dτ (A) is the147

set of isolated points of A.148

The classical notion of a scattered topological space is due toGeorg Cantor. (X, τ )149

is called scattered if every nonempty subspace A ⊆ X has an isolated point.150

Theorem 3. (Simmons, Esakia) The following statements are equivalent:151

(i) (X, τ ) is scattered;152

(ii) (P(X), dτ ) is a Magari algebra, that is, for all A ⊆ X, dτ (A) = dτ (A\dτ (A)).153

Notice that dτ (A) = dτ (A\dτ (A))means that each limit point of A is a limit point of154

its isolated points. The algebra of the form (P(X), dτ ) associated with a topological155

space (X, τ ) will be called the derivative algebra of X . Thus, this theorem states156

that the derivative algebra of (X, τ ) is Magari iff (X, τ ) is scattered.157
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262 L. Beklemishev and D. Gabelaia

Proof Suppose (X, τ ) is scattered, A ⊆ X and x ∈ dτ (A). Consider any open158

neighborhood U of x . Since (U ∩ A) \ {x} is nonempty, it has an isolated point159

y �= x . Since U is open, y is an isolated point of A, that is, y ∈ A \ dτ (A).160

Hence, x ∈ dτ (A \ dτ (A)). The inclusion dτ (A \ dτ (A)) ⊆ dτ (A) follows from the161

monotonicity of dτ . Therefore Statement (ii) holds.162

Suppose that (ii) holds and let A ⊆ X be nonempty. We show that A has an163

isolated point. If dτ A is empty, we are done. Otherwise, take any x ∈ dτ A. Since x164

is a limit of isolated points of A, there must be at least one such point. �165

We notice that the transitivity principle dτ dτ A ⊆ dτ A topologically means that166

the set dτ A, for any A ⊆ X , is closed. We recall the following standard equivalent167

characterization an easy proof of which we shall omit.168

Proposition 2. For any topological space (X, τ ), the following statements are equiv-169

alent:170

(i) Every x ∈ X is an intersection of an open and a closed set;171

(ii) For each A ⊆ X, the set dτ A is closed.172

Topological spaces satisfying either of these conditions are called Td-spaces.173

Condition (i) shows that Td is a weak separation property located between T0 and174

T1. Thus, Proposition 1 yields, as a corollary, the modal proof of the following well-175

known fact.176

Corollary 1. All scattered spaces are Td .177

We have seen in Theorem 3 that each scattered space equipped with a topological178

derivative operator is a Magari algebra. The following result by Esakia [28] shows179

that any Magari algebra on P(X) can be described in this way.180

Theorem 4. (Esakia) If (P(X), δ) is a Magari algebra, then X bears a unique181

topology τ for which δ = dτ . Moreover, τ is scattered.182

Proof We first remark that if (P(X), δ) is a Magari algebra, then the operator183

c(A) := A∪δA satisfies the Kuratowski axioms of the topological closure: c∅ = ∅,184

c(A ∪ B) = cA ∪ cB, A ⊆ cA, ccA = cA. This defines a topology τ on X in which185

a set A is τ -closed iff A = c(A) iff δA ⊆ A. If ν is any topology such that δ = dν ,186

then ν has the same closed sets, that is, ν = τ . So if the required topology exists, it187

is unique. To show that δ = dτ we need an auxiliary lemma. �188

Lemma 1. Suppose (P(X), δ) is Magari. Then, for all x ∈ X,189

(i) x /∈ δ({x});190

(ii) x ∈ δA ⇐⇒ x ∈ δ(A \ {x}).191

Proof (i) By Axiom M2 we have δ{x} ⊆ δ({x} \ δ{x}). If x ∈ δ{x} then δ({x} \192

δ{x}) = δ∅ = ∅. Hence, δ{x} = ∅, a contradiction.193

(ii) x ∈ δA implies x ∈ δ((A \ {x}) ∪ {x}) = δ(A \ {x}) ∪ δ{x}. By (i), x /∈ δ{x},194

hence x ∈ δ(A \ {x}). The other implication follows from the monotonicity of δ. �195
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10 Topological Interpretations of Provability Logic 263

Lemma 2. Suppose (P(X), δ) is Magari and τ is the associated topology. Then196

δ = dτ .197

Proof Let d = dτ ; we show that for any set A ⊆ X d A = δA. Notice that for any198

B, cB = d B ∪ B = δB ∪ B. Assume x ∈ δA. Then x ∈ δ(A \ {x}) ⊆ c(A \ {x}) ⊆199

d(A \ {x}) ∪ (A \ {x}). Since x /∈ A \ {x}, we obtain x ∈ d(A \ {x}). By the200

monotonicity of d, x ∈ d A. Similarly, if x ∈ d A then x ∈ d(A \ {x}). Hence,201

x ∈ c(A \ {x}) = δ(A \ {x}) ∪ (A \ {x}). Since x /∈ A \ {x} we obtain x ∈ δA. �202

From this lemma and Theorem 3 we also infer that τ is a scattered topology.203

Theorem 4 shows that to study a natural set-theoretic interpretation of provability204

logic means to study the semantics of � as a derivative operation on a scattered205

topological space. Derivative semantics of modality was first suggested in the fun-206

damental paper by McKinsey and Tarski [48]. See [43] for a detailed survey of such207

semantics for arbitrary topological spaces. The emphasis in this chapter is on the208

logics related to formal provability and scattered topological spaces.209

10.3 Topological Completeness Theorems210

Natural examples of scattered topological spaces come from orderings. Two exam-211

ples will play an important role below.212

Let (X,≺) be a strict partial ordering. The left topology or the downset topology213

τ← on (X,≺) is given by all sets A ⊆ X such that ∀x, y (y ≺ x ∈ A ⇒ y ∈ A).214

We obviously have that (X,≺) is well-founded iff (X, τ←) is scattered. The right215

topology or the upset topology is defined similarly.216

The left topology is, in general, non-Hausdorff. More natural is the interval217

topology on a linear ordering (X,<), which is generated by all open intervals218

(α, β) = {x ∈ X | α < x < β} such that α, β ∈ X ∪ {±∞} and α < β. The219

interval topology refines both the left topology and the right topology and is scat-220

tered on any ordinal [52].221

Given a topological space (X, τ ), we denote the logic of its derivative algebra222

(P(X), dτ ) by Log(X, τ ), and we let Log(C ) denote the logic of (the class of223

derivative algebras associated with) a class C of topological spaces. Thus, if C is a224

class of scattered spaces, Log(C ) is a normal modal logic extending GL.225

Esakia [28] has noted that the completeness theorem for GL w.r.t. its Kripke226

semantics (see [22, 51]) implies that GL is the modal logic of scattered spaces. In227

fact, if (X,≺) is a strict partial ordering, then the modal algebra associated with the228

Kripke frame (X,≺) is the same as the derivative algebra of (X, τ ) where τ is its229

upset topology. This implies that any modal logic of a class of strict partial orders,230

including GL, is complete w.r.t. topological derivative semantics.231

We can also note that GL is the logic of a single countable scattered space.232

Abashidze [1] and Blass [18] independently proved a stronger completeness result.233

Theorem 5. (Abashidze, Blass) Let α ≥ ωω be any ordinal equipped with the234

interval topology. Then Log(α) = GL.235
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Thus, GL is complete w.r.t. a natural scattered topological space. The rest of this236

section is devoted to a new proof of this result. We need some technical prerequisites237

that will be also useful later in this chapter.238

Ranks and d-maps. An equivalent characterization of scattered spaces is often239

given in terms of the following transfinite Cantor–Bendixson sequence of subsets of240

a topological space (X, τ ):241

• d0
τ X = X ; dα+1

τ X = dτ (dα
τ X) and242

• dα
τ X = ⋂

β<α

dβ
τ X if α is a limit ordinal.243

It is easy to show by transfinite induction that for any (X, τ ), all sets dα
τ X are244

closed and that dα
τ X ⊇ dβ

τ X whenever α ≤ β.245

Theorem 6. (Cantor) (X, τ ) is scattered iff dα
τ X = ∅ for some ordinal α.246

Proof Let d = dτ . If (X, τ ) is scattered then we have dα X ⊃ dα+1X for each α247

such that dα X �= ∅. By cardinality arguments this yields an α such that dα X = ∅.248

Conversely, suppose A ⊆ X is nonempty. Let α be the least ordinal such that249

A � dα X . Obviously, α cannot be a limit ordinal, hence α = β + 1 for some β250

and there is an x ∈ A \ dβ+1X . Since A ⊆ dβ X , we also have x ∈ dβ X . Since251

x /∈ dβ+1X = d(dβ X), x is isolated in the relative topology of dβ X , and hence in252

the relative topology of A ⊆ dβ X . �253

Call the least α such that dα
τ X = ∅ the Cantor–Bendixson rank of X and denote

it by ρτ (X). Let On denote the class of all ordinals. Then the rank function ρτ : X →
On is defined by

ρτ (x) := min{α : x /∈ dα+1
τ (X)}.

Notice that ρτ maps X onto ρτ (X) = {α : α < ρτ (X)}. Also, ρτ (x) ≥ α iff254

x ∈ dα
τ X . We omit the subscript τ whenever there is no danger of confusion.255

Example 1. For an ordinal equipped with its left topology, ρ(α) = α for all α. When256

the same ordinal is equipped with its interval topology, ρ is the function � defined257

by �(0) = 0; �(α) = β ifα = γ + ωβ for some γ, β. By the Cantor normal form258

theorem for any α > 0, such a β is uniquely determined, thus � is well-defined.259

Notice that �(α) = 0 iff α is a non-limit ordinal.260

Let (X, τX ) and (Y, τY ) be topological spaces, and let dX , dY denote the cor-261

responding derivative operators. A map f : X → Y is called a d-map if f is262

continuous, open and pointwise discrete, that is, f −1(y) is a discrete subspace of X263

for each y ∈ Y . d-maps are well known to satisfy the properties expressed in the264

following lemma (see [16]).265

Lemma 3.266

(i) f −1(dY (A)) = dX ( f −1(A)) for any A ⊆ Y ;267

(ii) f −1 : (P(Y ), dY ) → (P(X), dX ) is a homomorphism of derivative algebras;268
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10 Topological Interpretations of Provability Logic 265

(iii) If f is onto, then Log(X, τX ) ⊆ Log(Y, τY ).269

Property (i) is easy to check directly; (ii) follows from (i), and (iii) follows from270

(ii). Each of the conditions (i) and (ii) is equivalent to f being a d-map.271

A proof of the following lemma can be found in [5].272

Lemma 4. Let Ω be the ordinal ρτ (X) taken with its left topology. Then273

(i) ρτ : X � Ω is an onto d-map;274

(ii) If f : X → λ is a d-map, where λ is an ordinal with its left topology, then275

f (X) = Ω and f = ρτ .276

An immediate corollary is that the rank function is preserved under d-maps.277

The d-sum construction. The constructions of summing up structures, in par-278

ticular, topological spaces or orderings ‘along’ another structure play an important279

role in various branches of logic and mathematics (see, e.g., [34]). Here we present280

another construction of this type, called d-sum, which can be used to recursively281

build both finite trees and ordinals. Given a tree T , one can construct a new tree by282

‘plugging in’ other trees in place of the leaves of T . Similarly, given an ordinal α,283

one can ‘plug in’ new ordinals αi for each isolated point i ∈ α to obtain another284

ordinal. The d-sum construction turned out to be rather useful for proving topological285

completeness theorems. Its particular case called d-product serves as a tool in the286

proof of topological completeness of GLP in [5].287

Definition 1 Let X be a topological space and let {Y j | j ∈ iso(X)} be a collection288

of spaces indexed by the set iso(X) of isolated points of X . We uniquely extend it289

to the collection {Y j | j ∈ X} by letting Y j = { j} for all j ∈ d X .290

We define the d-sum (Z , τZ ) of {Y j } over X (denoted
∑d

j∈X Y j ) as follows. The291

base set is the disjoint union Z := ⊔
j∈X Y j . Define the map π : Z → X by putting292

π(y) = j whenever y ∈ Y j . Now let the topology τZ consist of the sets V ∪π−1(U )293

where V is open in the topological sum
⊔

j∈iso(X) Y j and U is open in X . It is not294

difficult to check that τZ qualifies for a topology.295

Example 2. (trees)Consider finite irreflexive trees equippedwith the upset topology.296

Note that the leaves of a tree are the isolated points in the topology. Therefore, taking297

the d-sum of trees Ti over a tree T simply means plugging in Ti ’s in place of the298

leaves of T .299

Let us call an n-fork a tree Fn = (Wn, Rn), where Wn = {r, w0, w1, . . . , wn−1}300

and Rn = {(r, wi ) | 0 ≤ i < n}. Observe that any finite tree is either an irreflexive301

point, or an n-fork, or can be obtained (possibly in several ways) as a d-sum of trees302

of smaller depth.303

Example 3. (ordinals) Consider ordinals equipped with the interval topology. If304

(αi )i∈β is a family of ordinals such that αi = 1 for limit i , then the d-sum
∑d

i∈β αi is305

homeomorphic to the ordinal sum
∑

i∈β αi . This can be checked directly by examin-306

ing the descriptions of neighborhoods in respective spaces. Thus, a d-sum of ordinals307

along another ordinal is homeomorphic to an ordinal.308
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The following lemma shows that d-sums, in a way, commute with d-maps.309

Lemma 5. Let X and X ′ be two spaces and let {Y j | j ∈ iso(X)} and {Y ′
k |310

k ∈ iso(X ′)} be collections of spaces indexed by iso(X) and iso(X ′), respectively.311

Suppose further that f : X → X ′ is an onto d-map, and for each j ∈ iso(X) there312

is an onto d-map f j : Y j → Y ′
f ( j). Then there exists an onto d-map g : ∑d

j∈X Y j →313

∑d
k∈X ′ Y ′

k .314

Proof First note that since f is a d-map, f ( j) is isolated in X ′ iff j is isolated in315

X . Indeed, by openness of f , if { j} ∈ τ , then { f ( j)} ∈ τ ′. Conversely, if f ( j)316

is isolated, then f −1 f ( j) is both open and discrete by continuity and pointwise317

discreteness of f . Hence, any point in f −1 f ( j), and j in particular, is isolated in318

X . For convenience, let us denote f∗ ≡ f �dτ X and f ∗ ≡ f �iso(X). It follows that319

f ∗ : iso(X) → iso(X ′) and f∗ : dτ X → dτ ′ X ′ are well-defined onto maps and320

f = f ∗ ∪ f∗. Thus, in particular, the space Y ′
f ( j) in the formulation of the theorem321

is well-defined.322

Take g to be the set-theoretic union g = f∗ ∪ ⋃
j∈iso(X) f j . We show that g323

is a d-map. Let π and π ′ be the ‘projection’ maps associated with
∑d

j∈X Y j and324

∑d
k∈X ′ Y ′

k , respectively. To show that g is open, take W = V ∪ π−1(U ) ∈ τZ . Then325

g(W ) = g(V )∪ g(π−1(U )). That g(V ) is open in the topological sum of Y ′
k is clear326

from the openness of the maps f j . Moreover, from the definition of g and the fact327

that all f j are onto it can be easily deduced that g(π−1(U )) = π ′−1( f (U )). Since328

f is an open map, it follows that g(W ) is open in τ ′
Z . To see that g is continuous,329

take W ′ = V ′ ∪ π ′−1(U ′) ∈ τ ′
Z . Then g−1(W ′) = g−1(U ′) ∪ g−1(π ′−1(U ′)).330

Again, the openness of g−1(U ′) is trivial. It is also easily seen that g−1(π ′−1(U ′)) =331

π−1( f −1(U ′)). It follows that g−1(W ′) is open in τZ . To see that g is pointwise332

discrete is straightforward, given that f and all the f j are pointwise discrete. �333

The following lemma is crucial for a proof of Theorem 5.334

Lemma 6. For each finite irreflexive tree T there exists a countable ordinal α < ωω
335

and an onto d-map f : α � T .336

Proof The proof proceeds by induction on the depth of T . It is clear that the claim337

is true for a one-point tree. If T is an n-fork Fn we define a d-map f : ω + 1 � Fn338

by letting f (x) := wx mod n for x < ω and f (ω) := r .339

Now consider a tree T of depth n > 1 and suppose the claim is true for all trees of340

depth less than n. Clearly T can be presented as a d-sum of trees of strictly smaller341

depth in various ways. Using the induction hypothesis, each of the smaller trees is an342

image of a countable ordinal under a d-map. Applying Lemma 5 and observing that343

a countable d-sum of countable ordinals is a countable ordinal produces a countable344

ordinal α and an onto d-map f : α � T . Since the rank function is preserved under345

d-maps, the rank of α is equal to the rank of T , that is, to n. It follows that α < ωω,346

which completes the proof. �347
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Now we prove Theorem 5.348

Proof Take a non-theorem ϕ of GL. Then ϕ can be refuted on a finite irreflexive tree349

T by theorem 2. By Lemma 6, there exists an ordinal β < ωω that maps onto T via350

a d-map. By Lemma 3 (iii), ϕ can be refuted on β. But β is an open subspace of α.351

It follows that ϕ can be refuted on α. �352

Another, perhaps the simplest, proof of Theorem 5 appeared recently in [17, The-353

orem 3.5]. It relied on a direct proof of Lemma 6 rather than on Lemma 5. However,354

we believe that our approach illuminates the underlying recursive mechanism and355

may lead to additional insights in more complicated situations (see [5]).356

10.4 Topological Semantics of Linearity Axioms357

For a gödelian theory T consider the 0-generated subalgebraL 0
T of (LT ,�T ), that

is, the subalgebra generated by�. If ch(LT ,�T ) = ∞, then also ch(L 0
T ,�T ) = ∞.

In fact, the modal logic of the Magari algebra (L 0
T ,�T ) is known (see [37]) to be

GL.3 which is obtained from GL by adding the following axiom:

(.3) �p ∧ �q → �(p ∧ q) ∨ �(p ∧ �q) ∨ �(�p ∧ q).

This is the so called ‘linearity axiom’ and, as the name suggests, its finite rooted358

Kripke frames are precisely the finite strict linear orders. Since GL.3 is Kripke359

complete (see, e.g., [24]), its topological completeness is immediate. However, it360

is not immediately clear what kind of scattered spaces does the linearity axiom361

isolate. To characterize GL.3-spaces, let us first simplify the axiom (.3). Consider362

the following formula:363

(lin) �(�+ p ∨ �+q) → �p ∨ �q,364

where �+ϕ is a shorthand for ϕ ∧ �ϕ.365

Lemma 7. In GL the schema (.3) is equivalent to (lin).366

Proof To show that (lin) �GL (.3), witness the following syntactic argument.367

Observe that the dual form of (lin) looks as follows:368

�p ∧ �q → �(�+ p ∧ �+q) (∗)369

where�+ϕ := ϕ ∨�ϕ. Furthermore, an instance of the GL axiom looks as follows:370

�(�+ p ∧ �+q) → �(�+ p ∧ �+q ∧ �(�+¬p ∨ �+¬q)).371

By the axiom (lin) we also have: �(�+¬p ∨ �+¬q) → (�¬p ∨ �¬q). So, using
the monotonicity of � we obtain:
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�p ∧ �q → �(�+ p ∧ �+q ∧ (�¬p ∨ �¬q)).

By boolean logic372

�+ p ∧ �+q ↔ (p ∧ q) ∨ (p ∧ �q) ∨ (�p ∧ q) ∨ (�p ∧ �q) (∗∗)373

and374

(�¬p ∨ �¬q) ↔ ¬(�p ∧ �q).375

Using these, together with the monotonicity of � we finally arrive at:376

�p ∧ �q → �((p ∧ q) ∨ (p ∧ �q) ∨ (�p ∧ q)),377

which is equivalent to (.3) since � distributes over ∨.378

To show the converse, we observe that (.3) implies (lin) even in the system K.379

Indeed, the formula (∗), which is the dual form of (lin), can be rewritten, using (∗∗)380

and the distribution of � over ∨ as follows:381

�p ∧ �q → �(p ∧ q) ∨ �(p ∧ �q) ∨ �(�p ∧ q) ∨ �(�p ∧ �q),382

which is clearly a weakening of (.3). Therefore (.3) �GL (lin). �383

It follows that a scattered space is a GL.3-space iff it validates (lin). To charac-384

terize such spaces, consider the following definition.385

Definition 2 Call a scattered space primal if for each x ∈ X and U, V ∈ τ , {x} ∪386

U ∪ V ∈ τ implies {x} ∪ U ∈ τ or {x} ∪ V ∈ τ .387

It can be shown that X is primal iff the collection of punctured open neighborhoods388

of each non-isolated point is a prime filter in the Heyting algebra τ .389

Theorem 7. Let X be a scattered space. Then X � (lin) iff X is primal.390

Proof Let X be a scattered space together with a valuation ν. Let P := ν(p) and391

Q := ν(q) denote the truth-sets of p and q, respectively. Then the truth sets of �+ p392

and �+q are Iτ P and Iτ Q, where Iτ is the interior operator of X . We write x � ϕ393

for X, x �ν ϕ.394

Suppose X is primal and for some valuation x � �(�+ p ∨ �+q). Then there395

exists an open neighborhood W of x such that W \ {x} � �+ p ∨ �+q. In other396

words, W \ {x} ⊆ Iτ P ∪ Iτ Q. Let U = W ∩ Iτ P ∈ τ and V = W ∩ Iτ Q ∈ τ . Then397

{x} ∪ U ∪ V = W ∈ τ . It follows that either {x} ∪ U ∈ τ or {x} ∪ V ∈ τ . Hence398

x � �p or x � �q. This proves that X � (lin).399

Suppose now X is not primal. Then there exist x ∈ X and U, V ∈ τ such that400

{x} ∪ U ∪ V ∈ τ , but {x} ∪ U �∈ τ and {x} ∪ V �∈ τ . Take a valuation such that401

P = U and Q = V . Then clearly x � �(�+ p ∨ �+q). However, neither x � �p402

nor x � �q is true. Indeed, if, for example, x � �p, then there exists an open403
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neighborhood W of x such that W \ {x} ⊆ P = U . But then {x} ∪ U = W ∪ U ∈ τ ,404

which is a contradiction. This shows that X �� (lin). �405

Example 4. (primal spaces) The left topology of any well-founded linear order is406

clearly primal. To give an example of a primal space not coming from order, consider407

any countable set A, a point b /∈ A and a free ultrafilter u over A. Then the set A∪{b}408

with the topology ℘(A) ∪ {U ∪ {b} | U ∈ u} is easily seen to be primal. This space409

is homeomorphic to a subspace of the Stone-Čech compactification of a countable410

discrete space A defined by A ∪ {u}.411

The primal scattered spaces are closely related tomaximal scattered spaces of [5].412

A scattered space is called maximal if it does not have any proper refinements with413

the same rank function. It is easy to see that each maximal scattered space is primal,414

but there are primal spaces which are not maximal. The two notions do coincide415

for the scattered spaces of finite rank. It follows that the logic of maximal scattered416

spaces is GL.3.417

10.5 GLP-Algebras and Polymodal Provability Logic418

A natural generalization of provability logic GL to a language with infinitely many419

modal diamonds 〈0〉, 〈1〉, … has been introduced in 1986 by Japaridze [40]. He420

interpreted 〈1〉ϕ as an arithmetical statement expressing the ω-consistency of ϕ over421

a given gödelian theory T .2 Similarly, 〈n〉ϕ was interpreted as the consistency of the422

extension of T + ϕ by n nested applications of the ω-rule.423

While the logic of each of the individualmodalities 〈n〉 over PeanoArithmeticwas424

known to coincide with GL by a relatively straightforward extension of the Solovay425

theorem [20], Japaridze found a complete axiomatization of the joint logic of the426

modalities 〈n〉 for all n ∈ ω. This result involved considerable technical difficulties427

and lead to one of the first genuine extensions of Solovay’s arithmetical fixed-point428

construction. Later, Japaridze’s work has been simplified and extended by Ignatiev429

[39] and Boolos [21]. In particular, Ignatiev showed that GLP is complete for more430

general sequences of ‘strong’ provability predicates in arithmetic and analyzed the431

variable-free fragment of GLP. Boolos included a treatment of GLB (the fragment432

of GLP with just two modalities) in his popular book on provability logic [22].433

More recently, GLP has found interesting applications in proof-theoretic analysis434

of arithmetic [2, 6, 7, 9] which stimulated some further interest in the study ofmodal-435

logical properties of GLP [11, 15, 23, 38]. For such applications, the algebraic436

language appears to be more natural and a different choice of the interpretation of437

the provability predicates is needed. The relevant structures have been introduced in438

[6] under the name of graded provability algebras.439

2 A gödelian theory U is ω-consistent if its extension by unnested applications of the ω-rule
U ′ := U + {∀x ϕ(x) : ∀n U � ϕ(n)} is consistent.
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Recall that an arithmetical formula is calledΠn if it can be obtained froma formula440

containing only bounded quantifiers ∀x ≤ t and ∃x ≤ t by a prefix of n alternating441

blocks of quantifiers starting from ∀. Arithmetical �n-formulas are defined dually.442

Let T be a gödelian theory. T is called n-consistent if T together with all true443

arithmetical Πn-sentences is consistent. (Alternatively, T is n-consistent iff every444

�n-sentence provable in T is true.) Let n-Con(T ) denote an arithmetical formula445

expressing the n-consistency of T (it can be defined using the standardΠn-definition446

of truth for Πn-sentences in arithmetic). Since we assume T to be recursively enu-447

merable, it is easy to check that the formula n-Con(T ) itself belongs to the class448

Πn+1.449

The n-consistency formula induces an operator 〈n〉T acting on the Lindenbaum–
Tarski algebra LT :

〈n〉T : [ϕ] �−→ [n-Con(T + ϕ)].

The dual n-provability operators are defined by [n]T x = ¬〈n〉T ¬x for all x ∈450

LT . Since every true Πn-sentence is assumed to be an axiom for n-provability, we451

notice that every true �n+1-sentence must be n-provable. Moreover, this latter fact452

is formalizable in T , so we obtain the following lemma (see [54]). (By the abuse of453

notation we denote by [n]T ϕ the arithmetical formula expressing the n-provability454

of ϕ in T .)455

Lemma 8. For each true �n+1-formula σ(x), T � ∀x (σ (x) → [n]T σ(x)).456

As a corollary we obtain a basic observation probably due to Smorynski [54].457

Proposition 3. For each n ∈ ω, the structure (LT , 〈n〉T ) is a Magari algebra.458

A proof of this fact consists of verifying the Hilbert–Bernays–Löb derivability con-459

ditions for [n]T in T and of deducing from them, in the usual way, an analog of Löb’s460

theorem for [n]T .461

The structure (LT , {〈n〉T : n ∈ ω}) is called the graded provability algebra of T462

or the GLP-algebra of T . Apart from the identities inherited from the structure of463

Magari algebras for each 〈n〉, it satisfies the following principles for all m < n:464

P1. 〈m〉x ≤ [n]〈m〉x ;465

P2. 〈n〉x ≤ 〈m〉x .466

The validity of P1 follows from Lemma 8 because the formula 〈m〉T ϕ, for any ϕ,467

belongs to the classΠm+1. P2 holds since 〈n〉T ϕ asserts the consistency of a stronger468

theory than 〈m〉T ϕ for m < n.469

In general, we call a GLP-algebra a structure (M, {〈n〉 : n ∈ ω}) such that each470

(M, 〈n〉) is a Magari algebra and conditions P1, P2 (that are equivalent to identities)471

are satisfied for all x ∈ M .472

At this point it is worth noticing that condition P1 has an equivalent form that has473

proved to be quite useful in the study of GLP-algebras.474
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Lemma 9. Modulo the other identities of GLP-algebras, P1 is equivalent to475

P1’. 〈n〉y ∧ 〈m〉x = 〈n〉(y ∧ 〈m〉x) for all m < n.476

Proof First, we prove P1′. We have y ∧ 〈m〉x ≤ y, hence 〈n〉(y ∧ 〈m〉x) ≤ 〈n〉y.477

Similarly, by P2 and transitivity, 〈n〉(y ∧ 〈m〉x) ≤ 〈n〉〈m〉x ≤ 〈m〉〈m〉x ≤ 〈m〉x .478

Hence, 〈n〉(y ∧ 〈m〉x) ≤ 〈n〉y ∧ 〈m〉x . In the other direction, by P1, 〈n〉y ∧ 〈m〉x ≤479

〈n〉y ∧ [n]〈m〉x . However, as in any modal algebra, we also have 〈n〉y ∧ [n]z ≤480

〈n〉(y ∧ z). It follows that 〈n〉y ∧ [n]〈m〉x ≤ 〈n〉(y ∧ 〈m〉x). Thus, P1′ is proved.481

To infer P1 from P1′ it is sufficient to prove that 〈m〉x ∧¬[n]〈m〉x = ⊥. We have482

that ¬[n]〈m〉x = 〈n〉¬〈m〉x . Therefore, by P1′, 〈m〉x ∧ 〈n〉¬〈m〉x = 〈n〉(¬〈m〉x ∧483

〈m〉x) = 〈n〉⊥ = ⊥, as required. �484

An equivalent formulation of Japaridze’s arithmetical completeness theorem is485

that any identity of (LT , {〈n〉T : n ∈ ω}) follows from the identities of GLP-algebras486

[40]. It is somewhat strengthened to the current formulation in [13, 39].487

Theorem 8. (Japaridze) Suppose T is gödelian, T contains Peano Arithmetic, and488

ch(LT , 〈n〉T ) = ∞ for each n < ω. Then, an identity holds in (LT , {〈n〉T : n ∈ ω})489

iff it holds in all GLP-algebras.490

We note that the condition ch(LT , 〈n〉T ) = ∞, for each n ∈ ω, is equivalent491

to T + n-Con(T ) being consistent for each n ∈ ω, and is clearly necessary for the492

validity of Japaridze’s theorem.493

The logic of all GLP-algebras can also be axiomatized as a Hilbert-style calculus494

(see the footnote in Sect. 10.1). The corresponding system GLP was originally495

introduced by Japaridze. GLP is formulated in the language of propositional logic496

enriched by modalities [n] for all n ∈ ω. The axioms of GLP are those of GL,497

formulated for each [n], as well as the two analogs of P1 and P2 for all m < n:498

P1. 〈m〉ϕ → [n]〈m〉ϕ;499

P2. [m]ϕ → [n]ϕ.500

The inference rules of GLP are modus ponens and ϕ/[n]ϕ for each n ∈ ω.501

We let GLPn denote the fragment of GLP in the language with the first n modal-502

ities; thus GLB is GLP2.503

For any modal formula ϕ, GLP � ϕ iff the identity tϕ = � holds in all GLP-504

algebras. Hence, GLP coincides with the logic of all GLP-algebras as well as with505

the logic of the GLP-algebra of T for any theory T such that T + n-Con(T ) is506

consistent for each n < ω.507

10.6 GLP-Spaces508

Topological semantics for GLP has been first considered in [14]. The main diffi-509

culty in the modal-logical study of GLP comes from the fact that it is incomplete510

with respect to its relational semantics; that is, GLP is the logic of no class of511
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frames [22]. Even though a suitable class of relational models for which GLP is512

sound and complete was developed in [11], these models are not so easy to handle.513

So, it is natural to consider a generalization of the topological semantics we have for514

GL. As it turns out, topological semantics provides another natural class of GLP-515

algebras which is interesting in its own right, and also due to its analogy with the516

proof-theoretic GLP-algebras.517

As before, we are interested in GLP-algebras of the form (P(X), {〈n〉 : n ∈518

ω}), where P(X) is the boolean algebra of subsets of a given set X . Since each519

(P(X), 〈n〉) is a Magari algebra, the operator 〈n〉 is the derivative operator with520

respect to some uniquely defined scattered topology on X . Thus, we come to the521

following definition [14].522

A polytopological space (X, {τn : n ∈ ω}) is called a GLP-space if the following523

conditions hold for each n ∈ ω:524

D0. (X, τn) is a scattered space;525

D1. For each A ⊆ X , dτn (A) is τn+1-open;526

D2. τn ⊆ τn+1.527

We notice that the last two conditions directly correspond to conditions P1 and P2528

of GLP-algebras. By a GLPm-space we mean a space (X, {τn : n < m}) satisfying529

conditions D0–D2 for the first m topologies.530

Proposition 4. (i) If (X, {τn : n ∈ ω}) is a GLP-space, then the structure531

(P(X), {dτn : n ∈ ω}) is a GLP-algebra.532

(ii) If (P(X), {〈n〉 : n ∈ ω}) is a GLP-algebra, then there are uniquely defined533

topologies {τn : n ∈ ω} on X such that (X, {τn : n ∈ ω}) is a GLP-space and534

〈n〉 = dτn for each n < ω.535

Proof (i) Suppose (X, {τn : n ∈ ω}) is a GLP-space. Let dn := dτn denote the536

corresponding derivative operators and let d̃n denote its dual d̃n(A) := X\dn(X\A).3537

By Theorem 3 (P(X), dn) is a Magari algebra for each n ∈ ω. Notice that A ∈ τn538

iff A ⊆ d̃n A. If m < n, then dm A ∈ τn , so dm A ⊆ d̃ndm A, hence P1 holds. Since539

τn ⊆ τn+1, we have dn+1A ⊆ dn A, thus P2 holds.540

(ii) Let (P(X), {〈n〉 : n ∈ ω}) be a GLP-algebra. Since each of the algebras541

(P(X), 〈n〉) is Magari, by Theorem 4 a scattered topology τn on X is defined for542

which 〈n〉 = dτn . In fact, we have U ∈ τn iff U ⊆ [n]U . We check that conditions543

D1 and D2 are met.544

Suppose A is τn-closed, that is, 〈n〉A ⊆ A. Then 〈n + 1〉A ⊆ 〈n〉A ⊆ A by P2.545

Hence, A is τn+1-closed. Thus, τn ⊆ τn+1.546

By P1 for any set A we have 〈n〉A ⊆ [n +1]〈n〉A. Hence, dτn (A) = 〈n〉A ∈ τn+1.547

Thus, (X, {τn : n ∈ ω}) is a GLP-space. �548

To obtain examples of GLP-spaces let us first consider the case of two modalities.549

The following basic example is due to Esakia (private communication, see [14]).550

3 There is no conventional name for the dual of the derivative operator. Sometimes it is denoted by
t . Here we choose the notation d̃ to emphasize its connection with d.
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Example 5. Consider a bitopological space (Ω; τ0, τ1), where Ω is an ordinal, τ0551

is its left topology, and τ1 is its interval topology. Esakia noticed that this space is a552

model of GLB, that is, in our terminology, a GLP2-space. In fact, for any A ⊆ Ω the553

set d0(A) = (min A,Ω) is an open interval, whenever A is not empty. Hence, D1554

holds (the other two conditions are immediate). Esakia also noticed that such spaces555

can never be complete for GLP as the linearity axiom (.3) holds for 〈0〉.556

In general, to define GLPn-spaces for n > 1, we introduce an operation τ �−→ τ+
557

on topologies on a given set X . This operation plays a central role in the study of558

GLP-spaces.559

Given a topological space (X, τ ), let τ+ be the coarsest topology containing τ560

such that each set of the form dτ (A), with A ⊆ X , is open in τ+. Thus, τ+ is561

generated by τ and {dτ (A) : A ⊆ X}. Clearly, τ+ is the coarsest topology on X such562

that (X; τ, τ+) is a GLP2-space. Sometimes we call τ+ the derivative topology of563

(X, τ ).564

Getting back to Esakia’s example, it is easy to verify that, on any ordinal Ω , the565

derivative topology of the left topology coincides with the interval topology. (In fact,566

any open interval is an intersection of a downset and an open upset.)567

Example 6. Even though we are mainly interested in scattered spaces, the derivative568

topology makes sense for arbitrary spaces. The reader can check that if τ is the569

coarsest topology on a set X (whose open sets are just X and ∅), then τ+ is the570

cofinite topology on X (whose open sets are exactly the cofinite subsets of X together571

with ∅). On the other hand, if τ is the cofinite topology, then τ+ = τ . We note that572

the logic of the cofinite topology on an infinite set is KD45 (see [57]).573

For scattered spaces, τ+ is always strictly finer than τ , unless τ is discrete. We574

present a proof using the language of Magari algebras.575

Proposition 5. If (X, τ ) is scattered, then dτ (X) is not open, unless dτ (X) = ∅.576

Proof The set dτ (X) corresponds to the element �� in the associated Magari alge-577

bra; dτ (X) being open means �� ≤ ���. By M2 we have ��� ≤ �⊥ = ¬��.578

Hence, �� ≤ ¬��, that is, �� = ⊥. This means dτ (X) = ∅. �579

We will see later that τ+ can be much finer than τ . Notice that if τ is Td , then580

each set of the form dτ (A) is τ -closed. Hence, it will be clopen in τ+. Thus, τ+ is581

obtained by adding to τ new clopen sets. In particular, τ+ will be zero-dimensional582

if so is τ .4583

Iterating the plus operation yields a GLP-space. Let (X, τ ) be a scattered space.584

Define: τ0 := τ and τn+1 := τ+
n . Then (X, {τn : n ∈ ω}) is a GLP-space that will be585

called the GLP-space generated from (X, τ ) or simply the generated GLP-space.586

Thus, from any scattered space we can always produce a GLP-space in a natural587

way. The question is whether this space will be nontrivial, that is, whether we can588

guarantee that the topologies τn are non-discrete.589

4 Recall that a topological space is zero-dimensional if it has a base of clopen sets.
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In fact, the next observation from [14] shows that for many natural τ already the590

topology τ+ will be discrete. Recall that a topological space X is first-countable if591

every point x ∈ X has a countable basis of open neighborhoods.592

Proposition 6. If (X, τ ) is Hausdorff and first-countable, then τ+ is discrete.593

Proof It is easy to see that if (X, τ ) is first-countable and Hausdorff, then every point594

a ∈ dτ (X) is a (unique) limit point of a countable sequence of points A = {an}n∈ω.595

Hence, there is a set A ⊆ X such that dτ (A) = {a}. By D1 this means that {a} is596

τ+-open. �597

Thus, if τ is the interval topology on a countable ordinal, then τ+ is discrete. The598

same holds, for example, if τ is the (non-scattered) topology of the real line.599

We remark that the left topology τ on any countable ordinal> ω yields an example600

of a non-Hausdorff first-countable space such that τ+ is non-discrete. In the following601

section we will also see that if τ is the interval topology on any ordinal > ω1, then602

τ+ is non-discrete (ω1 is its least non-isolated point). However, we do not have any603

topological characterization of spaces (X, τ ) such that τ+ is discrete. (See, however,604

Proposition 8, which provides a characterization in terms of d-reflection.)605

Given an arbitrary scattered topology τ , it is natural to ask about the separation606

properties of τ+. In fact, for τ+ we can infer a bitmore separation than for an arbitrary607

scattered topology. Recall that a topological space X is T1 if for any two different608

points a, b ∈ X there is an open set U such that a ∈ U and b /∈ U .609

Proposition 7. Let (X, τ ) be any topological space. Then (X, τ+) is T1.610

Proof Let a, b ∈ X , a �= b. Consider the set B := dτ ({b}), which is open in τ+. We611

either have a ∈ B (and b /∈ B by definition) or a belongs to the complement of the612

closure of {b}. �613

The following example shows that, in general, τ+ need not always be Hausdorff.614

Example 7. Let (X,≺) be a strict partial ordering on X := ω ∪ {a, b}, where ω is615

taken with its natural order, a and b are ≺-incomparable, and n ≺ a, b for all n ∈ ω.616

Let τ be the left topology on (X,≺). Since ≺ is well-founded, τ is scattered.617

Notice that for any A ⊆ X we have dτ (A) = {x ∈ X : ∃y ∈ A y ≺ x}. Hence,618

if A intersects ω, then dτ (A) contains an end-segment of ω. Otherwise, dτ (A) = ∅.619

It follows that a base of open neighborhoods of a in τ+ consists of sets of the form620

I ∪{a}, where I is an end-segment of ω. Similarly, sets of the form I ∪{b} are a base621

of open neighborhoods of b. But any two such sets have a non-empty intersection.622

10.7 d-Reflection623

In the next section we are going to describe in some detail the GLP-space generated624

from the left topology on the ordinals. Strikingly, we will see that it naturally leads625

to some of the central notions of combinatorial set theory, such as Mahlo operation626
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and stationary reflection. In fact, part of our analysis can be easily stated using627

the language of modal logic for arbitrary generated GLP-spaces. In this section we628

provide a necessary setup and characterize the topologies of a generated GLP-space629

in terms of what we call d-reflection.5630

Throughout this section we fix a topological space (X, τ ) and let d = dτ .631

Definition 3 A point a ∈ X is called d-reflexive if a ∈ d X and, for each A ⊆ X ,

a ∈ d A ⇒ a ∈ d(d A).

In modal logic terms this means that the formula �� ∧ (�p → ��p) is valid at632

a ∈ X for any evaluation of the variable p in (X, τ ).633

Similarly, a point a ∈ X is called m-fold d-reflexive if a ∈ d X and for each
A1, . . . , Am ⊆ X ,

a ∈ d A1 ∩ · · · ∩ d Am ⇒ a ∈ d(d A1 ∩ · · · ∩ d Am).

2-fold d-reflexive points will also be called doubly d-reflexive points. Expressed634

with the help of the modal language, a ∈ X is doubly d-reflexive iff the formula635

�� ∧ (�p ∧ �q → �(�p ∧ �q)) is valid at a for any evaluation of p, q.636

Lemma 10. Let (X, τ ) be a Td-space. Each doubly d-reflexive point x ∈ X is m-fold637

d-reflexive for any finite m.638

Proof The argument goes by induction on m ≥ 2. Suppose x ∈ d A1 ∩· · ·∩d Am+1,639

then x ∈ d A1 ∩ · · · ∩ d Am and x ∈ d Am+1. By induction hypothesis, x ∈ d(d A1 ∩640

· · ·∩d Am) and by 2-fold reflection x ∈ d(d(d A1∩· · ·∩d Am)∩d Am+1).However,641

by Td property d(d A1 ∩ · · · ∩ d Am) ⊆ d A1 ∩ · · · ∩ d Am, hence x ∈ d(d A1 ∩ · · · ∩642

d Am ∩ d Am+1), as required. �643

Proposition 8. Let (X, τ ) be a Td-space. A point x ∈ X is doubly d-reflexive iff x644

is a limit point of (X, τ+).645

Proof For the (if) direction, we give an argument in the algebraic format. In fact, it is
sufficient to show the following inequality in the algebra of (X, τ ) for any elements
p, q ⊆ X :

〈1〉� ∧ 〈0〉p ∧ 〈0〉q ≤ 〈0〉(〈0〉p ∧ 〈0〉q).

Notice that by Lemma 9, 〈1〉�∧ 〈0〉p = 〈1〉(�∧〈0〉p) = 〈1〉〈0〉p. Hence, using646

P1′ once again, we obtain: 〈1〉�∧〈0〉p∧〈0〉q = 〈1〉〈0〉p∧〈0〉q = 〈1〉(〈0〉p∧〈0〉q).647

The latter formula can be weakened to 〈0〉(〈0〉p ∧ 〈0〉q) by P2, as required.648

5 Curiously, the reader may notice that the notion of reflection principle as used in provability logic
and formal arithmetic matches very nicely the notions such as stationary reflection in set theory.
(As far as we know, the two terms have evolved completely independently from one another.)
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For the (only if) direction, it is sufficient to show that each doubly d-reflexive point649

of (X, τ ) is a limit point of τ+. Suppose x is doubly d-reflexive. ByLemma10, x ism-650

foldd-reflexive.Anybasic open subset of τ+ has the formU := A0∩d A1∩· · ·∩d Am,651

where A0 ∈ τ . Assume x ∈ U , we have to find a point y �= x such that y ∈ U .652

Since x ∈ d A1∩· · ·∩d Am, by m-fold d-reflexivity we obtain x ∈ d(d A1∩· · ·∩653

d Am). Since A0 is an open neighborhood of x , there is a y ∈ A0 such that y �= x654

and y ∈ d A1 ∩ · · · ∩ d Am . Hence, y ∈ U and y �= x , as required. �655

Let d+ denote the derivative operator associated with τ+. We obtain the following656

characterization of derived topology in terms of neighborhoods.657

Proposition 9. Let (X, τ ) be a Td-space. A subset U ⊆ X contains a τ+-658

neighborhood of x ∈ X iff one of the following two cases holds:659

(i) x is not doubly d-reflexive and x ∈ U;660

(ii) x is doubly d-reflexive and there is an A ∈ τ and a B such that x ∈ A∩d B ⊆ U.661

Proof Since (i) ensures that x is τ+-isolated by Proposition 8, each condition is662

clearly sufficient for U to contain a τ+-neighborhood of x . To prove the converse,663

assume that U contains a τ+-neighborhood of x . This means x ∈ A ∩ d A1 ∩ · · · ∩664

d Am ⊆ U for some A, A1, . . . , Am with A ∈ τ . If x is τ+-isolated, condition (i)665

holds. Otherwise, x ∈ d+ X . Let B := d A1 ∩ · · · ∩ d Am . Since B is closed in τ we666

have d B ⊆ B, hence A ∩ d B ⊆ U . It remains to show that x ∈ A ∩ d B. By Lemma667

9, B ∩ d+ X = d+ B ⊆ d B. Hence, x ∈ A ∩ B ∩ d+ X ⊆ A ∩ d B. �668

Remark 1. Since in clause (ii) of Proposition 9 the set A is open, we have A ∩d B =669

A ∩ d(A ∩ B) for any B. Hence, we may assume B ⊆ A.670

Corollary 2. Let (X, τ ) be a Td-space. Then, for all x ∈ X and A ⊆ X, x ∈ d+ A671

iff the following two conditions hold:672

(i) x is doubly d-reflexive;673

(ii) For all B ⊆ X, x ∈ d B ⇒ x ∈ d(A ∩ d B).674

Proof The fact that (i) and (ii) are necessary is proved using Proposition 8 and the675

inequality d+ A ∩ d B = d+(A ∩ d B) ⊆ d(A ∩ d B). We prove that (i) and (ii) are676

sufficient. Assume x ∈ U ∈ τ+. By Proposition 9 we may assume that U has the677

form V ∩ d B, where V ∈ τ . By (ii), from x ∈ d B we obtain x ∈ d(A ∩ d B).678

Hence, there is a y �= x such that y ∈ V and y ∈ A ∩ d B. It follows that y ∈ A and679

y ∈ V ∩ d B = U . ! �680

10.8 The Ordinal GLP-Space681

Here we discuss the GLP-space generated from the left topology on the ordinals,682

that is, the GLP-space (Ω; {τn : n ∈ ω}), where Ω is a fixed ordinal, τ0 is the left683

topology on Ω and τn+1 = τ+
n for each n ∈ ω. The material in this section comes684
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from a so far unpublished manuscript of the first author [10]. Our basic findings are685

summarized in the following table, to which we provide extended comments below.686

The rows of the table correspond to topologies τn . The first column contains the687

name of the topology (the first two are standard, the third one is introduced in [14],688

the fourth one is introduced here). The second column indicates the first limit point of689

τn , which is denoted θn . The last column describes the derivative operator associated690

with τn . We note that θ3 is a large cardinal which is sometimes referred to as the first691

cardinal reflecting for pairs of stationary sets (see below), but we know no special692

notation for this cardinal.693

Name θn dn(A)

τ0 Left 1 {α : A ∩ α �= ∅}
τ1 Interval ω {α ∈ Lim : A ∩ α is unbounded inα}
τ2 Club ω1 {α : cf(α) > ω and A ∩ α is stationary inα}
τ3 Mahlo θ3 ……

We have already seen that the derivative topology of the left topology is exactly694

the interval topology. Therefore, basic facts related to the first two rows of the table695

are rather clear. We turn to the next topology τ2.696

Club topology. Recall that the cofinality cf(α) of a limit ordinal α is the least697

order type of a cofinal subset of α; cf(α) := 0 if α /∈ Lim. (We use the words cofinal698

in α and unbounded in α as synonyms.) An ordinal α is regular if cf(α) = α.699

To characterize τ2 we apply Proposition 9, hence it is useful to see what corre-700

sponds to the notion of doubly d-reflexive point of the interval topology.701

Lemma 11. For any ordinal α, α is d1-reflexive iff α is doubly d1-reflexive iff cf(α) >702

ω.703

Proof d1-reflexivity of α means that α ∈ Lim and, for all A ⊆ α, if A is cofinal in α,704

then d1(A) is cofinal in α. If cf(α) = ω, then there is an increasing sequence (αn)n∈ω705

such that sup{αn : n ∈ ω} = α. Then, for A := {αn : n ∈ ω} we obviously have706

d1(A) = {α}, hence A violates the reflexivity property. Therefore, d1-reflexivity of707

α implies cf(α) > ω.708

Nowwe show that cf(α) > ω impliesα is doublyd1-reflexive. Suppose cf(α) > ω709

and A, B ⊆ α are both cofinal in α. We show that d1A ∩d1B is cofinal in α. Assume710

β < α. Using the cofinality of A, B we can construct an increasing sequence (γn)n∈ω711

aboveβ such that γn ∈ A for even n, and γn ∈ B for odd n. Let γ := sup{γn : n < ω}.712

Obviously, both A and B are cofinal in γ whence γ ∈ d1A ∩ d1B. Since cf(α) > ω713

and cf(γ ) = ω, we have γ < α. �714

Corollary 3. Limit points of τ2 are exactly the ordinals of uncountable cofinality.715

It turns out that topology τ2 is strongly related to the well-known concept of a716

club filter, i.e., the filter generated by all clubs on a limit ordinal. Recall that a subset717

C ⊆ α is called a club in α if C is closed in the interval topology of α and unbounded718

in α.719
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Proposition 10. Assume cf(α) > ω. The following statements are equivalent:720

(i) U contains a τ2-neighborhood of α;721

(ii) There is a B ⊆ α such that α ∈ d1B ⊆ U;722

(iii) α ∈ U and U contains a club in α;723

(vi) α ∈ U and U ∩ α belongs to the club filter on α.724

Proof Statement (ii) implies (iii) since α ∩ d1B is a club in α whenever α ∈ d1B.725

Statement (iii) implies (iv) for obvious reasons.726

Statement (iv) implies (i). If C is a club in α, then C ∪ {α} contains a τ2-727

neighborhood d1C of α. Indeed, d1C is τ2-open, contains α, and d1C ⊆ C ∪ {α}728

since C is τ1-closed in α.729

Statement (i) implies (ii). Assume U contains a τ2-neighborhood of α. Since730

cf(α) > ω, by Lemma 11 and Proposition 9 there is an A ∈ τ1 and a B1 such that731

α ∈ A ∩ d1B1 ⊆ U . Since A is a τ1-neighborhood of α, by Proposition 9 again732

there are A0 ∈ τ0 and B0 such that α ∈ A0 ∩ d0B0. Since τ0 is the left topology, we733

may assume that A0 is the minimal τ0-neighborhood [0, α] of α. Besides, we have734

α ∈ d0B0 ∩ d1B1 = d1(B1 ∩ d0B0) ⊆ U . Since [0, α] is τ1-clopen, d1(C ∩ α) =735

[0, α] ∩ d1C for any C , so we can take B1 ∩ d0B0 ∩ α for B. �736

Corollary 4. τ2 is the unique topology on Ω such that737

• If cf(α) ≤ ω, then α is an isolated point;738

• If cf(α) > ω, then, for any U ⊆ Ω , U contains a neighborhood of α iff α ∈ U739

and U contains a club in α.740

Hence, we may call τ2 the club topology.741

The derivative operation for the club topology is also well known in set theory.742

Recall the following definition for cf(α) > ω.743

A subset A ⊆ α is called stationary in α if A intersects every club in α. Observe
that this happens exactly when α is a limit point of A in τ2, so

d2(A) = {α : cf(α) > ω and A ∩ α is stationary inα}.

The map d2 is usually called the Mahlo operation (see [41], where d2 is denoted744

Tr). Its main significance is associated with the notion of Mahlo cardinal, one of the745

basic examples of large cardinals in set theory. Let Reg denote the class of regular746

cardinals; the ordinals in d2(Reg) are calledweakly Mahlo cardinals. Their existence747

implies the consistency of ZFC, as well as the consistency of ZFC together with the748

assertion ‘inaccessible cardinals exist.’749

Now we turn to topology τ3.750

Stationary reflection and Mahlo topology. Since the open sets of τ3 are gener-751

ated by theMahlo operation, we call τ3 Mahlo topology. It turns out to be intrinsically752

connected with stationary reflection, an extensively studied phenomenon in set the-753

ory (see [32, Chaps. 1, 15]).754

We adopt the following terminology. An ordinal λ is called reflecting if cf(λ) > ω755

and, whenever A is stationary in λ, there is an α < λ such that A ∩ α is stationary in756



U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

10 Topological Interpretations of Provability Logic 279

α. Similarly, λ is doubly reflecting if cf(λ) > ω and whenever A, B are stationary757

in λ there is an α < λ such that both A ∩ α and B ∩ α are stationary in α.758

Mekler and Shelah’s notion of reflection cardinal [49] is somewhat more general759

than the one given here, however it has the same consistency strength. Reflection760

for pairs of stationary sets has been introduced by Magidor [47]. Since d2 coincides761

with the Mahlo operation, we immediately obtain the following statement.762

Proposition 11. (i) λ is reflecting iff λ is d2-reflexive;763

(ii) λ is doubly reflecting iff λ is doubly d2-reflexive;764

(iii) λ is a non-isolated point in τ3 iff λ is doubly reflecting.765

Togetherwith the next proposition this yields a characterization ofMahlo topology766

in terms of neighborhoods.767

Proposition 12. Suppose λ is doubly reflecting. For any subset U ⊆ Ω , the follow-768

ing conditions are equivalent:769

(i) U contains a τ3-neighborhood of λ;770

(ii) λ ∈ U and there is a B ⊆ λ such that λ ∈ d2B ⊆ U;771

(iii) λ ∈ U and there is a τ2-closed (in the relative topology of λ) stationary C ⊆ λ772

such that C ⊆ U.773

Notice that the notion of τ2-closed stationary C in (iii) is the analog of the notion774

of club for the τ2-topology.775

Proof Condition (ii) implies (iii). Since λ is reflecting, if λ ∈ d2B, then λ ∈ d2d2B,776

that is, λ ∩ d2B is stationary in λ. So we may take C := λ ∩ d2B.777

Condition (iii) implies (ii). If C is τ2-closed and stationary in λ, then d2C ⊆778

C ∪ {λ} ⊆ U and λ ∈ d2C . Thus, λ ∩ d2C can be taken for B.779

Condition (ii) implies (i). If (ii) holds, U contains a subset of the form d2B. The780

latter is τ3-open and contains λ, thus it is a neighborhood of λ.781

For the converse direction, we note that by Proposition 9U contains a subset of the
form A∩d2B, where A ∈ τ2, B ⊆ A and λ ∈ A∩d2B. Since A is a τ2-neighborhood
of λ, by Proposition 10 there is a set B1 such that λ ∈ [0, λ] ∩ d1B1 ⊆ A. Then

λ ∈ [0, λ] ∩ d1B1 ∩ d2B = [0, λ] ∩ d2(B ∩ d1B1).

Since [0, λ] is clopen, we obtain λ ∈ d2C with C := B ∩ d1B1 ∩ λ. �782

Reflecting and doubly reflecting cardinals are large cardinals in the sense that their783

existence implies consistency of ZFC. They have been studied byMekler and Shelah784

[49] and Magidor [47] who investigated their consistency strength and related them785

to some other well-known large cardinals. By a result of Magidor, the existence of a786

doubly reflecting cardinal is equiconsistent with the existence of a weakly compact787

cardinal.6 More precisely, the following proposition holds.788

6 Weakly compact cardinals are the same as Π1
1 -indescribable cardinals, see below.
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Proposition 13. (i) If λ is weakly compact, then λ is doubly reflecting.789

(ii) (Magidor) If λ is doubly reflecting, then λ is weakly compact in L.790

Here, the first item is well known and easy. Magidor originally proved the analog791

of the second item for λ = ℵ2 and stationary sets of ordinals of countable cofinality792

in ℵ2. However, it has been remarked by Mekler and Shelah [49] that essentially the793

same proof yields the stated claim.7794

Corollary 5. Assertion “τ3 is non-discrete” is equiconsistent with the existence of795

a weakly compact cardinal.796

Corollary 6. If ZFC is consistent, then it is consistent with ZFC that τ3 is discrete797

and hence that GLP3 is incomplete w.r.t. any ordinal space.798

Recall that θn denotes the first non-isolated point of τn (in the space of all ordinals).799

We have: θ0 = 1, θ1 = ω, θ2 = ω1, θ3 is the first doubly reflecting cardinal.800

ZFC does not know much about the location of θ3, however the following facts801

are interesting.802

• θ3 is regular, but not a successor of a regular cardinal;803

• While weakly compact cardinals are non-isolated, θ3 need not be weakly compact:804

If infinitely many supercompact cardinals exist, then there is a model, where ℵω+1805

is doubly reflecting [47];806

• If θ3 is a successor of a singular strong limit cardinal, then it is consistent that807

infinitely many Woodin cardinals exist, see [56].8808

Further topologies. Further topologies of the ordinal GLP-space do not seem809

to have prominently occurred in set-theoretic work. They yield some large cardinal810

notions, for the statement that τn is non-discrete (equivalently, θn exists) implies the811

existence of a doubly reflecting cardinal for any n > 2. We do not know whether812

cardinals θn coincide with any of the standard large cardinal notions.813

Here we give a sufficient condition for the topology τn+2 to be non-discrete. We814

show that if there exists a Π1
n -indescribable cardinal, then τn+2 is non-discrete.815

Let Q be a class of second order formulas over the standard first order set-theoretic816

language enriched by a unary predicate R. We assume Q to contain at least the class817

of all first order formulas (denoted Π1
0 ). We shall consider standard models of that818

language of the form (Vα,∈, R), where α is an ordinal, Vα is the α-th class in the819

cumulative hierarchy, and R is a subset of Vα .820

We would like to give a definition of Q-indescribable cardinals in topological821

terms. They can then be defined as follows.822

Definition 4 For any sentence ϕ ∈ Q and any R ⊆ Vκ , let Uκ(ϕ, R) denote the set823

{α ≤ κ : (Vα,∈, R ∩ Vα) � ϕ}. The Q-describable topology τQ on Ω is generated824

by a subbase consisting of sets Uκ(ϕ, R) for all κ ∈ Ω , ϕ ∈ Q, and R ⊆ Vκ .825

7 The first author thanks J. Cummings for clarifying this.
8 Stronger results have been announced, see [50].
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As an exercise, the reader can check that the intervals (α, κ] are open in any τQ826

(consider R = {α} and ϕ = ∃x (x ∈ R)). The main strength of the Q-describable827

topology, however, comes from the fact that a second order variable R is allowed to828

occur in ϕ. So, all subsets of Ω that can be ‘described’ in this way are open in τQ .829

Let dQ denote the derivative operator for τQ . An ordinal κ < Ω is called Q-830

indescribable if it is a limit point of τQ . In other words, κ is Q-indescribable iff831

κ ∈ dQ(Ω) iff κ ∈ dQ(κ).832

It is not difficult to show that, whenever Q is any of the classes Π1
n , the sets

Uκ(ϕ, R) actually form a base for τQ . Hence, our definition of Π1
n -indescribable

cardinals is equivalent to the standard one given in [42]: κ is Q-indescribable iff, for
all R ⊆ Vκ and all sentences ϕ ∈ Q,

(Vκ ,∈, R) � ϕ ⇒ ∃α < κ (Vα,∈, R ∩ Vα) � ϕ.

It iswell known thatweakly compact cardinals coincidewith theΠ1
1 -indescribable833

ones (see [41]). From this it is easy to conclude that theMahlo topology τ3 is contained834

in τΠ1
1
. The following more general proposition was suggested to the first author by835

Philipp Schlicht (see [10]).836

Proposition 14. For any n ≥ 0, τn+2 is contained in τΠ1
n
.837

Proof We shall show that for each n, there is a Π1
n -formula ϕn+1(R) such that

κ ∈ dn+1(A) ⇐⇒ (Vκ ,∈, A ∩ κ) � ϕn+1(R). (∗∗)

This implies that for each κ ∈ dn+1(A), the setUκ(ϕn+1, A∩κ) is a τΠ1
n
-open subset838

of dn+1(A) containing κ . Hence, each dn+1(A) is τΠ1
n
-open. Since τn+2 is generated839

over τn+1 by the open sets of the form dn+1(A) for various A, we have τn+2 ⊆ τΠ1
n
.840

We prove (∗∗) by induction on n. For n = 0, notice that κ ∈ d1(A) iff (κ ∈ Lim
and A ∩ κ is unbounded in κ) iff

(Vκ ,∈, A ∩ κ) � ∀α ∃β (R(β) ∧ α < β).

For the induction step recall that by Corollary 2, κ ∈ dn+1(A) iff841

(i) κ is doubly dn-reflexive;842

(ii) ∀Y ⊆ κ (κ ∈ dn(Y ) → ∃α < κ (α ∈ A ∧ α ∈ dn(Y )).843

By the induction hypothesis, for some ϕn(R) ∈ Π1
n−1, we have

α ∈ dn(A) ⇐⇒ (Vα,∈, A ∩ α) � ϕn(R).

Hence, part (ii) is equivalent to

(Vκ ,∈, A ∩ κ) � ∀Y ⊆ On (ϕn(Y ) → ∃α (R(α) ∧ ϕVα
n (Y ∩ α))).
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Here, ϕVα means the relativization of all quantifiers in ϕ to Vα . We notice that Vα is844

first order definable, hence the complexity of ϕ
Vα
n remains in the class Π1

n−1. So, the845

resulting formula is Π1
n .846

To treat part (i) we recall that κ < Ω is doubly dn-reflexive iff κ ∈ dn(Ω) and

∀Y1, Y2 ⊆ κ (κ ∈ dn(Y1) ∩ dn(Y2) → ∃α < κ α ∈ dn(Y1) ∩ dn(Y2)).

Similarly to the above, using the induction hypothesis this can be rewritten as a847

Π1
n -formula. �848

Corollary 7. If there is a Π1
n -indescribable cardinal κ < Ω , then τn+2 has a non-849

isolated point.850

Corollary 8. If for each n there is a Π1
n -indescribable cardinal κ < Ω , then all τn851

are non-discrete.852

By the result of Magidor [47] we know that θ3 need not be weakly compact in853

some models of ZFC (e.g. in a model, where θ3 = ℵω+1). Hence, in general, the854

condition of the existence of Π1
n -indescribable cardinals is not a necessary one for855

the nontriviality of the topologies τn+2. However, Bagaria et al. [4] prove that in L856

the Π1
n -indescribable cardinals coincide with the limit points of τn+2.857

10.9 Topological Completeness Results for GLP858

As in the case of the unimodal language (cf. Sect. 10.3), one can ask two basic859

questions: Is GLP complete w.r.t. the class of all GLP-spaces? Is GLP complete860

w.r.t. some fixed natural GLP-space?861

In the unimodal case, both questions received positive answers due to Esakia and862

Abashidze–Blass, respectively. Now the situation is more complicated.863

The first question was initially studied by Beklemishev et al. in [14], where only864

some partial results were obtained. It was proved that the bimodal system GLB865

is complete w.r.t. GLP2-spaces of the form (X, τ, τ+), where X is a well-founded866

partial ordering and τ is its left topology. A proof of this result was based on the867

Kripke model techniques coming from [11].868

Already at that time it was clear that these techniques cannot be immediately869

generalized to GLP3-spaces since the third topology τ++ on such orderings is suffi-870

ciently similar to the club topology. From the results of Blass [18] (see Theorem 10871

below) it was known that some stronger set-theoretic assumptions would be needed872

to prove completeness w.r.t. such topologies. Moreover, without any large cardinal873

assumptions it was not even known whether a GLP-space with a non-discrete third874

topology could exist at all.875

First examples of GLP-spaces in which all topologies are non-discrete are con-876

structed in [5], where also the stronger fact of topological completeness of GLP877

w.r.t. the class of all (countable, Hausdorff) GLP-spaces is established.878
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Theorem 9. (i) Log(C ) = GLP, where C is the class of all GLP-spaces.879

(ii) There is a countable Hausdorff GLP-space X such that Log(X) = GLP.880

In fact, X is the ordinal ε0 = sup{ω,ωω, ωωω
, . . .} equipped with a sequence of881

topologies refining the interval topology. However, these topologies cannot be first-882

countable and are, in fact, defined using non-constructive methods such as Zorn’s883

lemma.9 In this sense, it is not an example of a natural GLP-space. The proof of884

this theorem introduces the techniques of maximal and limit-maximal extensions of885

scattered spaces. It falls outside the present survey (see [5]).886

The question whether GLP is complete w.r.t. some natural GLP-space is still887

open. Some partial results concerning the GLP-space generated from the interval888

topology on the ordinals (in the sense of the plus operation) are described below.889

Here, we call this space the ordinal GLP-space. (The space described in Sect. 10.8890

is not an exact model of GLP as the left topology validates the linearity axiom.)891

As we know from Corollary 6, it is consistent with ZFC that the Mahlo topology892

is discrete. Hence, it is consistent that GLP is incomplete w.r.t. the ordinal GLP-893

space. However, is it consistent with ZFC that GLP is complete w.r.t. the ordinal894

GLP-space? To this question we do not know a full answer. A pioneering work has895

been done by Blass [18] who studied the question of completeness of the Gödel–Löb896

logic GL w.r.t. a semantics equivalent to the topological interpretation w.r.t. the club897

topology τ2. He used the language of filters rather than that of topological spaces as898

is more common in set theory.899

Theorem 10. (Blass)900

(i) If V = L and Ω ≥ ℵω, then GL is complete w.r.t. (Ω, τ2).901

(ii) If there is a weakly Mahlo cardinal, there is a model of ZFC in which GL is902

incomplete w.r.t. (Ω, τ2) for any Ω .903

A corollary of (i) is that the statement “GL is complete w.r.t. τ2” is consistent904

with ZFC (provided ZFC is consistent). In fact, instead of V = L Blass used the905

so-called square principle for all ℵn , n < ω, which holds in L by the results of906

Ronald Jensen. A proof of (i) is based on an interesting combinatorial construction907

using the techniques of splitting stationary sets.908

A proof of (ii) is much easier. It uses a model of Harrington and Shelah in which909

ℵ2 is reflecting for stationary sets of ordinals of countable cofinality [35]. Assuming910

Mahlo cardinals exist, they have shown that the following statement holds in some911

model of ZFC:912

If S is a stationary subset of ℵ2 such that ∀α ∈ S cf(α) = ω, then there is a β < α (of913

cofinality ω1) such that S ∩ β is stationary in β.914

In fact, this statement can be expressed in the language of modal logic. First, we915

remark that this principle implies its generalization to all ordinals λ of cofinality ℵ2916

(consider an increasing continuous function mapping ℵ2 to a club in λ). Second, we917

9 It seems to be interesting to study the question of topological completeness of GLP in the absence
of the full axiom of choice, possibly with the axiom of determinacy.
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remark that for the club topology the formula�n� represents the class of ordinals of918

cofinality at leastℵn . This is a straightforward generalization of Lemma 11. Thus, the919

formula�3⊥∧�2� represents the subclass ofΩ consisting of ordinals of cofinality920

ω2.921

Hence, the above reflection principle amounts to the validity of the following
modal formula:

�3⊥ ∧ �2� ∧ �(p ∧ �⊥) → �2(p ∧ �⊥). (∗)

In fact, if the antecedent is valid in λ, then cf(λ) = ω2 and the interpretation of922

p ∧ �⊥ is a set S consisting of ordinals of countable cofinality such that S ∩ λ is923

stationary in λ. The consequent just states that this set reflects. Thus, formula (∗)924

is valid in (Ω, τ2) for any Ω . Since this formula is clearly not provable in GL, the925

topological completeness fails for (Ω, τ2).926

Thus, Blass managed to give an exact consistency strength of the statement “GL927

is incomplete w.r.t. τ2”.928

Corollary 9. “GL is incomplete w.r.t. τ2” is consistent iff it is consistent that Mahlo929

cardinals exist.930

It is possible to generalize these results to the case of bimodal logic GLB [12].931

The situation remains essentially unchanged, although a proof of Statement (i) of932

Theorem 10 needs considerable adaptation.933

Theorem 11. If V = L and Ω ≥ ℵω, then GLB is complete w.r.t. (Ω; τ1, τ2).934

10.10 Topologies for the Variable-Free Fragment of GLP935

A natural topological model for the variable-free fragment of GLP has been intro-936

duced by Icard [38]. It is not a GLP-space and thus it is not a model of the full937

GLP (nor even of GLB). However, it is sound and complete for the variable-free938

fragment of GLP. It gives a convenient tool for the study of this fragment, which939

plays an important role in proof-theoretic applications of the polymodal provability940

logic. Here we give a simplified presentation of Icard’s polytopological space.941

Let Ω be an ordinal and let � : Ω → Ω denote the rank function for the interval942

topology on Ω (see Example 1). We define �0(α) = α and �k+1(α) = ��k(α).943

Icard’s topologies υn , for each n ∈ ω, are defined as follows. Let υ0 be the left
topology, and let υn be generated by υ0 and all sets of the form

U m
β := {α ∈ Ω : �m(α) > β}

for m < n and β < Ω .944

Clearly, υn is an increasing sequence of topologies. In fact, υ1 is the interval945

topology. We let dn and ρn denote the derivative operator and the rank function for946

υn , respectively. We have the following characterizations.947
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Lemma 12. (i) � : (Ω, υn+1) → (Ω, υn) is a d-map;948

(ii) υn+1 is the coarsest topology ν on Ω such that ν contains the interval topology949

and � : (Ω, ν) → (Ω, υn) is continuous;950

(iii) �n is the rank function of υn, that is, ρn = �n;951

(vi) υn+1 is generated by υn and {dα+1
n (Ω) : α < ρn(Ω)}.952

Proof (i) The map � : (Ω, υn+1) → (Ω, υn) is continuous. In fact, �−1[0, β) is953

open in the interval topology υ1 since � : (Ω, υ1) → (Ω, υ0) is its rank function,954

hence a d-map. Also, if m < n, then �−1(U m
β ) = U m+1

β , hence it is open in υn+1.955

The map � is open. Notice that υn+1 is generated by υ1 and some sets of the form956

�−1(U ), where U ∈ υn . A base of υn+1 consists of sets of the form V ∩ �−1(U ) for957

some V ∈ υ1 and U ∈ υn . We have �(V ∩ �−1(U )) = �(V ) ∩ U . �(V ) is υ0-open958

since � : (Ω, υ1) → (Ω, υ0) is a d-map and V ∈ υ1. Hence, the image of any basic959

open in υn+1 is open in υn .960

The map � is pointwise discrete since �−1{α} is discrete in the interval topology961

υ1, hence in υn+1.962

(ii) By (i), � : (Ω, υn+1) → (Ω, υn) is continuous, hence ν ⊆ υn+1. On the other963

hand, if � : (Ω, ν) → (Ω, υn) is continuous, then �−1(U m
β ) ∈ ν for each m < n.964

Therefore, U m
β ∈ ν for all m such that 1 ≤ m ≤ n. Since ν also contains the interval965

topology, we have υn+1 ⊆ ν.966

(iii) By (i), we have that ρn ◦ � is a d-map from (Ω, υn+1) to (Ω, υ0). Hence, it967

coincides with the rank function for υn+1, ρn+1 = ρn ◦ �. The claim follows by an968

easy induction on n.969

(iv) By (iii),

dβ+1
n (Ω) = {α ∈ Ω : ρn(α) > β} = {α ∈ Ω : �n(α) > β} = U n

β .

Obviously, υn+1 is generated by υn and U n
β for all β. Hence, the claim. �970

We call an Icard space a polytopological space of the form (Ω;υ0, υ1, . . .). Icard971

originally considered just Ω = ε0. We are going to give an alternative proof of the972

following theorem [38].973

Theorem 12. (Icard) Let ϕ be a variable-free GLP-formula.974

(i) If GLP � ϕ, then (Ω;υ0, υ1, . . .) � ϕ.975

(ii) If Ω ≥ ε0 and GLP � ϕ, then (Ω;υ0, υ1, . . .) � ϕ.976

Proof Within this proof we abbreviate (Ω;υ0, υ1, . . .) by Ω . To prove part (i) we977

first remark that all topologies υn are scattered, hence all axioms of GLP except for978

P1 are valid in Ω . Moreover, Log(Ω) is closed under the inference rules of GLP.979

Thus, we only have to show that the variable-free instances of axiom P1 are valid in980

Ω . This is sufficient because any derivation of a variable-free formula in GLP can981

be replaced by a derivation in which only the variable-free formulas occur (replace982

all the variables by the constant �).983

Let ϕ be a variable-free formula. We denote by ϕ∗ its uniquely defined interpre-984

tation in Ω . The validity of an instance of P1 for ϕ amounts to the fact that dm(ϕ∗)985

is open in υn , whenever m < n. Thus, we have to prove the following proposition.�986
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Proposition 15. For any variable-free formula ϕ, dn(ϕ∗) is open in υn+1.987

Let ϕ+ denote the result of replacing in ϕ each modality 〈n〉 by 〈n + 1〉. We need988

the following auxiliary claim.989

Lemma 13. If ϕ is variable-free, then �−1(ϕ∗) = (ϕ+)∗.990

Proof This goes by induction on the build-up ofϕ. The cases of constants andboolean991

connectives are easy. Suppose ϕ = 〈n〉ψ . We notice that since � : (Ω, υn+1) →992

(Ω, υn) is a d-map, we have �−1(dn(A)) = dn+1(�
−1(A)) for any A ⊆ Ω . There-993

fore, �−1(ϕ∗) = �−1(dn(ψ∗)) = dn+1(�
−1(ψ∗)) = dn+1((ψ

+)∗) = (ϕ+)∗, as994

required. �995

We prove Proposition 15 in two steps. First, we show that it holds for a subclass of996

variable-free formulas called ordered formulas. Then we show that any variable-free997

formula is equivalent in Ω to an ordered one.998

A formula ϕ is called ordered if no modality 〈m〉 occurs within the scope of 〈n〉999

in ϕ for any m < n. The height of ϕ is the index of its maximal modality.1000

Lemma 14. If 〈n〉ϕ is ordered, then dn(ϕ∗) is open in υn+1.1001

Proof This goes by induction on the height of 〈n〉ϕ. If it is 0, then n = 0. If n = 0,1002

the claim is obvious since d0(A) is open in υ1 for any A ⊆ Ω . If n > 0, since 〈n〉ϕ is1003

ordered, we observe that 〈n〉ϕ has the form (〈n − 1〉ψ)+ for some ψ . The height of1004

〈n −1〉ψ is less than that of 〈n〉ϕ. Hence, by the induction hypothesis, (〈n −1〉ψ)∗ ∈1005

υn . Since � : (Ω, υn+1) → (Ω, υn) is continuous, we conclude that �−1(〈n −1〉ψ)∗1006

is open in υn+1. By Lemma 13, this set coincides with (〈n〉ϕ)∗ = dn(ϕ∗). �1007

Lemma 15. Any variable-free formula ϕ is equivalent in Ω to an ordered one.1008

Proof We argue by induction on the complexity of ϕ. The cases of boolean connec-1009

tives and constants are easy. Suppose ϕ has the form 〈n〉ψ , where we may assume ψ1010

to be in disjunctive normal form ψ = ∨
i
∧

j ±〈ni j 〉ψi j . By the induction hypothe-1011

sis, we may assume all the subformulas 〈ni j 〉ψi j (andψ itself) are ordered. Since 〈n〉1012

commutes with disjunction, it will be sufficient to show that for each i the formula1013

θi := 〈n〉∧
j ±〈ni j 〉ψi j can be ordered.1014

By Lemma 14 each set (〈ni j 〉ψi j )
∗ is open in υn whenever ni j < n. Being a1015

derived set, it is also closed in υni j and hence in υn . Thus, all such sets are clopen.1016

If U is open, then d(A ∩ U ) = d(A) ∩ U for any topological space. In particular,1017

for any A ⊆ Ω and ni j < n, dn(A ∩ (±〈ni j 〉ψi j )
∗) = dn(A) ∩ (±〈ni j 〉ψi j )

∗. This1018

allows us to bring all the conjuncts ±〈ni j 〉ψi j from under the 〈n〉 modality in θi . The1019

resulting conjunction is ordered. �1020

This concludes the proof of Proposition 15 and thereby of Part (i).1021

A variable-free formula A is called a word if it is built-up from � only using1022

connectives of the form 〈n〉 for any n ∈ ω. We write A � B for GLP � A → B.1023

To prove Part (ii), we shall rely on the following fundamental lemma about the1024

variable-free fragment of GLP. For a proof of this lemma we refer to [6, 8].1025
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Lemma 16. (i) Every variable-free formula is equivalent in GLP to a boolean1026

combination of words;1027

(ii) For any words A and B, either A � 〈0〉B, or B � 〈0〉A, or A and B are1028

equivalent;1029

(iii) Conjunction of words is equivalent to a word.1030

We prove Part (ii) of Theorem 12 in a series of lemmas. First, we show that any1031

word is true at some point in Ω provided Ω ≥ ε0.1032

Lemma 17. For any word A, ε0 ∈ A∗.1033

Proof We know that ρn(ε0) = �n(ε0) = ε0. Hence, ε0 ∈ dn(Ω) for each n. Assume1034

n exceeds all the indices of modalities in A and A = 〈m〉B. By Proposition 15 the1035

set B∗ is open in υn . By the induction hypothesis ε0 ∈ B∗. Hence, ε0 ∈ dn(B∗) ⊆1036

dm(B∗) = A∗. This proves the claim. �1037

Applying this lemma to the word 〈0〉A we obtain the following corollary.1038

Corollary 10. For every word A, there is an α < ε0 such that α ∈ A∗.1039

Let min(A∗) denote the least ordinal α ∈ Ω such that α ∈ A∗.1040

Lemma 18. For any words A, B, if A � B, then min(A∗) /∈ B∗.1041

Proof If A � B, then, by Lemma 16 (ii), B � 〈0〉A. Therefore, by the soundness of1042

GLP in Ω , B∗ ⊆ d0(A∗). It follows that for each β ∈ B∗ there is an α ∈ A∗ such1043

that α < β. Thus, min(A∗) /∈ B∗. �1044

Now we are ready to prove Part (ii). Assume ϕ is variable-free and GLP � ϕ. By1045

Lemma 16 (i) we may assume that ϕ is a boolean combination of words. Writing ϕ1046

in conjunctive normal form we observe that it is sufficient to prove the claim only1047

for formulas ϕ of the form
∧

i Ai → ∨
j B j ,where Ai and B j are words. Moreover,1048 ∧

i Ai is equivalent to a single word A.1049

Since GLP � ϕ we have A � B j for each j . Let α = min(A∗). By Lemma 18 we1050

have α /∈ B∗
j for each j . Hence, α /∈ (

∨
j B j )

∗ and α /∈ ϕ∗. This means thatΩ � ϕ∗.1051

10.11 Further Results1052

Topological semantics of polymodal provability logic has been extended to the lan-1053

guagewith transfinitelymanymodalities. A logicGLPΛ havingmodalities [α] for all1054

ordinals α < Λ is introduced in [8]. It was intended for the proof-theoretic analysis1055

of predicative theories and is currently being actively investigated for that purpose.1056

David Fernandez and Joost Joosten undertook a thorough study of the variable-1057

free fragment of that logic mostly in connection with the arising ordinal notation1058

systems (see [25, 27] for a sample). In particular, they found a suitable generalization1059
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of Icard’s polytopological space and showed that it is complete for that fragment1060

[26]. Fernandez [30] also proved topological completeness of the full GLPΛ by1061

generalizing the results of [5].1062

The ordinal GLP-space is easily generalized to transfinitely many topologies1063

(τα)α<Λ by letting τ0 be the left topology, τα+1 := τ+
α and, for limit ordinals λ,1064

τλ be the topology generated by all τα such that α < λ. This space is a natural model1065

ofGLPΛ and has been studied quite recently by Bagaria [3] and further by Bagaria et1066

al. [4]. In particular, the three authors proved that in L the limit points of τn+2 areΠ1
n -1067

indescribable cardinals. The question posed in [14] whether the non-discreteness of1068

τn+2 is equiconsistent with the existence of Π1
n -indescribable cardinals still appears1069

to be open.1070

Acknowledgments We wish to thank the referee for many useful comments, which helped to sig-1071

nificantly improve the readability of the paper. Thanks are also due to Guram Bezhanishvili both1072

for his detailed comments and his patience with the slow pace this chapter was taking.1073

The first author was supported by the Russian Foundation for Basic Research (RFBR), Russian1074

Presidential Council for Support of Leading Scientific Schools, and the Swiss–Russian cooperation1075

project STCP–CH–RU “Computational proof theory”.1076

The second author was supported by the Shota Rustaveli National Science Foundation grant1077

#FR/489/5-105/11 and the French–Georgian grant CNRS–SRNSF #4135/05-01.1078

References1079

1. Abashidze M (1985) Ordinal completeness of the Gödel-Löb modal system. In: Intensional1080

logics and the logical structure of theories. Metsniereba, Tbilisi, pp 49–73 (Russian).1081

2. Artemov SN, Beklemishev LD (2004) Provability logic. In: Gabbay D, Guenthner F (eds)1082

Handbook of philosophical logic, vol 13, 2nd edn. Kluwer, Dordrecht, pp 229–4031083

3. Bagaria J (2012) Topologies on ordinals and the completeness of polymodal provability logic1084

(in preparation).1085

4. Bagaria J, Magidor M, Sakai H (2012) Reflection and indescribability in the constructible1086

universe. Manuscript, To appear in Israel Journal of Mathematics.1087

5. Beklemishev L, Gabelaia D (2013) Topological completeness of the provability logic glp. Ann1088

Pure Appl Logic 128(12):1201–12231089

6. Beklemishev LD (2004) Provability algebras and proof-theoretic ordinals, i. Ann Pure Appl1090

Logic 128:103–1231091

7. Beklemishev LD (2005) Reflection principles and provability algebras in formal arithmetic.1092

Uspekhi Matematicheskikh Nauk 60(2):3–78 (English trans: Russ Math Surv 60(2):197–268).1093

8. Beklemishev LD (2005) Veblen hierarchy in the context of provability algebras. In: Hájek P,1094

Valdés-Villanueva L, Westerståhl D (eds) Proceedings of the 12th international congress on1095

logic, methodology and philosophy of science. Kings College Publications, London, pp 65–781096

9. Beklemishev LD (2006) The Worm principle. In: Chatzidakis Z, Koepke P, Pohlers W (eds)1097

Lecture notes in logic 27. Logic Colloquium ’02. AK Peters, pp 75–95.1098

10. Beklemishev LD (2009) On GLP-spaces. Manuscript. http://www.mi.ras.ru/ bekl/Papers/glp-1099

sp.pdf1100

11. Beklemishev LD (2010) Kripke semantics for provability logic glp. Ann Pure Appl Logic1101

161:756–7741102

12. Beklemishev LD (2011) Ordinal completeness of bimodal provability logic GLB. In: Bezhan-1103

ishvili N et al. (ed) Logic, language and computation, TbiLLC 2009. Lecture notes in artificial1104

intelligence, number 6618, pp 1–15.1105

http://www.mi.ras.ru/


U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

10 Topological Interpretations of Provability Logic 289

13. Beklemishev LD (2011) A simplified proof of the arithmetical completeness theorem for the1106

provability logic GLP. Trudy Matematicheskogo Instituta imeni V.A.Steklova, 274(3):32–401107

(English trans: Proc Steklov Inst Math 274(3):25–33).1108

14. Beklemishev LD, Bezhanishvili G, Icard T (2010) On topological models of glp. In: Schindler1109

R (ed) Ways of proof theory. Ontos Verlag, Heusendamm bei Frankfurt, Germany, pp 133–1521110

15. Beklemishev LD, Joosten J, Vervoort M (2005) A finitary treatment of the closed fragment of1111

japaridze’s provability logic. J Logic Comput 15(4):447–4631112

16. Bezhanishvili G, Esakia L, Gabelaia D (2005) Some results on modal axiomatization and1113

definability for topological spaces. Studia Logica 81:325–3551114

17. Bezhanishvili G, Morandi P (2010) Scattered and hereditarily irresolvable spaces in modal1115

logic. Archive for Mathematical Logic 49(3):343–3651116

18. Blass A (1990) Infinitary combinatorics and modal logic. J Symb Logic 55(2):761–7781117

19. Block WJ, Pigozzi D (1989) Algebraizable logics. Memoirs of the AMS 77(396)1118

20. Boolos G (1979) The unprovability of consistency: an essay in modal logic. Cambridge Uni-1119

versity Press, Cambridge1120

21. Boolos G (1993) The analytical completeness of dzhaparidze’s polymodal logics. Ann Pure1121

Appl Logic 61:95–1111122

22. Boolos G (1993) The logic of provability. Cambridge University Press, Cambridge1123

23. Carlucci L (2005) Worms, gaps and hydras. Math Logic Q 51(4):342–3501124

24. Chagrov A, Zakharyaschev M (1997) Modal logic. Clarendon Press, Oxford1125

25. Fernández-Duque D, Joosten JJ (2012) Kripke models of transfinite provability logic. Adv1126

Modal Logic 9:185–1991127

26. Fernández-Duque D, Joosten JJ (2013) Models of transfinite provability logic. J Symb Logic1128

78(2):543–5611129

27. Fernández-Duque D, Joosten JJ (2012) Turing progressions and their well-orders. How the1130

world computes. Lecture notes in computer science. Springer, Berlin, pp 212–2211131

28. Esakia L (1981) Diagonal constructions, löb’s formula and cantor’s scattered spaces. Studies1132

in logic and semantics. Metsniereba, Tbilisi, pp 128–143 (Russian).1133

29. Feferman S, Dawson JR, Kleene SC, Moore GH, Solovay RM, van Heijenoort J (eds) (1996)1134

Kurt Gödel collected works, vol 1, Publications 1929–1936. Oxford University Press, Oxford.1135

30. Fernández-Duque D (2012), The polytopologies of transfinite provability logic. Preprint arXiv:1136

1207.6595v2 [math.LO].1137

31. Font JM, Jansana R, Pigozzi D (2003) A survey of abstract algebraic logic. Studia Logica1138

74(1–2):13–971139

32. Foreman M, Kanamori A (eds) (2010) Handbook of set theory, vol 1–3. Springer, Berlin.1140

33. Gödel K (1933) Eine Interpretation des intuitionistischen Aussagenkalkuls. Ergebnisse Math.1141

Kolloq., 4:39–40 (English trans: [29], pp 301–303).1142

34. Gurevich Y (1985) Monadic second-order theories. In: Barwise J, Feferman S (eds) Model-1143

theoretical logics. Springer, Berlin, pp 479–5061144

35. Harrington L, Shelah S (1985) Some exact equiconsistency results in set theory. Notre Dame1145

J Formal Logic 26:178–1881146

36. Hilbert D, Bernays P (1968)Grundlagen derMathematik, vols I and II, 2d edn. Springer, Berlin.1147

37. Icard T, Joosten J (2012) Provability and interpretability logics with restricted realizations.1148

Notre Dame J Formal Logic 53(2):133–1541149

38. Icard TF III (2011) A topological study of the closed fragment of glp. J Logic Comput1150

21(4):683–6961151

39. Ignatiev KN (1993) On strong provability predicates and the associated modal logics. J Symb1152

Logic 58:249–2901153

40. Japaridze GK (1987) Modal-logical means of studying provability. PhD thesis, Moscow1154

(Russian).1155

41. Jech T (2002) Set theory: the third, millenium edn. Springer, Berlin1156

42. Kanamori A (2009) The higher infinite, 2nd edn. Springer, Berlin1157

43. Kudinov A, Shehtman V (2014) Derivational modal logics with the difference modality (this1158

volume).1159

http://arxiv.org/abs/arXiv:1207.6595v2
http://arxiv.org/abs/arXiv:1207.6595v2


U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

290 L. Beklemishev and D. Gabelaia

44. Löb MH (1955) Solution of a problem of leon henkin. J Symb Logic 20:115–1181160

45. Macintyre A, Simmons H (1973) Gödel’s diagonalization technique and related properties of1161

theories. Colloq Math 28:165–1801162

46. Magari R (1975) The diagonalizable algebras (the algebraization of the theories which express1163

theor.:ii). bollettino della unione matematica italiana, serie 4, 12, 1975. Suppl Fasc 3:117–1251164

47. Magidor M (1982) Reflecting stationary sets. J Symb Logic 47:755–7711165

48. McKinsey JCC, Tarski A (1944) The algebra of topology. Ann Math 45:141–1911166

49. Mekler A, Shehlah S (1989) The consistency strength of “every stationary set reflects”. Israel1167

J Math 67(3):353–3661168

50. Sargsyan G (2012) On the strength of PFA, I. http://tinyurl.com/bmknyyp1169

51. Segerberg K (1971) An essay in classical modal logic. Filosofiska Föreningen och Filosofiska1170

Institutionen vid Uppsala Universitet, Uppsala1171

52. Semadeni Z (1971) Banach spaces of continuous functions. In: Monografie matematyczne,1172

Tom 55. PWN–Polish Scientific Publishers, Warsaw.1173

53. Simmons H (1975) Topological aspects of suitable theories. Proc Edinb Math Soc 2(19):383–1174

3911175
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