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nontrivial GLP-spaces and show that GLP is complete w.r.t. the class of all GLP-
spaces.
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1. Introduction

This paper continues the study of topological semantics of an important polymodal provability logic
GLP initiated in [12,9]. This system was introduced by Giorgi Japaridze in [26,25]. The language of GLP
extends that of classical propositional logic by unary modalities [n], for each n ∈ ω. A natural provability
interpretation of GLP is to translate [n]ϕ into the language of Peano arithmetic PA as the statement
“ϕ is provable from the axioms of PA together with all true arithmetical Π0

n-sentences.” The dual modalities
〈n〉ϕ := ¬[n]¬ϕ then correspond to the standard uniform Σ0

n-reflection principles for the theory PA + ϕ.
Thus, Japaridze and Ignatiev [26,24] have shown that GLP is complete with respect to a very natural
proof-theoretic semantics.

The logic GLP has been extensively studied in the early 1990s by Ignatiev and Boolos who simplified
and extended Japaridze’s work (see [15]). More recently, interesting applications of GLP have been found
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in the proof theory and ordinal analysis of arithmetic. In particular, GLP gives rise to a natural system
of ordinal notations for the ordinal ε0. Based on the use of GLP, the first author of this paper gave a
proof-theoretic analysis of Peano arithmetic, which stimulated further interest towards GLP (see [4,5] for
a detailed survey).

The main obstacle in the study of GLP is that it is incomplete w.r.t. any class of Kripke frames.
However, a more general topological semantics for the Gödel–Löb provability logic GL has been known
since the work of Simmons [27] and Esakia [16]. In the sense of this semantics, the diamond modality is
interpreted as the topological derivative operator acting on a scattered topological space. Esakia established
that the Gödel–Löb logic is, in fact, complete w.r.t. the class of all scattered spaces. Moreover, Abashidze [1]
and Blass [14] independently improved this result by showing that GL is complete w.r.t. a natural scattered
topological space: any ordinal α � ωω equipped with its standard order topology.

The idea to extend this approach to the polymodal logic GLP comes quite naturally.1 Each modality of
GLP individually behaves like the one of GL and can therefore be interpreted as a derivative operator of
a polytopological space (X, τ0, τ1, . . .). The additional axioms of GLP imply certain dependencies between
the scattered topologies τi, which lead the authors of [12] to the concept of GLP-space. Thus, GLP-spaces
provide an adequate topological semantics for GLP.

The question of completeness of GLP w.r.t. this semantics turned out to be rather difficult. Icard [22,23]
showed that the variable-free fragment of GLP is complete w.r.t. a sequence of natural topologies on the
ordinal ε0. The main contribution of [12] was to show that the fragment of GLP with only two modalities
and no restriction on variables was topologically complete. However, already for the fragment with three
modalities the question remained open. The present paper answers this question positively for the language
with infinitely many modalities and shows that GLP is complete w.r.t. the semantics of GLP-spaces.

2. Preliminaries

GLP is a propositional modal logic formulated in a language with infinitely many modalities
[0], [1], [2], . . . . As usual, 〈n〉ϕ stands for ¬[n]¬ϕ, and ⊥ is the logical constant ‘false’. GLP is given by
the following axiom schemata and inference rules.

Axioms:

(i) Boolean tautologies;
(ii) [n](ϕ → ψ) → ([n]ϕ → [n]ψ);
(iii) [n]([n]ϕ → ϕ) → [n]ϕ (Löb’s axiom);
(iv) [m]ϕ → [n]ϕ, for m < n;
(v) 〈m〉ϕ → [n]〈m〉ϕ, for m < n.

Rules:

(i) � ϕ, � ϕ → ψ ⇒ � ψ (modus ponens);
(ii) � ϕ ⇒ � [n]ϕ, for each n ∈ ω (necessitation).

In other words, for each modality, GLP contains the axioms and inference rules of the Gödel–Löb logic
GL. Axioms (iv) and (v) relate different modalities to one another.

Neighborhood semantics for modal logic can be seen both as a generalization of Kripke semantics and as
a particular kind of algebraic semantics. Let X be a nonempty set and let δn : P(X) → P(X), for each

1 Leo Esakia raised this question several times in conversations with the first author.
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n ∈ ω, be some unary operators acting on the Boolean algebra of all subsets of X. Such a structure X will
be called a neighborhood frame.

A valuation on X is a map v : Var → P(X) from the set of propositional variables to the powerset of X,
which is extended to all formulas in the language of GLP as follows:

• v(ϕ ∨ ψ) = v(ϕ) ∪ v(ψ), v(¬ϕ) = X \ v(ϕ), v(⊥) = ∅,
• v(〈n〉ϕ) = δn(v(ϕ)), v([n]ϕ) = δ̃n(v(ϕ)), where δ̃n(A) := X \ δn(X \A), for any A ⊆ X.

A formula ϕ is valid in X, denoted X � ϕ, if v(ϕ) = X for all v. The logic of X is the set Log(X) of all
formulas valid in X. This set obviously contains the set of all Boolean tautologies and is closed under the
modus ponens and substitution rules and, in this sense, is a propositional polymodal logic.

Next we observe that any neighborhood frame of GLP is, essentially, a polytopological space, in which
all operators δn can be interpreted as the derived set operators.

Suppose (X, τ) is a topological space. The derived set operator on X is the map dτ : P(X) → P(X)
associating with each A ⊆ X its set of limit points, denoted dτ (A). In other words, x ∈ dτ (A) iff every
open neighborhood of x contains a point y �= x such that y ∈ A. We shall write dA for dτ (A) whenever the
topology τ is given from the context.

A topological space (X, τ) is called scattered if every nonempty subspace A ⊆ X has an isolated point.
A polytopological space (X, τ0, τ1, . . .) is called a GLP-space (cf. [12]) if the following conditions hold, for
each n < ω:

• τn is scattered;
• τn ⊆ τn+1;
• dτn(A) is τn+1-open, for each A ⊆ X.

This concept is justified by the basic observation that GLP-spaces are equivalent to the neighborhood
frames validating all the axioms of GLP. Thus, to each GLP-space we associate a neighborhood frame
(X, d0, d1, . . .) where dn abbreviates dτn , for each n < ω. Then the following proposition holds.

Proposition 2.1.

(i) If (X, τ0, τ1, . . .) is a GLP-space, then in the associated neighborhood frame all the theorems of GLP
are valid: (X, d0, d1, . . .) � GLP.

(ii) Suppose (X, δ0, δ1, . . .) is a neighborhood frame such that X � GLP. Then there are naturally defined
topologies τ0, τ1, . . . on X such that δn = dτn , for each n < ω. Moreover, (X, τ0, τ1, . . .) is a GLP-space.

A proof of this proposition builds upon the ideas of H. Simmons [27] and L. Esakia [16,17], which by now
have become almost folklore, but it is somewhat lengthy. For the reader’s convenience we give this proof in
Appendix A.

By Proposition 2.1, the study of neighborhood semantics for GLP becomes the study of GLP-spaces.
Since GLP is well-known to be incomplete w.r.t. any class of Kripke frames the following question naturally
arises:

• Is GLP complete w.r.t. neighborhood semantics?

In other words, we ask whether there is a suitable class of neighborhood frames C such that any formula
is valid in all frames in C iff it is provable in GLP. Equivalently, this problem was stated in [12] as the
question whether GLP is the logic of the class of all GLP-spaces.

This question was positively answered for the language with only two modalities in [12]. However, for
the case of three or more modalities even a more basic problem was open:

• Is there a GLP-space in which all the topologies are non-discrete?
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Some difficulties surrounding these problems are exposed in the papers [12,9,7]. Given a scattered space
(X, τ) we can define a new topology τ+ on X as the coarsest topology containing τ ∪ {dτ (A): A ⊆ X}.
Then (X, τ, τ+, τ++, . . .) becomes a GLP-space which we call a GLP-space naturally generated from (X, τ).

As a fundamental example, one can consider the class of GLP-spaces naturally generated from the
standard order topology τ< on the ordinals. We call them ordinal GLP-spaces. Quite unexpectedly, these
spaces turned out to have some deep relations with set theory, in particular, with stationary reflection. For
example, it can be shown that the first limit point of τ+

< is the cardinal ℵ1, whereas the first limit point
of τ++

< is the so-called doubly reflecting cardinal. The existence of this (relatively weak) large cardinal is,
however, independent from the axioms of ZFC. Thus, it is independent from ZFC whether τ++ is discrete
on any ordinal GLP-space.

Andreas Blass [14] was the first to consider the question of topological completeness of GL w.r.t. the
topology τ+

< on an ordinal (using the language of filters rather than the topological one). He showed that
the question of completeness of GL in this semantics cannot be settled within ZFC. More precisely, the
statement ‘GL is incomplete’ is equiconsistent with the existence of Mahlo cardinals. This result has been
generalized to the bimodal logic corresponding to the pair of topologies (τ<, τ+

< ) in [9]. However, to the
best of our knowledge, the question whether GLP is complete w.r.t. some ordinal GLP-space (under some
natural set-theoretic assumptions) remains open so far.

In spite of the above, the present paper gives positive answers to both questions formulated above for
general GLP-spaces while firmly standing on the grounds of ZFC.2 This is achieved by developing new
topological techniques related to the study of maximal rank-preserving extensions of scattered topologies.
In particular, we introduce a certain class of topologies we call �-maximal and show that they are sufficiently
well-behaved w.r.t. the operation τ �→ τ+.

As another ingredient of the topological completeness proof, we introduce an operation on scattered
spaces called d-product. It can be seen as a generalization of the usual multiplication operation on the
ordinals (considered as linear orderings) to arbitrary scattered spaces. We think that this operation could
be of some interest in its own right.

The paper is organized as follows. In Section 3 we introduce some useful standard notions related to
scattered spaces and prove a few facts about the Cantor–Bendixson rank function. Maximal rank preserving
and �-maximal spaces are introduced in Section 4. In Section 5 we show how this techniques allows one
to build a non-discrete GLP-space. Section 6 essentially deals with logic and contains a reduction of the
topological completeness theorem to some statement of purely topological and combinatorial nature (main
lemma). The rest of the paper is devoted to a proof of this lemma. In Section 7 the d-product operation
is introduced and a few basic properties of this operation are established. Using d-products, as well as the
techniques of Sections 4 and 5, two basic constructions on GLP-spaces are presented in Section 6. Finally,
Section 8 contains a proof of the main lemma.

3. Scattered spaces, ranks and d-maps

Given a scattered space X = (X, τ) one can define a transfinite Cantor–Bendixson sequence of closed
subsets dαX of X, for any ordinal α, as follows:

• d0X = X; dα+1X = d(dαX) and
• dαX =

⋂
β<α dβX if α is a limit ordinal.

2 It is also natural to ask whether (it is provable in ZFC that) GLP is complete w.r.t. any naturally generated GLP-space in the
sense given above. This question remains open.
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Since X is a scattered space, dα+1X ⊂ dαX is a strict inclusion unless dαX = ∅. Therefore, from cardinality
considerations, for some ordinal α we must have dαX = ∅. Call the least such α the Cantor–Bendixson
rank of X and denote it by ρ(X). The rank function ρX : X → On is defined by

ρX(x) := min
{
α: x /∈ dα+1(X)

}
.

Notice that ρX maps X onto ρX(X) = {α: α < ρ(X)}. Also, ρX(x) � α iff x ∈ dαX. We omit the subscript
X whenever there is no danger of confusion.

Example 3.1. Let Ω be an ordinal equipped with its left topology τ←, that is, a subset U ⊆ Ω is open iff
∀α ∈ U ∀β < α β ∈ U . Then ρ(α) = α, for all α.

Example 3.2. Let Ω be an ordinal equipped with its order topology (also called interval topology) τ< generated
by {0} and the intervals (α, β], for all α < β � Ω. Then ρ is the function r defined by

r(0) = 0; r(α) = β if α = γ + ωβ , for some γ, β.

By the Cantor normal form theorem, for any α > 0, such a β is uniquely defined.

A map f : X → Y between topological spaces is called a d-map if f is continuous, open and pointwise
discrete, that is, f−1({y}) is a discrete subspace of X for each y ∈ Y . It is well-known that d-maps satisfy
the properties expressed in the following lemma (see [13]).

Lemma 3.1. Let f : X → Y be a d-map, dX and dY denote the derivative operators of X and Y , respectively.

(i) f−1(dY (A)) = dX(f−1(A)), for any A ⊆ Y ;
(ii) f−1 : (P(Y ), dY ) → (P(X), dX) is a homomorphism of neighborhood frames;
(iii) If f is onto, then Log(X) ⊆ Log(Y ).

In fact, (i) is easy to check directly; (ii) follows from (i) and (iii) from (ii). From (i) we easily obtain the
following corollary by transfinite induction.

Corollary 3.2. Suppose f : X → Y is a d-map. Then, for each ordinal α, dαXX = f−1(dαY Y ).

The following lemma states that the rank function, when the ordinals are equipped with their left topology,
becomes a d-map. It is also uniquely characterized by this property.

Lemma 3.3. Let Ω be the ordinal ρ(X) taken with its left topology. Then

(i) ρX : X � Ω is an onto d-map;
(ii) If f : X → λ is a d-map, where λ is an ordinal with its left topology, then f(X) = Ω and f = ρX .

Proof. Let ρ denote ρX .
(i) ρ is continuous, because the set ρ−1[0, α) = X \ dαX is open.
The map ρ being open means that, for each open U ⊆ X, whenever α ∈ ρ(U) and β < α one has

β ∈ ρ(U). Fix an x ∈ U such that ρ(x) = α. Consider the set Xβ := ρ−1({β}) = dβX \ d(dβX). For any
subset A of a scattered space we have d(A) = d(A \ dA), hence dXβ = d(dβX) ⊆ dαX. Since ρ(x) = α it
follows that x ∈ dXβ . Hence U ∩Xβ �= ∅, that is, β ∈ ρ(U).

The map ρ being pointwise discrete means Xα = ρ−1({α}) is discrete, for each α < Ω. In fact, Xα =
dαX \ d(dαX) is the set of isolated points of dαX. Thus, it cannot help being discrete.
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(ii) Since f is a d-map, by Corollary 3.2 we obtain that f−1[α, λ) = dαX, for each α < λ. Hence,
f−1({α}) = ρ−1({α}), for each α < λ, that is, f = ρ and f(X) = ρ(X) = Ω. �
Corollary 3.4. If f : X → Y is a d-map, then ρX = ρY ◦ f .

Proof. Clearly, ρY ◦ f : X → Ω is a d-map. Statement (ii) of the previous lemma yields the result. �
Note that if U ∈ τ is open, then the image of U under the map ρ is always a leftwards closed interval of

ordinals and thus is itself an ordinal, which we denote ρ(U). We denote the complement of a set dαX by
Oα(X) or simply Oα when there is no danger of confusion.

4. Maximal and �-maximal topologies

First we introduce two notions: that of a rank-preserving extension of a scattered topology, and a more
restrictive notion of an �-extension. The first one is quite natural and it will help us to build a non-discrete
GLP-space. The second is the one we actually need for the proof of the topological completeness theorem.

Definition 4.1. Let (X, τ) be a scattered space.

• A topology σ on X is called a rank-preserving extension of τ , if σ ⊇ τ and ρσ(x) = ρτ (x), for all x ∈ X.
• σ is an �-extension of τ , if it is a rank-preserving extension of τ and the identity function id : (X, τ) →

(X,σ) is continuous at all points of successor rank, that is,

(�) For any U ∈ σ and any x ∈ U with ρ(x) /∈ Lim there exists V ∈ τ such that x ∈ V ⊆ U .

Since the rank function is preserved, ρ stands for both ρτ and ρσ. Also notice that if ρ(x) = 0 then
condition (�) is obviously satisfied at x (one can take V = {x}).

We also note that the notions of rank-preserving extension and of �-extension are transitive and, in fact,
define partial orders on the set of all scattered topologies on X. The following observation will be repeatedly
used below.

Lemma 4.2. The following conditions are equivalent:

(i) σ is a rank-preserving extension of τ ;
(ii) ρτ is an open map in the topology σ on X;
(iii) ρτ (U) is leftwards closed, for each U ∈ σ.

This statement follows from Lemma 3.3.
We are interested in the maximal rank-preserving and the maximal �-extensions. These are naturally

defined as follows.

Definition 4.3.

(i) (X, τ) is maximal3 if (X, τ) does not have any proper rank-preserving extensions, in other words, if

∀σ
(
σ � τ ⇒ ∃x ρσ(x) �= ρτ (x)

)
.

(ii) (X, τ) is �-maximal if (X, τ) does not have any proper �-extensions.

3 In the standard terminology used in general topology, maximal or maximal scattered would mean something different than
defined here. Throughout this paper we use the term maximal as a shorthand for maximal scattered with the given rank function.
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It is worth noting that any maximal topology is �-maximal, but not necessarily conversely.

Lemma 4.4.

(i) Any (X, τ) has a maximal extension;
(ii) Any (X, τ) has an �-maximal �-extension.

Proof. Consider the set of all (�-)extensions of a given topology τ ordered by inclusion. We verify, for each
of the two orderings, that every chain in it has an upper bound. The result then follows by Zorn’s lemma.

Suppose (τi)i∈I is a chain of extensions. Then the topology σ generated by the union υ =
⋃

i∈I τi is
apparently a scattered topology containing τ . Note that υ is closed under finite intersections and thus
serves as a base for σ. Let ρ : X � Ω be the common rank function of each of the τi. In order to apply
Lemma 4.2 we check that ρ is open w.r.t. σ. In fact, any basic U ∈ υ is open in the sense of some τi, and
hence ρ(U) must be open in Ω. Lemma 4.2 shows that ρ is the rank function of σ. Hence (i) holds.

Suppose now that (τi)i∈I is a chain of �-extensions. Since any �-extension is an extension, σ (defined as
above) is an extension of τ . To check the condition (�) suppose U ∈ σ is given and x ∈ U is such that
ρ(x) /∈ Lim. Since σ is generated by the base υ, there exists U ′ ∈ υ with x ∈ U ′ ⊆ U . It follows that U ′ ∈ τi
for some i. As τi is an �-extension of τ , there exists V ∈ τ such that x ∈ V ⊆ U ′. Since U ′ ⊆ U , we are
done. �

Next we prove a workable characterization of �-maximal topologies.

Lemma 4.5. Let (X, τ) be a scattered space and ρ its rank function. Then X is �-maximal iff the following
condition holds.

(lm) For any x ∈ X with rank λ = ρ(x) ∈ Lim and any open V ⊆ Oλ, either V ∪ {x} ∈ τ or there is a
neighborhood U of x such that ρ(V ∩ U) < λ.

Intuitively, condition (lm) means that in the neighborhood of a point x of limit rank any open set V

is either very large (contains a punctured neighborhood of x), or relatively small (there is a punctured
neighborhood whose intersection with V has bounded rank).

Proof. (only if) Suppose the condition (lm) is not met. Thus, there exists an x ∈ X with ρ(x) = λ ∈ Lim
and an open V0 ⊆ Oλ such that V := V0 ∪{x} is not open and ρ(U ∩V0) = λ, for any neighborhood U of x.

Let us generate a new topology σ by adding V to τ . We claim that σ is an �-extension of τ . First, we
observe that the neighborhood filter at any point z ∈ X, z �= x, in σ is the same as in τ . In fact, any
σ-neighborhood W of z either contains a τ -neighborhood of z or contains a subset of the form V ∩U where
U ∈ τ and z ∈ V ∩U= (V0 ∩U) ∪ {x}. In the former case we are done. In the latter case, if z �= x, we have
z ∈ V0 ∩ U ∈ τ and V0 ∩ U ⊆ W .

From this observation we conclude that id : (X, τ) → (X,σ) is continuous at all the points z �= x, in
particular, condition (�) holds. We show that ρσ = ρ by applying Lemma 4.2. To check that ρ : (X,σ) → Ω

is open it is sufficient to show that ρ(W ) is a neighborhood of λ = ρ(x) (in the left topology) for any
σ-neighborhood W of x. For all the other points the statement is obvious by the previous observation.

We know that W contains a set of the form V ∩ U with x ∈ U ∈ τ . Clearly, V ∩ U = (V0 ∩ U) ∪ {x}.
By the choice of V0, we have ρ(V0 ∩U) = λ and hence ρ(W ) ⊇ ρ(V ∩U) = [0, λ] is a neighborhood of λ, as
required.

Thus, σ is a proper �-extension of τ , hence X is not �-maximal.
(if) Suppose (X, τ) is not �-maximal and let σ be some proper �-extension of τ . Then the map id :

(X, τ) → (X,σ) is not continuous at certain points. Let x ∈ X be such a point with the least rank ρ(x) = λ.
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It follows from condition (�) that λ ∈ Lim. Since the map id is not continuous at x, there exists a σ-open
neighborhood V of x which contains no τ -open neighborhood of x. Denote V0 := V ∩ Oλ. It is clear that
V0 ∈ σ. It follows from the minimality of λ that V0 ∈ τ . From the discontinuity of id at x we may conclude
that V0 ∪ {x} /∈ τ . However, {x} ∪ V0 = V ∩ ({x} ∪Oλ) ∈ σ, hence, for any τ -neighborhood U of x, we have
(U ∩ V0) ∪ {x} = U ∩ (V0 ∪ {x}) is a σ-neighborhood of x. It follows that ρ(U ∩ V0) = λ. Thus x and V0
witness that the condition (lm) is violated for τ . �

Our next objective is to show that whenever f : X → Y is an onto d-map and Y ′ is any �-maximal
�-extension of Y , one can always find a suitable �-maximal �-extension X ′ of X so that f : X ′ → Y ′ is still
a d-map. We need an auxiliary lemma.

Lemma 4.6. Let f : X → Y be a d-map between a scattered space X = (X, τ) and an �-maximal space
Y = (Y, σ). Let X ′ = (X, τ ′) be any �-extension of X. Then f : X ′ → Y is also a d-map.

Proof. That f : X ′ → Y is continuous and pointwise discrete follows from the fact that τ ′ ⊇ τ . We only
have to show that f : X ′ → Y is open. For the sake of contradiction suppose f is not. Then there exists a
point x ∈ X ′ and a neighborhood U ∈ τ ′ of x such that f(U) does not contain a neighborhood of y = f(x).
We can take such an x of the minimal possible rank λ. This ensures that the restriction of f to the subspace
Oλ(X ′) is open, hence a d-map. (Since X ′ is a rank-preserving extension of X, the set Oλ = Oλ(X) is the
same as Oλ(X ′).)

Since id : X → X ′ is continuous at the points of non-limit ranks and f : X → Y is a d-map, we observe
that λ ∈ Lim. Otherwise, for a sufficiently small τ -neighborhood V of x we would have V ⊆ U , and then
f(V ) ⊆ f(U) would be a σ-neighborhood of f(x).

Since Oλ ∈ τ , we may assume that the selected neighborhood U has the form U = U0 ∪{x} where U0 ⊆ Oλ

and U0 ∈ τ . Thus, ρ(x) = λ ∈ Lim, V0 := f(U0) is open, and V := f(U) = V0 ∪ {y} is not open in Y . Since
Y is �-maximal, by Lemma 4.5 we obtain an open neighborhood W of y such that β := ρ(V0 ∩ W ) < λ.
We notice that f(U0 ∩ f−1(W )) = V0 ∩W . Hence, ρ(U0 ∩ f−1(W )) = β. Since f−1(W ) ∈ τ and U ∈ τ ′ we
obtain that U1 := U ∩ f−1(W ) = (U0 ∩ f−1(W )) ∪ {x} is a τ ′-open neighborhood of x. Therefore, on the
one hand, ρ(U1) = ρτ ′(U1) = [0, λ], as τ ′ is a rank-preserving extension of τ . However, on the other hand,
ρ(U1) = ρ((U0 ∩ f−1(W )) ∪ {x}) = β ∪ {λ}, a contradiction. �
Lemma 4.7. Let X = (X, τ) and Y = (Y, σ) be scattered spaces, let Y ′ = (Y, σ′) be an �-maximal �-extension
of Y and let f : X → Y be a d-map. Then there exists an �-maximal �-extension X ′ = (X, τ ′) of X such
that f : X ′ → Y ′ is a d-map.

X
d

lm

Y

lm

X ′
d

Y ′

Proof. Let θ be the topology on X generated by τ and all sets {f−1(U): U ∈ σ′}. A base of θ consists
of sets of the form V ∩ f−1(U) where V ∈ τ and U ∈ σ′. It is readily seen that f : (X, θ) → (Y, σ′) is
continuous and pointwise discrete. Moreover, it is also an open map, since f(V ∩ f−1(U)) = f(V ) ∩ U is
open in σ′, for any V ∈ τ and U ∈ σ′, since f : X → Y is a d-map. Hence, f : (X, θ) → (Y, σ′) is a d-map.
In particular, by Corollary 3.4, θ is a rank-preserving extension of τ .

To see that the condition (�) for θ is met, take any x ∈ X of successor rank and any basic open
neighborhood W := V ∩ f−1(U) � x such that V ∈ τ and U ∈ σ′. We have f(x) ∈ f(W ) = f(V ) ∩ U ∈ σ′.
Since f(x) is of the same rank as x, by condition (�) applied to σ′, there exists W1 ∈ σ with f(x) ∈ W1 ⊆
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f(W ). Take U1 := V ∩ f−1(W1). Since W1 ∈ σ we have f−1(W1) ∈ τ , so U1 ∈ τ . Also, W1 ⊆ f(V )∩U ⊆ U

whence f(U1) = f(V ) ∩W1 ⊆ U . It follows that U1 ⊆ f−1(U), whence x ∈ U1 and U1 ⊆ V ∩ f−1(U) = W ,
as required.

Therefore, θ is an �-extension of τ . Take any �-maximal �-extension τ ′ of θ. By Lemma 4.6 we obtain that
f : (X ′, τ ′) → Y ′ is an onto d-map. Since τ ′ is also an �-maximal �-extension of τ , the proof is finished. �
5. Building a non-discrete GLP-space

Recall that the derivative topology τ+ on X is generated by τ and {d(A): A ⊆ X}. Let X+ denote the
space (X, τ+). The following lemma gives a useful characterization of the derivative topology for �-maximal
spaces.

Lemma 5.1. Suppose (X, τ) is �-maximal. Then τ+ is generated by τ and the sets {dβ+1(X): β < ρ(X)}.

Proof. Let (X, τ) be �-maximal and let τ ′ denote the topology generated by τ and the sets {dβ+1(X): β <

ρ(X)}. It is clear that each set dβ+1(X) = d(dβX) is open in τ+. We show the converse.
Let A ⊆ X, we show that d(A) is open in τ ′. Consider any x ∈ d(A) and let α = ρ(x). If α is not a limit

ordinal, {x} is open in τ ′. In fact, since ρ is a d-map, ρ−1(α) is discrete as a subspace of (X, τ). Moreover,
ρ−1(α) = dα(X) \ dα+1(X), hence it is clopen in τ ′. It follows that x is isolated in τ ′.

Suppose α ∈ Lim and let C denote the interior of Oα \ A. Since x ∈ dA we have {x} ∪ C /∈ τ . Hence,
by condition (lm), there is an open U ∈ τ with x ∈ U and a β < α such that U ∩ C ⊆ Oβ . Consider
V := U ∩ dβ+1X. Since U is open in τ , V is open in τ ′. Moreover, x ∈ V . Thus, we only have to show that
V ⊆ dA.

Suppose the contrary, that z ∈ V \ dA for some z. Then there exists an open set Uz ∪ {z} such that
Uz ∩ A = ∅ and Uz ⊆ Oα. It follows that Uz ⊆ C and hence Uz ∩ U ⊆ Oβ . Since z ∈ V ⊆ U , we have that
U ′ := (Uz ∩ U) ∪ {z} = (Uz ∪ {z}) ∩ U is an open neighborhood of z. As ρ is an open map, ρ(U ′) must be
leftwards closed. We have ρ(z) � β, since z ∈ dβ+1X, however ρ(Uz ∩U) ⊆ ρ(Oβ) ⊆ β, a contradiction. �
Lemma 5.2. Suppose (X, τ) is �-maximal and f : X → Y a d-map. Then f is a d-map between X+ and Y +.

Proof. We only have to show that f : X+ → Y + is open. From the previous lemma we know that τ+ is
generated by τ and dβ+1

X X for β < α. Consider a τ+-open set of the form A∩ dβ+1
X X. Since f−1(dβ+1

Y Y ) =
dβ+1
X X (f is rank preserving), we have f(A ∩ dβ+1

X X) = f(A) ∩ dβ+1
Y Y , which is open in Y +. �

Let Ω denote an ordinal with its left topology. It is easy to check (see [12]) that Ω+ coincides with the
usual order topology on Ω. Let r denote its rank function (see above). In general, for an arbitrary scattered
space X let ρ+

X denote the rank function of X+.

Corollary 5.3. If X is �-maximal, then ρ+
X = r ◦ ρX .

Proof. Let Ω := ρ(X) be the rank of X. Consider the d-map ρ : X � Ω. By Lemma 5.2, ρ : X+ � Ω+ is a
d-map. Since r is the rank function of Ω+, r : Ω+ → Ω is also a d-map. Hence, r ◦ ρ : X+ → Ω is a d-map
and coincides with the rank function of X+. �
Remark 5.1. For an arbitrary scattered space X we only have ρ+

X � r ◦ ρX .

Remark 5.2. In general, the ‘derivative topology’ operation is non-monotonic: There is a space X such that
X+ is discrete while (X ′)+ is not, where X ′ is some maximal extension of X. As such an X one can take the
ordinal ωω + 1 with the usual order topology. Since every limit point in X is a unique limit of a countable
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sequence, every point in X+ is open, that is, X+ is discrete. However, Corollary 5.3 shows that (X ′)+ is
non-discrete, for any �-maximal (hence, for any maximal) extension of X. In fact, its rank function ρ is just
r ◦ r and thus ρ(ωω) = 1 �= 0.

Now we are ready to specify a suitable class of GLP-spaces which will be used for the topological
completeness proof.

Definition 5.4. Let (X, τ) be a scattered space. A polytopological space (X, τ0, τ1, . . .) is called an lme-space
based on τ if4 τ0 is an �-maximal �-extension of τ and, for each n, τn+1 is an �-maximal �-extension of τ+

n .

Clearly, any lme-space is a GLP-space. (X, τ0, τ1, . . .) is called an ordinal lme-space if X is an ordinal (or
an interval of the ordinals) and τ is the order topology on X. Given an lme-space X, let ρn denote the rank
function of τn.

Lemma 5.5. ρn+1 = r ◦ ρn.

Proof. τn+1 has the same rank function as τ+
n , being its �-extension, hence ρn+1 = ρ+

n . By Corollary 5.3,
ρ+
n = r ◦ ρn. �

Now we can give an example of a GLP-space in which all topologies are non-discrete. Take any scattered
space (X, τ) whose rank Ω satisfies ωΩ = Ω, for example, X = ε0 with the order topology. Generate
some lme-space (X, τ0, τ1, . . .) based on τ . Then clearly ρn(X) = rn(ρ0(X)) = rn(Ω) = Ω, for each n. In
particular, any topology τn is non-discrete. Thus, we have proved

Theorem 5.6. There is a countable GLP-space (X, τ0, τ1, . . .) such that each τn is non-discrete.

6. Topological completeness of GLP

In this section we reduce the construction of a polytopological space whose logic is GLP to a technical
lemma. The rest of the paper is devoted to a proof of this lemma.

Our proof of topological completeness will make use of a subsystem of GLP introduced in [8] and
denoted J. This logic is defined by weakening axiom (iv) of GLP to the following axioms (vi) and (vii) both
of which are theorems of GLP:

(vi) [m]ϕ → [n][m]ϕ, for n � m;
(vii) [m]ϕ → [m][n]ϕ, for n > m.

J is the logic of a simple class of frames, which is established by standard methods [8, Theorem 1].

Lemma 6.1. J is sound and complete with respect to the class of (finite) frames (W,R0, R1, . . .) such that,
for all x, y, z ∈ W ,

1. Rk are transitive and dually well-founded binary relations;
2. If xRny, then xRmz iff yRmz, for m < n;
3. xRmy and yRnz imply xRmz, for m < n.

4 The abbreviation lme stands for limit maximal extension.
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Notice that Conditions 2. and 3. imply the following closure property:

If xRny and yRmz, then xRkz, where k = min(m,n). (+)

Let R∗
n denote the relation Rn ∪ Rn+1 ∪ · · · . By (+) we obtain that R∗

n is transitive. Let En denote the
reflexive, symmetric, transitive closure of R∗

n. Obviously, each En+1 refines En. We call each En equivalence
class an n-sheet. By 2. and the dual well-foundedness, all points in an n-sheet are Rm incomparable, for
m < n. But Rn defines a natural ordering on (n+1)-sheets in the following sense: if α and β are (n+1)-sheets,
then αRnβ, iff ∃x ∈ α ∃y ∈ β xRny. By the standard techniques, one can improve on Lemma 6.1 to show
that J is complete for such frames, in which the set of (n + 1)-sheets contained in each n-sheet is a tree
under Rn, and if αRnβ then xRny for all x ∈ α, y ∈ β (see [8, Theorem 2 and Corollary 3.3]). Every such
structure is automatically a J-frame and we call such frames tree-like J-frames.

As shown in [8], GLP is reducible to J in the following sense. Let

M(ϕ) :=
∧
i<s

n∧
k=mi+1

(
[mi]ϕi → [k]ϕi

)
,

where [mi]ϕi, i < s, are all subformulas of ϕ of the form [m]ψ and n := maxi<s mi. Also, let M+(ϕ) :=
M(ϕ) ∧

∧
m�n[m]M(ϕ).5

Proposition 6.2. (See [8].) GLP � ϕ iff J � M+(ϕ) → ϕ.

For the proof below we will only need the trivial implication from the right to the left. We obtain another
proof of this proposition as a byproduct of the topological completeness proof below.

Let Ln denote the modal language with modalities [0], [1], . . . , [n]. Denote by Jn the logic J restricted
to Ln. Analogously for GLPn.6

Let T = (T,R0, . . . , Rn) be a tree-like Jn-frame (or Jn-tree for short). Recall that w ∈ T is called a
hereditary k-root if for no j � k and no v ∈ T is it true that vRjw. Note that since T is a Jn-tree, for each
w ∈ T and each k � n there exists a hereditary k-root v ∈ T such that v = w or vRkw.

Definition 6.3. We view T as a polytopological space T = (T, σ0, . . . , σn) by considering all Ri-upsets to be
σi-open. Given a GLPn space X = (X, τ0, . . . , τn) and a map f : X → T we will say that f is a Jn-morphism
iff:

(j1) f : (X, τn) → (T, σn) is a d-map;
(j2) f : (X, τk) → (T, σk) is an open map for all k � n;
(j3) For each k < n and each hereditary (k + 1)-root w ∈ T , the sets f−1(R∗

k(w)) and f−1(R∗
k(w) ∪ {w})

are open in τk;
(j4) For each k < n and each hereditary (k + 1)-root w ∈ T , the set f−1({w}) is a τk-discrete subspace

of X.

Here, for any binary relation R, we denote by R(x) the set {y ∈ W : xRy}; hence R∗
k(w) denotes the set⋃n

i=k Ri(w). Also notice that (j1) would follow from (j2)–(j4) if one also stated them for k = n assuming
that Rn+1 = ∅. In this case each element of T would be an (n + 1)-root. The same definition also applies
to general Jn-models.

5 The formula M(ϕ) was defined in [8] incorrectly, however with the present modification everything in [8] works.
6 Here, to simplify some formulas below, we deviate slightly from the more common notation GLPn+1 for this logic.
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A Jn-morphism f : X → T can be thought of as a map which is a weak kind of d-map from (X, τk) to
(T, σk), for each k � n. As a consequence, we obtain the following simple but useful observation.

Lemma 6.4. Suppose X,Y are GLPn-spaces, g : (Y, θk) → (X, τk) is a d-map, for each k � n, and f : X → T

is a Jn-morphism. Then f ◦ g is a Jn-morphism from Y to T .

Recall that d̃(A) abbreviates X \ d(X \A). Obviously, x ∈ d̃(A) iff A contains some punctured neighbor-
hood of x.

Lemma 6.5. Conditions (j3) and (j4) together are equivalent to the following one: for any hereditary
(k + 1)-root w,

f−1(R∗
k(w) ∪ {w}

)
⊆ d̃k

(
f−1(R∗

k(w)
))
. (∗)

Proof. Suppose (∗) holds. Then f−1(R∗
k(w)) contains a punctured neighborhood of every point a ∈

f−1(R∗
k(w) ∪ {w}), hence a neighborhood of every a ∈ f−1(R∗

k(w)). So, f−1(R∗
k(w)) is open. It also

follows that f−1(R∗
k(w) ∪ {w}) contains a neighborhood of every point a ∈ f−1(R∗

k(w) ∪ {w}), hence
f−1(R∗

k(w) ∪ {w}) is also open.
To show that f−1({w}) is τk-discrete assume a ∈ f−1({w}). Select a punctured neighborhood Va of a

such that Va ⊆ f−1(R∗
k(w)). Since w /∈ R∗

k(w) we have Va ∩ f−1({w}) = ∅, as required.
Suppose (j3) and (j4) hold, we show (∗). Assume a ∈ f−1(R∗

k(w) ∪ {w}). We have to construct a punc-
tured neighborhood of a contained in f−1(R∗

k(w)). Consider

U := f−1(R∗
k(w) ∪ {w}

)
= f−1(R∗

k(w)
)
∪ f−1({w}).

By the second part of (j3), U is a neighborhood of a. If a ∈ f−1(R∗
k(w)) then V := f−1(R∗

k(w)) is a
neighborhood of a by the first part of (j3), so V − {a} is as required.

If a ∈ f−1({w}) then by (j4) there is a neighborhood Va such that Va ∩ f−1({w}) = {a}. Then,

Va ∩ U =
(
Va ∩ f−1(R∗

k(w)
))

∪ {a}

is a neighborhood of a. Then, (Va∩U)\{a} is a punctured neighborhood of a contained in f−1(R∗
k(w)). �

The following theorem is crucial.

Theorem 6.6. Let X be a GLPn-space, T a Jn-tree, f : X → T a Jn-morphism and ϕ an Ln-formula. Then
X � ϕ iff T � M+(ϕ) → ϕ.

Proof. Suppose T � M+(ϕ) → ϕ. Then for some valuation ν on T and some point w ∈ T (assume without
loss of generality that w is the hereditary 0-root of T ) we have that w ∈ ν(M+(ϕ)) but w /∈ ν(ϕ). Consider
a valuation ν′ on X by taking ν′(p) = f−1(ν(p)).

Lemma 6.7. For all subformulas θ of ϕ, we have ν′(θ) = f−1(ν(θ)).

Proof. We argue by induction on the complexity of θ. If θ is a propositional letter, the claim is provided by
the definition of ν′. The case of Boolean connectives is trivial.

If θ = [n]ψ, then the claim follows by condition (j1) of f being a Jn-morphism.
Suppose θ = [k]ψ for some k < n. To show that ν′(θ) ⊆ f−1(ν(θ)) assume x ∈ ν′(θ). Then there exists

a U ⊆ X such that {x} ∪ U ∈ τk and U ⊆ ν′(ψ). By the IH we obtain U ⊆ f−1(ν(ψ)). Hence f(U) ⊆
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f(f−1(ν(ψ))) = ν(ψ). By (j2), the set f({x} ∪ U) = {f(x)} ∪ f(U) is an Rk-upset and so Rk(f(x)) ⊆
f(U) ⊆ ν(ψ). It follows that f(x) ∈ ν([k]ψ). In other words, x ∈ f−1(ν(θ)).

For the converse inclusion suppose x ∈ f−1(ν(θ)), that is, f(x) � [k]ψ. We must show x ∈ ν′(θ). By the
induction hypothesis,

ν′(θ) = d̃k
(
ν′(ψ)

)
= d̃k

(
f−1(ν(ψ)

))
.

Let v ∈ T be a hereditary (k+1)-root such that v = f(x) or vRk+1f(x). Since v and f(x) are in the same
(k + 1)-sheet, Rk(v) = Rk(f(x)). Thus v � [k]ψ. We also have v � M+(ϕ). In particular, v � [k]ψ → [k′]ψ
for any k′ with k � k′ � n and hence v � [k′]ψ. It follows that for each k′ between k and n we have
Rk′(v) ⊆ ν(ψ). Therefore R∗

k(v) ⊆ ν(ψ) and hence f−1(R∗
k(v)) ⊆ f−1(ν(ψ)). By the construction of v,

x ∈ f−1(R∗
k(v) ∪ {v}). Hence, by Lemma 6.5,

x ∈ d̃k
(
f−1(R∗

k(v)
))

⊆ d̃k
(
f−1(ν(ψ)

))
,

as required. �
From this lemma we obtain y /∈ ν′(ϕ) = f−1(ν(ϕ)), for any y with f(y) = w. Consequently, X � ϕ. �
The proof of the following lemma will be provided later on.

Lemma 6.8 (Main). For each finite Jn-tree T there exist an ordinal lme-space X = ([1, λ], τ0, . . . , τn) and
an onto Jn-morphism f : X � T , where λ < ε0.

Using this lemma we can prove that the logic GLP is topologically complete. Let Lω denote the modal
language with modalities [k], k < ω.

Theorem 6.9. Let ϕ be a formula of Lω. If GLP � ϕ then ϕ can be refuted on a GLP-space.

Proof. Suppose GLP � ϕ and let n be the maximal such that [n] occurs in ϕ. Obviously, Jn � M+(ϕ) → ϕ.
Then there exists a finite Jn-tree T such that T � M+(ϕ) → ϕ. By Lemma 6.8 there exists a GLPn-space
X = ([1, λ], τ0, . . . , τn) and a Jn-morphism f : X � T . By Theorem 6.6 we have X � ϕ. Let Xω denote the
GLP-space Xω = (X, τ0, . . . , τn, τn+1, . . .) where each topology τi is discrete for i > n. It is obvious that
Xω � ϕ. �

The topological completeness theorem can also be stated in a stronger uniform way. Recall that ε0 is the
supremum of the countable ordinals ωk recursively defined by ω0 = 1 and ωk+1 = ωωk .

Theorem 6.10. There is an ordinal lme-space X = (ε0, τ0, τ1, . . .) such that Log(X) = GLP.

Proof. Let ϕ0, ϕ1, . . . be an enumeration of all the formulas of Lω unprovable in GLP. Using Theorem 6.9
select ordinal lme-spaces Xi = ([1, λi], τ i0, τ i1, . . .) in such a way that Xi � ϕi, for each i < ω. We can assume
that λi < ε0, for each i < ω. Consider the ordinal λ :=

∑
i<ω λi. The interval [1, λ) is naturally identified

(as a set) with the disjoint union
⊔

i<ω[1, λi]. Hence, we can define the topologies τi on [1, λ) in such a way
that X = ([1, λ), τ0, τ1, . . .) is isomorphic to the topological sum

⊔
i<ω Xi. Then clearly λ � ε0 and each

formula ϕ such that GLP � ϕ is refutable on X. Hence, Log(X) = GLP.
In fact, λ must coincide with ε0. Assume λ < ωn. Then for the topology τn we have ρn(X) � rn+1(ωn) = 0

by Theorem 5.6. However, this contradicts the fact that the unprovable formula [n]⊥ is refutable in X.
Therefore, λ = ε0 and X is isomorphic to an ordinal lme-space based on ε0. �

In order to prove the main lemma we introduce the notion of d-product of scattered spaces.
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7. d-Product

Definition 7.1. Let (X, τX) and (Y, τY ) be any topological spaces. We define their d-product space (Z, τZ),
denoted X ⊗d Y , as follows.

Notice that Y is a union of its isolated points and limit points, Y = iso(Y ) ∪ d(Y ). For all y ∈ iso(Y ),
let Xy denote pairwise disjoint copies of X, and let iy : X → Xy be the associated homeomorphism maps.

Let Z0 be the topological sum of {Xy: y ∈ iso(Y )}, that is, Z0 :=
⊔

y∈iso(Y ) Xy. The space Z0 can also be
defined as the cartesian product X× iso(Y ) of X and the discrete space iso(Y ). The projection π0 : Z0 � X

is defined in a natural way, that is, π0(iy(x)) = x, for each y ∈ iso(Y ).
Let Z1 be a copy of the set dY disjoint from Z0, and π : Z1 → dY the associated bijection. Put

Z := Z0 ∪ Z1. We set π1(x) := y, if x ∈ Xy and y ∈ iso(Y ), and π1(x) := π(x), if x ∈ Z1. It is also
convenient to let Xy := {y}, if y ∈ dY , thus, Xy = π−1

1 (y), for each y ∈ Y .
Let a topology τZ on Z be generated by the one inherited from Z0 (with the basic open sets {iy(V ): V ∈

τX , y ∈ iso(Y )}) and by all sets {π−1
1 (U): U ∈ τY }.

We note that, for each y ∈ iso(Y ) and U ⊆ Y , the set π−1
1 (U) ∩ Xy is either empty or coincides with

Xy. Hence, the above basic open sets form a base of topology τZ . It follows that any open set of τZ has the
form V ∪ π−1

1 (U), where V is open in Z0 and U ∈ τY . (Pay attention that this union need not be disjoint.)
It also follows that the topologies induced from Z on Z0 and Z1 are homeomorphic to those of the product
X × iso(Y ) and dY , respectively.

As a typical example, consider the d-product of two compact ordinal spaces [1, λ] and [1, μ] taken with
their interval topologies. We claim that [1, λ] ⊗d [1, μ] is homeomorphic to [1, λμ] (with the interval topol-
ogy). Indeed, every α ∈ [1, λμ] either has the form λβ with β ∈ Lim, or belongs to a (clopen) interval
Iβ+1 := [λβ + 1, λ(β + 1)] isomorphic to [1, λ]. In the former case, α = λβ corresponds to a limit point
β ∈ [1, μ]. In the latter case, α belongs to a copy of [1, λ] corresponding to an isolated point β + 1 of [1, μ].

The described bijection is, in fact, a homeomorphism: an interval of the form (δ, α], where δ < α � λμ

is a neighborhood of α in the d-product topology. This is clear if α ∈ Iβ+1. If α = λγ with γ ∈ Lim, then
for all sufficiently large β < γ, Iβ ⊆ (δ, α], if β ∈ Suc, and λβ ∈ (δ, α], if β ∈ Lim; hence, the claim. The
converse is also clear: a neighborhood of α in the d-product topology contains a suitable interval of the form
(δ, α].

Lemma 7.2.

(i) π0 : Z0 � X is a d-map;
(ii) The map π1 : Z � Y is continuous and open.

Proof. (i) This follows from the fact that Z0 is homeomorphic to the product X × iso(Y ) with iso(Y )
discrete.

(ii) The continuity of π1 is clear. To show that it is open, we check that π1(U) is open in Y , for each
basic open set U of Z. If U is π−1

1 (V ) for a set V ∈ τY , we are done. If U = iy(V ), for some nonempty
V ∈ τX and y ∈ iso(Y ), then π1(U) = {y} ∈ τY as well. �

The following observations will also be helpful.

Lemma 7.3.

(i) Suppose x ∈ Z1. Then U is a punctured neighborhood of x in τZ iff {y ∈ Y : Xy ⊆ U} is a punctured
neighborhood of π1(x) in τY .
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(ii) Let A ⊆ Z, x ∈ Z1. Then, x ∈ dZ(A) iff

π1(x) ∈ dY {y ∈ Y : A ∩Xy �= ∅}.

Clearly, X ⊗d Y is scattered if so are X and Y . Let us compute the rank function of X ⊗d Y .

Lemma 7.4.

(i) If x ∈ Z0 then ρZ(x) = ρX(π0(x)).
(ii) If x ∈ Z1 then ρZ(x) = ρ(X) + ρdY (π1(x)). (Obviously, 1 + ρdY (y) = ρY (y).)

Proof. For (i), we just notice that ρZ(x) = ρZ0(x), since Z0 is open in Z. Since π0 : Z0 → X is a d-map,
we have ρZ0(x) = ρX(π0(x)).

For (ii) we first prove that Z1 ⊆ dβZ(Z), for each β < ρ(X). This goes by transfinite induction on β.
The cases when β = 0 or β ∈ Lim are easy. Suppose the claim is true for all α � β. We prove that
Z1 ⊆ dβ+1

Z (Z) = dZ(dβZ(Z)). By (i), if β < ρ(X) then dβZ(Xy) = iy(dβX(X)) �= ∅, for all y ∈ iso(Y ). Hence,
any y ∈ Z1 is a limit point of dβ(Z0), hence of dβZ(Z), as required.

As a consequence we obtain that d
ρ(X)
Z (Z) = Z1. Hence, d

ρ(X)+α
Z (Z) = dαZ(Z1) = π−1

1 (d1+α
Y (Y )), for

each α. �
Next we would like to show that d-product is well-behaved w.r.t. �-extensions.

Lemma 7.5. Suppose X ′, Y ′ are �-extensions of X, Y , respectively. Then X ′ ⊗d Y ′ is an �-extension of
X ⊗d Y .

Proof. The rank function is preserved by the previous lemma. We only have to check that the identity
function id : X⊗d Y → X ′⊗d Y

′ is continuous at the points x of successor rank. Let Z = X⊗d Y . If x ∈ Z0,
the claim follows from the hypothesis about X ′.

Suppose x ∈ Z1. By Lemma 7.4, ρY (π1(x)) is not a limit. Consider a basic open neighborhood V ′ of x
in Z ′ = X ′ ⊗d Y ′. The set V ′ has the form π−1

1 (U ′), where U ′ is a Y ′-neighborhood of π1(x). Since Y ′ is
an �-extension of Y , there is a Y -neighborhood U ⊆ U ′ such that π1(x) ∈ U . Then x ∈ π−1

1 (U) ⊆ V ′, as
required. �
Lemma 7.6. Suppose X and Y are �-maximal and ρ(X) ∈ Suc. Then X ⊗d Y is �-maximal.

Proof. We use Lemma 4.5. Let Z = X ⊗d Y and suppose x ∈ Z and ρZ(x) = λ ∈ Lim. Consider any open
V ⊆ Oλ(Z) = {z ∈ Z: ρZ(z) < λ}. We show that either V ∪ {x} is open, or there is an open neighborhood
Ux of x such that ρZ(V ∩ Ux) < λ.

Case 1: x ∈ Z0. In this case, V ⊆ Oλ(Z) ⊆ Z0 by Lemma 7.4. Also, Z0 is �-maximal as a topological sum
of �-maximal spaces. Hence, the claim follows from �-maximality of Z0.

Case 2: x ∈ Z1. In this case we represent V as a union W ∪ π−1
1 (U), where W is open in Z0 and U in Y .

Let y := π1(x) and let μ := ρY (y). By Lemma 7.4(ii) we have ρ(X) + μ′ = λ where μ = 1 + μ′. Since λ is a
limit ordinal, so is μ (unless μ′ = 0 and λ = ρ(X), but then ρ(X) would be a limit). Hence, we can use the
�-maximality of Y for y, μ, and U ⊆ Oμ(Y ).

Suppose ρY (U ∩ Uy) = β < μ, for some open neighborhood Uy of y in Y . Let Ux := π−1
1 (Uy). Then

Ux ∩ π−1
1 (U) = π−1

1 (U ∩ Uy) is a neighborhood of x (by the continuity of π1). We also have ρZ(V ∩ Ux) �
ρ(X) + ρdY (U ∩ Uy) � ρ(X) + β < λ.

If, on the other hand, U ∪ {y} is open in Y , then π−1
1 (U) ∪ {x} is open in Z, by the continuity of π1.

Hence, so is V ∪ {x} = W ∪ π−1
1 (U) ∪ {x}. �
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Consider now two spaces X = [1, λ] and Y = [1, μ] equipped with the interval topologies. Notice that
since X is compact there is an ordinal α ∈ X whose rank is maximal. Then ρ(X) = r(α) + 1 ∈ Suc. Let X ′

and Y ′ be any �-maximal �-extensions of X and Y , respectively. Combining the previous two lemmas we
obtain the following corollary.

Corollary 7.7. X ′ ⊗d Y
′ is an �-maximal �-extension of [1, λμ] taken with the interval topology.

Next, we investigate how the d-product topology behaves w.r.t. the plus operation, for the case of
�-maximal spaces.

Lemma 7.8. Suppose X and Y are �-maximal and ρ(X) ∈ Suc. Then (X ⊗d Y )+ � (X+ × iso(Y ))� (dY )+.

Here � denotes the topological sum and iso(Y ) comes with the discrete topology. Also notice that, if
Z = X⊗d Y then X+ × iso(Y ) is homeomorphic to Z+

0 , and that (dY )+ is homeomorphic to the restriction
of Y + to the set dY . (Any set dA on Y is contained in dY .)

Proof. Let Z = X ⊗d Y and let W denote (X+ × iso(Y ))� (dY )+. We can assume that Z and W have the
same underlying set. By Lemma 5.1 the topology of W is generated by sets of the form

1. iy(V ), where y ∈ iso(Y ), V ∈ τX or V = dα+1X with α < ρ(X);
2. π−1

1 (U ∩ dY ) for U ∈ τY and π−1
1 (dβ+1Y ) with β < ρ(Y ).

To prove the inclusion of τW into τ+
Z we check that all these basic open sets are open in Z+.

If V ∈ τX then iy(V ) ∈ τZ , hence it is open in Z+. If V = dα+1X then iy(V ) = Xy ∩ dα+1Z, which is
open in Z+ as the intersection of two open sets. If U ∈ τY , then π−1

1 (U ∩dY ) = π−1
1 (U)∩Z1 is open in Z+.

In fact, Z1 = dρ(X)Z is open in Z+, since ρ(X) ∈ Suc. If U = π−1
1 (dβ+1Y ), then U = dβ+1

Z Z1 = d
ρ(X)+β+1
Z Z

which is open in Z+.
Now we check that τ+

Z is included in τW . Since X ⊕d Y is �-maximal, τ+
Z is generated by τZ and sets of

the form dα+1Z for α < ρ(Z). By Lemma 7.4

dα+1Z =
{
dα+1Z0 ∪ Z1, if α < ρ(X),
π−1

1 (dβ+1Y ), if α = ρ(X) + β.

In both cases it is clearly open in W . On the other hand, open sets in Z are generated by iy(V ) with V ∈ τX ,
in which case we are done, and π−1

1 (U) with U ∈ τY . Let U0 := U ∩ iso(Y ) and U1 := U ∩ dY . Notice
that π−1

1 (U0) =
⋃

y∈U0
Xy is open in Z0, and hence in W , whereas π−1

1 (U1) is open in dY , hence in (dY )+
and W . Hence, τZ is included in τW and we are done. �
8. Some operations on lme-spaces

Recall that (X, τ0, . . . , τn) is an lme-space based on a scattered topology τ if τ0 = τ ′ and τi+1 = (τ+
i )′, for

each i < n, where σ′ denotes any �-maximal �-extension of σ. Obviously, any such space is a GLPn-space.
We call (X, τ0, . . . , τn) an ordinal lme-space if X is an ordinal and τ is the interval topology on X. We
specify two constructions on lme-spaces.

First, we extend the operation of d-product to GLP-spaces.

Definition 8.1. Suppose (X, τ0, . . . , τn) and (Y, σ0, . . . , σn) are two GLPn-spaces. Let (Z, θ0) be the d-product
(X, τ0) ⊗d (Y, σ0). For each i = 1, . . . , n we specify a topology θi on Z as the sum of the topologies τi on
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Xy, for each y ∈ iso(Y ), and of σi on dY , where iso(Y ) and dY refer to the space (Y, σ0). In other words,
θi consists of the sets of the form

⋃
y∈iso(Y )

iy(Uy) ∪ π−1
1 (V ∩ dY )

where Uy ⊆ X, Uy ∈ τi and V ∈ σi. We note that the functions π0 : (Z0, θi � Z0) � (X, τi) and
π1 : (Z1, θi � Z1) � (dY, σi � dY ) are d-maps, for i = 1, . . . , n.

Lemma 8.2. (Z, θ0, θ1, . . . , θn) is a GLPn-space.

Proof. We make use of the fact that the plus operation on topologies distributes over topological sums.
Hence, θ+

i ⊆ θi+1 on Z, for all i = 1, . . . , n− 1. Thus, we only have to show that θ+
0 ⊆ θ1.

Consider any A ⊆ Z. By Lemma 7.3

dZ(A) = π−1
1

(
dY {y: A ∩Xy �= ∅}

)
∪ dZ0(A ∩ Z0).

In fact, any x ∈ dZ(A) ∩ Z0 must belong to dZ0(A ∩ Z0), since Z0 is open in Z, hence the claim. However,
both π−1

1 (dY {y: A∩Xy �= ∅}) and dZ0(A∩Z0) are open in θ1. This is because dY {y: A∩Xy �= ∅} is open
in (dY, σ1) and dZ0(A ∩ Z0) is open in (Z0, θ1). �
Lemma 8.3. Suppose (X, τ0, . . . , τn) and (Y, σ0, . . . , σn) are lme-spaces based on τ and σ, respectively, such
that both ρ(X, τ) and ρ(Y, σ) are successor ordinals. Then X⊗d Y is an lme-space based on (X, τ)⊗d (Y, σ).
Moreover, ρ((X, τ) ⊗d (Y, σ)) is a successor ordinal.

Proof. Let Z = (Z, θ0, . . . , θn) denote X⊗dY . The fact that (Z, θ0) is an �-maximal �-extension of (X, τ)⊗d

(Y, σ) follows from Lemmas 7.5 and 7.6.
We show that (Z, θ1) is an �-maximal �-extension of (Z, θ+

0 ). By Lemma 7.8

(
Z, θ+

0
)
�

((
X, τ+

0
)
× iso(Y )

)
�
(
dY, σ+

0
)
.

On the other hand, by definition,

(Z, θ1) �
(
(X, τ1) × iso(Y )

)
� (dY, σ1).

We have that (X, τ1) is an �-maximal �-extension of (X, τ+
0 ) and that (dY, σ1) is one of (dY, σ+

0 ). This
relation then holds for the respective topological sums.

Finally, we remark that (Z, θi+1) is an �-maximal �-extension of (Z, θ+
i ), for i = 1, . . . , n − 1, because

(X, τi+1) is an �-maximal �-extension of (X, τ+
i ) and (dY, σi+1) is an �-maximal �-extension of (dY, σ+

i ).
These relations then must also hold for the respective topological sums. �
Corollary 8.4. Let X and Y be ordinal lme-spaces on [1, λ] and [1, μ], respectively. Then X⊗dY is an ordinal
lme-space on [1, λμ].

We are going to introduce another key operation on lme-spaces called lifting. Before doing it we state a
simple ‘pullback’ lemma.

Lemma 8.5. Let (X, τ0, . . . , τn) be an lme-space based on τ , and let h : (Y, σ) → (X, τ) be a d-map. Then
there is an lme-space (Y, σ0, . . . , σn) based on σ such that h : (Y, σi) → (X, τi) is a d-map, for each i � n.
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Proof. This statement is proved by a repeated application of Lemmas 4.7 and 5.2 as indicated in the
following diagram.

(Y, σ)

d

lm
(Y, σ0)

d

(Y, σ+
0 )

d

lm
(Y, σ1)

d

. . .

(X, τ) lm (X, τ0) (X, τ+
0 ) lm (X, τ1) . . .

Here, the arrows labeled by ‘d’ indicate d-maps; the arrows labeled by ‘lm’ indicate �-maximal
�-extensions. Dotted arrows are being proved to exist given the rest. Thus, the two squares represent the
first two applications of Lemma 4.7, and the transition from the right vertical arrow of the first square to
the left vertical arrow of the second one is an application of Lemma 5.2. �
Lemma 8.6 (Lifting). Suppose X = ([0, λ], τ1, . . . , τn) is an ordinal lme-space. Then there is an ordinal
lme-space Y = ([1, ωλ], σ0, σ1, . . . , σn) such that r : ([1, ωλ], σi) � ([0, λ], τi) is a d-map, for each i = 1, . . . , n.

Such a Y can be called a lifting of the space X, since it is similar to X w.r.t. higher topologies (starting
from the second one rather than the first).

Proof. Topology σ0, being an �-maximal �-extension of the order topology, has the same rank function.
Therefore, r : ([1, ωλ], σ0) � ([0, λ], τ←) is a d-map. By Lemma 5.2 we obtain that r : ([1, ωλ], σ+

0 ) �
([0, λ], τ<) is a d-map, as well. Since τ1 is an �-maximal �-extension of the order topology, we are now in
a position to apply Lemma 8.5. So, we obtain an lme-space ([1, ωλ], σ1, . . . , σn) based on σ+

0 such that
r : ([1, ωλ], σi) � ([0, λ], τi) is a d-map, for each i = 1, . . . , n. It follows that Y = ([1, ωλ], σ0, σ1, . . . , σn) is
as required. �
9. Proof of main lemma

Now we provide the key construction proving Lemma 6.8 above. Its closest relative is the construction
in [9], however it is now complicated by the fact that the topologies of a suitable lme-space are constructed
along with a Jn-morphism to a given Kripke frame.

Proof. For each Jn-tree (T,R0, . . . , Rn) with a root a we are going to build an ordinal lme-space X =
([1, λ], τ0, . . . , τn) and a Jn-morphism f : X � T such that f−1({a}) = {λ}. Such Jn-morphisms will be
called suitable. The construction goes by induction on n with a subordinate induction on the R0-height
of T , which is denoted ht0(T ).

If n = 0 we let τ0 be the interval topology and notice that on any λ < ωω this topology is �-maximal
(since there are no points of limit rank). From the topological completeness proofs for the Gödel–Löb logic
it is known (see [1,14,13]) that there is an ordinal λ < ωω and a suitable d-map from [1, λ] onto (T,R0).
This map is constructed by induction on ht0(T ).

If ht0(T ) = 0, then T consists of a single point a. We put λ = 1 and f(1) = a. If ht0(T ) = m > 0
let a1, . . . , al be the children of the root a, and let Ti denote the subtree generated by ai, for 1 � i � l.
By the induction hypothesis, there are ordinals κ1, . . . , κl and suitable d-maps7 gi : [1, κi] � Ti, for each
i = 1, . . . , l. Let κ := κ1 + · · · + κl, then [1, κ] can be identified with the topological sum

⊔l
i=1[1, κi]. Let

g : [1, κ] �
⊔l

i=1 Ti be defined by

7 Recall that J0-morphisms are just d-maps.
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g(α) := gi(β), if α = κ1 + · · · + κi−1 + β, β ∈ [1, κi].

Then g is clearly a d-map.
We now let λ := κω and let f : [1, λ] � T be defined by

f(α) :=
{
g(β), if α = λn + β where n < ω, β ∈ [1, κ],
a, if α = λ.

It is then easy to verify that f is, indeed, a suitable d-map. This accounts for the case n = 0.
For the induction step suppose the lemma is true for each Jk-tree with k < n. Let T = (T,R0, . . . , Rn)

be a Jn-tree with the root a. We prove our claim by induction on the R0-height of T .
Case 1: ht0(T ) = 0, in other words R0 = ∅. Let T1 := (T,R1, . . . , Rn). By the induction hypothesis there

is a suitable Jn−1-morphism f1 : X1 � T1 where X1 = ([1, λ1], τ1, . . . , τn). We note that X1 is isomorphic to
([0, μ], τ1, . . . , τn), for some μ (obviously, μ = λ1 if λ1 is infinite). By the Lifting lemma there is an ordinal
lme-space X = ([1, λ], σ0, σ1, . . . , σn) such that λ = ωμ and

r :
(
[1, λ], σi

)
�

(
[0, μ], τi

)

is a d-map, for each i ∈ [1, n]. It follows that f := r ◦ f1 is a suitable Jn-morphism. In fact, it is immediate
that conditions (j1), (j2) are met and that (j3), (j4) are satisfied for each k � 1. Let us consider (j3) for
k = 0.

Since R0 is empty, the only 1-hereditary root of T is in fact the unique 0-hereditary root a, thus R∗
0(a) =

T \ {a}. Then clearly f−1(R∗
0(a)) = [1, λ) and f−1(R∗

0(a) ∪ {a}) = [1, λ], both of which are σ0-open. Thus
(j3) is met.

Condition (j4) for k = 0 boils down to the fact that f−1(a) is discrete. However, f−1(a) is the single-
ton {λ}. Thus (j4) is also met and f : X � T is the required Jn-morphism.

Case 2: ht0(T ) = m > 0. Let a1, . . . , al be the immediate R0-successors of a which are hereditary 1-roots.
Denote Ti = {ai}∪R∗

0(ai) for i ∈ [1, l] and T0 = {a}∪R∗
1(a). Note that T =

⋃l
i=0 Ti. Furthermore, for each

i ∈ [1, l] the subframe Ti of T is a Jn-tree of R0-height less than m. By the induction hypothesis there exist
ordinal lme-spaces Si = ([1, κi], ξi0, . . . , ξin) and suitable Jn-morphisms gi : Si → Ti. Let κ := κ1 + · · · + κl,
then [1, κ] can be identified with the disjoint union

⊔l
i=1[1, κi]. Let ξ0, . . . , ξn be the topologies of the

corresponding topological sum, that is, ξj =
⊔l

i=1 ξ
i
j , and let g : [1, κ] →

⊔l
i=1 Ti be the disjoint union of gi,

i.e. g =
⊔l

i=1 gi. Notice that
⊔l

i=1 Ti is identified with R0(a). It is easy to see that X = ([1, κ], ξ1, . . . , ξn) is
an ordinal lme-space and that g : [1, κ] → R0(a) is a Jn-morphism.

Now consider the 1-sheet (T0, R1, . . . , Rn). By the induction hypothesis (for n) there is an ordinal lme-
space Y0 = ([1, λ0], τ1, . . . , τn) and a suitable Jn−1-morphism g0 : Y0 � T0. Let Y = ([1, ωλ0 ], σ0, σ1, . . . , σn)
be an ordinal lme-space defined as in Case 1 and let h : Y � (T0,∅, R1, . . . , Rn) be the corresponding
suitable Jn-morphism.

We now consider the d-product Z := X ⊗d Y of these ordinal lme-spaces. Note that iso(Y ) = {α + 1:
α < κ0} and dY = Lim ∩ [1, κ0] where κ0 := ωλ0 . Hence, we can identify Z with an ordinal lme-space
([1, λ], θ0, . . . , θn) where λ := κ ·κ0 and Xα+1 = [κα+1, κ(α+1)], for all α < κ0. Hence, Z0 =

⊔
α<κ0

Xα+1
and Z1 = {κλ: λ ∈ Lim, λ � κ0}. The associated projection maps π0 : Z0 � X and π1 : Z � Y are defined
by formulas π1(κλ) = λ and π0(κα + β) = β, where λ ∈ Lim, λ � κ0, β ∈ [1, κ], α < κ0.

We define the required Jn-morphism f : Z � T as follows:

f(z) :=
{
g(π0(z)), if z ∈ Z0,

h(π1(z)), if z ∈ Z1.

We have to check that f satisfies (j1)–(j4). Recall that for k � 1 the space (Z, θk) is homeomorphic to
the topological sum of Z0 �

⊔
(X, ξk) and Z1 � (Y, σk). Then both π0 : (Z0, θk�Z0) � (X, ξk) and
α<κ0
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π1 : (Z1, θk�Z1) � (Y, σk) are d-maps. Since both g and h are Jn-morphisms, it follows that conditions
(j1)–(j4) are satisfied for all k � 1. We must only check (j2)–(j4) for k = 0.

Recall that the topology θ0 on a d-product X⊗d Y is generated by the base of open sets {iy(V ): V ∈ τX ,
y ∈ iso(Y )} and {π−1

1 (U): U ∈ τY }. Hence, in order to check (j2) it is sufficient to show that the image under
f of any such basic open set is open. Since iy(V ) ⊆ Z0 and π0(iy(V )) = V we obtain that f(iy(V )) = g(V )
is open (g is a Jn-morphism). On the other hand, if U is nonempty, then f(π−1

1 (U)) = h(U) ∪ g(X) =
h(U) ∪R0(a). This holds because every nonempty open subset of Y , in particular U , has a point y of rank
0. Then Xy ⊆ π−1

1 (U) and hence f(π−1
1 (U)) ⊇ f(Xy) = g(X). Clearly, both h(U) and R0(a) are open in T .

Hence, f satisfies (j2).
Condition (j3) follows from the fact that both π0 and π1 are continuous. Indeed, if w is a hereditary 1-root

of T , then either w = a or w ∈ R0(a). In the former case R∗
0(w) = T \ {a} and hence f−1(R∗

0(w)) = [1, λ)
is open. Similarly, f−1(R∗

0(w) ∪ {w}) = Z is open.
If w ∈ R0(a) then both R∗

0(w) and R∗
0(w) ∪ {w} are contained in R0(a). Since g is a Jn-morphism,

g−1(R∗
0(w)) is open. Then f−1(R∗

0(w)) = π−1
0 (g−1(R∗

0(w))) is open, by the continuity of π0. The argument
for R∗

0(w) ∪ {w} is similar. Hence, condition (j3) is met.
To check condition (j4) assume w is a hereditary 1-root of T . If w = a then f−1({w}) is the singleton {λ}.

If w ∈ R0(a) then g−1({w}) is discrete as a subspace of X, since g is a Jn-morphism. We know that
π0 : Z0 � X is both continuous and pointwise discrete. Hence, f−1({w}) = π−1

0 (g−1({w})) is discrete in
Z0 and thereby in Z (Z0 is open in Z). This shows (j4).

Thus, we have checked that f : Z � T is a suitable Jn-morphism, which completes the proof of Lemma 6.8
and thereby of Theorem 6.6. �

10. Further results

After a preliminary version of this paper has appeared as a preprint [10] some interesting further devel-
opments took place that we briefly mention here.

Topological semantics of polymodal provability logic has been extended to the language with transfinitely
many modalities. A logic GLPΛ having modalities [α], for all ordinals α < Λ, is introduced in [6]. It was
intended for the proof-theoretic analysis of predicative theories and is currently being actively investigated
for that purpose.

David Fernandez and Joost Joosten undertook a thorough study of the variable-free fragment of that
logic mostly in connection with the arising ordinal notation systems (see [19,20] for a sample). In particular,
they found a suitable generalization of Icard’s polytopological space and showed that it is complete for
that fragment [21]. Fernandez [18] also proved topological completeness of the full GLPΛ by extending the
results of the present paper.

The ordinal GLP-space is easily generalized to transfinitely many topologies (τα)α<Λ by letting τ0 be
the left topology, τα+1 := τ+

α and, for limit ordinals λ, τλ be the topology generated by all τα such that
α < λ. This space is a natural model of GLPΛ and has been studied quite recently by Joan Bagaria [2]
and further by Bagaria, Magidor and Sakai [3]. In particular, the three authors proved that in L the limit
points of τn+2 are Π1

n-indescribable cardinals. The question posed in [12] whether the non-discreteness of
τn+2 is equiconsistent with the existence of Π1

n-indescribable cardinals still seems to be open. So is the
more difficult problem whether GLP is complete for the ordinal polytopological space (under suitable
set-theoretic assumptions).

The reader can also consult our recent paper [11] for a general survey of topological semantics of prov-
ability logic and more information on ordinal GLP-spaces.
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Appendix A. Proof of Proposition 2.1

The correspondence between Magari frames and scattered topological spaces is due to Esakia [16]. A frame
(X, δ) is called a Magari frame if it satisfies the following identities, for any A,B ⊆ X:

(i) δ(A ∪B) = δA ∪ δB; δ∅ = ∅;
(ii) δA = δ(A \ δA).

It is well-known and easy to see that (X, δ) is Magari iff (X, δ) validates the axioms of Gödel–Löb logic
GL (corresponding to Axioms (i)–(iii) of GLP). We notice that any such operator δ is monotone, that is,
A ⊆ B implies δA ⊆ δB. In addition, δδA ⊆ δA holds in any Magari frame, since the formula ��p → �p

is a theorem of GL.

Lemma A.1. If (X, τ) is a scattered topological space then (X, dτ ) is a Magari frame.

Proof. The validity of (i) is obvious, whereas (ii) means that any limit point of A is a limit point of the set
iso(A) of isolated points of A. Let x ∈ dτA and let U be an open neighborhood of x. U ∩ A \ {x} is not
empty, hence it has an isolated point y. Then y ∈ iso(A) as well. �

Suppose (X, τ0, τ1, . . .) is a GLP-space. To prove part (i) of Proposition 2.1 observe that Axioms (i)–(iii)
of GLP are satisfied in (X, d0, d1, . . .) by the previous corollary. Axiom (iv) is clearly valid since τn ⊆ τn+1.

To check Axiom (v) consider a set of the form dn(A). Since X is a GLP-space, dn(A) is open in τn+1.
Hence, every x ∈ dn(A) cannot be a τn+1-limit point of X \ dn(A), that is, x ∈ d̃n+1(dnA). In other words,
dn(A) ⊆ d̃n+1(dnA), for any A, that is, Axiom (v) is valid.

To prove part (ii) of Proposition 2.1 we first remark that, if (X, δ) is a Magari frame, then the operator
c(A) := A ∪ δA satisfies the Kuratowski axioms of the topological closure. This defines a topology on X in
which any set A is closed iff A = c(A) iff δA ⊆ A. (Alternatively, one can check that the collection of all
sets U satisfying U ⊆ δ̃U is a topology.)

Lemma A.2. Suppose (X, δ) is Magari. Then, for all x ∈ X,

(i) x /∈ δ({x});
(ii) x ∈ δA ⇐⇒ x ∈ δ(A \ {x}).

Proof. (i) By Axiom (iii), δ{x} ⊆ δ({x} \ δ{x}). If x ∈ δ{x} then δ({x} \ δ{x}) ⊇ δ({x} \ {x}) = δ∅ = ∅.
Hence, δ{x} = ∅, a contradiction.

(ii) x ∈ δA implies x ∈ δ((A \ {x}) ∪ {x}) = δ(A \ {x}) ∪ δ{x}. By (i), x /∈ δ{x}, hence x ∈ δ(A \ {x}).
The other implication follows from the monotonicity of δ. �
Lemma A.3. Suppose (X, δ) is Magari and τ is the associated topology. Then δ = dτ .
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Proof. Let d = dτ ; we show that, for any set A ⊆ X, dA = δA. Notice that, for any B, cB = dB∪B = δB∪B.
Assume x ∈ δA then

x ∈ δ
(
A \ {x}

)
⊆ c

(
A \ {x}

)
⊆ d

(
A \ {x}

)
∪
(
A \ {x}

)
.

Since x /∈ A \ {x}, we obtain x ∈ d(A \ {x}). By the monotonicity of d, x ∈ dA.
Similarly, if x ∈ dA then x ∈ d(A \ {x}). Hence,

x ∈ c
(
A \ {x}

)
= δ

(
A \ {x}

)
∪
(
A \ {x}

)
.

Since x /∈ A \ {x} we obtain x ∈ δA. �
Lemma A.4. Suppose (X, δ) is Magari and τ is the associated topology. Then (X, τ) is scattered.

Proof. Since δ is Löb we know that δ = dτ . We show that any nonempty subspace A ⊆ X has an isolated
point.

Suppose not, then iso(A) = A \ δA = ∅. Then δA = δ(A \ δA) = δ∅ = ∅. Then A = A \ δA = ∅. �
Now we prove part (ii). Let (X, δ0, δ1, . . .) be a neighborhood frame satisfying GLP. Then each of the

frames (X, δn) is Magari, hence it defines a scattered topology τn on X for which δn = dτn . Recall that
U ∈ τn iff U ⊆ δ̃n(U). We only have to show that the last two conditions of a GLP-space are met.

Suppose U ∈ τn, then U ⊆ δ̃n(U) ⊆ δ̃n+1(U) by Axiom (iv). Hence, U ∈ τn+1. Thus, τn ⊆ τn+1.
Similarly, by Axiom (v) for any set A we have δn(A) ⊆ δ̃n+1(δn(A)). Hence, dτn(A) = δn(A) ∈ τn+1.

Thus, (X, τ0, τ1, . . .) is a GLP-space.
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