Leo Esakia* and Revaz Grigolia

FORMULAS OF ONE PROPOSITIONAL VARIABLE IN INTUITIONISTIC LOGIC WITH THE SOLOVAY MODALITY

Abstract

A description of the free cyclic algebra over the variety of Solovay algebras, as well as over its pyramid locally finite subvarieties is given.

Keywords: Heyting algebras, Kripke frames, free algebras.
MSC: 06B30, 06F20, 54F05

1. Introduction

Before entering into a technical description of the free cyclic algebras with the Solovay modality let us indicate some motivation for bringing up this topic.

In [8] Robert Solovay, among other things, presented a set-theoretical translation of modal formulas by putting $\square p$ to mean " p is true in every transitive model of Zermelo-Fraenkel Set Theory ZF". By defining an interpretation as a function s sending modal formulas to sentences of $\mathbf{Z F}$ which commutes with the Boolean connectives and putting $s(\square p)$ to be equal to the statement " $s(p)$ is true in every transitive model of ZF", Solovay formulated a modal system, which we call here $S O L$, and announced its ZFcompleteness.

[^0]SOL is the classical modal system which results from the Gödel-Löb system $G L$ (alias, the provability logic) by adding the formula

$$
\square(\square p \rightarrow \square q) \vee \square(\square q \rightarrow \square p \wedge p)
$$

as a new axiom.
ZF-completeness: For any modal formula p, $S O L \vdash p$ iff $\mathbf{Z F} \vdash s(p)$ for any Solovay's interpretation s. (For a proof, see [2, Chapt. 13, p. 166].)
Now we shall formulate a simple system I.SOL, which is an intuitionistic "companion" of SOL: the composition of the well-known Gödel's modal translation of Heyting Calculus and split-map ($=$ splitting a formula $\square p$ into the formula $p \wedge \square p$) provides the needed embedding of $I . S O L$ into $S O L$.

Definition 1. An intuitionistic modal system I.SOL is an extension of the proof-intuitionistic logic $K M$ obtained by postulating the formula

$$
(\square p \rightarrow \square q) \vee(\square q \rightarrow p)
$$

as a new axiom [4].
We recall that the proof-intuitionistic logic KM (=Kuznetsov-Muravitsky [7]) is the Heyting propositional calculus $H C$ enriched by \square as Prov modality satisfying the following conditions:

$$
p \rightarrow \square p, \quad \square p \rightarrow(q \vee(q \rightarrow p)), \quad(\square p \rightarrow p) \rightarrow p .
$$

The purpose of this paper is to investigate the set of formulas of one propositional variable of the system $I . S O L$, that is in algebraic terms it means the description of the free cyclic algebra in the variety corresponding to the system I.SOL. We introduce some algebraic and relational background. We choose the formulations below because they seem to be appropriate to our aim. The algebraic semantics for the system I.SOL is based on the notion of Heyting algebra with an operator.

Definition 2. A Heyting algebra with an operator \square is called Solovay algebra, if the following conditions are satisfied:

$$
\begin{gathered}
p \leq \square p, \quad \square p \leq q \vee(q \rightarrow p), \quad \square p \rightarrow p=p, \\
(\square p \rightarrow \square q) \vee(\square q \rightarrow p)=\top .
\end{gathered}
$$

The class of all Solovay algebras forms a variety, which we denote by SA. It is known that the variety SA is finitely approximated and that if $(H, \square) \in \mathbf{S A}$ then the Heyting algebra H is cascade Heyting algebra [4]. A Heyting algebra H is called a cascade Heyting algebra, if H belongs to the variety generated by the class of all finite Boolean cascades. A finite Heyting algebra H is a Boolean cascade, if there exist Boolean lattices B_{1}, \ldots, B_{k} such that $H=B_{1}+\cdots+B_{k}$, where each B_{i} is a convex sublattice of H and $B_{i}+B_{i+1}$ denotes the ordinal sum of B_{i} and B_{i+1} in which the smallest element of B_{i} and the largest element of B_{i+1} are identified.

2. Preliminaries

Let (P, R) be a partially ordered set (for short, a poset) and $Q \subseteq P$. Then we say that Q is a down cone if, whenever $x \in Q, y \in P$ and $R(y, x)$, it follows that $y \in Q$. Dually, $W \subseteq P$ is called an upper cone (or simply cone) if whenever $x \in W, y \in P$ and $R(x, y)$, then $y \in W$. The smallest down cone (upper cone) containing a given subset U of P we denote by

$$
\begin{aligned}
R^{-1}(U) & :=\{y \in P: R(y, x) \& x \in U\}, \\
R(U) & :=\{y \in P: R(x, y) \& x \in U\} .
\end{aligned}
$$

Instead of $R^{-1}(\{x\})(R(\{x\}))$ we write $R^{-1}(x)(R(x))$. The same notation we have if binary relation R, defined on P, is transitive and irreflexive. We say that x covers y, and write $y \prec x$, if $R(y, x)$ and $y \neq x$ and there is no z such that $z \neq y, z \neq x$ and $R(y, z)$ and $R(z, x)$. In the case when R is transitive we denote its reflexive closure by R_{0}. Often, we shall use the symbol $<$ for transitive and irreflexive relation, and do \leq for reflexive closure of $<$.

Let $(X ; R)$ be a poset and $x \in X$. A chain out of x is a lineary ordered subset (i.e. for every y, z from the subset either $y R z$ or $z R y$) of X with the least element $x ; d(x)$ (the depth of $x)$ denotes the largest cardinality of chains out of x.

A topological space X with binary relation R is said to be GL-frame if:
(1) X is a Stone space (i.e. 0-dimensional, Hausdorf and compact topological space);
(2) $R(x)$ and $R^{-1}(x)$ are closed sets for every $x \in X$ and $R^{-1}(A)$ is a clopen for every clopen A of X;
(3) for every clopen A of X and every element $x \in A$ there is an element $y \in A \backslash R^{-1}(A)$ such that either $x R y$ or $x \in A \backslash R^{-1}(A)$.

A map $f: X_{1} \rightarrow X_{2}$ from a $G L$-frame X_{1} to a $G L$-frame X_{2} is said to be strongly isotone if

$$
f(x) R_{2} y \Leftrightarrow\left(\exists z \in X_{1}\right)\left(x R_{1} z \& f(z)=y\right) .
$$

Let us denote by \mathbf{G} the category of $G L$-frames and continuous strongly isotone maps.

An algebra $(A ; \vee, \wedge, \diamond,-, 0,1)$ is said to be diagonalizable algebra if ($A ; \vee$,
$\wedge,-, 0,1)$ is Boolean algebra and \diamond satisfies the following conditions:
(1) $\diamond(a \vee b)=\diamond(a) \vee \diamond(b)$,
(2) $\diamond(0)=0$,
(3) $\diamond(a) \leq \diamond(a \vee-\diamond(a))$.

Let us denote by \mathbf{D} the category of diagonalizable algebras with diagonalizable algebra homomorphisms.

Let $X \in \mathbf{G}$ and $A \in \mathbf{D}$. The set $\mathcal{D}(X)$ of all clopen subsets of X is closed under the set union, intersection, complementation and the operator R^{-1}. So $\mathcal{D}((X ; R))=\left(\mathcal{D}(X) ; \cup \cap,-, R^{-1}, \emptyset, X\right)$ is an object of \mathbf{D}; the set $\mathcal{G}(A)$ of all ultrafilters of $A \in \mathbf{D}$ with a relation $x R y \Leftrightarrow(\forall a \in A)(a \in y \Rightarrow \diamond(a) \in x)$, topologized by taking the family of sets $h(a)=\{F \in \mathcal{G}(A): a \in F\}$ as a base, is an object of \mathbf{G}. Furthermore, setting $\mathcal{G}(h)=h^{-1}: \mathcal{G}(B) \rightarrow \mathcal{G}(A)$ for every morphism $h: A \rightarrow B$ of \mathbf{D}, and $\mathcal{D}(f)=f^{-1}: \mathcal{D}(Y) \rightarrow \mathcal{D}(X)$ for every morphism $f: X \rightarrow Y$ of \mathbf{G}, we obtain contravariant functors $\mathcal{D}: \mathbf{D} \rightarrow \mathbf{G}$ and $\mathcal{G}: \mathbf{G} \rightarrow \mathbf{D}$. In [1] it is proved, that these functors establish a dual equivalence between the categories \mathbf{D} and \mathbf{G}.

On every diagonalizable algebra A is defined a unary operator \square which is dual to $\diamond: \square(x)=-\diamond-(x)$. The sublattice $H=\{\square(a) \wedge a: a \in A\}$ forms Heyting algebra, where $a \rightarrow b=\square(-a \vee b) \wedge(-a \vee b)$. Let us note, that the set H is closed under the operation \square. Moreover the operation \square on elements of H satisfies the following conditions: (a) $p \leq \square p$, (b) $\square p \leq(q \vee(q \rightarrow p))$, (c) $(\square p \rightarrow p)=p$. As we see the class of all algebras $(H, \vee, \wedge, \rightarrow, \square, \perp, \top)$, where $(H, \vee, \wedge, \rightarrow, \perp, \top)$ is Heyting algebra and \square satisfies the conditions (a), (b), (c), forms a variety which we denote by \mathbf{H}_{\square}. The variety of Solovay algebras SA is a subvariety of \mathbf{H}_{\square} determined by the additional identity $(\square p \rightarrow \square q) \vee(\square q \rightarrow p)=\mathrm{T}$.

A pair $(X ; R)$ is said to be S-frame if:
(1) $(X ; R)$ is $G L$-frame;
(2) $\left(X, R_{\circ}\right)$ is a poset;
(3) for every $x, y, z, u \in X$ if $u R x, u R z, x R y$ and $\neg(x R z)$, then $z R y$.

Let \mathbf{S} be the category of S-frames and continuous strongly isotone maps. The duality between the category of Solovay algebras and the category of S-frames is obtained by specialization of the duality between the categories D and \mathbf{G} on the case of Solovay algebras. For any S-frame $(X ; R)$ and $U, V \in \mathcal{S} \mathcal{A}(X)$ ($=$ the set of all clopen cones of X) define:

$$
U \rightarrow V=X \backslash\left(R^{-1}(U \backslash V) \cup(U \backslash V)\right), \quad \square U=X \backslash R^{-1}(X \backslash U)
$$

Then the algebra $\mathcal{S A}((X ; R))=(\mathcal{S A}(X) ; \vee, \wedge, \rightarrow, \square, 0,1)$ is a Solovay algebra. Furthemore, for any morphism $f:\left(X_{1} ; R_{1}\right) \rightarrow\left(X_{2} ; R_{2}\right)$ in $\mathbf{S}, \mathcal{S} \mathcal{A}(f)=$ $\mathcal{G}(f)$ is a Solovay algebra homomorphism from $\mathcal{S A}\left(X_{2} ; R_{2}\right)$ into $\mathcal{S A}\left(X_{1} ; R_{1}\right)$. On the other hand, for each Solovay algebra \mathbf{A}, the set $\mathcal{S}(A)$ of all prime filters of \mathbf{A} with the binary relation R on it, defined by the following way: $x R y \Leftrightarrow(\forall a \in A)(\square a \in x \Rightarrow a \in y)$, and topologised by taking the family of $\beta(a)=\{F \in \mathcal{S}(A): a \in F\}$, for $a \in A$, and their complements as a subbase, denote it by $\mathcal{S}(\mathbf{A})$, is an object of \mathbf{S}; and for each Solovay algebra homomorphism $h: A \rightarrow B, \mathcal{S}(h)=\mathcal{G}(h)$ is a morphism of \mathbf{S}. Therefore we have two contravariant functors $\mathcal{S}: \mathbf{S A} \rightarrow \mathbf{S}$ and $\mathcal{S} \mathcal{A}: \mathbf{S} \rightarrow \mathbf{S A}$. These functors establish a dual equivalence between the categories $\mathbf{S A}$ and \mathbf{S}.

As follows from a duality there is one-to-one correspondence between homomorphic images of a Solovay algebra A and closed cones of $\mathcal{S}(A)$, and between subalgebras of a $S A$-algebra A and correct partitions of $\mathcal{S}(A)$, where a correct partition $[6]$ of a $(X ; R) \in \mathbf{S}$ is such an equivalence relation E on X that

- E is a closed equivalence relation, i.e. E-saturation ${ }^{1}$ of any closed subset is closed;
- E-saturation of any upper cone is an upper cone;
- $(\forall x \in X)\left(E(x) \cap R^{-1}(E(x)) \neq \emptyset \Rightarrow E(x) \subseteq R^{-1}(E(x))\right.$;
- there is S-frame $(Y ; Q)$ and strongly isotone map $f: X \rightarrow Y$ such that $\operatorname{Ker} f=E$.

Suppose ($X ; R$) is an S-frame, $A=\mathcal{S} \mathcal{A}((X ; R))$ and $g_{1}, \ldots, g_{n} \in A$. Now we will present a criterion deciding whether or not A is generated by g_{1}, \ldots, g_{n}. Our criterion extends the analogous one for descriptive intuitionistic frames from [5] to S-frames.

[^1]Denote by \mathbf{n} the set $\{1, \ldots, n\}$. Let $G_{p}=g_{1}^{\varepsilon_{1}} \cap \cdots \cap g_{n}^{\varepsilon_{n}}$, where $\varepsilon_{i} \in\{0,1\}$, $p=\left\{i: \varepsilon_{i}=1\right\}$ and

$$
g_{i}^{\varepsilon_{i}}= \begin{cases}g_{i}, & \varepsilon_{i}=1 \\ -g_{i}, & \varepsilon_{i}=0\end{cases}
$$

It is obvious that $\left\{G_{p}\right\}_{p \subseteq \mathbf{n}}$ is a partition of X which we call the colouring of $X .{ }^{2}$ A point $x \in G_{p}$ is said to have the colour p, written as $\operatorname{Col}(x)=p$. Let us remark that $g_{i}=\bigcup_{i \in p} G_{p}$.
Lemma 3. Suppose E is a correct partition of X. The following two conditions are mutually equivalent:
(i) every g_{i} is E-saturated, that is $E\left(g_{i}\right)=g_{i}(1 \leq i \leq n)$,
(ii) every class G_{p} is E-saturated, that is $E\left(G_{p}\right)=G_{p}(p \subseteq \mathbf{n})$.

Proof. Easy.
Theorem 4 (Coloring theorem). A Solovay algebra A is generated by g_{1}, \ldots, g_{n} iff for every non-trivial correct partition E of $X(=\mathcal{S}(A))$, there exists an equivalence class of E containing points of different colors.

Proof. Suppose A is generated by g_{1}, \ldots, g_{n} and E is a non-trivial correct partition of X. Consider the set A_{E} of E-saturated elements of A. Since g_{1}, \ldots, g_{n} generate A, there exists $i \leq n$ such that $g_{i} \notin A_{E}$. Therefore there exists $p \subseteq \mathbf{n}$ such that G_{p} is not E-saturated. But then there exists $x \in G_{p}$ such that $E(x) \cap G_{p} \neq \emptyset$ and $E(x) \cap-G_{p} \neq \emptyset$. Hence $E(x)$ contains points of different colour.

Conversely, suppose A is not generated by g_{1}, \ldots, g_{n}. Denote by A_{0} the least subalgebra of A containing g_{1}, \ldots, g_{n}. Obviously A_{0} is a proper subalgebra of A and the correct partition E of X corresponding to A_{0} is non-trivial ${ }^{3}$. Moreover, since $g_{1}, \ldots, g_{n} \in A_{0}, E\left(g_{i}\right)=g_{i}(1 \leqslant i \leqslant n)$ and hence $E\left(G_{p}\right)=G_{p}(p \subseteq \mathbf{n})$. But then every equivalence class of E contains points of the same colour.

3. Cyclic Free Solovay Algebra

Now we are going to describe the free Solovay algebra $H(G)$ of one generator G. For description of cyclic free Solovay algebra we shall use a sequence of

[^2]finite S-frames $\left(X_{i},<_{i}\right), i=1,2, \ldots$, directed by inclusion. In other words, such S-frames $\left(X_{i},<_{i}\right)$, that $X_{i} \subseteq X_{i+1},<_{i} \subseteq<_{i+1}$. As we mentioned above color is defined as any subset of $\{1, \ldots, n\}$. In our case $n=1$, so there exist exactly 2 colors: $\{1\}$ and \emptyset. We shall define X_{i} recurrently by levels (i.e. by elements of fixed depth), every element of which is colored with one of the 2 colors.

Let $X_{1}=\left\{\left(\Delta_{0}, t\right): \Delta_{0}=\emptyset, t \subseteq\{1\}\right\}$. On X_{1} we define a relation $<_{1}$: $x \nless 1 y$ for every $x, y \in X_{1}$. Thus we have constructed S-frame $\left(X_{1},<_{1}\right)$ of the first level (i.e. the elements of X_{1} have the depth 1 with respect to the relation \leq_{1}), which will be contained in the universal frame (X, R) that is constructed by induction. X_{1} (the elements of depth 1) consists of 2 different incomparable elements (two pairs), the second components of which are the colors of the elements: (\emptyset, \emptyset) and $(\emptyset,\{1\})$, and $\operatorname{Col}((\emptyset, \emptyset))=\emptyset$ and $\operatorname{Col}((\emptyset,\{1\}))=\{1\}$. Let $X_{2}=X_{1} \cup\left\{\left(\Delta_{1}, t\right): \Delta_{1} \subseteq X_{1},\left|\Delta_{1}\right|=\right.$ $\left.1, t \subseteq \operatorname{Col}\left(\Delta_{1}\right)\right\} \cup\left\{\left(\Delta_{1}, \emptyset\right): \Delta_{1}=\{(a, \emptyset),(a,\{1\})\} \subseteq X_{1}\right\}$. In our notation $X_{2}=\{(\emptyset, \emptyset),(\emptyset,\{1\}),(\{(\emptyset, \emptyset),(\emptyset,\{1\})\}, \emptyset),(\{(\emptyset, \emptyset)\}, \emptyset),(\{(\emptyset,\{1\})\},\{1\})$, $(\{(\emptyset,\{1\})\}, \emptyset)\}$. On X_{2} define the relation $<_{2}$ as follows: for every $x, y \in X_{1}$ $x<_{2} y$ iff $x<_{1} y ;\left(\Delta_{1}, t\right)<_{2} x$ for every $x \in \Delta_{1} \subseteq X_{1} ; x \nless_{2} x$ for every $x \in X_{2} \backslash X_{1}$. Let ($X_{i},<_{i}$) have already been constructed for $i \geq 2$. Then $X_{i+1}=X_{i} \cup\left\{\left(\Delta_{i}, t\right): \Delta_{i} \subseteq X_{i} \backslash X_{i-1},\left|\Delta_{i}\right|=1, t \subseteq \operatorname{Col}\left(\Delta_{i}\right)\right\} \cup\left\{\left(\Delta_{i}, \emptyset\right): \Delta_{i}=\right.$ $\left.\{(a, \emptyset),(a,\{1\})\} \subseteq X_{i} \backslash X_{i-1}\right\}$. X_{i} consists of elements of depth $\leq i$.Let us note that for every element $(a, b) \in X_{i} b$ is its color, i.e. $\operatorname{Col}((a, b))=b$. On X_{i+1} define binary the relation $<_{i+1}$ as follows: for every $x, y \in X_{i} x<_{i+1}^{\prime} y$ iff $x<_{i} y ;\left(\Delta_{i}, t\right)<_{i+1}^{\prime} x$ for every $x \in \Delta_{i} \subseteq X_{i} \backslash X_{i-1} ; x \not{ }_{i+1}^{\prime} x$ for every $x \in X_{i+1} \backslash X_{i}$. Let $<_{i+1}$ be the transitive closure of $<_{i+1}^{\prime}$. The elements of $i+1$ depth are exhausted by these described above elements. X_{i+1} is the set of all elements of depth $j \leq i+1$. $\left(X_{i+1},<_{i+1}\right)$ is S-frame determined by the construction.

Let $(X, R)=\bigcup_{i=1}^{\infty}\left(X_{i},<_{i}\right), g_{1}=\left\{x \in X_{1}: \operatorname{Col}(x)=\{1\}\right\}=\{(\emptyset,\{1\})\}$ and $g_{i}=\left\{x \in X_{i} \backslash X_{i-1}: \operatorname{Col}(x)=\{1\}\right\}$ for $i>1$.

It is possible to represent Kripke frames graphically by the following device. Represent the points of the Kripke frame (X, R) by small circles (or nodes) in such a way that if $R(x, y)$, then the node representing x is lower (in the Figure) than that representing y. Below is depicted the Figure "Pinetree" of the Kripke frame ($\kappa X, \kappa R$) which will be of subsequent interest. The Figure requires some explanation. First of all notice that the sets g_{i} are singletons and are identified with their elements.

A black-node z of our Pine-tree is an irreflexive point ($\kappa R(z, z)$ is false). A white-node z is a reflexive point $(\kappa R(z, z)$ is true). The whole Pine-tree
represents the Kripke frame $(\kappa X, \kappa R)$, whereas the frame (X, R) represents some "subtree"; namely, X is the set of black-points $x \in \kappa X$ such that there is no white-point y with $\kappa R(x, y)$. The relation R on X is the restriction of the relation κR to X (i.e. $R=\kappa R \cap X^{2}$). An inspection of Figure 1 shows that κR and R are transitive relations satisfying the ascending chain condition. Moreover, the relation R is irreflexive. Recall that we use R_{\circ} (resp., κR_{\circ}) to denote the reflexive closure of R (resp. κR). It is well-know that the ring $\operatorname{Con}(X)$ of R_{\circ}-cones of X is a Heyting algebra in which \wedge and \vee are the set-theoretical intersection and union and for $A, B \in \operatorname{Con}(X)$

$$
A \rightarrow B=\left\{x \in X:(\forall y)\left(x R_{\circ} y \& y \in A \Rightarrow y \in B\right\}\right.
$$

Define the operation \square on the Heyting algebra Con (X) by putting

$$
\square A=\{x \in X:(\forall y)(x R y \Rightarrow y \in A)\}
$$

Observation. The algebra $(\operatorname{Con}(X), \square)$ is a Solovay algebra.
One more notation: we denote $\square\left(\square^{k} p\right)$ by $\square^{k+1} p$. Given subsets $A, B \subseteq$ X, denote by $A-B$ their set-theoretical difference. We shall consider a ring of cones $K_{0}(X)$ of X obtained from the finite sets $\square^{k} \emptyset$ (k-storied pyramid of the figure, $k \in \omega)$ and the sets $X-R_{\circ}^{-1}(x)(x \in X)$ by applying the operations of union and intersection. We remark that the cones $X-R_{\circ}^{-1}(x)$ may be of two types: 1) $X-R_{\circ}^{-1}(x)$ for $x \in \operatorname{Trunk}\left(=\bigcup_{i=1}^{\infty}\left\{g_{i}\right\}\right)$, i.e. $x=g_{i}$ for some $i \geq 1$, and 2) $X-R_{\circ}^{-1}(x)$ for $x \notin \operatorname{Trunk}$, i.e. $x \neq g_{i}, i \in \omega$. A set of the first type contains a finite number of branches, whereas a set of the second type contains infinite number of branches.

Theorem 5. The ring of cones $K_{0}(X)$ is closed under the implication \rightarrow and the box-operation \square of the Solovay algebra $(\operatorname{Con}(X), \square)$. Thus the ring $K_{0}(X)$ is itself a Solovay algebra.

Proof. By direct inspection.
Denote by G the cone $\left\{g_{i} \in X: i \in \omega\right\}$ ($=$ Trunk) and by G_{k} the cone $\left\{g_{i} \in X: i \leqslant k \in \omega\right\}$. Denote by $K(X)$ the smallest subring of $\operatorname{Con}(X)$ which contains the ring $K_{0}(X)$ and the cones $\square^{k} G(k \in \omega)$. It should be noted that $\square G=\left\{a_{i}: i \in \omega\right\} \cup G$, where the elements of $\left\{a_{i}: i \in \omega\right\}$ are maximal elements of the set $X \backslash G$ with respect to the relation R_{\circ}. In our notation $a_{1}=(\emptyset, \emptyset)$.

Figure 1. Pine-tree of $(\kappa X, \kappa R)$

An analysis of the Pine-tree confirms (by direct inspection)
THEOREM 6. The ring $K(X)$ is also closed under operations \rightarrow and \square of the algebra Con (X) and hence is a Solovay algebra, which we denote by $H(G)$.

Now we can formulate the following
Theorem 7. The Solovay algebra $H(G)$ is the free cyclic algebra with generator G over the variety SA.

For the proof of the theorem we need some auxiliary assertions.
Let us define a sequence $\left(\mathbf{S A}_{k} ; k \in \omega\right)$ of subvarieties of $\mathbf{S A}$: the pyramid variety $\mathbf{S A}_{k}$ is described by equation: $\square^{k} \perp=\top$. Obviously $\mathbf{S A}_{k} \subseteq \mathbf{S A}_{\mathbf{k}+\mathbf{1}}$, Leo Esakia, Revaz Grigolia
for an arbitrary $k \geq 1$ and $k \in \omega$. Say that a Solovay algebra has height k if k is the least integer such that $\square^{k} \perp=T$.

It is well known that every interval $[p, q]$ of a Heyting algebra is a Heyting algebra. Let $H\left(G_{k}\right)$ is the interval $\left[\emptyset, \square^{k} \emptyset\right]$ of the algebra $H(G)$ and define an operator \square_{k} on $H\left(G_{k}\right)$ to be $\square_{k} A=\square A \wedge \square^{k} \emptyset$. Observe that $H\left(G_{k}\right)$ coincides with the Solovay algebra of all cones of S-frame $\left(X_{k},<_{k}\right)$.

Let $\left(Z_{1},<_{1}\right),\left(Z_{2},<_{2}\right)$ be finite S-frames such that $x \not{ }_{i} y$ for every $x, y \in$ $Z_{i}, 1 \leqslant i \leqslant 2$. By the ordinal sum $Z_{1} \oplus Z_{2}$ of S-frames Z_{1} and Z_{2} we mean S-frame consisting of all elements $x \in Z_{1}$ and all elements $y \in Z_{2}$ in which the relation R is defined as follows: $x R y$ if and only if $x \in Z_{1}$ and $y \in Z_{2}$. It is clear that the ordinal sum of S-frames can be easily extended to the case of more than two S-frames. We shall consider ordinal sums $Z_{k}^{\left(i, i^{\prime}\right)}=Z_{1} \oplus Z_{2} \oplus \cdots \oplus Z_{k}$ such that $1<k \in \omega$ and $\left|Z_{i}\right|=2$ at most for one $i>1$, where $Z_{j}=\{j\}$ for $j \neq i(>1)$ and $Z_{i}=\left\{i, i^{\prime}\right\}$. Let us denote by $C_{k}^{\left(i, i^{\prime}\right)}, 1<i \leqslant k$, the Solovay algebra (of all cones) of the ordinal sum $Z_{k}^{\left(i, i^{\prime}\right)}=Z_{1} \oplus Z_{2} \oplus \cdots \oplus Z_{k}$, and by $C_{k}^{(i)}, 0 \leqslant i \leqslant k$, Solovay algebras of all cones $Z_{k}^{(i)}=Z_{1} \oplus Z_{2} \oplus \cdots \oplus Z_{k}$ with the generator $R(i)$, where $Z_{i}=\{i\}$ for all $i \in\{1, \ldots, k\}$ and $R(0)=\emptyset$.
Lemma 8. $C_{k}^{(0)}, C_{k}^{(1)}, \ldots, C_{k}^{(k)}, C_{k}^{\left(2,2^{\prime}\right)}, \ldots, C_{k}^{\left(k, k^{\prime}\right)}$ are the only (up to isomorphism) cyclic subdirect irreducible Solovay algebras of height k, where $\emptyset(=\perp)$ is a generator of $C_{k}^{(0)}$ and $R(i)$ is a generator of $C_{k}^{(i)}$ for $1 \leqslant i \leqslant k$, and $R(i)$ is a generator of $C_{k}^{\left(i, i^{\prime}\right)}$ for $1<i \leqslant k$.

Proof. Since the condition $p \leftrightarrow q \leq \square p \leftrightarrow \square q$ holds in Solovay algebras, we have that the lattice of congruences of Heyting algebra H coincides with the lattice of congruences of Solovay algebra (H, \square). So, since the S-frames of the algebras contain the least element, it is evident that the algebras are subdirect irreducible. According to Theorem 4 (Coloring theorem) it is easy to check the algebras are cyclic. Let us suppose that A is a finite cyclic subdirect irreducible Solovay algebra of height k which are differ from the ones mentioned in the lemma. Then the S-frame of A coincides with an ordinal sum $Z_{1} \oplus Z_{2} \oplus \cdots \oplus Z_{k}$, where either (1) $\left|Z_{i}\right|>2$ for some $i>1$ or (2) there are $i_{1}, i_{2}>1$ such that $\left|Z_{i_{1}}\right|=\left|Z_{i_{2}}\right|=2$. Let $Z=Z_{1} \oplus Z_{2} \oplus \cdots \oplus Z_{k}$ and $a \subseteq Z$ be a generator of A which is identified with the set of all cones of Z. Since A is cyclic, Z is colored with two colors: the elements which belong to a and the elements which belong to $Z \backslash a$. In the case (1) at least two elements, say z_{1} and z_{2}, of Z_{i} have the same color. Then the partition, which has the only non-trivial class $\left\{z_{1}, z_{2}\right\}$, is correct. Therefore, according
to Coloring theorem, a does not generate A. In the case (2), supposing that $i_{1}<i_{2}$, either i_{1} or i_{1}^{\prime} belong to a or $i_{1}, i_{1}^{\prime} \notin a$. In the first case the partition, the only non-trivial class of which is $\left\{i_{2}, i_{2}^{\prime}\right\}$, is correct and $i_{2}, i_{2}^{\prime} \in a$. In the second case the partition, the only non-trivial class of which is $\left\{i_{1}, i_{1}^{\prime}\right\}$, is correct. In both cases according to Coloring theorem A is not generated by a.

Lemma 9. Let x be arbitrary element of $X_{k+1} \backslash X_{k}$. The Solovay algebra A_{x} (which is a homomorphic image of $\left(H\left(G_{k}\right)\right.$) of all cones of S-frame $R_{\circ}(x)$ with generator $G_{k} \cap R_{\circ}(x)$ is isomorphic to the one of the algebras $C_{k}^{(0)}, C_{k}^{(1)}$, $\ldots, C_{k}^{(k)}, C_{k}^{\left(2,2^{\prime}\right)}, \ldots, C_{k}^{\left(k, k^{\prime}\right)}$, where the isomorphism sends the generator of A_{x} to the corresponding generator of the algebra from this list of algebras.

Proof. By direct inspection. It is also easy to see from the Fig. 1.
Theorem 10. Every pyramid variety $\mathbf{S A}_{k}(k \in \omega)$ is locally finite and the algebra $H\left(G_{k}\right)(k \in \omega)$ is the free cyclic Solovay algebra with the generator G_{k} over the variety $\mathbf{S A}_{k}$.

Proof. First, we shall show that the free Solovay algebra $F_{\mathbf{S A}}(n)$ on n generators over the variety $\mathbf{S A}_{k}$ is finite. Let us consider n-generated subdirectly irreducible algebra from $\mathbf{S A}_{k}$. Then $\mathcal{K}(A)$ can have not more than 2^{n} elements every of which has color $t \subseteq\{1, \ldots, n\}$ (according to Coloring Theorem 4). Then $\mathcal{K}(A)$ has only one element of depth 2 . Let us suppose that $\mathcal{K}(A)$ has less than 2^{n} maximal elements, say a_{1}, \ldots, a_{p}, with corresponding colours. Then the number of elements of $\mathcal{K}(A)$ having depth 2 is not more than $\mid\left\{t: t \subseteq \bigcap_{i=1}^{p} \operatorname{Col}\left(a_{i}\right) \mid\right.$. Continuing this process we observe that the cardinality of the set of elements of depth $i \leq k$ is bounded. In consequence of this observation we conclude that the number of nonisomorphic n-generated subdirectly irreducible Solovay algebras from $\mathbf{S A}_{k}$ is finite. Consequently the free n-generated Solovay algebra $F_{\mathbf{S A}}(n)$ is finite and therefore $\mathbf{S A}_{k}$ is locally finite.

Now we shall show that $H\left(G_{k}\right)$ is the free cyclic Solovay algebra with the free generator G_{k} over the variety $\mathbf{S A}_{k}$. It is evident that $\left(H_{1}, \square_{1}\right)$ is a free cyclic diagonalizable algebra over $\mathbf{D}^{(\mathbf{1})}\left(=\mathbf{S A}_{\mathbf{1}}\right)$. Let $k>1$. It is sufficient to show that if an identity $\mathbf{p}=\mathbf{q}$, containing only one variable, does not hold in $\mathbf{S A}_{k}$ then $\mathbf{p}=\mathbf{q}$ does not hold in $H\left(G_{k}\right)$ on the generator G_{k}. Let us suppose that an identity $\mathbf{p}=\mathbf{q}$, containing only one variable, does not hold in $\mathbf{S A}_{k}$. Then there is a finite subdirectly irreducible one generated Solovay algebra $A \in \mathbf{S A}_{k}$ such that $P(a) \neq Q(a)$, where P, Q are polynomials corresponding Leo Esakia, Revaz Grigolia
to polynomial symbols \mathbf{p}, \mathbf{q} respectively and $a \in A$ is a generator of A. Then, according to Lemma 8, there is an isomorphism $\varphi: C \rightarrow A$ and $\varphi(c)=a$, where $C \in\left\{C_{k}^{(0)}, C_{k}^{(1)}, \ldots, C_{k}^{(k)}, C_{k}^{\left(2,2^{\prime}\right)}, \ldots, C_{k}^{\left(k, k^{\prime}\right)}\right\}$ and $c \in C$ is the generator of C. But, according to Lemma 9, there exists homomorphism $h: H\left(G_{k}\right) \rightarrow C$ such that $h\left(G_{k}\right)=c$. Therefore there is a homomorphism $u=h \varphi: H_{k} \rightarrow A$ such that $u\left(G_{k}\right)=a$ and, consequently, $P\left(G_{k}\right) \neq Q\left(G_{k}\right)$ in $H\left(G_{k}\right)$.

Lemma 11 ([4]). The variety $\mathbf{S A}$ is generated by their finite members. Moreover $\mathbf{S A}$ is generated by $\bigcup_{k=1}^{\infty} \mathbf{S A}_{k}$.

Proof. Here we give a sketch of a proof. First of all observe that the variety of all cascade Heyting algebras is locally finite. Indeed, observe that in any finite subdirectly irreducible Boolean cascade $H=B_{1}+\cdots+B_{k}$ hold the formulas $(\exists x)(x \prec \top \&(\forall y)(y \prec \top \Rightarrow x=y)),(\forall x, y, z)(x \not \leq z \& z \not \leq$ $x \& x \leq y \Rightarrow y \leq z),(\forall x, y, z)(x \not \leq z \& z \not \leq x \Rightarrow((x \rightarrow z) \vee x) \leq y \bigvee y \leq$ $((x \rightarrow z) \vee x)$. The first formula points out that the algebra is subdirectly irreducible, the second one that the algebra is cascade type and the third that there exist nodes in the algebra. Since every subdirectly irreducible cascade Heyting algebra is a homomorphic image of a subalgebra of a ultraproduct of subdirectly irreducible finite Boolean cascades, any subdirectly irreducible cascade Heyting algebra contains Boolean lattices as a convex sublattices (according to second formula). Let us observe that if subdirectly irreducible cascade Heyting algebra is n-generated, then the number of convex Boolean sublattices not more that n. For any n-generated subdirect irreducible cascade Heyting algebra $H=B_{1}+\cdots+B_{k}(k \leq n)$ if a_{1}, \ldots, $a_{n} \in B_{i}$ then either $P\left(a_{1}, \ldots, a_{n}\right) \in B_{i}$ or $P\left(a_{1}, \ldots, a_{n}\right) \in\{T, \perp\}$, where $P\left(x_{1}, \ldots, x_{n}\right)$ is arbitrary n-ary Heyting polynomial. Moreover, the set of elements $\left\{\perp_{B_{k}}, x \in H: x=\top_{B_{i}}, 1 \leq i \leq k\right\}$ forms a Heyting subalgebra of H which is a chain. Therefore the cardinality of B_{i} is at least $2^{2^{n}}$. From here we conclude that the cardinality of subdirect irreducible cascade Heyting algebras which are generated by n generators is bounded. Therefore the variety of Heyting algebras generated by cascade Heyting algebras is locally finite.

Now suppose that $\mathbf{p}=\mathbf{q}$ does not hold in SA. Then there is a Solovay algebra A such that $P\left(a_{1}, \ldots, a_{n}\right) \neq Q\left(a_{1}, \ldots, a_{n}\right)$ for some elements $a_{1}, \ldots, a_{n} \in A$, where P and Q are polynomials corresponding to the polynomial symbols \mathbf{p} and \mathbf{q} respectively. Let $P_{1}\left(x_{1}, \ldots, x_{n}\right), \ldots, P_{m}\left(x_{1}, \ldots, x_{n}\right)$ be all subpolynomials of $P\left(x_{1}, \ldots, x_{n}\right)$. Then, since A, as a Heyting algebra, belongs to the variety of cascade Heyting algebras, the Heyting subalgebra
of A generated by $P_{1}\left(a_{1}, \ldots, a_{n}\right), \ldots, P_{m}\left(a_{1}, \ldots, a_{n}\right)$ will be finite. Let us denote the subalgebra by $A_{\text {fin }}$. On the Heyting algebra $A_{\text {fin }}$ we can define unique operator \square as follows:

$$
\square p=\bigwedge_{q \in A_{\mathrm{fin}}}(q \vee(q \rightarrow p)) .
$$

Then $\left(A_{\mathrm{fin}}, \square\right)$ will be a Solovay algebra such that $P\left(a_{1}, \ldots, a_{n}\right) \neq Q\left(a_{1}, \ldots\right.$, $\left.a_{n}\right)$ in $\left(A_{\mathrm{fin}}, \square\right)$. It is evident that since $A_{\mathrm{fin}} \in \mathbf{S A}_{k}$ for some $k \in \omega, \mathbf{p}=\mathbf{q}$ does not hold in $\mathbf{S A}_{k}$. From here we conclude that $\mathbf{S A}$ is generated by $\bigcup_{k=1}^{\infty} \mathbf{S A}_{k}$.

Now we can give
Proof of Theorem 7. It is enough to show that if an identity $\mathbf{p}=\mathbf{q}$, containing only one variable, does not hold in SA then $\mathbf{p}=\mathbf{q}$ does not hold in $H(G)$ on the generator G. Let us suppose that an identity $\mathbf{p}=\mathbf{q}$, containing only one variable, does not hold in SA. Then there is a finite subdirectly irreducible one generated Solovay algebra $A \in \mathbf{S A}_{k}$ such that $P(a) \neq Q(a)$, where P, Q are polynomials corresponding to polynomial symbols \mathbf{p}, \mathbf{q} respectively and $a \in A$ is a generator of A. Then there is homomorphism $h: H\left(G_{k}\right) \rightarrow A$, where $h\left(G_{k}\right)=a$. But $H\left(G_{k}\right)$ is a homomorphic image of $H(G)$, where the homomorphism $\varphi: H(G) \rightarrow H_{k}$ sends the generator G to the generator G_{k}. Therefore there is a homomorphism $h \varphi: H(G) \rightarrow A$ such that $h(\varphi(G))=a$. It means that $P(G) \neq Q(G)$.

Theorem 12. The algebra $H(G)$ is isomorphic to the subalgebra of the inverse limit $\lim _{\leftarrow}\left\{H\left(G_{k}\right)\right\}_{k \in \omega}$ generated by the generator $\left(G_{1}, G_{2}, \ldots\right)=G$.

Proof. Observe that the family $\left\{H\left(G_{k}\right), \pi_{n m}: n \geqslant m \geqslant 1\right\}$ forms an inverse system. Indeed, $\pi_{n m}: H\left(G_{n}\right) \rightarrow H\left(G_{m}\right)$ is homomorphism onto for $n \geqslant m$. In the dual picture we have corresponding embedding $\mathcal{S}\left(\pi_{n m}\right):\left(X_{m}\right.$, $\left.<_{m}\right) \rightarrow\left(X_{n},<_{n}\right)(n \geqslant m)$, where $\left(X_{m},<_{m}\right) \cong \mathcal{S}\left(H\left(G_{m}\right)\right)$ and $\left(X_{n},<_{n}\right) \cong$ $\mathcal{S}\left(H\left(G_{n}\right)\right)$. Identifying the elements of an algebras with the corresponding upper cones the homomorphism $\pi_{n m}$ is defined as follows: $\pi_{n m}(a)=a \cap X_{m}$ for every $a \in H\left(G_{n}\right)$. Then $\pi_{m l} \circ \pi_{n m}=\pi_{n l}$, for $n \geqslant m \geq l \geqslant 1$. Recall that the inverse limit

$$
\lim _{\leftarrow}\left\{H\left(G_{k}\right)\right\}_{k \in \omega}=\left\{\left(x_{k}\right)_{k} \in \prod_{k=1}^{\infty} H\left(G_{k}\right): \pi_{l m}\left(x_{l}\right)=x_{m}, l \geq m \geq 1\right\} .
$$

Let $\pi_{n}: \prod_{k=1}^{\infty} H\left(G_{k}\right) \rightarrow H\left(G_{n}\right)$ be the canonical projection. Let $G=$ $\left(G_{1}, G_{2}, \ldots\right) . G$ is an element of the inverse limit and let $F(G)$ be the subalgebra of the inverse limit generated by G. It is well known that because of the fact that $\mathbf{S A}$ is generated by $\bigcup_{k=1}^{\infty} \mathbf{S A}_{k}$ we only need to show that every map $G \rightarrow a$ to an algebra A, generated by a, belonging to some $\mathbf{S A}_{k}$ can be extended to a homomorphism from $F(G)$ to that algebra. Since $A \in \mathbf{S A}_{k}$, there exists a homomorphism $h: H\left(G_{k}\right) \rightarrow A$ such that $h\left(G_{k}\right)=a$ and $h \pi_{k}: H(G) \rightarrow A$ is needed homomorphism extending the map $G \rightarrow a$. It means that $F(G)$ is the free cyclic Solovay algebra whence it follows that $F(G) \cong H(G)$. Indeed, the map

$$
f:\left(a_{1}, a_{2}, \ldots\right) \rightarrow \bigcup_{i=1}^{\infty} a_{i}
$$

establishes the isomorphism between $F(G)$ and $H(G)$.
Theorem 13. Finite upper cones of the kind $R_{\circ}(x) \subseteq X$, for every $x \in X$, is join irreducible elements of the free cyclic algebra $H(G)$.

Proof. Let $x \in X$ be an element of some finite depth $k \geqslant 1$. Since $R_{\circ}(x)$ is an upper cone of $(X, R), R_{\circ}(x)$ is an element of $H\left(G_{k}\right)$ and, consequently, $H\left(G_{k+1}\right)$. Therefore there is a polynomial $P(x)$ such that $R_{\circ}(x)=$ $P\left(G_{k+1}\right) \in H\left(G_{k+1}\right)$. Then $\pi_{k+1}(P(G))=P\left(\pi_{k+1}(G)\right)=P\left(G_{k+1}\right)=$ $R_{\circ}(x)$, where $\pi_{k+1}: H(G) \rightarrow H\left(G_{k+1}\right)$ is the canonical homomorphism which is defined as the map $V \rightarrow V \cap X_{k+1}$, for every $V \in H(G)$. Since $R_{\circ}(x) \cap\left(X_{k+1} \backslash X_{k}\right)=\emptyset$ and $R_{\circ}(x)$ is an upper cone, $P(G)=R_{\circ}(x) . \quad \dashv$

4. Analysis of S-frame $(\kappa X, \kappa R)$

In conclusion, we outline a portion of the duality theory of the relationship between the free algebra $H(G)$ and the S-frame $\mathcal{S}(H(G))=(\kappa X, \kappa R)$ (see Pine-tree). Based on the duality between Solovay algebras and S-frames the algebra $H(G)$ can (and henceforth will) be identified with the lattice of clopen cones of its dual topological Kripke frame $(\kappa X, \kappa R)$. We want to associate with the algebra $H(G)$ our Pine-tree. To this end define κX to be a topological space whose points are prime filters of $H(G)$ with the topology determined by the subbase $\{x \in \kappa X: A \in x\}$ and $\{x \in \kappa X: A \notin x\}(A \in$ $H(G))$. Then κX is a Stone space ($=$ a compact, Hausdorff, zero-dimensional space). The dual of \square-operation is the relation κR on X defined by $\kappa R(x, y)$ iff for every $A \in H(G)$, if $\square A \in x$ then $A \in y$. Moreover, $\left(\kappa X, \kappa R_{\circ}\right)$ is a poset and κR_{\circ} coincides with the inclusion relation between prime filters of $H(G)$.

Formulas of one propositional variable...

Let U be the set of all principal prime filters of the algebra $H(G)$ generated by $R_{\circ}(x)$ for $x \in X$. It is evident that, according to Theorem 13, since $R_{\circ}(x)$ is join irreducible, the filter generated by $R_{\circ}(x)$ will be prime. Let us identify U with X : identify x with the prime filter generated by $R_{\circ}(x)$. Then $X \subseteq \kappa X$ and $(X, \kappa R) \cong(X, R)$. Since $R_{\circ}(x) \in H(G)$ for every $x \in X, R_{\circ}(x)$ is a clopen subset of the space κX. Arbitrary element $x \in X$ is covered at least by two-element set, say $\left\{y_{1}, y_{2}\right\} \subseteq X$, i.e. $x \prec\left\{y_{1}, y_{2}\right\}$, and $R_{\circ}\left(y_{i}\right)$ is a clopen subset of $\kappa X(i=1,2)$. Therefore $\{x\}=R_{\circ}(x) \cap\left(\kappa X \backslash\left(R_{\circ}\left(y_{1}\right) \cup R_{\circ}\left(y_{2}\right)\right)\right)$ is a clopen, i.e. arbitrary element $x \in X \subseteq \kappa X$ is an isolated point of the space κX. Let us remark that (X, R_{\circ}) has only two maximal elements a_{1} and g_{1}, and $\left\{a_{1}, g_{1}\right\} \subseteq X \subseteq \kappa X$ is a clopen of κX and it is an element of $H(G)$. Then $-R_{\circ}^{-1}\left\{a_{1}, g_{1}\right\}=\emptyset$. Therefore $-\kappa R_{\circ}^{-1}\left\{a_{1}, g_{1}\right\}=\emptyset$. Consequently the limit,i.e. not isolated, points of κX are "below" (with respect to the order κR_{\circ}) the elements of X. From these observations we can prove the following theorems.

Theorem 14. X is an increasing open dense subset of κX and thus κX is an order compactification of X.

Proof. The family $\left\{R_{0}(x)\right\}_{x \in X}$ has the least upper bound $\top \in H(G)$. It means that $\operatorname{cl} \bigcup_{x \in X} R_{\circ}(x)=\kappa X$ and $\bigcup_{x \in X} R_{\circ}(x)(=X)$ is an upper open cone of κX.

Theorem 15. A point x is an isolated point of the topological space κX iff $x \in X$.

Proof. As we have shown above any point $x \in X$ is an isolated point of κX. But X is a dense subset of κX (Theorem 14). Hence any isolated point belongs to X.

Now we shall describe the prime filters of $H(G)$ which belong to the growth $\kappa X-X$. Let us denote by g_{ω} the prime filter generated by $G \in H(G)$. g_{ω} is a prime because G is a chain. It is evident that g_{ω} is contained in all prime filters $g_{k}(k \in \omega)$ generated by G_{k}, which are linearly ordered by inclusion. Notice that if $A \in H(G)$ is a proper subset of G then A is finite, i.e. coincides with G_{k} for some $k \in \omega$. Therefore for any $A \in H(G)$ if $\square A \in g_{\omega}$ then $A \in g_{\omega}$. Indeed, suppose that for some $A \in H(G) \square A \in g_{\omega}$ and $A \notin g_{\omega}$. It means $A \cap G=G_{k}$ for some $k \in \omega$. Then g_{k+1} is a maximal element of $X \backslash A$ and therefore $g_{k+2} \notin \square A$ which contradicts to the supposition $\square A \supseteq G$. Consequently g_{ω} is a reflexive point of κX, i.e. $\kappa R\left(g_{\omega}, g_{\omega}\right)$.

Recall that $\square G=G \cup\left\{a_{i}: i \in \omega\right\}$ where $\left\{a_{i}: i \in \omega\right\}$ is the set of all maximal elements (with respect to R_{\circ}) of $X \backslash G . \square^{2} G=\square G \cup\left\{n_{i}, m_{i}: i \in \omega\right\}$ where $\left\{n_{i}, m_{i}: i \in \omega\right\}$ is the set of all maximal elements (with respect to R_{\circ}) of $X \backslash \square G$. In our notations $n_{1}=(\{(\emptyset, \emptyset)\}, \emptyset)$ and $m_{1}=(\{(\emptyset, \emptyset),(\emptyset,\{1\}\}, \emptyset)$. It is easy to see that $R\left(n_{i}, a_{i}\right), R\left(m_{i}, a_{i}\right)$ and $R\left(m_{i}, g_{i}\right)(i \in \omega)$ (see Pine-tree). It is evident that $C_{n_{i}}=R_{\circ}^{-1}\left(n_{i}\right) \cup R_{\circ}\left(n_{i}\right)$ and $C_{m_{i}}=R_{\circ}^{-1}\left(m_{i}\right) \cup R_{\circ}\left(m_{i}\right)$ are elements of $H(G)$ and $C_{n_{i}}$ and $R_{\circ}^{-1}\left(m_{i}\right)$ are infinite chains. Moreover $C_{n_{i}}$ and $C_{m_{i}}$ are join irreducible. Therefore the filters generated by $C_{n_{i}}, C_{m_{i}}$, denote them by $\nu_{i}, \mu_{i}(i \in \omega)$ respectively, will be prime (see Pine-tree). By the same reasons as in the case of the prime filter g_{ω} we conclude that ν_{i}, μ_{i} are reflexive points of κX, i.e. $\kappa R\left(\nu_{i}, \nu_{i}\right)$ and $\kappa R\left(\mu_{i}, \mu_{i}\right)$.

Further, analogically as in the case of the principal prime filter g_{ω}, we can show that the filters generated by $\left\{\square^{k} G,-R_{\circ}^{-1}(x): x \in X \backslash G\right\}$, for some $k \geqslant 1$, are prime which we denote by α_{k} (see Pine-tree). Let us observe that for the element $\square\left(\square^{k-1} G\right) \in \alpha_{k}(k \geqslant 1) \square^{k-1} G \notin \alpha_{k}$, whence it follows that α_{k} is irreflexive point of κX, i.e. $\neg \kappa R\left(\alpha_{k}, \alpha_{k}\right)$. The filter generated by the set of elements $-R_{\circ}^{-1}(x)$, where $x \notin G$, is a non-principal prime filter which we denote by α_{ω}. It is enough to observe that α_{ω} contains the elements of $H(G)$ with co-finite number of branches. It is evident that $\alpha_{\omega} \subseteq \ldots \alpha_{2} \subseteq \alpha_{1}$ and for any $i, j, t \in \omega$ all $\nu_{i}, \mu_{j}, \alpha_{t}$ are incomparable. Let us note that the elements of the kind $-R_{\circ}^{-1}-(V)$ is a finite set for any finite set $V \subseteq X \backslash G$. Therefore $\square V \backslash V$ is a finite set. Consequently for any $A \in H(G)$ if $\square A \in \alpha_{\omega}$ then $A \in \alpha_{\omega}$, whence it follows that α_{ω} is a reflexive point of κX, i.e. $\kappa R\left(\alpha_{\omega}, \alpha_{\omega}\right)$.

Proceeding from the structure of $H(G)$ which coincides with the ring of cones $K(X)$ and the fact that the intersection of all elements of $H(G)$, represented as clopen cones of κX, belonging to some prime filter F of $H(G)$ coincides with a closed cone, which is either chain or contains no more than two incomparable elements, with the least element, which is isolated if $F \in X$ and is not isolated if $F \notin X$. Therefore we have

Theorem 16. The set κX of all prime filters of $H(G)$ coincides with the set $X \cup\left\{\nu_{i}, \mu_{i}: i \in \omega\right\} \cup\left\{g_{i}: i \in \omega+1\right\} \cup\left\{\alpha_{i}: i \in \omega+1\right\}$. Moreover, the set $X \cup\left\{\alpha_{i}: i \in \omega\right\}$ coincides with the set of all irreflexive points of κX and $\left\{g_{\omega}, \nu_{i}, \mu_{i}: i \in \omega\right\}$ coincides with the set of all reflexive points of κX.

We conclude with
Theorem 17. The Heyting lattice of clopen cones of the topological Kripke frame $(\kappa X, \kappa R)$ is isomorphic to the free cyclic Solovay algebra $H(G)$.

Remark. We associate with every clopen cone A of κX the trace $\varphi A=X \cap A$ of A on X. The map φ establishes the necessary isomorphism. Moreover, the trace of the clopen cone $\kappa R\left(g_{\omega}\right)$ on X is equal to the generator $G=$ $\left\{g_{i} \in X: i \in \omega\right\}$ of $H(G)$.

Acknowledgements. We are grateful to the referee for her/his comments and suggestions which helped to improve the readability of the paper.

References

[1] Abashidze, M., "On some properties of Magari algebras", pages 111-127 in Logical-Semantical Investigations, Tbilisi, Metsniereba, 1981 (in Russian).
[2] Boolos, G., The Logic of Provability, Cambridge Univ. Press, 1993, XV, 276.
[3] Esakia, L., Heyting Algebras I. Duality Theory, Monograph, "Metsniereba", Tbilisi, 1985 (in Russian).
[4] Esakia, L.,"Provability interpretation of Intuitionistic Logic", pages 19-24 in Logical Investigations 5, Moscow, Nauka, 1998 (in Russian).
[5] Esakia, L., and R. Grigolia, "The criterion of Browerian and closure algebras to be finiteliy generated", Bull. Sect. Logic 6, 2 (1973), 46-52.
[6] Grigolia, R., Free Algebras of Non Classical Logics, Monograph, "Metsniereba", Tbilisi, 1987 (in Russian).
[7] Kuznetsov, A., and A. Muravitsky, "On superintuitionistic logics as fragments of proof logic extensions", Studia Logica 45 (1986), 77-99.
[8] Solovay, R., 'Provability interpretation of modal logics', Israel Journal of Mathematics 25 (1976), 287-304.

Leo Esakia

Mathematical Institute
I. M. Aleksidze str., 1

0193 Tbilisi, Georgia
esakia@hotmail.com
Revaz Grigolia
Tbilisi State University
Institute of Cybernetics
Sandro Euli str., 5
1086 Tbilisi, Georgia
grigolia@yahoo.com

[^0]: *The author was supported by the grant $\mathcal{N} \simeq$ GNSF/ST06/3-003.

[^1]: ${ }^{1}$ If $V \subseteq X$ then E-saturation of V is $E(V)=\bigcup_{x \in X} E(x)$.

[^2]: ${ }^{2}$ It is also clear that G_{p} are the atoms of the Boolean algebra $\mathcal{B}\left(g_{1}, \ldots, g_{n}\right)$ generated (in the set of all subsets of X) by g_{1}, \ldots, g_{n}.
 ${ }^{3} E$ is defined on X by putting: $x E y$ iff $x \in U \Leftrightarrow y \in U$, for every $U \in A_{0}$.

